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Abstract

This article is concerned with the discretisation of the Stokes equations on time-
dependent domains in an Eulerian coordinate framework. Our work can be seen
as an extension of a recent paper by Lehrenfeld and Olshanskii (ESAIM: M2AN
53(2):585-614, 2019), where BDF-type time-stepping schemes are studied for a
parabolic equation on moving domains. For space discretisation, a geometrically unfit-
ted finite element discretisation is applied in combination with Nitsche’s method to
impose boundary conditions. Physically undefined values of the solution at previous
time-steps are extended implicitly by means of so-called ghost penalty stabilisations.
We derive a complete a priori error analysis of the discretisation error in space and time,
including optimal L?(L?)-norm error bounds for the velocities. Finally, the theoretical
results are substantiated with numerical examples.

1 Introduction

Flows on moving domains Q2(¢) C R? (d = 2,3) need to be considered in many
different applications. Examples include particulate flows or flows around moving
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objects like biological or mechanical valves, wind turbines or parachutes. Strongly
related problems are fluid-structure interactions or multi-phase flows.

There exists a vast literature on time discretisation of the non-stationary Stokes
or Navier—Stokes equations on fixed domains, see for example the classical works
of Girault and Raviart [30], Baker et al. [2] and Rannacher and Heywood [39], or
more recently Bochev et al. [5] and Burman and Fernandez [11,12] in the context of
stabilised finite element methods. If the computational domain remains unchanged
in each time-step, the same spatial discretisation can be used (unless adaptive mesh
refinement is considered) and finite difference schemes based on the method of lines
can be applied for time discretisation.

In the case of moderate domain movements, these techniques can be transferred to
the moving framework by using the Arbitrary Lagrangian Eulerian (ALE) approach
[22,24,50]. Here, the idea is to formulate an equivalent system of equations on a fixed
reference configuration <, for example the initial configuration €2 (0), by means of a
time-dependent map 7T'() : $ — Q(1). This technique has been used widely for flows
on moving domains, see e.g,. [19,22] and fluid-structure interactions [3,29,53]. The
analysis of the time discretisation error is then very similar to the fixed framework,
as all quantities and equations are formulated on the same reference domain <, see
e.g. [54]. For a detailed stability analysis of ALE formulations, we refer to Nobile and
Formaggia [49] and Boffi and Gastaldi [7].

On the other hand, it is well-known that the ALE method is less practical in the
case of large domain deformations [25,53]. This is due to the degeneration of mesh
elements both in a finite element and a finite difference context. A re-meshing of the
domain 2(7) becomes necessary. Moreover, topology changes, for example due to
contact of particles within the flow or of a particle with an outer wall [18], are not
allowed, as the map between 2 and Q(7) can not have the required regularity in this
situation.

In such cases an Eulerian formulation of the problem formulated on the moving
domains €2(¢) is preferable. This is also the standard coordinate framework for the
simulation of multi-phase flows. In the last years a variety of space discretisation
techniques have been designed to resolve curved or moving boundaries accurately.
Examples include the cut finite element method [16,17,33,35,44—46] within a fictitious
domain approach, extended finite elements [20,31,36,47] or locally fitted finite element
techniques [27], to name such a few of the approaches.

Much less analysed is a proper time discretisation of the problem. In the case of
moving domains, standard time discretisation based on the method of lines is not
applicable in a straight-forward way. The reason is that the domain of definition of the
variables changes from time step to time step.

As an example consider the backward Euler discretisation of the time derivative
within a variational formulation

1
@run(tn), Py Q) ~ A_t(uh(tn) — up(ta—1)s D) Q1,)-

Note that uj, (t,—1) is only well-defined on €2(#,_1), but is needed on 2(z,).
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One solution to this dilemma are so-called characteristic-based approaches [38].
Similar time-stepping schemes result when applying the ALE method only locally
within one time-step and projecting the system back to the original reference frame
after each step [21], or based on Galerkin time discretisations with modified Galerkin
spaces [28]. The disadvantage of these approaches is a projection between the domains
Q(t,—1) and Q(#,) that needs to be computed within each or after a certain number
of steps.

Another possibility consists of space-time approaches [37,41], where a d + 1-
dimensional domain is discretised if Q(r) C R?. The computational requirements of
these approaches might, however, exceed the available computational resources, in
particular within complex three-dimensional applications. Moreover, the implemen-
tation of higher-dimensional discretisations and accurate quadrature formulas pose
additional challenges.

A simpler approach has been proposed recently in the dissertation of Schott [56]
and by Lehrenfeld and Olshanskii [42]. Here, the idea is to define extensions of the
solution uy (t,—1) from the previous time-step to a domain that spans at least Q2 (z,).
On the finite element level these extensions can be incorporated implicitly in the time-
stepping scheme by using so-called ghost penalty stabilisations [10] to a sufficiently
large domain Q(t,—1) D 2(#,). These techniques have originally been proposed to
extend the coercivity of elliptic bilinear forms from the physical to the computational
domain in the context of CutFEM or fictitious domain approaches [10].

While Schott used such an extension explicitly after each time step to define val-
ues for uy, (t,—1) in mesh nodes lying in €2(#,)\€2(#,—1), Lehrenfeld and Olshanskii
included the extension operator implicitly within each time step by solving a com-
bined discrete system including the extension operator on the larger computational
domain €25(#,). For the latter approach a complete analysis could be given for the
corresponding backward Euler time discretisation, showing first-order convergence
in time in the spatial energy norm [42]. Moreover, the authors gave hints on how to
transfer the argumentation to a backward difference scheme (BDF(2)), which results
in second-order convergence. We should also mention that similar time discretisation
techniques have been used previously in the context of surface PDEs [43,51], and
mixed-dimensional surface-bulk problems [37] on moving domains.

In this work, we apply such an approach to the discretisation of the non-stationary
Stokes equations on a moving domain, including a complete analysis of the space
and time discretisation errors. Particular problems are related to the approximation
of the pressure variable. It is well-known that stability of the pressure is lost in the
case of fixed domains, when the discretisation changes from one time-step to another.
This can already be observed, when the finite element mesh is refined or coarsened
globally at some instant of time, see Besier and Wollner [4] and is due to the fact that
the old solution uzfl = uy (t,—1) is not discrete divergence free with respect to the
new mesh. Possible remedies include the use of Stokes or Darcy projections [4,8] to
pass uz_l to the new mesh. Our analysis will reveal that similar issues hold true for the
case of moving domains, even if the same discretisation is used on 2(#,) N Q2(#,—1).
The reason is that uz_l is discrete divergence-free with respect to €2(#,—1), but not
with respect to ()
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dival ™ d)aw, =0, but divel ', ¢p)an,) #0

for certain ¢y, € Vj,.

For space discretisation, we will use the Cut Finite Element framework [35]. The
idea is to discretise a larger domain of simple structure in the spirit of the Fictitious
Domain approach. The active degrees of freedom consist of all degrees of freedom in
mesh elements with non-empty intersection with 25(#,). Dirichlet boundary condi-
tions are incorporated by means of Nitsche’s method [48].

We will consider both the BDF(1)/backward Euler and the BDF(2) variant of the
approach. To simplify the presentation of the analysis, we will neglect geometry
approximation errors related to the approximation of curved boundaries and, more-
over, focus on the BDF(1) variant. The necessary modifications for the BDF(2) variant
will be sketched within remarks. Finally, we will use a duality technique to prove an
optimal L2(L?%)-norm estimate for the velocities.

The structure of this article is as follows: In Sect. 2 we introduce the equations and
sketch how to prove the well-posedness of the system. Then we introduce time and
space discretisation in Sect. 3, including the extension operators and assumptions, that
will be needed in the stability analysis of Sect. 4 and the error analysis in Sect. 5. Then,
we give some three-dimensional numerical results in Sect. 6. We conclude in Sect. 7.

2 Equations

We consider the non-stationary Stokes equations with homogeneous Dirichlet bound-
ary conditions on a moving domain 2 (t) C R, d=2,3fort €I =0, ]

ou—Au+Vp=f, divu =0 in Q(1),
u=0 onoQ2(), u(x,0) =u0(x) in 2(0).

We assume that the domain motion can be described by a W !-*-diffeomorphism
T(t):Q0) — Q@). 2)
with the additional regularity
T e Who(I, W2(Q(0))). A3)

and that the initial domain 2 (0) is piecewise smooth and Lipschitz. In order to
formulate the variational formulation we define the spaces

V(t) = Hy (), L) := L*(Q(),  Lo(t) = Li(Q1)),
Vii={ue L>(,V1)?, due L*I, LYY, Lo :=L>, Lo()).
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and consider the variational formulation: Find u € Vi, p € Lo ; such that

O, Vo + As@, p;v.q) = . v)en YWeV), g L(t) ae.inte I’(S)
ux,0) =u’(x) ae.in Q(0),

where
As@, p;v, q) := (Vu, Vv)au) — (p, divv)ge + (divae, g)q). (6)

We assume that f € L°°(, E(t)d) ae.int € I andu® e HYQ (O))d.

Remark 2.1 (Boundary conditions) It might seem unnatural at first sight to use homo-
geneous Dirichlet boundary conditions for a Stokes problem on a moving domain
(?). In fact the assumption that the flow follows the domain motion on 92 (¢) would
be a more realistic boundary condition, i.e.

i—Au+Vp=f, divi=0 inQ(@)

. . (7

u=0,T(T"")ona(t).
Note, however, that for a sufficiently smooth map 7T'(¢) that fulfils div(d, T(T~ ") =0,
one obtains (1) from (7) foru = &t —3,T(T~") andf :=f+0>T(T~")— A@BT(T~")).
For this reason and in order to simplify the presentation of the error analysis, we will
consider homogeneous Dirichlet conditions in the remainder of this article.

2.1 Well-posedness

As the spaces in (4) are lacking a tensor product structure, the proof of well-posedness
of (5) is more complicated than on a fixed domain. In the case of a fixed domain exis-
tence and uniqueness of solutions can be shown under weaker regularity assumptions
on the data f and u° and the domain Q (z) in the velocity space

Vii={ueL*(I,V), dueL*(, (VH),

where V* is the dual space to V. Low regularity is, however, not of interest for the
present paper, as we will require additional regularity of the solution in the error
estimates. On the other hand, working with the space ); under the additional regularity
assumptions made above simplifies the proof of well-posedness of (5) significantly.

The well-posedness of the Navier—Stokes problem on time-dependent domains,
including an additional nonlinear convective term has in fact been the subject of
a number of papers in literature [6,55]. In order to deal with the additional non-
linearity, additional assumptions on the regularity of the domains are typically made.
For completeness, we give a proof of the following Lemma (5) in the “Appendix”
under the regularity assumptions made above.

@ Springer



E. Burman et al.

Lemma 2.2 Let (0) be piecewise smooth and Lipschitz and T(t) a W (Q(0))
diffeomorphism with regularity T € W21, W>(Q(0)). For f € LI, L(t)?)
and u® € HY(2(0))4, Problem (5) has a unique solutionu € Vi, p € Lo J.

Proof A proof is given in the “Appendix”. O

3 Discretisation

For discretisation in time, we split the time interval of interest I = [0, tq,] into time
intervals I, = (#,—1, t,] of uniform step size At =1, — t,_|

O=t<t) <--- <ty = tfi.

We follow the work of Lehrenfeld and Olshanskii [42] for parabolic problems on
moving domains and use BDF(s) discretisation for s = 1, 2, where s = 1 corresponds
to abackward Euler time discretisation. Higher-order BDF formulae are not considered
here, due to their lack of A-stability [34]. Following Lehrenfeld and Olshanskii [42]
we extend the domain Q" := Q(#,) in each time point ¢, by a strip of size § to a
domain f, which is chosen large enough such that

N
U Qil+i C Qn’ (8)
i=0

see also the left part of Fig. 1. In particular, we will allow

SWmax At < 8 < csSWmax A, ©)]
where
Wmax ‘= max |9, (x, ) - n|
tel,x€d2(0)

is the maximum velocity of the boundary movement in normal direction in the
Euclidean norm || - || and ¢5 > 1 is a constant. If we assume that the domain map T
lies in W1 (1, L>®(£2(0))) (see Assumption 3.2 below), the lower bound on § in (9)
guarantees (8).

The space-time slabs defined by the time discretisation and the space-time domain
are denoted by

0" = U {1} x Q(), 05 := U {t} x Qs(1), 0 := U{t} x Q).
tely tel, tel

In what follows we denote by ¢ generic positive constants. These are in particular
independent of space and time discretisation (Af, N and &) and of domain velocity
Wmax and §, unless such a dependence is explicitly mentioned.
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KET,:L and
K e Ts

KeTﬁ5

\ n,int

e€]—'h

n,cut
e € ]:h

n,ext
e € ]:h,é

n
—~ 0Qj

Fig. 1 Left: Illustration of Q’g for s = 1. Right: Illustration of the discretisation and faces

3.1 Space discretisation

Let 7}, 5 be a family of (possibly unfitted) quasi-uniform spatial discretisations of §2j
into mmphces with maximum cell size 7. We assume that 7}, i is based on a common
background triangulation 7j, for all n and may differ only in the elements outside
Q(t,) that are not present in 72 s for k # n. Further, we assume that 77'1 5 consists only
of elements K with non-empty intersection with Qf, i.e. K N Qf # #. The subset of
cells with non-empty intersection with 2 is denoted by 7. An 111ustrat10n is given in
Fig. 1. By €} ; we denote the domain spanned by all cells K € T, s and by 2}, the
domain spanned by all cells K € 7}.

Further, let .7”) denote the set of mterior faces e of T‘h s- We split the faces into three

parts: By fZ’im, we denote the faces that belong exclusively to elements K € ’]Z 5
that lie in the interior of Q". By )" we denote the set of faces that belong to some
element K € 7} ; with K N 9" 7& ¢ and by F’§ ““* the set of the remaining faces in
F.» see Fig. 1. Flnally, we write for the union of F)’ U and fn ext which will
be used to define the ghost penalty extensmns

For spatial discretisation, we use continuous equal-order finite elements of degree
m > 1 for all variables

={r e C(Q ). vIx € Pu(K)VK € T} ;)
={g € C(Q). qlx € Pu(K)VK € T2}, Ll o= L} N Lota).

Note that for the pressure space £}, an extension beyond 2j is not required.

To deal with the inf-sup stability, we will add a pressure stabilisation term s} to the
variational formulation. In order to simplify the presentation, we will restrict ourselves
to the Continuous Interior Penalty method (CIP [14]) in this work, although different
pressure stabilisations are possible. We define the CIP pressure stabilisation as
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stpi) = > W (0up]. [ugDet Y DB p]. [95g]e-

n,int ” seut =1
ecF, ecF,

The higher derivatives in the boundary elements are necessary to control the derivatives
V p, on the extended computational domain €2\ 2" in the spirit of the ghost penalty
stabilisation [10].

We summarise the properties of the pressure stabilisation that will be needed in the
following: There exists an operator C, : V} U L2(Q") — V!, such that the following
properties are fulfilled forn =1,..., N

si(q.r) < sp(q. )" Psjir, )2 Vg.r € Vi U H*(Q"Y),
(10)
sn@. @) < ch* gl g Vg € Vi U H*(Q"),
(11)
W1V = iV pillgy < esji(pj. i) Vpn € Vi, (12)
ICHV Pty < e (IVpalds + 7250 P pD) Ve €Vi (1)

A suitable projector C}; for the CIP stabilisation is given by the the Oswald or Clément
interpolation [14]. For m > 2, we have additionally the consistency property

sp(p.p) =0 Vpe H™(Q"). (14)

Remark 3.1 (Pressure stabilisation) In general any pressure stabilisation operator that
leads to a well-posed discrete problem and that fulfils the assumptions (10)—(14) can
be used. The consistency condition s} (p, p) = 0 can be relaxed to a weak consistency
of order my > 0

Sy p) < B (| Pl Fpms -

which will limit the spatial convergence order in the error estimates. One possibility
is the Brezzi—Pitkdranta stabilisation [9] with order m; = 1. We refer to Burman and
Fernandez for a review of further possibilities for pressure stabilisation [12].

3.2 Variational formulation

To cope with the evolving geometry from one time-step to another, we extend the
velocity variable u} to QF, which will be needed in the following time-step, by using
so-called ghost penalty terms g, . We will describe different possibilities to define g in
the next subsection. For k = s, ..., n we define the following time-stepping scheme:
Find uy, € Vy, p;, € L, o such that

(DUl vi)an + ALl plivi,an) = Fovar Yo € Vioagne £, (15)
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where D,(S) is an approximation of the time derivative d; by the BDF(s) backward
difference formula, i.e.

1
. n n n—1
D u;, = — W, —u ,
= g )
1 1
D,(Z)uz = Dt(l)uz + —(Dl(l)uz — Dt(l)uz_l) = —QGuj — 4uz_l + uz_z).
2 2At
The bilinear form .4, is defined by

w @y, puivi,gn) == A5y, pyi v, qn) + ap @y, prs v, qn)
+ vo g Wy, vi) + vps, (D) qn)- (16)

It includes the Stokes part
A, p;v, q) := (Vu, Vv)gn — (p, divv)on + (diva, g)on 17)

and Nitsche terms to weakly impose the Dirichlet boundary conditions

ap Wy, pyi v, qn) = — Bty — ppn,vp)aor — (), 8,vi + gri) e
YD
+7(u21 vh)BQ” . (18)

In (18) the last term can be seen as a penalty term to weakly impose the homogeneous
Dirichlet condition for the velocities. The first term on the right-hand side makes the
variational formulation consistent (in space). Finally, the second term, which vanishes
for uj = 0, yields a formulation, which is symmetric for the velocities, but skew-
symmetric for the pressure. The skew-symmetry in the pressure variable leads to a
stable variational formulation, as the pressure terms cancel out by diagonal testing
(i =uj}, q; = p}), see for example [13]. The parameters yp, y), and y, are positive
constants.

To include the initial condition, we setu2 = n}} Eu®, where ;) denotes the L2(QM)-
projection onto 7} and E denotes an L’-stable extension operator, which is introduced
in the next section. Summing over k = 1, ..., n in time, the complete system reads
fors =1

n
Uk gkt ok kepk k. ok k 1 /o 4
Z{A_t(uh—uh ’vh)9k+“4h("h’ph;vh’qh)}+A_t( h,vh>9l

1 n
=E<Eu°,v;)91+2(f,v’,;)gk whkeVk gherk k=1,..n (9
k=1

In order to simplify the presentation, we will assume that the integrals in (19) are
evaluated exactly. If the integrals are only roughly approximated, for example due to
a discrete level-set function ¢} € 1, which is only an approximation of a continuous
function ¢”, an additional geometry approximation error needs to be considered. We
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refer to the work of Lehrenfeld and Olshanskii [42], where these additional error
contributions have been analysed in detail for parabolic problems on moving domains.
An advantage of the CutFEM methodology compared to standard finite elements is
that besides the geometry approximation no additional discretisation errors related to
the approximation of curved boundaries within the finite element spaces need to be
considered.

To initialise the BDF(2) scheme the value ”;11 needs to be computed with sufficient
accuracy before the first full BDF(2) step can be made. We will comment on the
specific requirements and on different possibilities below in Remark 5.6.

3.3 Extension operators

Due to the evolution of the domain, we will frequently need to extend variables defined
on smaller domains to larger ones. Therefore, we will use Wk-P_stable extension oper-
ators E" : Q" — QY to extend functions u(t,) € WK-P(©"). We make the following
assumption for the regularity of the domains €2 (¢) and the domain movement, depend-
ing on the polynomial degree m of the finite element spaces.

Assumption 3.2 We assume that the boundary of the initial domain €2(0) is
piecewise smooth and Lipschitz, and that the domain motion T(r) is a W!>-
diffeomorphism for each ¢ and smooth in the sense that T € L (1, W™+t1.°(Q(0)))N
W (1, Wm(Q(0))).

If Assumption 3.2 is fulfilled for m € N, suitable extension operators E" : Q" —
Qf exist with the properties

”Enu — u“W’"‘HJ’(Q) = 0, ”Enu”W”""]'p(Qg) f C||u||Wm+1,p(Qn), (20)
10: (E"w) || pym gy < ¢ (Il gs1 @y + 19rmell 1 (2my) (2D
197 CE"w)ll g < cllull g2 (on- (22)

For a proof of (20) we refer to Stein [57], Theorem 6 in Chapter VI. The estimate
(21) has been shown in [42], Lemma 3.3. The estimate (22) follows by the same
argumentation. In order to alleviate the notation we will in the following skip the
operator E" frequently and denote the extension also by u(z,).

3.3.1 Ghost penalty extension

The discrete quantities are extended implicitly by adding so-called ghost penalty terms
to the variational formulation. We will consider three variants for the ghost penalty
stabilisation, and refer to [15,32] for a more abstract approach on how to design suitable
ghost penalties for a PDE problem at hand. The first “classical” variant [10,15,45] is
to penalise jumps of derivatives over element edges

g™, v) = > Y RN (ogu, [9fvDe-

1.8 k=
ee};r,ék 1
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This variant has the advantage that it is fully consistent, i.e.it vanishes for u €
H" Q1Y which implies [3fu]|, = 0 for k < m. A disadvantage is that higher
derivatives need to be computed for polynomial degrees m > 1.

To define two further variants, let us introduce the notation K, 1 and K, » for the
two cells surrounding a face e € }'Zg such that

e = ?e,l N ?e,2~

We denote the union of both cells by w, := K, 1 U K, and use the L2—projection
T, : L2(QF) — Pu(w,), which is defined by

(U — 1y et V), =0 Vv e Py(w,).

We define the “projection variant” of the ghost penalty stabilisation [10]

; 1
n,proj .
g, up,vp) = 7 Z (wn — 7w, vi — ﬂwgvh)we
eeFy s

1
= ﬁ Z (uh — TwUh, vh)we ’

1.8
ecFys

The last equality is a direct consequence of the definition of the L?-projection.

The third variant, which has first been used in [52], uses canonical extensions of
polynomials to the neighbouring cell instead of the projection my,,u. Let us therefore
denote the polynomials that define a function u € V; in a cell K, ; by u.; = u| Kei-
We use the same notation for the canonical extension to the neighbouring cell, such
that u,; € P, (w.). Using this notation, we define the so-called “direct method” of
the ghost penalty stabilisation

n,dir

1
I (u,v) = ﬁ Z (ue,l —Ue2, Vel — ve,Z)we .

sy

For the analysis, we extend the definition of the stabilisation to functions u,v €
Lz(Qg’). Here, we set u,; := nKe,iulKe,i fori = 1,2, where K, denotes the L2-
projection to P, (K, ;) and extend this polynomial canonically to the neighbouring

,proj

cell. In contrast to the classical variant, gZ and g;:’dlr are only weakly consistent,

i.e. they fulfil the estimate
g, u) < chZ’"||u||Hm+.(Q§), foru e H™ (@14,

We will summarise the properties of these stabilisation terms, that we will need below,
in the following lemma. Therefore, we assume that from each cell K € 72 s with
K N Q" = @, there exists a path of cells K;,i = 1, ..., m, such that two subsequent

cells share one common face ¢ = K; N K41, and the final element lies in the interior
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of Q", i.e. K,, C Q".In addition the path shall fulfil the following properties. Let K
be the maximum number of cells needed in the path among all cells K € TZ 5+ We
assume that

C5S Wmax At

K<04+468/h) <1+ h ) (23)

where the second inequality follows from (9). Moreover, we assume that the number
of cases in which a specific interior element K, C 2" is used as a final element among
all the paths is bounded independently of Ar and 4. These assumptions are reasonable,
as one can choose for example the final elements by a projection of distance § towards
the interior. For a detailed justification, we refer to Lehrenfeld and Olshanskii [42],
Remark 5.2.

Lemma3.3 For v, € V} and the three variants g € {gZ’Jump,gZ‘proj,gZ’dlr} it
holds that
2 2 ICh2 n \v4 2~ \V4 2 Col
Vnllgn = clvallon + Kh=gy n,va), — IVVilign = cllVvnlign + Kgy Wn, vi)

Further, it holds foru,v € H’”H(Qg)form > 1 and vy €V that

gh@.v) < gy, w)' i, v)' 2, g u) < ch*" el gy 8500 1)

< clIVligy- (24)

Proof The first four properties have been proven for the three possibilities introduced
above by Lehrenfeld and Olshanskii [42]. The last inequality in (24) follows similarly.
(]

3.4 Properties of the bilinear form

We start with a continuity result for the combined bilinear form including the Nitsche
terms in the functional spaces.

Lemma 3.4 (Continuity in the functional spaces) For functionsu, v € V(t,)NH?(Q")4
and p, q € L(t,) N H'(Q"), we have

|(As+ah) @, p;v, )| + [(AG +a}) (v, q; u, p)|
= (IVullgr +h~"2lullggn + hIVplgn + 72 [d,ullagn )

(197l + 1~ Ilign + gl + R~ Ivlagn +8'2 (1owvllagn + lallagn) -
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Proof We apply integration by parts in (17)

A5, p;v,q) = (Vu, Vv)gn + (Vp,v)on — (p,v - n)yon + (divu, q)qn
<c(IVullgn +h|Vplan) (“VV”Q" +h g

+ligller) — (p,v-m)aqn.
For the Nitsche terms standard estimates result in

abw, piv,q) < ¢ (W ullagr + B 13uullagn) (R 29 lagn + 12 (192vlagn + llgllagn)
+(p,v-n)an. (25)

The estimate for (A + a,)(v, g; u, p) can be shown in exactly the same way by
inverting the role of test and trial functions. O

Next, we show continuity and coercivity of the discrete bilinear form. To this end,
we introduce the triple norm

b 12
Ml = (19051 + vegh eh, ) + 22 3

Lemma 3.5 (Coercivity and Continuity in the discrete setting) For the bilinear form
Ay, defined in (16) and uy, € Vy, and py, € Ly, it holds for yp sufficiently large

1
A un prsun, i) = 5 (Nnllf  + 7557 i P ) - 26)

Moreover, we have for uy, v, € V}, and py, q; € L},

A, pusvis ai) = (nllln + 1 pallgr + 55 (ons pi)'72)

(11wsl1lin + lgnlier +sian a*?). @D
Proof To show coercivity (26), we note that

A, priun, pr) = Wunllly, + vpsh(Pa. pr) — 20, 9t} aqn.

To estimate the term —2(uj,, 0,u})yqn, we apply a Cauchy-Schwarz and Young’s
inequality for € > 0, followed by an inverse inequality on 2}

1 1
2 2 2 2
—2(up, Opltp)aon > —J”uh”am - Eh”V”h”aQn = _Jnuhnam - C€||Vuh||gzl-
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Using Lemma 3.3, we obtain

1
20un Dyt )agr = ——un g — ce (IIVa iy + K Gun. )

(1Va e + v un. un))

N =

YD 2
> ——|u n =
=" llun ||352
for yp sufficiently large. Concerning continuity, we estimate

As@n, priva, qn) < ¢ (IVupller + Ipnllen) (IVvaller + lignller) (28)
For the Nitsche terms, we have using inverse inequalities and Lemma 3.3
n YD
ap @, pns Vi, qn) = 7(“/1, vi)oor — (Opttn — ppn, vi)oqn — Wp, 9,V + qni)aqn
y1/2 y1/2
<c (hll)/zmh”ﬁﬁ” + IVanligy + 1P mn) (h‘f/zm lagr + IV ligy + ||(/h||Q">
< c(Mlunlllnn + Ipnller) (1valllna + lgnllier) - (29)

Finally, Lemma 3.3 and the assumption (10) for the pressure stabilisation yield

gl un, vi) < g (un, u) gl on, vi) 12,
ST Py qn) < S§ oy pi) 251 qn, qn) V2.
O

Moreover, we have the following modified inf-sup condition for the discrete spaces.

Lemma3.6 Let p; € L. There exists a constant > 0, such that

Blpilar < sup V¥ PR = O . pi)ogr

7 +hlVpjlan. (30)
viev) LA

Proof We follow Burman and Hansbo [14] and define v’;, € HO1 (Q”)d as solution to

Ph

— on Q". 31
| P Il

o
dlvvp_

Such a solution exists, see Temam [58], and fulfils ||v?7 | g1y < c. We introduce an
L?-stable interpolation i 1V} (for example the Clément interpolation) to get

1P}l = —(pp, divy)gr = —(pf. div () — v — (Pl div (@]V3)an.
(32)
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. . . . . . n
We apply integration by parts in the first term and use that v, vanishes in 9€2

—(py, div(y, —ipviDarn = (Vp,, v, —ipvi)an — (pyn, v, — i3v))aqn

n n ~n_.n (33)
< chlIVppller + (ppn. ipv))aqn

The statement follows by noting that

. 2 . 2 YD . 2 . .
MVl = VY, + =iV, len + 81 GVy, i3V

2 YD . 2 . 2 2
<c (||Vv';,||m + Z2Nivy — Vi e + ||V12’v7,||92.5) <c|VViIE <.
O

The well-posedness of the discrete system (15) for sufficiently large y), ¥, ¥p and

given uZ_l (and uz_z for BDF(2)) follows by standard arguments, see for example
[14].

4 Stability analysis

In order to simplify the analysis, we restrict ourselves in this and the next section to
the case s = 1 first, i.e., the backward Euler variant of the time discretisation and
comment on the case s = 2 in remarks. In order to abbreviate the notation, we write
for the space-time Bochner norms

lelloo,m, 1 := lwliLoe, am@ay),  Nwlloom = llttlloom,1,
where m € Z and HY(Q (1)) := L2(Q(1)).
We start with a preliminary result concerning the extension of discrete functions to
QF.
8

Lemmad.l Letv € V, § < csswmax At and S§ = QE\Q". It holds for arbitrary
€e>0

IA

913 < c8 (e + € DIvlid, +elVridy ). (34)

For vy €V}, we have further for h sufficiently small

At
”VhH?zg < (I + c1(wmax) At) IIVhIIén + ?vah”én + C2(wmax)At’CgZ(Vh, Vi)
(35)
with constants c1(Wmax) = 1/2 + cszwrznax, 2 (Wmay) := cw?, h* 4+ 1and c > 0.

max
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Proof These results follow similarly to Lemmas 3.4 and 5.3 in [42]. Nevertheless, we
give here a sketch of the proof due to the importance of the Lemma in the following
estimates. We define

Q' = Q" U{x € 8, dist(x, 0Q") < r}, T :={x € S, dist(x,0Q") = r} = 9Q/.

We apply a multiplicative trace inequality and Young’s inequality for arbitrary € > 0

2 —1 2 2
Il < clvligp IVl @ = co (€7 VI3 + €I gp)

= co (e + € DIVIGy +elVriy) (36)

with a constant ¢ depending on the curvature of 02", Integration over » € (0, §)
yields (34). For a discrete function v, € 1, we use Lemma 3.3 to obtain

allS; < cod(e + e~ DlIvallgy + codel| Vvnligy
< cod(e + e D) allyn + codel| VvilEn + codK ((e + e~ )R> + €) gt vn. va).

1

2¢0C5S Wmax

Using (9) and choosing € = , we have code < % and

At
rllSy < €1 @ma) A In 2 + == 1YWl + €2 (Wimax) AtKg) v (37)

for h < 1 with the constants c1 (Wmax), €2 (Wmax) given in the statement. The inequality
(35) follows by combining (37) with the equality

allgy = IValige + Ivall5; - (38)
O

Now we are ready to show a stability result for the discrete formulation (15).
Theorem4.2 Let up, = k)N . py = (pf)N_, be the solution of (15) fors = 1,
Ve = 2(Wmax)KC, where c2(Wmax) denotes the constant from Lemma 4.1 and yp

sufficiently large.
Under the regularity assumptions stated above, it holds for n > 1 that

n
e+ = k™ 12+ A (1511 + vpsk o o))
k=1 (39)
02 2
< cexp(er wmat) (18013 + 0lA1%0)

with c1(Wmax) given in Lemma 4.1 and u2 = T[}} Eu®.
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Proof Testing (15) with v, = 2Atu}, g, = 2Atpjy, using the coercivity (26) and the
relation

-1 12 2 —12
2@y, uy Do = lluy —up lge — lluplign — luy ™ g (40)
yields forn > 1

2 -1)2 —1)2 2
luhllign + lluy — )™ lign — llugy ™ g + Atlllupllly , + Atypsy (Ph, PR)

41)
<2A1(f, up)an.
We bring the term ||u’;f1 1%, to Q"1 by using Lemma 4.1
n—12 n—12 ﬁ n—12
llug, lign < (1 + c1(wmax) A7) |lu, ”Qn—l + ) Vi, ”Qn—l
+ o2 (wma) K AT ™ ™). (42)
Inserting (42) into (41) we have
It W + ey = = 1 + A (111, + vpsh (s 2D
_ At _
< 280(f, up)on + (1 + €1 Wama) A0 ey~ g + -1 Vet~ 1
+ Atyegr @ ulh (43)

for yg > c2(wmax) K and yp sufficiently large. For n = 1, we have instead of (41)

g3y + luj, — Eu®l, — | Eu®|3, + At (|||u},|||i,1 + ¥psi (Ph- p,i))

= 2A1(f, u})g.

(44)

In both cases (n > 1) we use the Cauchy—Schwarz and Young’s inequality for the first
term on the right-hand side to get
201(f upar < Atlluyligy + Atlf G

Summing over k = 0, ..., n in (43) and using the L>-stability of the extension of
the initial value yields

n
At
k—1
o e + Yok — ™12 + = (k111 + 275K F PD))
k=1

n—1
< cllu®llgo + 2tallf 12,0 + 1 Wma) ALY w50 (45)
k=0
Application of a discrete Gronwall lemma yields the statement. O
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Remark 4.3 (BDF(2)) For the BDF(2) variant, we get the stability estimate (39) with
the weaker dissipation ||uﬁ — Zuﬁfl + u’,‘f2 ||?2k instead of ||u§ — u';fl ||?2k. To this end,
one uses the relation

1
—1 -2 2 —1,2 —1,2
Gujy — duy ™ a2 i on = 2 (o — ™ G + 11265 — ™ 1B

—2u) ™ —w R+ g 2w u T 1R)

instead of (40).

4.1 Stability estimate for the pressure

We show the following stability estimates for the L?- and H '-semi-norm of pressure.

Lemma 4.4 Let (u}, p;) be the discrete solution of (15). For n > 1 it holds that

1Ph e = ¢ (1D uy e + WG, + s of P + W), (46)
BV PG < ¢ (RIDPui i + 1GIE, + s p P + W2 ). @47

0_ 17,0
where u, =mn,Eu".

Proof First, we derive a bound for 42|V 44 ||é,1. To this end, we extend V p; by zero
to Q2§ , \ 2}, using the same notation for the extended function. We insert £C}'V p}.,

where C} : Lz(Qg” h)d — V} is the interpolation operator used in (10)-(13), and
integrate by parts
RV pillgn = h*(V ply = CiV pj, Vpian + W (CiV pji, V pj)an
= 1*(Vpj — CiV pji, Vpp)an — W2 (div(CiV pR), pies
+h*(CRV Py, pPhm)ogn. (48)

For the first term, we have by means of (12) and Young’s inequality

W*(Vpy — CiV pit, Vpidar < B2V pji — CitV pillar 1V pii e
h2
< esy (Pl pi) + IV P (49)

The last term in (49) will be absorbed into the left-hand side of (48). For the second
term on the right-hand side of (48), we use that (u}, pj) solves the discrete system

(15)
— v (€Y pp). e = — H( (D u, c,’;sz)Qn + (Ve V(YD) o

+ ap @y, pp: CpV g, 0) + veg) ), CVpy)  (50)
- (fa CZVPZ)QH )

@ Springer



Eulerian time-stepping schemes for the non-stationary...

To estimate the first term on the right-hand side of (50), we use the Cauchy—Schwarz
inequality and (12) to get

—n? (Duy Cvpy) < chI D upllar (IVpyllar + 53 (pf pi'2) . (51)
Similarly, we get for the last term on the right-hand side of (50)
W (f, CiV D} )gn < chlfllgn (hnwznm + 57} ph)‘/z) (52)

For the second-term on the right-hand side of (50), we use an inverse inequality on
Q) and (12)

—h* (Vajy, V(CRV pi)) g < ch? |V llon [V (CHV Pl
= ch||Vuplia ICyV pyllar

1
< cllVuj i (VP llgy + 7. (Ph P} ) -
For the Nitsche term a'},, we have as in (29)

h>aly (@, pj; CiV pj, 0)

= = (22 (. LV PR )y = (Butt = P, CLV D) + (05 04 (CFLY P )0
<mwmmmqvmmhw%mmqVﬁhm
< clllupllna (RIV P + si(pp. DY) = B2 (ppn. CIEV D)y - (53)

In the last step (12) has been used. Note that the boundary term on the right-hand side
will cancel out with the third term in (48). For the ghost penalty we have by means of
an inverse inequality and (12)

hgh(ujy, CpV i) < chgy @y, up) 2 CRV pjllqn

(54)
< cgp . up) 2 (hIV phlar + si(ph. p)'?)
Altogether, (50)-(51) and (53)-(54) result in

—h2(div(CEV P, pan + B2 (ppn, CV D)y
<C(hnvph“m 550 pV2) (R D g + 111 1l + I )

2
< —Wp 13 + (W Duy | + 1BGIE , + K2 Vs + 57 PR 2D ). (55)
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In the last step we have applied Young’s inequality. Combination of (48), (49) an (55)
yields (47). To show (46) we start using the modified inf-sup condition (Lemma 3.6)

Blpjllon < sup LV PRI = 01 piosy
h =
vheV] vallln,n

+hlIVpplien.  (56)

By (15), we have

(div v, pan — 0 -1, plaan = (DU, vi)an + AL @), 05 vy, 0) — (F, vi)
(57)

To estimate the right-hand side of (57), we use the continuity of the bilinear form .AZ
(27) and the Cauchy—Schwarz inequality

(Dzmuz, viar + Apuy, 05 vy, 0) — (f, vi)on
< c (1D ugllen + fllgr ) Ivnlan -+ el a1l

< (1Dl + 111 lan + Wl ) N9 (58)

In the last step, we have used that ||V} |lor < ¢ ([Vvpllan + lIvallaer) < clllvillinng
by a Poincaré- type estimate. Combination of (56)—(58) and (47) yields (46). O

Lemma 4.4 gives a stability result for ||V p’; llgx, which results in the following
corollary:

Corollary 4.5 Under the assumptions of Theorem (4.2), it holds for s = 1 that

n
1 _ . . )
ey G + ALY (muznl,%,k + = w3 g + s (P ) + min{h?, At}IIVpﬁl\éA)
k=1
< exp(et (Wma)tn) (clle®lgo + 26 If11% o) - (59
For s = 2, we have

n
a1 + A Y (11leh 1 i+ vpsk (o, ph) + mingi?, ARV pf 1)
k=1 (60)

< exp(e1 (wmwotn) (clu®llgn + 26 1A% o) -

Proof We start by proving (59) for s = 1. To this end, we distinguish between the
cases At > h% and At < h2. In the first case, we note that, by (47)

1
ARV ppIE < Atk DVul +car (a1, + 57 pfs o) + I 1)

1
= AP DV u i + At (a1, + 57 P pi) + I 1)
61)
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As At2||Dt(l)uZ 1%, = lluj, — uz_l ||§2,1 (59) follows from Theorem 4.2. For At < h2,
we multiply (61) by % to get

1 At
APV = AP ID g B + carss (1l + 5o o)) + 11 )

and use the same argumentation. For s = 2, we do not have control over
At Dl(z)uz ||§2,1. Instead, we use the estimate

2
2 —k —k —k k
APIDPuf B < caty (||u’,1 12+ AV 1B+ KCArg) ™ ™ up ™))

that follows from the triangle inequality and (35). The estimate (60) follows by a
similar argumentation by distinguishing between the cases At < h. O

Concerning the L2-norm of the pressure, Lemma 4.4 gives a stability result only
for

Ar? Z 12 I

even in the case s = 1. In the case of fixed domains and fixed discretisations, a stability
estimate for || p’; || can be derived by showing an upper bound for the right-hand side

in (46), including the term é llu) — uzfl ||é,,, see for example Besier and Wollner
[4]. The argumentation requires, however, that the term (div u}, éh )qon vanishes for

Sh € EZ. This is not true in the case of time-dependent domams, asu” h ~1is not discrete
divergence-free with respect to 2"

(dlvu sh Yo #0

for certain & € Lj. Moreover, the domain mismatch Q"1 £ Q" causes additional

problems in the transfer of the term || |u2_l M # I |u;’1_l [117,n—1 from one time level
to the previous one. In the error analysis developed in the following section, we will
therefore use the H !-stability results in Corollary 4.5 for the pressure variable.

5 Error analysis

The energy error analysis for the velocities follows largely the argumentation of
Lehrenfeld and Olshanskii [42] and is based on Galerkin orthogonality and the sta-
bility result of Theorem 4.2. We write u” := u(t,), p" := p(t,) and introduce the
notation

o— n n n .__ n n_.n n o n_.n n
=u" —uy, n,:=u"—Iu", Sh’u =hLu" —uy,

=p" = py, m,=p"—ipp", & ,=i0" —p,

TS ==

@ Springer



E. Burman et al.

for n > 1, where I;' denotes the standard Lagrangian nodal interpolation to 7} 5 and

i, a generalised L?-stable interpolation (for example the Clément interpolation) to 7.
Moreover, we set

This is possible, as ug cancels out in the summed space-time system (19). The follow-

ing estimates for the interpolation errors are well-known

Il gy < ch* " |l e for0<l<1, 2<k<m+1, (62)
Ity < ch* 1P () for 0<l<1, 1<k<m+1, (63)
170l aey < B 2P gy for 0<1<1, IT<k<m+1. (64)

We will again make use of the extension operators E” introduced in Sect. 3.3. For
better readability, we will sometimes skip the operators E” assuming that quantities
that would be undefined on the domains of integration are extended smoothly.

For the error analysis, we assume that the solution (u, p) to (5) lies in
L2(I, H" 1 (Q)%) x L>(I, H™((1))) for m > 1. Then, we can incorporate the
Nitsche terms in the variational formulation on the continuous level and see that (u, p)
is the solution to

@, Qe + As(, p;v.q) +ap@, p;v, q)
=(f. Maw WeWr), g€ L) ae.intel, (65)

where
V(t) .= H (Q@1))".
5.1 Energy error

As a starting point for the error estimation, we subtract (15) from (65) to obtain the
orthogonality relation

(DPel, i) g + (A% + aly) (el €ns Vi, qn) + Ve & (€ vi) + vpsi (& . qn)
= (DU = dutn), vi)an + veg] @' vi) + vpsp Gl p" qn)  Vvw € Vigw € £p,  (66)

=& n,qn)

for n > s with the consistency error £ (vy, q1,). Note that this relation holds in partic-
ular also for n = s, as we have defined eg = 0. We have used a different splitting in
the pressure stabilisation s;' compared to the other terms, in order to include the case

pE HYQ) (m = 1), where sZ(p”, gn) would not be well-defined.
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We further split (66) into interpolation and discrete error parts

(Dﬁ”s,;iu, vh)m (AL ) E L ER VR an) T Va8 ELvn) + VpSyER L an

==& nqn) +EOn,qr) i €V, qn € L],

)(67)

where the interpolation error is defined by

&' wn. qn) = (D0 v + (A% +ah) (s v, an) + Vel (1. va).  (68)

We will apply the stability result of Theorem 4.2 to (67), which will be the basis of
the error estimate. For better readability, we will restrict restrict ourselves again to the
case s = 1 first. Let us first estimate the consistency and interpolation errors.

Lemma 5.1 (Consistency error) Letu € W>(I,,, L>(")?) N L>®(I,,, H"T1(Q")?)
and p € L*°(I,, H™(Q2")). Under the assumptions made in Sect. 3, including Assump-
tion 3.2, it holds for s = 1, v, € V;, q; € L}, and n > 1 that

1
\E (vhy qn)| < A2 ||82u] gn ||va |l

+ ch™ (lull g1 @y + 12 7 @) (gZ(Vh, vi) %+ sp(qn, Qh)1/2> :

Proof For the first part of the consistency error, we have using integration by parts and
a Cauchy-Schwarz inequality in time

1

(g _ nn—1y\ _ __L/tn n _ n
At( E"u""") = du(ty) = Al O (E"u(1)) — 0, (E"u(ty)) dt

1o )
= —— t —t,-1)07(E"u(t)) dt
AlL( W DOR(E"u(1))

|/ [ 12/ 1ty 1/2
< — (/ (t— tn_l)zdt> <f af(E"u(n)zdt)
At h—1 th—1

in 172
SAH/Z(/ af(E”u(r))zdt) :

In—1

Using (22) this implies

(u" — E”un_l, vh)Qn — (Ou(ty), vi)on

1 1/2)142(
I < cA 192 CE" W)l gg vl
< At 28%ullgrlvhlier.  (69)
The extension operator E” is needed, as the integration domain in the left-hand side

of (69) includes parts, that lie outside the physical domain Q". For the ghost penalty
part, we have with Lemma 3.3 and the H”*!-stability of the extension (20)

gh@ vy) < gh@" w2 gh wp vi) ' < ch™ || g1 oy 8 On i)
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Concerning the pressure stabilisation, we note that for p" € H'(Q") the term
sp(p", p") is not well-defined. For this reason we distinguish between the cases
m = 1 and m > 2. In the first case, we estimate using (10) and the H 1—stability
of the interpolation

SEGRP™ an) < chllif p" g1 amySt(@n, an)* < chllp™ | g1y (an. an) /.

For m > 2, we insert =p" and use (10), (14) and the interpolation error estimate (64)
shGnp". qn) < (SZ(nZ, 2+ sp(p”, p”)m) si(an. qn)'’?
< ch™ | p" | amanysy (qn. qn) ">
O

Lemma 5.2 (Interpolation error) Leru € L®(I,, H" ' (Q(t)?), du € L>®(I,, H"
(QND), p € L®(I,, H™(Q2(t)). Under the assumptions made in Sect. 3, including
Assumption 3.2, it holds for v, € V} and q;, € L}, that

1€ Wy gn)| < ch™ (1ulloo,mt1.1, + 10:8l00,m.1,
+lplam @) (1alllna + 2l Vanllar) -

Proof We estimate the interpolation error (68) term by term. For the first term we use
that we can exchange time derivative and interpolation operator 9, Iu" = Ij,0;u(ty,)

1 —1
IA—t(nﬁ — vy

Ly
=— O (u(t) — Lyu(t dtH n
ail | o = oy ai] e

1
n n—1
< A—tllm, =1, e lvallen

< K19 (E"w)lloo,m,1, IIvhll 2 (70)

We note again that the integration domain in the first norm on the right-hand side
includes parts, that might lie outside the physical domain Q". By means of (21) we
conclude

n—1

My — My vian

1
\A—t < ™ (19t oom + lloomi1) [Vl

For the second term in (68), we use Lemma 3.4
(A + ap) (g, 03 vas qn)

< c (I9nillar + " Inllar + B~ 1nillage + 1'% (W lae + I llage ) + iy o )

(IVvillgn + B vhllagn + B 18,vnllaer + RIVanliar)
< ™ ([l" | gms1 @y + 12" Nameen ) (1alllnn + 21 Vanllar) (71)
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Finally, we get for the ghost penalty part from (24) and the H™*!-stability of the
extension

1/2 1/2
82(7737 V) < Chm”un”HmH(Qg)gZ W, vi) / = chm||u"||H,,,+1(Qn)gZ Vh, Vi) 2,
O

Now, we are ready to show an error estimate for the velocities.

Theorem 5.3 Let u, = (u];l)f(':], Ph = (pﬁ)zzl be the discrete solution of (15) for
s = 1 and (u, p) the continuous solution of (5). Further, let y; > ¢2(Wmax) K with
¢2(Wmax) defined in Lemma 4.1, yp, yp sufficiently large and At > ch? for some
¢ > 0. Under the assumptions stated in Sect. 3, including Assumption 3.2, it holds for

k _ .,k k k _ .k k
the error €, = u" —uy, e, = p~ — p, forn =1

n
2 k k—1,2 ko2 2 k2
el + D ek — ek~ 1% + Ar (IleblI i + 12 19eb1% )}
k=1

< coxp(er Waata) (AL N7ul + 52" (1120 1 + 100126 1y + 1212,) ).

where eg := 0 and c1(Wmax) is defined in Lemma 4.1.

Proof As in the stability proof (Theorem 4.2, (43)), we obtain from (67) forn > 1

165 W+ g7 — &t 1 + At (11ERR . + VoS 6o 61 ))
_ At _ _ - —
< (41 Wma) A 1835 g + S IVE g + Atyegy™ &L 610D

+ 200 (|E0E 51 )| + 181G e 61 )]) - (72)

for y, > c2(Wmax) K. A bound for ||V€:;Zp||gzn can be obtained from (66) as in the
proof of Lemma 4.4 (compare (47))

1
AR Ve I < eat(RIDVg W + gL, + 5hEr 0 61 )

(73)
EE 8+ S 5 ).

We multiply (73) by € > 0 and add it to (72). Due to the assumption At > ch? the

first three terms on the right-hand side of (73) can be absorbed into the left-hand side

of (72) for sufficiently small €

3 3At
165l + 088 — &1 W + =5 (11671 + V87 6 &1 ,) + R IVER )
_ JAY — n—1 en—1 gn—
< (4 e ma) AD 167 g + - IVE G + Arvegy ™ €L 80D
200 (|E8 R 61 )| + 8 e 1))

(74)
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Next, we use Lemmata 5.1 and 5.2 in combination with Young’s inequality to estimate
& and &7
n o2
(I =AD&, , i
1 _ At
+ g, — & e+ (|||5;:,u|||h,n +vpsi G &)+ eh2||vss;:,,,||§zn)
_ At _ _ _ _
< (4 1 Wma) A 1857, g + - IVE g + Arvegy ™ € 610D

+ et (AeloPul + h (1l i g, + 18012 g, + 121 ) )-
(75)

We sum over k = 1, ..., n and apply a discrete Gronwall lemma to find

n
il + Y (168, = & e + At (11ER IR & + vosk&E o5 ) + H2IVEE 1% )
k=1

< cexper (wman)ta) (A N7l + B (s 1+ 1001 + 121 %n) )-
(76)

Finally, the interpolation estimates (62)—(64) and the argumentation used in (70)
yield

n
e + 3 (k= n~ N+ Ar (N &+ H20VnEI% ))
= an

2 2 2 2
< e (el 1 + 10002y + 121 )

Addition of (76) and (77) proves the statement. O

Remark 5.4 (Optimality) The energy norm estimate is optimal under the inverse CFL
condition Az > ch?. This condition is needed to control the pressure error /|| ng’p lqn
using Lemma 4.4, see Corollary 4.5. If the Brezzi-Pitkiiranta stabilisation would be
used instead of the CIP pressure stabilisation, this term would be controlled by the
pressure stabilisation in Theorem 4.2, as h||V§,’f’p||Qn =5} (é}’l”p, 5}';’[,)1/2. Hence, an
unconditional error estimate of first order in space would result.

Remark 5.5 (BDF(2))Fors = 2 we obtain a similar result under the stronger condition
At > ch This is needed to get control over /|| Vé{l" » | qx» see Corollary 4.5 (60). Under
this assumption, we can show the following result for n > 2:
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n
2 ko2 2 k2
el + Ar > (11eklIR  +H2IVel % )
k=1

< cexp(c1(Wmax)tn)
2
X (AP 112 gy + 0" (N e + 1800 + 1212 1) )

12 12
e (e + Arllielli};)
which is of second order in time At, if we assume that the initial error is bounded by

lley 2, + AtlllenllI?
=c (At4“u”§.13(1,1‘2(9n)) + hzm (llullgc,m+1.11 + ”atullgc,m,ll + ”p”ilm(gl))) :
(78)

The initialisation will be discussed in the following remark. The main modifications
in the proof concern the approximation of the time derivative in Lemmas 5.1 and 5.2.
In (69) we estimate

2
(DPw" = v ) < earPldfulgr Ivalr,
see [12,34]. In order to estimate the analogue of (70), we use

3 1
DPu! = ED,(])uZ + 5D,(”u;;—l. (79)

Then the argumentation used in (70) can be applied to both terms on the right-hand
side of (79).

Remark 5.6 (Initialisation of BDF(2)) To initialise the BDF(2) scheme, the function
”}11 needs to be computed with sufficient accuracy. The simplest possibility is to use
one BDF(1) step by solving

Loy 11 1.1 1 1 0 .1
’v 9 ;v b ( ’v )
AL (“h h)ak + Ay @y, ppivys ap) = A Eu”,v), ol

+ (f, V}L)Ql Vv;ll € V}l,qé € E}l

for (u ,ll, p,ll) € (V,ll X E}L,O)~ Similar to the proof of Theorem 5.3, the error after one
BDF(1) step can be estimated by

12 10112
lle, I + Atllle, Il
< c (AP + A H (1l et gy + 10005 1y + 1PV e ) )

= (AP 11 12y + ACH (100 11+ 10002 g, + 121 o)) )
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where in the last step a Sobolev inequality has been applied in time to show || 8,2u ||2Q] <

2112 2
At||3, u”oo,()J1 = CAt”u”H_?([)LZ(Qn))‘

5.1.1 L2(L?)-norm error of pressure

The energy estimate in Theorem 5.3 includes an optimal bound for the H'-norm of
the pressure. To show an optimal bound in the L>-norm seems to be non-trivial, due
to the fact that uz_l is not discrete divergence-free with respect to 2" and V}, see the

discussion in Sect. 4.1. We show here only a sub-optimal bound for s = 1. An optimal
estimate is subject to future work.

Lemma 5.7 Under the assumptions of Theorem 5.3 it holds for s = 1

n 1/2
(Az > ||ef,||§2k> < cexp(c1(Wmax)fn)
k=1

m

h
(a2 02ullg + 575 (Illscumtt + 13itlloom + IPllocn) ).

where €9 := 0.

Proof We use the modified inf-sup condition for the discrete part & = iyp" — p;
and standard interpolation estimates

(iv vy & Jor — (V) - n. &L ag

BliE lr < sup +RIVEL o

n
vieVy) A
(divvy, el)an — V) - n, €))aqn

< sup
yiew! Al

(divvy, nipan — (V) - n, 1) e

+ sup -
Ve A

+h (I1Vehlian + 1 Vryllen )

(divvy, ep)an — (V) - 1, €))son

< sup
v eV, |||VZ|||h,n

+ hlIVey llan 4 ch™ | p™ | mam.- (80)

The second term on the right-hand side is bounded by the energy estimate. For the first
term, we use Galerkin orthogonality (66), followed by Cauchy—Schwarz and Poincaré
inequalities
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(divvy, ep)ar — (V) - n, €} )aqn
1
= —(DVe", vi)ar — (Al +alh)(e!, 0; vy, 0) — yegl (e, vi)
1
+yegr @, vi) + (D" — duuty), vi)gn

1
< c{ID elign -+ 11ellnn + A" 1 | gyns1 gy + At o | 11wl
After summation in (80), we obtain
n n 1
A Yk e < e D f ek — ek~ 1R + A (1lek I .+ h21 Ve i)
k=1 k=1
A (105101 gty 1P Py ) + AP 10705 ).
(81)

< h?" | " I > We see that (81)

holds for & }’l‘ » replaced by 61;7' Finally, Theorem 5.3 yields the statement. Unfortunately,

Using the standard interpolation estimate || 771;, ||ék

the factor ﬁ in front of the first term on the right-hand side of (81) leads to a loss of

At~Y2 in the final estimate. O

Remark 5.8 (BDF(2)) For s = 2 we can only control At3||D,(2)e’u’||§2,, = %HSeZ —

4eﬁ_1 + e’;_2||§2,1 (compared to At2||D,(1)eﬁ ||é,1 for s = 1), which leads to a further
loss of A+~! in the above estimate:

n 1/2
<A’ > ”6"2”&) < CGXP(Q(wmax)rn)(mna,zuuQ
k=1

m

h
+ 2 (llocmsr + 18lls0m + [Plloc.n) )-

Remark 5.9 The estimate in Lemma 5.7 is balanced, if we choose At ~ A", which
yields a convergence order of O(AtY/%) = O(h™/?). This means that the convergence
order is reduced by O(h"/?) compared to the situation on a fixed domain (1) = Q.
For BDF(2) the estimate is balanced for Ar> ~ h™ and we obtain a convergence order
of O(At) = O(h™/?). The inverse CFL conditions in Theorem 5.3 and Remark 5.5
are automatically fulfilled for these choices, if m > 2 orm = s = 1.

5.2 L%(L?)-norm error of velocity

To obtain an optimal bound for the velocity error in the L?-norm, we introduce a dual
problem. The argumentation of Burman and Ferndndez [12], that does not require a
dual problem, but is based on a Stokes projection Py, (u, p) of the continuous solution,
can not be transferred in a straight-forward way to the case of moving domains,
as it requires an estimate for the time derivative 9, (u — P}'u). Time derivative and
Stokes projection do, however, not commute in the case of moving domains, as P;fu(t)
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depends on the domain €2 (7). For this reason an estimate for the time derivative is non-
trivial.

We focus again on the case s = 1 first and remark on how to transfer the argu-
mentation to the case s > 1 afterwards. The argumentation will be based on a
semi-discretised (in time) dual problem. Before we introduce the dual problem, let
us note that the semi discretised primal problem is given by: Find (u*, p")Z:1 with
uk e HH(QF), p* € L3(Q¥) such that

n

Y @t — B o + ar Al @t pbs wk v )+ (B e

k=1
= <E0u0’ 1/,141)91 + Ati (f, 1//’];)91( \7/1/,11: c H()l (@44,

Yy e L2 QY. k=1,....n, (82

where EX denotes the smooth extension operator to Q’g introduced in Sect. 3.3.
The corresponding semi-discretised dual problem, which will be needed in the
following, reads: Find (z£, z];,)zzl with zK € Hy (@b, Z]; € L(z)(gzk) such that

AtZ(e’;,qb{;)Qk =Z{(¢> — EF1 k=1 2y + Ardl gk, ok 2k, p)}
k=1

+(E%. 21 Ve € Hy(@5, ¢ e Li@Y, k=1.....n. (83)

Note that the Dirichlet conditions are imposed strongly in this formulation and the
bilinear form A’g does not include the Nitsche terms.
We start by showing the well-posedness of the problem (83).

Lemma5.10 Lers = 1, ef, € Lz(Qk)for k=1,...,n and assume Assumption 3.2.
The semi-discrete dual problem (83) defines unique solutions (z/,j, Z];)Zzl with regu-

larity zy, € H*(Q"), Zk e HY(QK). Moreover, the following regularity estimates are
valid, where S§ := Qk \ Q% and DO = L gk — by

1
lzh Il 222ty + 125 1 gty < (IID( 2 g + ||E" i g+ Nl HQA) fork <n,
(84)
n n 1 n n
Izl 2y + 12l g1 @ny < € E“Z” lor + lleyllan | - (85)

. Lo~ .
Proof By testing (83) with ¢, = 8x ¢f. ¢!, = Su¢h.1 = 1.....n, where & is the
Kronecker delta, we observe that the system splits mto n separate time steps, where
each step corresponds to a stationary Stokes system with an additional L2-term coming
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from the discretisation of the time derivative. For k < n we have

1 1

@k zhras + ANl B2 2h) = (T g + (b ok )

Voh € Hy (257, ¢ e L5(QY). (86)

and fork =n
1 7i
~ (B 20 + A5G 820 2) = (€ i) VO € Ho (@)1, ¢}, € LGS,
(87)

As the corresponding reduced problems are coercive in the velocity space Vy(#x) (cf.
Sect. 2.1), existence and uniqueness of solutions zllj € H& (Qk), zll‘7 € L%(Qk) follow
inductively by standard arguments for k = n, ..., 1, see e.g. Temam [58], Section 1.2.

To show the regularity estimates (84) and (85), let us re-formulate the problems
(86) and (87) in the following way: For k < n we have

1
koik k. k _k k ok _k+1 k k k Lk
Al #hi b ) = - (B0l 2 it - @ zo) + (eh0h)

=:F(o}) (88)

Vo € Hy (@7, ¢l € L5,
and fork = n

1
A5 @0 8 T ) = (el @) — 7 (O 2 Vi € Ho ()7, ¢y, € LG

=:Fn ()

If we can prove that Fj lies in the dual space [L?(22X)?]*, Proposition 1.2.2 in
Temam’s book [58] guarantees the regularity estimate

Fr(¢h)
lIzi | 20ty + 125 L1 ory < ¢ sup ‘ (89)

srer2(ah) I85llax

We need to show that the right-hand side is bounded. Splitting the first integral on the
right-hand side into an integral over QF and S§ , we have fork < n

1 1
Fi(@) < Noulloe D 2 llgr + 1 NE 0 I 12l g + Nl llgx 194l

and thus,

1
1
Fi(gy) < c (IID,( 2 g+ I E g+ ||e’;||gk) 194l (90)
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For k = n, we obtain

1
Fu(y) <c (A—IIZ ler + lle, ||§z"> Iy Nl O

The boundedness of Fj follows by induction for k = n,..., 1 and by using the
stability of the extension operator EX. Combination of (89) and (90), resp. (91), yield
the regularity estimates (86) and (87). O

Next, we derive a stability estimate for the semi-discretised dual problem (83). We
remark that a stability estimate for the continuous dual problem, including the first
time derivative d;z, could be obtained as well. This is however not enough to bound
the consistency error of the time derivative in a sufficient way for an optimal L?-norm
error estimate.

Lemma 5.11 Let the assumptions made in Sect. 3 be valid, including Assumption 3.2.
For sufficiently small At < &, where & depends only on cs, wmax and the domains
QK k =1,...,n, the solution (z],j, z];,)zzl to the semi-discretised dual problem (83)
for s =1 fulfils the stability estimate

-1
1 < |
1924 + 192 + Y {1V = B2 D% + 1Dz 1, |
k=1

+ArZ{||z Py + 125101 g <cwmaXAane 1.
k=1

Proof We show a stability estimate for the first derivatives Vz first. For better readabil-
ity we will in the following skip the extension operators EX and denote the extension
EFzk+1 still by z¢*! and similarly for other variables.

Diagonal testing in (83) with ¢f = 2z, qﬁ/;, = z’; results in

n
So{k -2 g + A VEEIR ) + @0 2har = AtZ(eu,z ).
k=1
or equivalently
n—1

k2 k _k+1 k2 2 2
> ek — @ g + AV IR + 120 + AIVZLI,
k=1

_Atz<eu,z> . 92)
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As z’; vanishes on 32, a Poincaré-like estimate gives in combination with (9) and the
stability of the extension operator

k 12 k
Iekllss < ep (8'7212k Nage + 8192l gt) < cpeswman I VZElige,  (93)

where ¢, denotes a constant depending on the domain QK and c5 > 1 is the constant

in (9). Using Young’s inequality, this implies for Az < (2¢? cgwrznax -

il Nzl e < ; ic%wiaxmz(nw’;ngk + ||Vz’;“||§zk+])
< S (I + IV 1)
‘We obtain
llzj 15 (zu,z"“)gk+1 > @ 2y — 2y Dok — lzgllgellz g
> 5 (||zﬁ||§zk Iz — 2 — e I )
= S (VR + 19 ). (94)

For the right-hand side in (92), we apply the Cauchy-Schwarz, a Poincaré and Young’s
inequality to get

n

n
At
Ay (e];,zf,)gk < D S IVE IR+ carlelli. 95)
k=1

Using (94) and (95), (92) writes

n—1 n n
1,2 2 k k+1,2 k2 k2
Iz I3y + Iz l8n + D llzh — 2k 15 + D ALl Vak I3 < cArY " lleblI5e. (96)
k=1 k=1

k=1

Next, we use the regularity estimates in Lemma 5.10 to get a bound for the second
derivatives of zX. For k = n we have

1
Izl 2y + 1251 @ny <€ <—||Z o + lle), ||s2"> .

For k < n Lemma 5.10 gives us

lzi | 2ty + 125 1 e sc<||D‘ ) "“nm+—||z"+1||5§+||e’;||gk).
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We estimate the term on S§ by using a Poincaré-type inequality with a domain-
dependent constant ¢, > 0 as in (93), followed by (34) for € = 1 and the stability of
the extension

k+1 k+1 3/2 ) k+1 3/2k+1
cllzg g < eepdliVay g < cepd® Nzl ey < ccpd™ Iz )

Using (9) we get for Ar < (4c 2 »C3 wmax) 1

At
cllzy st < ceplcswman AN 2|z |l 2oy < —||z e, O7)
and hence
1 1
z8 Il 2ty + 125 1 a1 ey <c(||D“ S e + llek ||Qk) I e,

Summation over k = 1, ..., n results in
n
k2 k2
At Z { ”zu ”Hz(Qk) + ”Zp ”[.ﬂ(Qk)}

k=1
n—1 n
1
<c ( 1203 + Y 1D ZE g >+cm2neﬁngk, (98)

k=1 k=1

where ¢y denotes a constant. It remains to derive a bound for the discrete time derivative
on the right-hand side. Therefore, note that for k < n we can write (88) equivalently
by using the density of H!(QF) in L?(QF) as

—(AZh.p) g + (Vb ) ar — @ Vo) o
1

== ((Ek+1¢>k k+1)9k+1 B (qsl;’zl;)gk)

+(ehol) , voh e L2@h, gl e (2D, (99)
For k = n we have

— (AL g ar + (V2 ¢ — (@ Vo

1
= (e}l ) — Az (@ zh)qn Vol € LXQD ¢ € HI(QY).  (100)
For k < n we test (99) with ¢ =z — 28+, ¢k =0

e+ K+ f+1
—(AZk, 25 —ZF D + (Vzp,zu — 2 e + X(Ilz — 22

k+1 k+1

K1kt kok ket
+ @ - )k Qi+ — (& —ZkHL A )qirigt) = (eu,zu -2z, )Qk.

(101)
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Using integration by parts and the fact that z’,j [yqr = 0, the first term in (101) writes
—(AZk, 2f — D = (Vz’;, VK - k+1)) (anﬁ,zk“)mk .
For the second term in (101) we note that (Vz’l‘,, zi)Qz =0forl =k, k+1

(Vah. 2 — 2 = (V2h. 2o — (Vb 2 D gen

=0 =0

+(VZ];;, Zﬁ+l)§zl\+1\9k - (VZp, Z )Qk Qk+1.
Setting BY := (QF1\QF) U (QF\Q**1) we obtain further
(Va2 =2y Do = =Vl gl
Using the Cauchy—Schwarz and Young’s inequality, we obtain from (101)

1
- \V/ \v4 k+]
2At < B§> + ( z”’ (z ))Qk

k k+1 k k+1 k2
— @Oz 2 g = IVEL el g < crlel I

k k+1

7 —z — |l — 25 zﬁ“‘

k k+1)

Qk BX

(102)

To estimate the second term on the left-hand side, we apply the triangle inequality and
Young’s inequality to get
c
< —
(2

Next, we note that, due to (8) for n = k and n = k + 1, the maximum width of the
strip Bé‘ is of size O(§) as for S§. Thus, we can use a Poincaré-type estimate with
a constant ¢, > 0 as in (93). In combination with the fact that zlu = 0 on 9 for
| =k, k + 1, we obtain

* —z’;“‘

k+1
u

2
Bg) (103)

k
Bc‘i

Cc

At

2

!

z
“llag

(104)

%

l
+5 ”Vzu

2 8 2 V
Bk _CCPE< B§>—CCPEH Z,

Using (34) followed by (9) and the stability of the extensions, we obtain further for
e <1

Bk
6

‘Vz

28 (L 1? 2,1
Bk_ccpA— € HVZM Q§+EHV Z,

< ccted »C3 wmaXAt ( H VZL

= )
p k
At Qf (105)

2
Q)
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For sufficiently small Ar < # we obtain from (103)-(105)
5

2
“p

1

k _ k41
-z
At

k+1
Zy u

2
2,1
2 o e[V

BT AtZ( Hszl

2
) . (106)
Q!

B}
For the third term in (102), we use a telescope argument
1
(vah vl =) =5 (IV2hige + 1V @k =2 D12 — 192 1)

To bring the last term to QK+! we estimate using (34)

—1 k+1
ADIVZE 2

max

k+1 k412 k+12 2
IV, g < IVZe e + 1V2y T Il = + cciwy

+ €AV 2
For the boundary term in (102), we use Green’s theorem on S§

k k+1 k k+1 k k+1 k k+1
Onzh 2 g < —(0uh 2 Dpgenn + IVZE gt IV gt + NAZE gtk I
——

=0
(107)

For the second term on the right-hand side in (107) we use (34) twice with € < 1,
followed by (9), the stability of the extensions and Young’s inequality

1725t 11 V23l gt
<cs <e_1/2||Vz’,j||Q/g + 61/2||V2zﬁ||9§>
(€I g + € IV g
< ceswman At (€7 2V2hllgr + €21 V22 )

x (e—l/2||vZ’;+1||Qk+. +el/2||v2z{i+1||gk+1)
k+1
2.2 —1 2.1
<Aty (cc(;wmaX IVZ, 15, + €l V22, IIQz)
1=k

For the last term in (107) we obtain as in (104)

k+1

A

k k1
Az, gl gr = edllAzyll gl Vz, - Il

IA

max

eAt|AZE 12, + ccdwl e AL VAT, (108)
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In the last inequality, we have used (9) and Young’s inequality. Together, (107)—-(108)
yield the estimate

k+1
kk+1 2.2 -1 12 2,02
@zt 2 ger < ALY (ecudue  IVELIG +eIVZI) -
1=k

To estimate the pressure term in (102), we obtain as in (108)
k k+1 k2 2.2 _—lgk+12
1925 g ekl s = At (el Vb e + ccudee ™ IVZE 13000 )

To summarise we have shown that

1

k k+1‘2
2At

1 _
A ((1 —ce Wi ADIVEE L + IVEL —z’;“)llék)

1 _
< S0+ e wp AN IVE g
+ear (I1V2h % + V2212 + V22 101 ) + cArllel . (109)
For k = n we obtain from (100) tested with ¢, = zj; and ¢}, = 2, that

1 n
)

2 1 At
o Enwzuén < 7||e';||én. (110)

Summationin (109)overk = 1, ..., n—1and addition of (110) and (98) multiplied

by a factor of 3¢ yields for € < ﬁ

z —z’,j“)

1 n—1 1 >
A PR AR AR DS {E o HIVa —zfﬁ‘)nék}
k=1

n n
2 2 2 2 2
et > {12k 10 + 12b 120 guy | = 80 D ek + whaIVZE IR}
k=1

k=1
(111)
Using (96) we can estimate the last term by
n n
W ALY (V2R 15 < cwpa ALY lle 15
k=1 k=1
which completes the proof. O

Now we are ready to prove an error estimate for the L?(L?)-norm of the velocities.
First, we note that, due to the regularity proven in Lemma 5.10, the solution (z’;4 , z’;)z: 1
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of (83) is also the unlque solution to the Nitsche formulation: Find (zu, z ) t—1> Where
zy € HX(QY?, 25 € H'(Q) N L§(Q*) such that

Ati <eﬁ7 ¢5)Qk = 2": {(¢f§ — ERpE1 R yon 4+ At (Aks +a’,§,> (¢f§,¢’;;z’;, Z/;)}
k=1

k=1
+ (@) zqr Yok e HI(QN). ¢k e L2 @5, k=1,....n. (112)

Theorem 5.12 We assume that the solution (u, p) of (5) fulfils the regularity assump-
tions u(ty) € H" (5 and p(ty) € H™(QX) fork = 1,... nand s = 1. Under
the assumptions of Theorem 5.3 and the inverse CFL condition At > ch?* for some
¢ > 0, it holds that

n 1/2
(At D ek ||§2k)
k=1

< CWmax exXp(c1 (Wimax)n)

(AthoZullg + " (Iulloo.ms1 + 10itllocm + 1P locm) ).

with ¢ (Wmax) Specified in Lemma 4.1.

Proof We test (112) with ¢>5 = e’,j, d)f, = e’l‘,, k=0,...,ntoget

AtZHe 12 =Z{(e — el 2o + A (Af + by ) ek, bk )]

k=1
+(eu,zu)91.
We define
k k. k _ :k k
Nz =z — I, Nzp =2p =i},

and use Galerkin orthogonality to insert the interpolants / kzk and i iy

At Z ek = 3 [k — ek s + A (A5 +ab) b ebinf ot )
k=1

1 . . .
+ At Z {D,( )u(tk) — oru(ty), z’,jz’;)gk + )/gg’}f(uﬁ, l';fzﬁ) + )/ps,’j(p,lj, tﬁzl;)}
k=1

(113)
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We use the continuity of the bilinear form AI§ + all‘) (Lemma 3.4) and standard inter-

polation estimates

(A5 +apyel. bt 0k ) <c (||Ve§||m + 07 P llef lagr + 1 0uel llor + h||Vef,||Qk)
(199 g+ h 1 e+ 1 s+ h 211 o + 12

(190 s + 105 s ) )

< ch (||Ve§ o + 7 2 ek e + 121 Vek 1o +h||Ve’;,||Qk) (||v2z’;||gk + ||Vz’;||9k) .

To estimate h'/? ||Ve§ lyox we split into a discrete and an interpolatory part and use
an inverse inequality and Lemma 3.3

h'2 | Vel llyor < h'/? (||Vnﬁ||mk + ||vs,f,u||mk) < ch" llull gmsigry + €l VEq, Nt
< ch"™||ul| g1 gy + || Vel g

. k
< ch™ [lull gm+1(qry + cllleg k-

(114)
This yields

(A5 + aby) (el ebint o0k )

<ch (|||e’;|||h,k + Ve g + h'"||uk||Hm+1(Qk>) (||v2z’;||9k + ||Vz’;,||9k) .

For the consistency error of the time derivative on the right-hand side of (113), we
obtain as in Lemma 5.1

1 .
(D) — o). ifh) | = earloful gz lor.

For the ghost penalty we insert £ z],j and £ u(f;) and use Lemma 3.3 as well as standard
estimates for the interpolation

ghah, ikzhy = gf ek, n* ) — gl ), n* ) — gf €k, 2) + gk u(n), 25)

< ch (gf ek, €)'+ h" ull s ) 12k L2y

For the pressure stabilisation we distinguish between the cases m = 1 and m > 1, the
latter implying by assumption that p* € H>(QK). For m = 1, the following estimate
is optimal

Sk(phsik2h) < eIV Pk g IV Zbligr < eh? (IV P llge + 1Veh 1) 192k .
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For m > 1 we insert +p¥ and use (10), (11) and (14)

sh(Phs ih2y) = =Sh (€ i52p) + 53, (PX, 2)
s;f(e’[‘,,e )1/2 k(lth,lhzl;)l/z) —l—s;f(pk,pk)l (tth,lhzk)l/2
L
< ch?|| Vel llgr V2 g

It remains to estimate the terms corresponding to the discrete time derivative in (113).
We use a standard interpolation estimate and the inverse CFL condition h2 < cAtto
get

IA

2 2k
ch?|ley — ey el V22 ll g

chllek — e’;—1||QkAt1/2||v2z’;||Qk. (115)

k k—1 _k
(eu —e nz,u)Qk

IA

By combining the above estimates, we have from (113)

n n
A Nkl < cath Y {(lleklllkn + IVes g+ A" (1l i + 178 ey ))
k=1 k=1

- (KE o + 1V2b ot ) |

n—1
+cAt2Z {107l gelizhigw | +cn S {lek — eb Mg ar 219228 |
k=1 k=1

n
< ch2<2 llef — el 15 + Az{|||e§|||i,h + 12Vl + A7 ull
k=1

1/2 n 172
2 (1 11 gy + 1P ) }) (At > 2k e, + ||vZ’;,|§2k) .
k=1
(116)

The last inequality follows by the Cauchy—Schwarz inequality. Now, the statement
follows from Theorem 5.3 and Lemma 5.11.
O

Remark 5.13 An analogous result can be shown for the BDF(2) variant under slightly
stronger conditions. For At > ch, which is needed for the energy estimate, the fol-
lowing estimate can be shown

n 1/2
(Ar > llek ||§Zk>
k=1

< Ctmax exp(ct (Wmat) (A2 070l g

+ K (oo m+1 + 108 loom + 1Plloc.n) )- (117)

@ Springer



Eulerian time-stepping schemes for the non-stationary...

The main difference in the proof is that the energy norm estimate does not give a bound
for At|| Dt(z)eﬁ |x, see Remark 5.5. We have using (34) with e = 1

2
2 k k 2 k+i 2k
At(D el 1t Dor < ch? D ek g V22 g
i=0
2
2 k+i k+i 2 _k
< ch® Y (el llgen + ekl ) 192kl
i=0
2
<cAr)” (||e’;,+’ llgsr + || VekT ||Qk+i) V225 [l o
i=0

The L>-term on the right-hand side can then be absorbed into the left-hand side of
(116) to obtain (117).

6 Numerical example

To substantiate the theoretical findings, we present numerical results for polynomial
degrees m = 1, 2 and BDF formulas of order s = 1, 2. The results have been obtained
using the CutFEM library [16], which is based on FeNiCS [1].

We consider flow through a 3-dimensional rectangular channel with a moving upper
and lower wall in the time interval is / = [0, 2]. The moving domain is given by

Q) = (0. 4) x <_1 n sin(t)’ = sin(t)) < (—1.1).

10 10

Due to the simple polygonal structure of the domain €2(z), the integrals in (19) are
evaluated exactly within the CutFEM library [16] and we can expect higher-order
convergence in space for m > 2.

The data f and u” is chosen in such a way that the manufactured solution

u(x,y,z;t) = (Sin(t) : ((1 — Sirll—(()t))2 - yz)(l - 29,0, 0) ,

px,y,z;t) =sin(z) - (8 — 2x)

solves the system (5). We impose the corresponding Dirichlet boundary conditions
u® on the left inflow boundary (given by x = 0), a do-nothing boundary condition
d,u — pn = 0 on the right outflow boundary (given by x = 4) and no-slip boundary
conditions on the remaining boundary parts, including the moving upper and lower
boundary. The initial value is homogeneous u° (x) = 0. We choose a Nitsche parameter
yp = 500, stabilisation parameters y, = y, = 1073 and § = wmaxsAf, where

Wmax = max  ||0;T-nr|| = 0.1. The background triangulations 7}, are constructed
tel , xed(t)

from a uniform subdivision of the box [0, 4] x [—1.1, 1.1] x [—1, 1] into hexahedra
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[[w = unl[z2 [l = unllan

At=04 —— ' ' ' At=04 ——

! AI=0.2 —x— At=02 —x—
At=0.1 1 At=0.1
At=0.05 At=0.05

0.1 /‘/_'_\ //F’_'_\

0.001 0.01

0.0001
0 0.4 0.8 1.2 1.6 2 0 0.4 0.8 1.2 16 2
[lp = pnllz2 [lp = pallar
10 F " i " At204 —— 1 ' ' ‘ At=04 ——
At=0.2 —— At=0.2 —x—
At=0.1 At=0.1
A1=0.05 At=0.05
1 W 0.1 )/‘/!/,e,,*—i———ﬂ—'—%——v
01 0.01

0 0.4 0.8 1.2 1.6 2 0 0.4 0.8 1.2 1.6 2

Fig.2 Top: L2- and H'-norm error of velocity, bottom: L%-and H' norm error of pressure over time for
different time-step sizes and mesh levels, where At = 0.84. All the norms are normalised by the maximum
(in time) of the respective norm of the continuous functions

and a subsequent split of each of the hexahedral elements into 6 tetrahedra. These
background triangulations are then reduced in each time-step by eliminating those
elements that lie outside of €.

6.1 P; - BDF(1)

First, we use Pj finite elements (m = 1) and the BDF(1) variant (s = 1). The computed
errors [lu—uplle. |V @—up)lle. | p* — pjlle and |V (p* — pj) [l are plotted over time
in Fig. 2 for At = 0.8h, where each of the norms has been normalised by the L>°(L?)-
norm of the respective continuous functions, e.g. [ — up|o/||u|l0.0,1- We observe
convergence in all norms for all times as At = 0.84 — (0. Moreover, no oscillations
are visible in any of the norms. While the error bounds shown in the previous sections
include an exponential growth in time, coming from the application of Gronwall’s
lemma, the error does not accumulate significantly over time in the numerical results
presented here.

To study the convergence orders in space and time, we show values for four differ-
ent time-step and four different mesh sizes in Table 1. For P; finite elements, the finest
mesh contains approximately 143.000 degrees of freedom. We observe that the tem-
poral error is barely visible in the L2(L?*)-norm and L2(H")-semi-norm of velocities,
as the spatial error is dominant. The spatial component of the velocities converges as
expected by the theory (Theorems 5.3, 5.12) with orders 2 and 1.
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On the other hand, the temporal error shows up clearly in the pressure norms. To
compute an estimated order of convergence (eoc), let us assume that the overall error
can be separated into a temporal and a spatial component

g(At, h) = gar (A1) + gn(h) = cph®P + car AFFN. (118)

To estimate for instance the temporal order of convergence eoca,, we fit the three
parameters g, ca; and eoca; of the function

g(At, ) = gp + car A5

for a fixed mesh size h € {%, %, %, %} against the computed values. This is done
by means of a least-squares fit using gnuplot [40]. The values for g, and eoca; in
the first row are for example computed by fitting the previous values in the same
row (i.e. those obtained with & = % for different time-step sizes). A spatial order of
convergence eocy, is estimated similarly using the values for a fixed time-step size
At €{0.4,0.2,0.1, 0.05}, i.e. those in the same column.

For the pressure norms the estimated temporal order of convergence is very close to
1 in both the L2- and the H'! semi-norm. This is expected for the L%(H")-semi-norm
by Theorem 5.3, but better than proven in Lemma 5.7 for the L?(L?)-norm. The spatial
component of the error converges much faster than expected with eoc;, around 2 for
both norms (compared to O(1), which has been shown for the H !_semi-norm, and
O(h) for the L?-norm). This might be due to superconvergence effects, as frequently
observed for CIP stabilisations (see e.g. [26]), and possibly due to the sub-optimality
of the pressure estimates.

The convergence orders of both pressure norms are very similar, especially for larger
h and At. Here it seems that due to the superconvergence of the L>(H')-semi-norm
the simple Poincaré estimate

k k
lekllgr < cplIVek g

is optimal for the L%(L?)-norm. Only for smaller Ar and £, the convergence of the
L?(L?)-norm seems to be slightly faster compared to the L?(H')-semi-norm.

6.2 P»-BDF(1)

In order to increase the visibility of the temporal error component, we increase the
order of the spatial discretisation first. In Table 2 we show results for P; finite elements
and BDF(1) (im = 2,s = 1) on three different mesh levels. For P, the finest mesh
level has again around 143.000 degrees of freedom, which is similar to P; elements on
the next-finer mesh level. Again the spatial error is dominant in the velocity norms on
coarser meshes and shows convergence orders of approximately 3 in the L?(L?)-norm
and 2 in the LZ(H")-semi-norm, as shown in Theorems 5.12 and 5.3. In contrast to P;
elements, the temporal error is however visible on the finest mesh level, where eoca;
is close to 1, as expected.
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In the L*(L?)-norm of pressure, the temporal error is dominant and shows again a
convergence order of O(At). Due to the dominance of the temporal component, it is
less clear to deduce the spatial error contribution. From the values and the eocy, it seems
to converge again faster as predicted. Concerning the L?(H')-norm of pressure, the
assumption (118) that the spatial and temporal error are separated, which was assumed
in order to compute eoca; and eocy, is not valid, as the extrapolated values g; and
gAr do not or converge only very slowly towards zero. For this reason, the computed
convergence orders eoca; and eocy are not meaningful in this case. This does not
contradict the theory, as Theorem 5.3 guarantees only the bound

n 12
At
k2
(;?—1: At||Vep||Qk> <0 <7> +O).

6.3 P,-BDF(2)

Finally, we show results for m = 2 and s = 2 in Tables 3 and 4 . In Table 3, we
use an extension of the analytically given solution u(x, t) to ¢t < 0 for initialisation,
i.e. we use the starting values #” = 0 and ™! := u(—Ar¢) in the first time step. Due to
the (expected) second-order convergence in time, the temporal error is barely visible
in the velocity norms on the finer mesh levels, in contrast to the results for BDF(1).
The estimated order of convergence of the spatial component lies slightly below the
orders 3 and 2 in the L*(L?)-norm and L?(H!)-semi-norm, respectively, that have
been shown analytically.

In the L?(L?)-norm of pressure both temporal and spatial errors are visible. Both
eocy, and eoc, are around 2, which has been shown in Sect. 5.1.1 for the spatial part.
For the temporal part only a reduced order of convergence of O(At) has been shown
theoretically. This bound seems not to be sharp in the numerical example studied
here. In the LZ(H!)-semi-norm of pressure the spatial error is dominant, which is in
contrast to the BDF(1) results. However, the assumption (118) that the error allows
for a separation into spatial and temporal error components is again not valid, which
makes the computed values of eoca; and eoc;, meaningless.

In Table 4 we show results, where -instead of analytical values- one BDF(1) step
has been used for initialisation, according to the discussion in Remark 5.6. We see
that for large At the errors are slightly larger, due to the additional initial error. In fact
the velocity norm errors are still relatively close, in particular for smaller A¢, while a
stronger impact is visible in the pressure norms. These deviations get, however, smaller
for At — 0. Moreover and most importantly, the estimated orders of convergence
are very similar in the velocity norms and lie still significantly above the theoretical
predictions in the pressure norms. This confirms numerically that the initialisation
with BDF(1) is indeed sufficient to preserve the theoretically predicted convergence
orders.
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Table 2 Errors for the fully discrete solutions for P, finite elements and BDF(1) for different mesh and
time-step sizes

hi\At— 04 0.2 0.1 0.05 2h eoca;
lu —urpllo/lullo

1/2 9.15x 1073 8.92x 1073 888 x 1073 8.88x 1073 887 x1073 240
1/4 320x 1073 1.97x 1073 150 x 1073 138 x 1073 1.28 x 1073 1.50
1/8 32x 1073 1.62x 1073 852x 1074  478x107%  859x 1070 099
gAr 3.12x 1073 1.60 x 1073 7.90 x 107*  355x 1074 0 0.99
eocy, 6.08 431 3.51 3.06 2.82

V@ —ugp)llo/IVulo

1/2 555x 1072 555x 1072 555x1072  555x 1072  555x1072 -
1/4 1.67x 1072 158 x1072 156 x 1072 156 x 1072  1.56 x 1072 1.91
1/8 751x 1073 518x 1073 436x1073  412x1073  397x 1073 1.56
2Ar 4.66x 1073 130x 1073 —4.82x 1075 —517x107% 0 2.13
eocy 2.08 1.90 1.83 1.80 1.85

lp = prnllg/lipllo

12 535x 1072 287x 1072 157x1072  920x 1073  206x 1073 095
1/4 508 x 1072 2.64x 1072 137x 1072  7.18x 1073  1.10x 1073 0.95
1/8 500x 1072 257 x 1072 130x 1072 653 x 1073  —540x 1074 0.95
2Ar 497 x 1072 254 x1072 126x 1072  622x1073 0 0.99
eocy 1.75 1.72 1.51 1.64 1.71

IV(p = pki)ll@/IVPlg

1/2 629x 1072 4.13x 1072 320x 1072 283 x 1072 254 x 1072 1.24
1/4 543 x 1072 3.18x 1072 2.17x 1072 178 x 1072 1.45x 1072 1.21
1/8 525x 1072 299%x 1072 1.97x1072  1.60x 1072 127x1072 123
2Ar 520x 1072 294 x 1072 1.92x 1072  156x1072 0 0.67
eocy, 2.26 2.32 2.36 2.54 -

The experimental orders of convergence (eoc) have been computed as in Table 1

7 Conclusion

We have derived a detailed a priori error analysis for two Eulerian time-stepping
schemes based on backward difference formulas applied to the non-stationary Stokes
equations on time-dependent domains. Following Schott [56] and Lehrenfeld and
Olshanskii [42] discrete quantities are extended implicitly by means of ghost penalty
terms to a larger domain, which is needed in the following step of the time-stepping
scheme.

In particular, we have shown optimal-order error estimates for the L>(H')-semi-
norm and the L2(L2)—norm error for the velocities. The main difficulties herein
consisted in the transfer of quantities between domains ©" and Q"' at different
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Table 3 Errors for the fully discrete solutions for P, finite elements and BDF(2) for different mesh and
time-step sizes with analytical values for the initialisation

hi\At— 04 0.2 0.1 0.05 2h eoca;
lu —urpllo/lullo

1/2 891 x 1073 889 x 1073 889 x1073 889 x 1073 889 x 1073 347

1/4 144 x 1073 135x1073 135x1073  135x1073  135x1073 5.04

1/8 638 x 1074 277 x107% 233 x107%  229x 1074  228x107* 3.06

gAr 541 x107% 990 x 1075 387x1075  332x1075 0 231

eocy, 3.22 2.81 2.75 2.75 2.71

V@ —uin)lig/IVulg

1/2 560x 1072 560 x 1072 560x 1072  560x 1072 560 x 1072 274
1/4 156 x 1072 156 x 1072 156x 1072 156 x 1072 156 x 1072 3.60
1/8 423x 1073 406x 1073 405x1073  4.05x 1073 4.05x 1073 391
gAr —223x107% —554x107% —574x107% —574x107% 0 -
eocy, 1.83 1.81 1.81 1.81 1.86

I — pnllo/liplo

1/2 778 x 1073 332x1073  296x1073  295x 1073 294x 1073  3.67
1/4 727x1073 186 x 1073 941 x107% 891 x107%  829x10~* 266
1/8 727x1073 179 x 1073 534x107%  328x107%  228x107* 218
gAr 727x1073  1.79%x 1073 431x107*  116x107% 0 1.97
eocy, 10.01 4.38 231 1.87 1.83

IV(p = pri)ll@/1VPllo

12 343x 1072 331x 1072 329x1072  329x1072  329x 1072 335
1/4 196x 1072 1.81x 1072  1.80x 1072  1.80x 1072 1.80x 1072 4.04
1/8 186x 1072 1.71x 1072 1.70x 1072 1.70x 1072  1.70x 1072 4.05
gt 1.85x 1072 1.70x 1072 1.69x 1072  1.69x 1072 0 -
eocy, 3.88 3.91 3.90 3.90 -

The experimental orders of convergence (eoc) have been computed as in Table 1

time-steps and in the estimation of the pressure error. Optimal L?(H')-norm errors
for the pressure can be derived under the inverse CFL conditions At > ch? for the
CIP pressure stabilisation and BDF(1) (At > ch for BDF(2)), or unconditionally,
when the Brezzi-Pitkdranta pressure stabilisation is used. Fortunately, these estimates
are sufficient to show optimal bounds for the velocities in both the L2(H 1y_ and the
L*(L*)-norms. All these estimates are in good agreement with the numerical results
presented.

For the L2(L?)-norm error of the pressure, we have shown suboptimal bounds in
terms of the time step Ar. The derivation of optimal bounds seems to be non-trivial and
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Table 4 Errors for the fully discrete solutions for P, and BDF(2), when one BDF(1) step is used for
initialisation

hU\AL— 0.4 0.2 0.1 0.05 gh eoca;
llu —uknllo/lullo

1/2 895x 1073 890x 1073 889x 1073 889x1073 889x1073 323
1/4 175x 1073 139%x 1073 136x1073  135x1073  135x 1073 327
1/8 120 x 1073 429x 107%  254x 1074  232x107%  217x107% 222
gAr 115x 1073 287x107%  656x1075 376 x 107> 0 2.00
eocy, 3.69 2.96 2.77 2.76 271

V@ —up)llo/IVul o

1/2 560x 1072 560x 1072  560x1072  560x 1072  560x 1072 -
1/4 157x 1072 156 x 1072 156x 1072 156 x 1072 156 x 1072 331
1/8 471 x 1073 412x 1073 406x 1073 4.05x1073  4.05x 1073 327
gAr 551 x 1074 —4.11x107% —5.13x107% —521x107% 0 -
eocy, 1.87 1.82 1.81 1.81 1.86

lp = prnllo/liplo

1/2 240 x 1072 833 x 1073 3.90x 1073  3.07x1073  255x 1073 191
1/4 236x 1072 7.79x 1073 268 x 1073 123x 1073 452x107% 1.66
1/8 236x1072 779 x 1073 258 x 1073 9.09x 107*  6.89x 107> 1.6l
gAr 236x 1072 779 x 1073 257 x 1073 9.04x107% 0 1.60
eocy, 4.17 6.29 3.53 6.16 251

IV(p = pi)llg/IIVPlg

1/2 414x1072 340x1072  331x1072 329x1072 329x1072 298
1/4 299x 1072 196x 1072  1.82x1072 180x102 1.80x 1072 283
1/8 292x1072 187x1072  172x1072  171x1072 1.70x10~2 280
gAr 291x1072 187x 1072  1.72x1072  170x 1072 0 -
eocy, 3.96 4.01 3.97 4.61 -

The experimental orders of convergence (eoc) have been computed as in Table 1

needs to be investigated in future work. Moreover, it would be interesting to further
investigate if the exponential growth in the stability and error estimates can indeed
be observed in numerical computations, for example by considering more complex
domain motions.

Further directions of research are the application of the approach to the non-linear
Navier—Stokes equations, multi-phase flows and fluid-structure interactions, as well
as the investigation of different time-stepping schemes, such as Crank—Nicolson or
the fractional-step & scheme within the framework presented and investigated in the
present work.
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Appendix: Proof of Lemma 2.2

Proof Our proof is similar to the one given in [6] for the non-linear Navier—Stokes
equations. As usual, we start by showing existence and uniqueness for the velocities
u by considering a reduced problem in the space of divergence-free trial and test
functions

WVo(t) ;= {u € V(t), divu = 0 a.e. in Q(1)},

119
Vo.r :={u e L1, Vo(r)), du € L>(1, L(1)D)). (119)

The reduced problem is given by: Find u € V) ; such that

@, v)ou) + Vu, Vv)ony = (. v)ee Vv € Vo(t) ae.int €1, (120)
u(x,0) = uo(x) a.e.in Q2(0). (121)

It can be easily seen that u € V) ; is a solution to (120) if and only if it is the velocity
part of a solution to (5).

(i) Transformation By means of the map T in (2), we can transform the system of
equations to an equivalent system on Q(0): Find @ € Vo ; such that

(J(t)(aﬂz — F'0a,T@) - Vi), ﬁ)mo) + (JOVaF®) ™, ViF@®) Moo

= (J(Of  Daw eV ae.int eI,
i(x,0) = a°(x) ace. in Q(0),
(122)

where F = @T, J =detF, V denotes derivatives with respect to €2(0) and quantities
with a “hat” correspond to their counterparts without a hat by the relation

u(x,t) =u(T(x,t),t) forx e ().
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Test and trial spaces are defined as

Vo(t) := @ € V(0), div(J()F()"'a) = 0 a.e. in Q(0)},
Vo.r := (@ € L, Vo(r)), ot € L>(I1, LO)D)}.

Given that T is a Wl’oo-diffeomorphism, it can be shown that [23]
ueVot) & aeVot), ueVy; < iteVyy.

We will show the well-posedness of (122) by a Galerkin argumentation. A basis
{w; }jeN of the time-dependent space Vy(7) is given by the inverse Piola transform of

an L2-orthonormal basis {qA& j} . of the space %(0)
JE

wit)=J) ' F(g;, jeN.

Under the given regularity assumptions on the domain movement 7', the basis functions
lie in Whoo (1, H'(Q(0))9).
(ii) Galerkin approximation The ansatz

I
u = Zaj(t)ﬁlj(t)
=1

with coefficients . (t) € R leads to the Galerkin problem

(F @i~ P 0010 - Vi ) |+ GOV O™ Vi FO Dao)

= JOf w)eo k=1,....1,
(x,0) =) (x) ae.inQ(0),

(123)
where ﬁ? is an L2-orthogonal projection of &2’ onto span{#1, ..., w;}. This is a system
of ordinary differential equation for the coefficients «;j(¢), j = 1,...,!

l A
S 0) (W k) g ) e (1) (J(z)(a,fv,» — P 08T (1) - VW), ka)mo)
i=1 —_————
! M(t) B(t)
+a; () OV FO VPO oo = UOF g0 k=1,...,1.
A(t) b(1)
(124)
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The assumption that T describes a W2 (Q(0)) diffeomorphism implies that
0 < Jmin < J () < Jmax < 00, Jmin> Jmax € R.
It follows that the matrix M (¢) is invertible for all t € I and we can write (124) as
o = —M@) (AW + B@)a + M) b(r). (125)

Due to the time regularity of the basis functions d9,w; = 9;(J -lp )qf; ;€
LI, H'(£2(0))¢) the right-hand side in (125) is Lipschitz. Hence, the Picard-
Lindelof theorem guarantees a unique solution to (123).

(iii) A priori estimate We test (122) with w = #;. After some basic calculus, we
obtain the system

(0 i), i) g — (8 Pig + 9P F10,T Vi, J1/2ﬁ1>m0)

+ (2N L i F g0 = (VPF 1 e ).

where we have skipped the dependencies of J and F on time for better readability.
Integration in time gives the estimate

tfin 2
U200 i (re 312 129, F~!
| J17% (tgin )t () HQ(O) +/o HJ Vi F HQ(O) d

Iy

~ 2 o 1/2A 12
< @00, +c||azT||W1.oo<mo>)/O 112811 ) dt

Ifin 2
+ C /
0

Using Gronwall’s lemma, we obtain the first a priori estimate

dt.
Q(0)

‘Jl/zj\

2

Ifin
120 i 2 H V2V _1H
”J (zﬁn)ul(tﬁn)”Q(O) +/0 J“Vu F 00 dt

tfin 2
~ 2 P,
< cexp (Cld T i 0y fn) (||u1<0> [ +¢ fo 1 dn)
(126)

This implies that &; is bounded in L (I, L2(2(0))?) and L2(I, V). This implies the
existence of convergent subsequences and limit functions &, #* in the following sense

4y — 0* weak starin L (I, L>(2(0)%),

- 2,7 3 2 2 d (127)
uy — u  weakly in L“(1, Vp)) and strongly in L“(I, L*(£2(0))%).

It is not difficult to prove that &t* = i, see [58], Section III.1.3.
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(iv) A priori estimate for the time derivative In principle, we would like to test (123)
with 9;2;. Unfortunately, this is not possible, as in general d;11; ¢ span(Wy, ..., w;)
due to the time-dependence of the basis functions. Instead, we can test with
JVFT9,(JFTay), as

l l
JVF (T F =Y T Fa (JF ) =Y T Fo())
j=1 j=1

l 1
_ ry—1lpi. /A
=D a7 Fgp =) i,
j=1 j=1
We obtain

(B, For (T F ) g ) — (8T - Vg, 0,7 F i) )

oo SI0) (128)

+ Vi F L VU F,(JF i) F a0 = ( Fa,(JF ') a ).

The third term on the left-hand side is well-defined under the regularity assumptions
stated, as J F 1 is the cofactor matrix to F, which can be written in terms of T'. Using
the product rule, we see that the first term on the left-hand side is bounded below by

(Bytia, For(JF i) g ) = (30t Tdyiir) g o) + (Brtia, FOr(JF~Diur) g o,

[l - |l |l

2(0) Q(0) 2(0)

For the third term on the left-hand side, we have

IV F~ VI Fo,(JF ) F~ a0
= IV F~ ', Vi F e + IV F~1 YV (I Fa,(JF D) F~ g
_ (JWWIF*I, 5, (Jl/zwlrl)) - (Jl/zwlF*I, % (ﬁlé),(Jl/zF’l)))
QO Q)
+ Vi F~ v (I P, (JF Yiy) FYeo)

1 .
> 5 HJl/zvﬁ,F—l H —(T) HJI/ZVulF H
2 Q) ()

Using a similar argumentation and Young’s inequality, we can show the bounds

(a,T-Wl,a,(JF*Iﬁ,)) <c(T)HJl/2VulF H 3,y

il
Q(0) 4 Q(0)

') o = e® (|77, + 25
(f Fo,(JF~ u,))Q(O c(T)(J Flg + |72 0wE |

Q(0)

+ g

Q)
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Integration over ¢ € [ in (123) gives the estimate

R 2 Ifin 2
|72 St | [0 ] ar
a0 Jo Q(0)
o 2 22 1285 1]
< HVul(O)H +c(T)/ J /fH + HJ 254, F- H
Q(0) 0 Q(0) 2(0)

Using Gronwall’s lemma we obtain

2 tfin
oot
Q(0) 0

’ 5 thn
< cexp(c(T)thn) (H Vit (0) HQ(O) +/0

2
J128,4,

‘ dt
Q(0)

~12
e )
s 2(0)

This shows the boundedness of 8,4; in L2(I, L2(§2(0))¢) and the convergence of a
subsequence (see Temam [58], Proposition III.1.2, for the details)

H T2 (150) Vit (1) F = (t0n)

diy — ot weakly in L2(1, L*>((0)%). (129)

(v) Conclusion The a priori bounds shown in (ii) and (iii) and the resulting convergence
behaviour allows us to pass to the limit / — oo in (123). The convergences (127) and
(129) imply that &; (x, 0) — #° (I — oo). We find that the limit # is a solution to (122).
Uniqueness is easily proven by testing (122) with 0 = & and the a priori estimate (126).
Due to the equivalence of (122) and (120), the pullback u = it o T-1 ¢ Vo.1 1s the
unique solution to (120).

(vi) Pressure Finally, the unique existence of a pressure for a.e. ¢ € I follows by
showing the existence of a weak pressure gradient that fulfils

grad p(¢) =f(t) + Au(t) — du(t) in (1)

using the de Rham theorem. We refer to [58], Proposition III.1.2, for the details. O
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