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Abstract

This paper studies the fast adaptive beamforming for the multiuser multiple-input single-output

downlink. Existing deep learning-based approaches assume that training and testing channels follow

the same distribution which causes task mismatch, when the testing environment changes. Although

meta learning can deal with task mismatch, it rely on labelled data and incur high complexity in the

pre-training and fine tuning stages. We propose a simple yet effective adaptive framework to solve

the mismatch issue, which trains an embedding model as a transferable feature extractor, followed by

fitting the support vector regression. Compared to the existing meta learning algorithm, our method

does not necessarily need labelled data in the pre-training and does not need fine-tuning of the pre-

trained model in the adaptation. The effectiveness of the proposed method is verified through two

well-known applications, i.e., the signal to interference plus noise ratio balancing problem and the sum

rate maximization problem. Furthermore, we extend our proposed method to online scenarios in non-

stationary environments. Simulation results demonstrate the advantages of the proposed algorithm in

terms of both performance and complexity. The proposed design framework can also be applied to

general radio resource management problems.
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I. INTRODUCTION

Beamforming is one of the most promising multi-antenna techniques that can realize the

antenna diversity gain and mitigate multiuser interference simultaneously. Optimizing beam-

forming weights is critical to fully reap its benefits and has been extensively studied in the

literature for various objectives such as power minimization [1], [2], signal-to-interference-plus-

noise ratio (SINR) balancing [3], and sum rate maximization [4]. However, most beamforming

solutions are highly complex to implement and cannot meet the critical latency requirement in

the fifth generation (5G) and beyond systems because they are iterative in nature and provide

slow convergence.

Recently the deep learning technique has been proposed to address the complexity of beam-

forming design using the ‘learning to optimize’ framework [5]. It is based on the intuitive idea

that the mapping from channel state to beamforming can be learned by training a neural network

model in an offline manner, and then the beamforming solution can be directly predicted using

the trained model in real time. This method shifts the complexity of real-time beamforming

optimization to offline training and its potential has been demonstrated in solving a series of

beamforming design problems [6]–[11]. A major drawback of the existing deep learning-based

beamforming solutions is that they are restricted to static wireless environments, in which the

training and testing channels follow the same distribution; this assumption is practically unrealis-

tic. In practical wireless networks, the channel distribution may change due to high mobility (e.g.,

in vehicular networks) or unexpected perturbations of complex environments. Consequently, a

well trained model based on the training data could cause unacceptable performance degradation

in the testing environment. To tackle this challenge, an obvious solution is to re-train the model by

using newly collected data from the new environment. This is impractical because the changing

network does not allow enough time to collect enough new data and then train a new model

before violating the latency constraint. Therefore it is a pressing research challenge in multi-

antenna communications to achieve fast adaptation of beamforming solutions.

Transfer learning and meta learning have been recognized as two emerging techniques to

design adaptive beamforming. Transfer learning [12] has been applied to improve performance

of various resource allocation problems in wireless communications due to its strong ability of

transferring useful prior knowledge from the old scenario to a new one [13], [14]. In machine

learning practice, fine-tuning is a widely used transfer learning technique which re-trains part of a
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pre-trained model on a new but related task with new data. Different from transfer learning, meta

learning is a ‘learning to learn’ strategy which aims to train a model with better generalization

ability [15]. It includes metric-based and optimization-based meta learning. The metric-based

meta learning aims to learn to embed input data into a task-specific metric space in which learning

of new tasks is efficient. Examples of embedding include Siamese networks, matching networks,

relation networks and prototypical networks [16]. The optimization-based meta learning aims

to learn the gradient-based neural network optimization such as hyper-parameters so that the

neural network can effectively learn new tasks. One of the most popular optimization-based

meta learning algorithms is the model-agnostic meta-learning (MAML) algorithm proposed in

[17] that is widely applied to general deep neural networks. The MAML algorithm aims to

learn a parameter initialization of the deep neural network model, such that a small number of

gradient updates of the parameter by using limited testing data from a new task will produce

large reduction in the loss function of that task. The MAML algorithm has been successfully used

to deal with the end-to-end decoding problem over fading channels [18] [19] with few pilots

and to learn the downlink channel state information (CSI) from the uplink CSI in frequency

division duplexing (FDD) systems [20]. Our previous work in [21] has also demonstrated that

MAML-based adaptive beamforming can rapidly adapt to the new environment and is superior

to the transfer learning method.

Although the MAML algorithm has shown a good ability on solving the mismatch issues of

beamforming in designing dynamic wireless networks [21], it may cause outdated beamforming

prediction due to its high complexity in the training and adaptation processes. Hence, it is impor-

tant to design a new method, which can reduce the complexity and maintain the performance of

adaptive beamforming. The intuition of our proposed approach is based on the findings in [16]

and [22] that the dominant factor of the effectiveness of the MAML algorithm is feature reuse

rather than the sophisticated design of the meta learning algorithm. Motivated by the results in

[16] and [22], the novelty of this paper is to propose a new simple yet effective embedding-

based meta learning algorithm to extract the main features and improve the MAML algorithm

for adaptive beamforming by reducing the complexity while guaranteeing the efficiency and

performance. Our main contributions are summarized as follows:

• We propose a simple yet effective learning framework for adaptive beamforming design,

which first trains an embedding model by using existing data in the pre-training stage, and

then fits a new model using support vector regression (SVR) with limited new channels
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and labelled solutions in the adaptation stage. Our proposed method belongs to the metric-

based meta learning, so it is different from the transfer learning approach. In addition,

different from the existing transfer learning and meta learning methods, our proposed design

framework is applicable to both supervised and unsupervised learning in the pre-training

stage, and it trains a simple regression model instead of fine-tuning the pre-trained model

in the adaptation stage.

• We apply the proposed framework to design specific adaptive beamforming algorithms for

the SINR balancing problem and the sum rate maximization problem, which use supervised

learning and unsupervised learning, respectively.

• To further investigate the effectiveness of the proposed fast learning framework on beam-

forming design in non-stationary scenarios, we extend our framework to the online appli-

cation to solve the beamforming prediction problem in real-time communications systems.

• Extensive simulations are carried out to assess the adaptation capability of the proposed

algorithms in realistic communications scenarios. The results verify that the proposed adap-

tive beamforming algorithms improve the adaptation performance, the stability and the

computational efficiency in both pre-training and adaptation stages compared to transfer

learning and MAML.

The remainder of this paper is organized as follows. Section II introduces the system model,

problem formulation and the existing MAML algorithm. In Section III, the proposed fast meta

learning framework and the algorithms for the two applications are presented. Section IV devel-

ops the fast online meta-learning based adaptation algorithm. Simulation results and conclusions

are presented in Section V and Section VI, respectively.

Notions: All boldface letters indicate vectors (lower case) or matrices (upper case). The super-

scripts (·)H and (·)−1 denote the conjugate transpose and the inverse of a matrix, respectively.

In addition, ‖z‖2 denotes the L2 norm of a complex vector z. The operator CN (0,Θ) represents

a complex Gaussian vector with zero-mean and covariance matrix Θ. IM denotes an identity

matrix of size M ×M . Finally, ← denotes the assignment operation.
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II. SYSTEM MODEL, PROBLEM FORMULATION AND MAML ALGORITHM

A. System Model and Problem Formulation

We consider a multi-input single-output (MISO) downlink system where a base station (BS)

with Nt antennas serves K single-antenna users. The received signal at user k can be written as

yk = hHk wksk + hHk

K∑
j 6=k

wjsj + nk, (1)

where hk ∈ CNt×1 denotes the channel vector between the BS and user k, wk and sk ∼

CN (0, 1) denote the transmit beamforming vector and the information-bearing signal for user

k with normalized power, respectively. The additive Gaussian white noise (AWGN) is given by

nk ∼ CN (0, σ2
k). As a result, the received SINR at user k is expressed as

γk =
|hHk wk|2∑K

j 6=k |hHk wj|2 + σ2
k

, ∀k. (2)

Based on the aforementioned system setup, we consider a general utility maximization problem

under the total power constraint P which is formulated as

max
wk,k=1,...,K

U(γ1, . . . , γK), s.t.
K∑
k=1

‖wk‖22 ≤ P, (3)

where U(γ1, . . . , γK) is the utility, which is a non-decreasing function of individual users’ SINR.

We will consider maximization of the SINR and the sum rate as two examples in Section IV.

Normally the problem (3) is nonconvex and can be solved by using iteration based-optimization

algorithms such as [2], [3] but with high computational complexity. Consequently, the compu-

tational latency of conventional optimization algorithms will render the beamforming solution

obsolete when the CSI changes. Although some existing deep learning-based algorithms [7]–[10]

can reduce the complexity, they rely on the assumption that training data and testing data come

from the same channel distribution to avoid serious performance deterioration caused by task

mismatch issues. This strict assumption is difficult to satisfy in practical scenarios. Fortunately,

a common optimization problem with the same objective function and constraints will be solved

in different channel conditions, and some inherent features exist in the solution structure of such

an optimization problem which will help the beamforming design. Therefore, how to reuse such

common features to design a fast meta-learning based beamforming algorithm to cope with the

dynamic wireless environments is the main objective of our paper.
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B. Overview of MAML

Although the MAML algorithm proposed in [17] has been considered as an efficient optimization-

based meta learning method for solving the mismatch issue, the complex optimization procedures

also cause a high complexity. As a comparison to our proposed algorithm, we provide a brief

overview of the MAML algorithm.

Fig. 1. The workflow of the meta-training stage of the MAML algorithm: Step (1) – network parameter initialization; Step (2)

– update of inner loop task parameters; Step (3) – calculation of the loss function of tasks on their query set; Step (4): update

of the network parameter.

The MAML algorithm aims to find a good neural network parameter initialization via two

optimization loops in the meta training stage as shown in Fig. 1. The inner loop optimization

procedure is used to optimize the task-specific parameters for each task based on the initialization

of the neural network parameters as shown in step (2) of Fig. 1. The outer loop optimization

procedure is used to optimize the initialization of the neural network parameters based on the

task-specific parameters as shown in step (3) and (4) of Fig. 1. More specifically, we define the

initial neural network parameters as θ, and the training task set as {T (k)}Lk=1, which includes L

tasks. For each task, the inner loop procedure aims to optimize its own task-specific parameters

φk on its support set Dsup(k), which can be expressed as

φk = argmin
φk

LossDsup(k)(φk),∀k, (4)

where LossDsup(k) is the loss function of task k. Based on a few steps of gradient descent, the

task-specific parameters φk can be updated by φ(j)
k = φ

(j−1)
k −β∇

φ
(j−1)
k

LossDsup(k)(φ
(j−1)
k ), where

j, β, and ∇ denote the iteration step, the learning rate, and the gradient function, respectively.

Note that φ(0)
k equals to θ. Based on the task-specific parameters of each task, we define the
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meta-loss as Lossmeta(θ) =
∑L

k=1 LossDque(k)(φk), where LossDque(k)(φk) denotes the loss on the

query set Dque(k) of task k after the inner loop updates. Then, the initialization of the neural

network parameters can be updated by minimizing the meta-loss via the outer loop optimization

procedure, which is expressed as

θ = argmin
θ

Lossmeta(θ). (5)

By using the gradient descent update, parameters θ can be updated by θ←θ−α∇θLossmeta(θ),

where α is learning rate. Notice that the chain rule is included in calculating the parameters θ.

III. FAST META LEARNING FRAMEWORK AND APPLICATIONS

The complexity associated with the meta training and meta adaptation stages of the MAML

algorithm is still high, which will affect how fast it can react to the changing environment. In this

section, we aim to design a simple and efficient adaptation framework that is able to achieve

comparable performance as MAML. Our design is motivated by the observation in [16] and

[22] that a good embedding model that can extract key features is the most important factor to

achieve effective adaptation. In the following, we shall present the proposed fast meta learning

framework and its two applications to design adaptive downlink beamforming.

A. Design of Fast Meta Learning Framework

The process of the proposed fast adaptation algorithmic framework is illustrated in Fig. 2,

where fθ is the pre-trained embedding model. Since feature reuse is the main reason for MAML

to achieve good adaptation performance, it is possible to train a feature extractor without multiple

tasks and two optimization loops which are two factors that affect the training efficiency of

MAML.

Fig. 2. The workflow of the proposed fast adaptation algorithm.
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Rather than designing a new meta learning algorithm, we aim to design a simple way to train

an embedding model for feature extraction based on a single task T , which merges all meta

training data Dfast = ∪{Dsup(k),Dque(k)}Lk=1. Based on the single task T , the simple embedding

model can be obtained by solving the following optimization problem

θ = argmin
θ

LossDfast(θ), (6)

where LossDfast(·) is the loss function defined as the difference between the predicted output and

the target output. The parameter of the embedding model can be updated using the gradient-based

method as

θ ← θ − α∇θLossDfast(θ). (7)

Since the process of training the embedding model is similar to the conventional deep neural

network training, which does not need to apply the alternating procedures, it is more time efficient

compared to the model training of the MAML algorithm and this will be verified numerically. In

addition, depending on the specific problem, the training of the embedding model can use other

methods such as Siamese networks and matching networks [16], so our proposed embedding

model based method is different from and much more general than transfer learning.

As mentioned before, a direct employment of the pre-trained model to achieve the prediction

on new tasks causes performance degradation, and fortunately feature reuse from the old tasks

to the new tasks is able to avoid such degradation. Hence, we can use the pre-trained embedding

model to first extract the features of the new tasks. However, how to make use of the extracted

features to achieve fast adaptation is still a challenge. We propose to use SVR, which is a fast

regression algorithm based on the support vector machine, as a solution to post-process the

extracted features for fast adaptation. The SVR technique aims to find a hyperplane, which has

the shortest distance to all data points. Specifically, the features of a new task are extracted

by using the pre-trained embedding model over the associated adaptation dataset Dad, which is

expressed as

yout = fθ(Dad(x)), (8)

where fθ denotes the pre-trained embedding model with the parameter θ, Dad(x) and yout

denote the input dataset with Nad samples and the output features of the embedding model

with dimensions of Nad× 2×NtK and Nad×K, respectively. Dad(y) is the final output data in

the adaptation dataset with a dimension of Nad ×K associated with Dad(x). Then yout and the
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associated labelled data Dad(y) are used as input and output to train the SVR model to predict

the final result. The parameter ϕ of the SVR model, which includes the weight W and the bias b,

can be obtained by minimizing the loss function below (which also includes a nonlinear kernel

function), i.e.,

ϕ∗ = argmin
ϕ

LossDad(y)(Wyout + b,Dad(y)). (9)

Once we have the pre-trained embedding model fθ and the SVR model denoted by f(ϕ∗), we

can use them to find out the adaptive solution in the testing stage. Full details of the proposed

fast adaptation solution are summarized in Algorithm 1.

Compared to the MAML algorithm, our proposed fast meta-learning method has two advan-

tages. First, the proposed fast adaptive algorithm has lower complexity in both training and adap-

tation stages by using a simpler training process and avoiding the fine-turning of the pre-trained

model. In the adaptation phase, for our proposed use of SVR model, there are K2+K parameters

to optimize, while the MAML algorithm needs to optimize FN2(F + 2) + 2F +K2NtF +K

variables which are the same as the original neural network, where F is the size of the filter

in the CNN module. Furthermore, the transfer learning method has K2NtF +K parameters to

optimize corresponding to the last layer of the original neural network. Second, our proposed

method can be used in either supervised or unsupervised learning in the pre-training stage as long

as a good embedding model is obtained. In contrast, the MAML method relies on supervised

learning and requires labelled data in the pre-training stage.

Algorithm 1: The proposed fast adaptation framework for a regression problem.

Input: Learning rate α, meta training dataset Dfast, adaptation dataset Dad, testing dataset Dtest
Output: Predict value y∗

Embedding model training

1) Randomly initialize the network parameter θ

2) while not done do

3) θ ← θ − α∇θLossDfast(θ) or by using the ADAM optimizer

4) end while

Adaptation and testing

1) −−−−−−−−−−−−−−−−−−−−Adaptation−−−−−−−−−−−−−−−−−−−−−

2) Extract the feature using pre-trained embedding model fθ on the adaptation dataset: yout = fθ(Dad(x))

3) Train the SVR model ϕ based on yout and Dad(y) to obtain fϕ∗

4) −−−−−−−−−−−−−−−−−−−−−Testing −−−−−−−−−−−−−−−−−−−−−−

5) Extract the feature using pre-trained embedding model fθ on the testing dataset: ytestout = fθ(Dtest(xtest))

6) Predict the output using the extracted feature: y∗ = fϕ∗(ytestout ).
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B. Applications

In this subsection, the effectiveness of the proposed fast adaptive method will be verified by

using two applications of utility maximization: SINR balancing and sum rate maximization. Its

optimal solution of the former problem can be found by using numerical algorithms, whereas

it is not easy to find the optimal solution of the latter problem. Some iterative algorithms can

be used to find the sub-optimal solution of the sum rate maximization problem, such as the

weighted minimum mean squared error (WMMSE) algorithm [4], [24]. Therefore, their training

methods for the embedding model are different, but we will show that both can be handled by

the proposed framework.

1) SINR Balancing: Based on the system model in Section II, the SINR balancing problem

under the total power constraint P can be formulated as

max
wk,k=1,...,K

min
1≤k≤K

γk, s.t.
K∑
k=1

‖wk‖22 ≤ P. (10)

Directly predicting beamforming causes high training complexity and inaccurate results due

to the high dimensional beamforming matrix. As mentioned before, feature reuse is a key

concept to achieve good adaptation performance. Therefore, we propose to predict the low

dimensional uplink power allocation vector as the main feature vector based on which the original

beamforming matrix can be readily recovered. According to the uplink-downlink duality in [3]

and [10], using the uplink power allocation vector to recover beamforming is possible because

the same SINR region of the uplink and downlink problems can be achieved given the same total

transmit power. Based on uplink-downlink duality and by defining the normalized beamforming

wk = w̃k
√
pk, the downlink problem (10) can be converted into the following uplink problem

max
q

min
1≤k≤K

qk|hHk w̃k|2∑K
j 6=k qj|hHj w̃k|2 + σ2

k

, s.t. ‖q‖1 ≤ P, ‖w̃k‖2 = 1,∀k, (11)

where q = [q1, . . . , qK ]
T and qk is the uplink power allocation for user k, w̃k and pk are

the normalized beamforming and downlink power allocation of user k, respectively. With the

predicted uplink power allocation vector, the original downlink beamforming can be recovered

as follows.

First, the normalized beamforming vector can be obtained as w̃k =
(σ2
kI+

∑K
k=1 qkhkh

H
k )−1hk

‖(σ2
kI+

∑K
k=1 qkhkh

H
k )−1hk‖2

,∀k

and then the optimal downlink power allocation vector p = [p1, . . . , pK ]
T can be obtained by

using eigenvalue decomposition as detailed in the duality result in [3]. To be specific, the optimal
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downlink power allocation vector p is obtained by finding the first K components of the principal

eigenvector of the following matrix

Υ(W̃, P ) =

 DU Dσ

1
P

1TDU 1
P

1TDσ

 ,
where 1 = [1, 1, . . . , 1]T , D = diag{1/|w̃H

1 h1|2, . . . , 1/|w̃H
KhK |2}, σ = [σ2

1, σ
2
2, . . . , σ

2
K ]

T , and

[U]kk′ = |w̃H
k′

hk|2, if k′ = k, otherwise [U]kk′ = 0. Finally, the downlink beamforming matrix

W = [w1, . . . ,wk] is derived as W = W̃
√

P, where W̃ = [w̃1, . . . , w̃K ] and P = diag(p).

The main advantages of predicting the uplink power allocation vector q rather than the original

beamforming matrix are to improve accuracy and to reduce complexity by reducing the output

dimension from 2NtK (the beamforming matrix) to K.

Using the above analysis, we choose the uplink power as the output of the neural network.

The sample pairs in the meta training dataset Dfast include the input channels and output uplink

power allocation vectors, which are generated by solving the problem in (11). The sample pairs

in the adaptation and training datasets can be generated in a similar way. In the pre-training stage

of Algorithm 1, the embedding model will be learned by using supervised training over Dfast,

while the adaptation and testing processes will be carried out by using the datasets accordingly

based on the description in Algorithm 1.

2) Sum Rate Maximization: Based on the system model in Section II, the sum rate maxi-

mization problem under the total power constraint P can be formulated as

max
W

K∑
k=1

log2(1 + γk), s.t.
K∑
k=1

||wk||22 ≤ P. (12)

Different from the SINR balancing problem in (10), (12) is a nonconvex and well-known

challenging problem and no practical algorithm is available to find the optimal solution in an

efficient way, so it is difficult to generate enough labelled data. However, we will still be able to

exploit key features of the optimal solution to sum rate maximization to facilitate the adaptive

algorithm design.

According to the results in [25], the optimal downlink beamforming vectors for the sum rate

maximization problem follows the parameterized structure below

w∗k =
√
pk

(IN +
∑K

k=1
qk
σ2 hkh

H
k )
−1hk

||(IN +
∑K

k=1
qk
σ2 hkhHk )

−1hk||2
,∀k, (13)
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where qk is the virtual uplink power and
∑K

k=1 qk =
∑K

k=1 pk = P . The solution structure in

(13) provides the required features q and p for the beamforming design in the problem (12). To

simplify the design, it is shown in [11] that (13) can be further simplified as

w∗k =
√
qk

(IN +
∑K

k=1
qk
σ2 hkh

H
k )
−1hk

||(IN +
∑K

k=1
qk
σ2 hkhHk )

−1hk||2
,∀k, (14)

with negligible performance loss by using the same uplink and downlink power, i.e., q = p. As

a result, we can still use the uplink power as the main features in the training process as the

SINR balancing problem.

Unfortunately, there does not exist a low-complexity algorithm in the literature that can find

the optimal p∗k and q∗k in (13) or q∗k in (14). In order to obtain the embedding model in the

pre-training stage of Algorithm 1, we train the neural network in an unsupervised learning way

without relying on labelled data, whose loss function takes the objective function of sum rate

directly as the metric, i.e.,

Loss = − 1

2KL

N∑
l=1

L∑
k=1

log2

(
1 + γ

(l)
k

)
, (15)

where L is the batch size.

In the adaptation stage, labelled data are still needed. The WMMSE algorithm is a good

candidate to find the locally optimal solutions [4], [24], so we will use the WMMSE algorithm

to generate the required labelled data, i.e., the uplink power vector q for the adaptation stage.

Based on the labelled data in the adaptation dataset, the SVR model will be trained by minimizing

the following loss function, which uses the MSE metric, i.e.,

Loss =
1

2LK

L∑
l=1

(
||q(l) − q̂∗(l)||22

)
, (16)

where q(l) denotes the power vector obtained from the WMMSE algorithm, and q̂∗(l) is the

predicted result in the adaptation stage.

Before we conclude this section, we provide details of the neural network architecture to train

the embedding model and adaptation model as illustrated in Fig. 3. Because both problems will

extract the uplink power as the main feature, we can use a unified neural network architecture for

embedding. We adopt the model-based beamforming neural network (BNN) framework proposed

in [10] as the network structure to obtain the embedding function f(θ). It takes the channel as

input and the output feature is the uplink power vector q̂. This framework is composed of a

convolutional neural network (CNN) architecture followed by the fully connected (FC) layer.
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...

Input CL BN ReLU SigmoidFlattenCL BN ReLU FC Output

Beamforming neural network as an embedding function

SVR Model 

for Adaptation
Beamforming 

Recovery

W

Fig. 3. An illustration of the proposed neural network architecture including the pre-trained embedding BNN model, the SVR

model for adaptation and beamforming recovery.

CNN is chosen as the base of the embedding framework due to its ability of extracting features

and reducing learned parameters. Specifically, the neural network used for our algorithm includes

eleven layers: one input layer, two convolutional layer (CL) layers, two batch normalization (BN)

layers, three activation (AC) layers, one flatten layer, one FC layer and one output layer. The

complex channel input is split into two real value inputs, so the input dimension of the input

layer is 2 × NtK. For the two CL layers, each CL layer applies 8 kernels of size 3 × 3, one

stride, and one padding. The input size of the first CL layer is equal to the size of the input

data. The input size of the second CL layer and the output size of both CL layers are equal to

2×NtK×8. Besides, ReLU and Sigmoid functions are adopted at the first two activation layers

and the last activation layer, respectively. Adam optimizer is adopted [23] for the optimization

of the neural network. In the adaptation stage, the BNN output q̂ is used as the input to train

the SVR model, which then outputs the final adaptive uplink power vector q̂∗. The beamforming

recovery module is designed based on the uplink-downlink duality introduced in Section III.B-1.

IV. ONLINE APPLICATION OF ADAPTIVE ALGORITHMS

Although the above proposed algorithm can achieve the fast adaptive beamforming design

based on the limited data of the new environment, they work in an offline manner assuming

that the data used for adaptation is available in advance and the environment is stationary. They

cannot cope with constantly changing situations such as vehicular communications and therefore

online algorithms are needed. This is because the channel data is likely to become available

only sequentially since effective channel estimation methods take time to first obtain the channel
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statistics and then estimate the channel, and the channel distribution may be non-stationary as

the environment keeps changing. Hence, it is necessary to design an efficient online adaptation

algorithm to continuously adapt the model according to the changing environment in real-world

applications. In the following, we will explain how to extend the idea of the proposed offline

adaptation algorithm to the online scenario. As a comparison to our online adaptation algorithm,

we will first provide a brief description about the online MAML learning method.

A. MAML-based Online Learning

The purpose of online machine learning is to achieve continuous learning of prediction using

sequential and non-stationary data, and the designed online algorithms should be able to update

the best predictor for future data at each time slot. There exist some successful online learning

algorithms, such as follow the leader (FTL) [26] and improved FTL [27]. Although FTL is

a standard algorithm for online learning, it may not provide the efficient adaptation when the

environment changes. The reason is that the principle of training a model using FTL at each

time slot is similar to the joint training, which trains the model on a single task. In order to

overcome the drawback of FTL when adapting to the new tasks, the authors in [28] incorporate

MAML into FTL to design the follow the meta leader (FTML) algorithm.

Similar to the offline MAML algorithm introduced in Section II-B, the FTML algorithm still

involves the inner and outer optimization loops in the training stage at each time slot. Since the

channel data of each user is sequentially provided, it is impossible to divide tasks in advance

like the offline manner. It means that the distribution of tasks is not known in advance. We

define Tt as the task received at time slot t. Since the received task at the current time slot can

only be used for adaptation, there is no training process at the first time slot. As the data is

accumulated in online learning, we define a task set Bt to store data of the task t received at

the time slot t, t = 0, . . . , T . After the task Tt is stored at time slot t, the algorithm will sample

Ntask tasks from the previous task sets {Bt, t = 0, . . . , t − 1} as the training tasks. The k-th

sampled task includes a support set and a query set. Based on the optimization process of inner

loop introduced in Section II-B, the task-specific parameters of sampled tasks can be updated

via a few step gradient descent. Then, the initialization of the neural network at time slot t can

be optimized by using the parameter updating procedure of the outer optimization loop. Once

the training process is complete, the task data of the current time slot stored in Bt, t = 0, . . . , T
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is used to adapt the trained model. The training and adaptation processes continue to provide

online adaptation.

B. The Proposed Fast Online Learning Algorithm

Although the MAML-based online adaptation algorithm can efficiently overcome the mismatch

issues in changing environment scenarios, the learning and adaptation processes are sophisticated

and time-consuming due to the multiple tasks and two optimization loops. The complex processes

may cause delay for real-time wireless communication applications. In order to achieve the rapid

adaptation and to satisfy the latency requirements in the real-world communications scenarios,

we extend the proposed fast adaptation method presented in Section III to the online scenario

to design the fast online adaptive algorithm.

Since we have given the full details of the proposed fast adaptive framework in Section

III, this subsection will focus on how to extend it to online applications and especially the

adaptation stage. The main idea of the proposed fast adaptation method is to use the pre-trained

embedding model to extract common features of the new tasks, and then train a SVR model

via the extracted features for adaptation. Before designing its online counterpart, we need firstly

to define the datasets. In the online scenario, the data used for adaptation and testing arrives

sequentially, which means that the data used in the online learning is accumulated over time.

Hence, we define an empty buffer Bt to store the adaptation data and an empty set Dt to receive

the testing data at time slot t. In addition, we assume that the system is able to receive N

adaptation sample pairs and U testing sample pairs of each user at each time slot. Note that the

adaptation and testing data come from the same distribution. According to different adaptation

data used for feature extraction, we propose two online adaptation algorithms: 1) extracting

features from adaptation data of the current time slot; 2) extracting features from all adaptation

data accumulated until the current time slot. Since the feature extraction and the training of SVR

model for both algorithms are the same, we use the first algorithm, which uses the current time

slot data for adaptation, to describe our proposed online adaptation algorithm. Specifically, we

use time slot t as an example to describe the online adaptation process of the proposed algorithm.

At the beginning of time slot t, the algorithm uses buffer Bt to receive N adaptation sample

pairs for each user. Then, based on (8), the extracted feature q̂∗t via the input data in Bt can be
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expressed as

q̂∗t = fθ(Bt(ht)), (17)

where fθ is the pre-trained embedding model, Bt(ht) denotes the input channel stored in the

buffer Bt. Next, we will train the SVR model by using the extracted feature q̂∗t and the target

output qt in Bt. Note that qt is the uplink power allocation for both SINR and sum rate maxi-

mization problems. Similar to (9), the parameter of the SVR model for our specific regression

problems can be expressed as

φt = argmin
φt

Loss(Wtq̂∗t + bt,Bt(qt)), (18)

where φt is the SVR model parameter with the weights Wt and bias bt at time slot t, respectively,

and Bt(qt) is the target value stored in Bt associated with the input ht. Once the training of

the SVR model is completed, we can predict the current testing output based on the trained

SVR model and the pre-trained embedding model. Compared to the MAML-based algorithm,

the execution time of the proposed fast online adaptive algorithm is significantly reduced because

there is no iterative updating procedure in the pre-training stage and adaptation is also simpler,

which will be verified by the results in Section V.

As before, the SINR and sum rate maximization problems are considered as two applications

to investigate the adaptation ability of the designed fast online algorithm. Both applications

take the channel as the input and the uplink power q as the output. The difference is that the

embedding model for the SINR problem is trained by supervised learning while for the sum rate

problem, it is trained by unsupervised learning.

V. SIMULATION RESULTS

In this section, numerical simulations are carried out to evaluate the advantages of the proposed

adaptive beamforming algorithms for different wireless communications scenarios. We consider a

MISO system with one BS and multiple users operating at the carrier frequency of 2.9 GHz, with

20 MHz bandwidth and noise power spectral density of -174 dBm/Hz. Other specific parameters

including the number of antennas at the BS Nt, the number of users K and the transmit power P

are provided in each figure. We employ the deep learning software Keras with Tensorflow as the

backend to pre-train the embedding model and Scikit-learn is used to train the SVR model. We

choose the nonlinear Gaussian radial basis function (RBF) kernel in the SVR training. PyTorch

March 12, 2021 DRAFT



A REVISION SUBMITTED TO THE IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 17

is adopted to implement the MAML related algorithms. All simulation results are generated by

using a computer with an Intel i7-7700 CPU and a NVIDIA Titan Xp GPU.

In our simulation, the labelled data used for training the embedding model and the SVR

model are generated by using three small-scale fading channel models in order to enrich the

training dataset: Rayleigh model with distribution CN (0, IM), Ricean model with the Ricean

factor 3, and Nakagami model with a fading parameter 5 and an average power gain 2. For each

of the three fading models, we generate 5000 channel samples and obtain 5000 corresponding

labelled data for the SINR balancing problem using the algorithm in [3]. Hence, the training

dataset includes 15000 sample pairs. For the sum rate maximization problem, we generate 10000

channel samples for each fading model by using the WMMSE algorithm in [4].

We consider the following typical fading scenarios for testing the adaptation capability of the

proposed learning algorithms.

• Large-scale fading case: the path loss is given by PL = 128.1+37.6 log10(d [km]), where d

is the distance between a user and BS. The shadow fading follows the log-normal distribution

with zero mean and 8 dB standard deviation. The small-scale fading follows the Rayleigh

distribution with zero mean and unit variance.

• WINNER II outdoor case: this is a typical fixed urban scenario specified in WINNER II

[29].

• Vehicular case: this is an urban vehicle-to-infrastructure (V2I) scenario defined in Annex

A of 3GPP TR 36.885 [30].

For comparison, we introduce other three benchmarks, namely, the optimal solution, the

MAML solution, and the non-adaptive learning solution. The definitions of all solutions for

comparison are listed below.

• The optimal/suboptimal solution: for the SINR balancing problem, the solution is obtained

by using the iterative algorithm proposed in [3]; for the sum rate maximization problem,

we consider the WMMSE solution in [4], which is obtained by using an iterative algorithm.

It serves as a performance upper bound for all other schemes.

• The MAML solution: this solution shows the adaptation result of the existing MAML

algorithm [17] described in Section II-B and Section IV-A for the offline and online

scenarios, respectively.

• The transfer learning solution: this solution shows the adaptation result of the existing
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transfer learning algorithm [17] that fine tunes the last layer of the neural network to

achieve the adaptation.

• The non-adaptive solution: this solution shows the result of using a pre-trained model to

predict the beamforming results directly in a different testing environment without any

adaptation.

Below we present the results and analysis for the two applications examples.

A. SINR Balancing

We first investigate the large-scale fading case in which the BS is located at the center and

all users are randomly distributed within a radius of 500 m. First to decide how many samples

will be used in the adaptation, we first study the effect of the number of fine-tuning samples

for the same system. Note that more samples will certainly improve the adaptation performance,

but also increase the computational complexity and latency. As shown in Fig. 4, SINR increases

when the number of fine-tuning samples increases for both MAML and our proposed algorithms

and the SINR converges fast for both algorithms. As a result, in the subsequent simulations, we

consider 20 adaptation samples as a tradeoff between a low adaptation overhead and satisfactory

SINR performance.

In our simulation, we have observed that the performance of MAML and transfer learning

solutions could vary depending on the adaptation datasets, so next we study the sensitivity of

different algorithms to the random adaptation datasets for an 8-user, 8-antenna system with 25

dBm transmit power in Fig. 5 using 100 random adaptation datasets each with size of 20 samples.

We can see that our proposed algorithm achieves robust SINR performance with different

adaptation datasets but the achievable SINR of the transfer learning solution varies dramatically

and the performance of MAML also fluctuates. In order to obtain stable performance comparison,

we average the performance of MAML and transfer learning using 15 random adaptation datasets

while for our proposed algorithm, we use just one random adaptation dataset.

We then examine the adaptation performance of the proposed algorithm in Fig. 6. Fig. 6(a)

shows the effects of the transmit power on the SINR performance. As expected, the achievable

SINR improves as the transmit power increases for all schemes. The SINR performance associ-

ated with the proposed algorithm is very close to that of the optimal solution and is better than

the MAML solution. The non-adaptive solution achieves the worst SINR performance compared

to the adaptive schemes. The performance of the transfer learning solution is only slightly
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Fig. 4. The effect of the number of fine-tuning samples on the adaptation performance when Nt = 8,K = 8, transmit power

is 25 dBm.

0 20 40 60 80 100

Index of random adaptation datasets

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

A
c
h
ie

v
a
b
le

 S
IN

R
 (

d
B

)

Proposed Adaptation

MAML Solution

Transfer Learning Solution

Fig. 5. Sensitivity of the SINR performance versus random adaptation datasets when Nt = 8,K = 8, P = 25 dBm.

better than the non-adaptive solution. In Fig. 6(b), the SINR performance versus the number

of users is shown. It is observed that as the number of users increases, the performance gap

between the MAML algorithm and the optimal solution is enlarged, but our proposed algorithm

still achieves better performance. The results in Fig. 6 verify that the proposed fast algorithm

provides an efficient adaptive beamforming solution. We compare the execution time of the

adaptive algorithms in Fig. 7 versus the number of users. It can be seen that our proposed

algorithm achieves more than an order of magnitude gain in terms of both training time and

adaptation time compared to the MAML solution and therefore achieves faster adaptation.
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Fig. 6. The SINR performance comparison in the large-scale fading case versus: (a) transmit power when Nt = 4, K = 4 and

(b) the number of users when Nt = 8, P = 25 dBm.
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To get a more accurate comparison of complexity between different algorithms, in Table I, we

show the numbers of passes of the neural network. For the pre-training and adaptation stages, each

pass includes 100 and 20 channel data, respectively. We have adopted the early stop technique

so the number of passes may not change monotonically as the number of users increases. It

can be seen that the training of the proposed algorithm requires significantly less passes of

the neural network than the MAML algorithm in the pre-training stage. Next we consider the

WINNER II outdoor scenario. We assume that the BS is located in the cell center and covers a

disc with a radius of 1000 m. Users are randomly distributed between 100 m to 1000 m away
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TABLE I

AVERAGE NUMBER OF PASSES OF THE NEURAL NETWORK VS THE NUMBER OF USERS FOR THE SINR BALANCING

PROBLEM.

Different Algorithms K=2 K=4 K=6 K=8

Pre-training of MAML 130000 120000 115000 60000

Pre-training of adaptive algorithm/transfer learning 16950 10500 7350 6150

Adaptation of MAML 49 50 51 73

Adaptation of transfer learning 25 47 60 87

from the BS. Fig. 8 demonstrates the adaptation capability of the proposed learning algorithm

in the WINNER II outdoor case through the SINR performance. As can be seen from Fig. 8,

the proposed algorithm achieves slightly better SINR performance than the MAML solution and

both adaptive solutions significantly outperform the non-adaptive solution.

Next, we investigate the performance of the proposed algorithms for V2I case in the urban

environment, where we use the Manhattan grid layout with the region size of 750 m× 1299 m

and grid size of 250 m × 433 m. There are two 3.5m-wide lanes in each direction; the BS is

located in the center of the layout, and the vehicles are uniformly placed on each direction of the

road. The probability of each vehicle to change its direction at the intersection is set to 0.4. The

velocity of each vehicle is 60 km/h. As seen in Fig. 9, the SINR performance generated by the

non-adaptive solution is close to that of adaptive solutions, when the available transmit power

budget is low; however, the advantages of the adaptive solution are gradually manifested as the

available transmit power budget increases. The possible reason for this interesting observation

is that both adaptive and non-adaptive solutions require power to combat the negative effects

of the fading channels and there is no enough power left for algorithms to efficiently achieve

adaptation at the low power regime. As the transmit power increases, the proposed adaptive

algorithm achieves slightly better performance than the MAML solution and much higher SINR

performance than the non-adaptive solution.

Next, we evaluate the performance of the proposed online adaptive algorithm in real-world

non-stationary scenarios. We investigate the adaptation capability of the proposed online fast

adaptation algorithm in changing environments by considering mobile users travelling from

outdoor to urban and then highway environments. The freeway case introduced in 3GPP TR

36.885 [30] is used to generate channel data for the highway scenario. The number of lanes
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Fig. 8. The SINR performance comparison in the WINNER II outdoor case when M = 4, K = 4.
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Fig. 9. The SINR performance comparison in the urban case when Nt = 4, K = 4.

in each direction and the velocity of each vehicle are set as 3 and 120 km/h, respectively. The

antenna gains of the BS and vehicles in the urban and highway scenario are set as 8 dBi and 3

dBi, respectively. Fig. 10 shows the adaptation performance comparison between the proposed

fast adaptation algorithm and the MAML algorithm over the whole communications period as

the users move across different environments. Each simulation point is obtained by averaging

all of the actual experimental points at the individual time slots over the previous time slots

in the corresponding communication scenario. To implement the simulation, we assume that

five adaptation channels N = 5 and ten testing channels U = 10 of each user are received at
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Fig. 10. Performance comparison between the proposed online algorithm and the existing algorithms M = 4, K = 4, P = 25

dBm.

each time slot. Each communications scenario lasts 50 time slots. The offline fast upper bound

solution shows the results obtained based on the fast algorithm in the offline manner where

the embedding model and the SVR model are trained by using the data of the corresponding

communication cases, respectively. The results of two online fast adaptations are obtained by

using the data of the current time slot and all available data in the buffer, respectively. As we

can see, there exists a significant reduction on the average SINR for all solutions, when the

users travel from outdoor to urban and to highway environments due to the changes of fading

distribution. This fact indicates that the communication quality in the real-world can be seriously

affected by the continuously changing environment. In the figure, the average SINR performance

associated with the proposed online fast adaptation algorithms is very close to that of the offline

fast upper bound solution, which validates its adaptation ability. In addition, the proposed online

fast adaptation algorithms outperform the MAML algorithm and the non-adaptive solution for the

whole communications period. It indicates that the proposed algorithm can achieve fast adaptation

by efficiently making use of sequential data when the environment changes. It is worth noting

that the gap between the online fast algorithms and the MAML algorithm significantly increases

when the communications scenario changes from outdoor to urban, whereas the gap reduces

when the communications scenario changes from urban to highway. The reason is that there

exists obviously difference of channel statistics features between the static scenario (outdoor)
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and mobility scenario (urban and highway). This fact further verifies that the proposed online

fast adaptation algorithm has better adaptation ability when the environment changes abruptly.

The online fast adaptation that utilizes all available historical data performs better than that

uses only the current data, and this is because more data can train a better SVR model in the

adaptation stage. Note that for the urban case and the highway case in the online scenario, the

channel coherent times are approximately 6.2 ms and 3.1 ms, respectively. From Fig. 7 and Fig.

10, we can see that our proposed algorithm can finish adaptation within 10 ms or only a few

coherent time slots, which confirms that it can adapt to the fast changing wireless environment

in real-time.

B. Sum Rate Maximization

In this subsection, we will investigate the performance of the adaptive algorithms to maximize

the sum rate. As stated before, there is no practical algorithm that can achieve the optimal

beamforming solution for this problem, so we use unsupervised learning in the pre-training

stage and use the WMMSE solution to generate labelled data for training of the SVR model

in the adaptation stage. To use the MAML algorithm as a benchmark solution, we also use

the WMMSE algorithm to generate training data in its pre-training stage. For the non-adaptive

solution, we consider both unsupervised training and supervised training using the data generated

by the WMMSE solution. In the literature, it has been reported that unsupervised training achieves

higher sum rate [10] which will also be verified in our results below.

We first examine the effects of the number of adaptation samples on the adaptive algorithms in

Fig. 11 for a 4-user, 4-antenna system. Compared to the results of the SINR balancing problem

in Fig. 4, we can see that our proposed algorithm converges more slowly but it is still faster than

the MAML algorithm. As a tradeoff between the performance and the complexity, we choose

50 adaptation samples in the subsequent simulations.

We next investigate the sensitivity of the adaptive algorithms to the adaptation datasets in Fig.

12 for an 8-user, 8-antenna system with transmit power of 25 dBm. Fig. 12 shows that there exists

a large variance on the sum rate results for both the MAML and the transfer learning solutions

when adaptation dataset changes. It indicates that both of these two benchmark solutions heavily

depend on the adaptation datasets. By contrast, the proposed adaptive algorithm demonstrates

very robust performance when using different adaptation datasets. Similar to the SINR balancing
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Fig. 12. Sensitivity of the sum rate performance versus random adaptation datasets when Nt = 8,K = 8, P = 25 dBm.

problem, we average the results of the MAML and the transfer learning solutions using 15 random

adaptation datasets in order to obtain stable comparison results.

The sum rate results in the large scale fading case are presented in Fig. 13. As can be seen

in Fig. 13(a), for a 4-user 4-antenna system, our proposed solution achieves slightly better

performance than the MAML solution, and the performance gap between different algorithms is

not significant. However, Fig. 13(a) shows that as the number of users increases, the performance

of transfer learning degrades greatly. The execution time of the adaptive algorithms is compared
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Fig. 13. The sum rate performance comparison on large-scale case for different metrics: (a) transmit power when Nt = 4,

K = 4 and (b) the number of users when Nt = 8, P = 25 dBm.
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Fig. 14. Comparison of execution time of adaptive algorithms for the sum rate maximization problem when Nt = 8, P = 25

dBm.

in Fig. 14 for an 8-antenna system. It can be seen that the proposed algorithm uses less pre-

training time than the MAML algorithm. It finishes the adaptation in a few milliseconds and is

three orders of magnitude faster than the MAML algorithm. Similar to Table I, we show the

numbers of passes of the neural network in Table II. It is observed again that the training of

the proposed algorithm requires significantly less passes of the neural network than the MAML

algorithm. The transfer learning solution also requires less passes than the MAML algorithm in

the adaptation stage.
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TABLE II

AVERAGE NUMBER OF PASSES OF THE NEURAL NETWORK VS THE NUMBER OF USERS FOR THE SUM RATE PROBLEM.

Different Algorithms K=2 K=4 K=6 K=8

Training of MAML 255000 185000 155000 200000

Training of adaptive algorithm/transfer learning 7860 6600 7230 6570

Adaptation of MAML 96 102 98 74

Adaptation of transfer learning 52 50 27 21
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Fig. 15. The sum rate performance comparison in the WINNER II outdoor case when Nt = 4, K = 4.

The sum rate in the WINNER II outdoor scenario is compared in a 4-user, 4-antenna system.

As shown in Fig. 15, both adaptive algorithms achieve good sum rate performance which are

close to the results generated by the WMMSE solution. Although the unsupervised learning based

non-adaptive solution performs well in the low transmit power regime, its performance degrades

fast as the transmit power increases. Similar performance comparison can be observed from the

results in Fig. 16 for the V2I case in the urban environment, in which both adaptive solutions

achieve the sum rate closer to that of the WMMSE solution than in the outdoor scenario.

Finally we evaluate the sum rate performance of the online algorithms in real-world non-

stationary scenarios. Similar to the SINR maximization problem, we consider mobile users

travelling from outdoor to urban and then highway environments. Fig. 17 shows the adaptation

performance comparison between the proposed fast adaptation algorithm and the MAML algo-

rithm over the whole communications period as the users move across different environments. To
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Fig. 16. The sum rate performance comparison in the urban case when Nt = 4, K = 4.

implement the simulation, we use the same number of adaption channels and testing channels

as in the SINR balancing problem. As before, the users’ sum rate drops significantly when

users cross borders of different environments. In the figure, the sum rate results achieved by

the proposed online fast adaptation algorithm are similar to that of the WMMSE solution and

outperform the MAML algorithm and the non-adaptive algorithm, which validates its adaptation

ability in the changing environments. We note that the gap between the online fast algorithms

and the MAML algorithm increases when the communications scenario changes from outdoor

to urban, and from urban to highway environments. This observation further confirms that the

proposed online fast adaptation algorithm has better and faster adaptation ability when the

environment changes.

VI. CONCLUSIONS

In this paper, we proposed a simple and efficient adaptive method for beamforming design in

dynamic wireless environments. The core idea of this method is to train a good model embedding

that extracts key features, followed by fitting a simple SVR model for fast adaptation. We have

extended the proposed algorithm to online adaptation that performs well in constantly changing

environments. Simulation results demonstrated that the proposed adaptive algorithms achieve a

better adaptation performance with a reduced complexity compared to the existing meta learning

algorithm. Our results shed some light on designing adaptive learning algorithms from few data

for general resource management problems in wireless networks. As to future work, we envisage
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Fig. 17. Sum rate performance comparison between the proposed online algorithm and the existing algorithms, M = 4, K = 4,

P = 25 dBm.

that it would be an interesting direction to extend the proposed method to adapt to the varying

numbers of active users, and the massive MIMO scenario in which channel estimation and

adaptive beamforming will be jointly learned using the deep learning approach.
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