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Finding core-periphery structures
with node influences

Xin Shen, Sarah Aliko, Yue Han, Jeremy I Skipper, and Chengbin Peng

Abstract—Detecting core-periphery structures is one of the outstanding issues in complex network analysis. Various algorithms can
identify core nodes and periphery nodes. Recent advances found that many networks from real-world data can be better modeled with
multiple pairs of core-periphery nodes. In this study, we propose to use an influence propagation process to detect multiple pairs of
core-periphery nodes. In this framework, we assume each node can emit a certain amount of influence and propagate it through the
network. Then we identify nodes with large influences as core nodes, and we utilize a maximum influence chain to construct a
node-pairing network to determine core-periphery pairs. This approach can take node interactions into consideration and can reduce
noises in finding pairs. Experiments on randomly generated networks and real-world networks confirm the efficiency and accuracy of
our algorithm.

Index Terms—core-periphery structure, complex networks, node influences, computational modeling, unsupervised learning
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1 INTRODUCTION

Development and analysis of algorithms for detecting
local, mesoscale, and global structures in complex networks
have significantly grown recently. Most of the research on
the topic of investigating mesoscale network structure con-
cerns a specific feature called community partitioning. In
the study of community structure, the connection between
nodes has a higher density within groups than between
them [1]. Community detection has been applied to numer-
ous areas, such as social networks [2], [3], [4], collaboration
networks [2], information networks [2], biological networks
[3], [5], [6], commerce systems [7]. A variety of methods exist
to detect community structure including the hierarchical
agglomeration algorithm [1], spin state optimization [8],
spectral clustering [9], and non-negative matrix factoriza-
tion [10].

The core-periphery structure is another type of
mesoscale network structure, where a core is a group of
densely interconnected nodes and a periphery is a group
of sparsely interlinked nodes. For example, in the network
shown in Fig.1, node 1, 2, and 3 can be considered as core
nodes, and all the remaining nodes can be considered as
periphery nodes. In Fig. 2, the adjacency matrix along with
the graph shows another example, which is more close to
reality because not every core-core or core-periphery pair is
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connected, making core-periphery detection more challeng-
ing. The main difference between core-periphery structure
and community structure is that the former consists of
densely connected core vertices and sparsely connected pe-
riphery vertices, whereas the latter is composed of densely
connected nodes within groups and sparsely connected
nodes between groups. The core-periphery structure has
been mentioned in many studies [11], [12] and found in
various fields. In biological networks, this concept has been
applied to human brain functional networks [13], protein-
protein interaction networks [14], [15] and metabolic net-
works [16]. There are also applications in networks related
to social activities, such as voting networks [17], social
networks [17], [18], [19], [20], collaboration networks [17],
financial networks [19], and interbank networks [21], [22]. It
can moreover be used to analyze airport networks [18] and
transportation networks [17], [19], [23].

In complex networks, high degree nodes are not nec-
essarily core nodes [24]. Therefore, researchers suggest de-
veloping specific core-periphery detection algorithms. Some
researchers propose to find a single pair of core-periphery
structure [25], [26], [27]. For example, Lee et al. proposed
to use density-based and transport-based methods to detect
core nodes [19]. Zelnio et al. proposed a detection method
by utilizing power-law structures and degree centrality dis-
tributions [28].

When there are multiple pairs of core-periphery struc-
tures exist, the detection algorithms need to be extended
accordingly. Recently, Kojaku et al. proposed to detect multi-
ple non-overlapping groups of core-periphery structure [17],
[18], [24]. Jeude et al. proposed to detect statistically signif-
icant core-periphery structures using multivariate hyperge-
ometric distributions [29]. Xiang et al. proposed a method
to detect both single and multiple pairs of core-periphery
structure in complex networks and the overlapping nodes
[30]. Liu et al. demonstrated the effectiveness of fractal
analysis in revealing the properties of the core-periphery
structure of complex networks [31]. Silva et al. also proposed
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a core coefficient to evaluate the core-periphery structure of
a metabolic network [16].
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Fig. 1: The left figure shows a simple graph with a perfect
core-periphery structure, where core nodes are drawn in
yellow and periphery nodes are in blue, and the right matrix
is the corresponding adjacency matrix.
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Fig. 2: The left figure shows another graph with core-
periphery structure, where core nodes are drawn in yellow
and periphery nodes are in blue. The right matrix is the
corresponding adjacency matrix.

In many scenarios, node connections of a network not
only reflect the node similarities but also indicate node influ-
ences between connected nodes. Thus, a detection method
based on influence propagation models is expected to have
better performance than traditional approaches. Based on
this intuition, in the present work, we propose an influence-
based core-periphery detection method. The main contribu-
tions of this work are as follows.

(1) Our influence-based core-periphery detection ap-
proach can take influences from other nodes into account,
and can reduce noises when looking for multiple pairs. Ex-
perimental results show that our approach achieves higher
accuracy than other algorithms and exhibits better scaling to
large networks. To the best of our knowledge, it is the first
influence-based core-periphery detection algorithm.

(2) We prove that our approach can converge after
several iterations. We also develop an error bound for
our approach with appropriate assumptions. These analysis
justifies the efficiency and correctness of our approach.

The rest of this manuscript is organized as follows.
In Section 2, we review related work that contributes to
finding core-periphery structures, including single and mul-
tiple pairs. In Section 3, a novel influence-based detection
algorithm is proposed. We describe each step in detail and
prove the convergence of this approach. In Section 4, a com-
parison with other algorithms on multiple types of networks
is applied to demonstrate our method’s performance and
efficiency. We conclude this work in Section 5.

2 RELATED WORK

2.1 Problem formulation

For a given graph, we can define A P t0, 1uN�N as the
adjacency matrix, where N equals the number of nodes.
Therefore, we have

Aij �

"
1, if node i is connected to j,
0, otherwise. (1)

We use an integer vector q to represent the pair identity
of nodes. We use a binary vector c to indicate whether each
node is a core node, where

ci �

"
1, if node i is a core node in its pair,
0, otherwise. (2)

Loosely speaking, core nodes are well-connected to pe-
ripheral nodes and tend to be central in a network, but
peripheral nodes are not well-connected to each other. With
various constraints, many traditional approaches try to max-
imize core-core edges and core-periphery edges [17], [24]:

s �
¸
i,j

Aij∆qpqi, qjq∆cpci, cjq (3)

where function ∆qp�, �q returns one when the two inputs are
the same and returns zero otherwise, and function ∆cp�, �q
returns an algorithm specific value between zero and one
when either input is one and return zero when none is one.
Function ∆q makes sure that only edges connecting nodes
from the same pair are considered, and it is always equal to
one for single pair detection. When function ∆c is one, at
least one of the input nodes is a core node.

Constraints, such as multiplying a predefined core value
with the core indicator of each node [17], or compromising
with the expected value of random networks [24], are neces-
sary for such maximization approaches, because otherwise,
there is a trivial solution when all the nodes are core nodes
and belong to the same pair. Rather than adopting a new
constraint, in this work, we propose to use an influence-
based approach to solve this issue.

2.2 Detecting core-periphery nodes

There are many methods for detecting core-periphery struc-
tures. Some can find only one pair in a network. For exam-
ple, Lip et al. consider the core-periphery detection problem
as a node bipartition problem, so that connections between
core nodes are maximized and connections between pe-
riphery nodes are minimized [26]. Boyd et al. propose a
similar notation but allow a continuous coreness score for
each node, which can be computed via minimum residual
singular value decomposition [27]. Some researchers utilize
geodesic paths or low-rank approximation methods to de-
velop detection algorithms [32]. Borgatti et al. propose to
use the correlation between empirical networks and ideal
network structures to evaluate the detection performance of
such algorithms [25].
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2.3 Detecting multiple pairs of core-periphery nodes
Some other algorithms can find multiple pairs of core-
periphery structures in a single network. For example, Ko-
jaku et al. propose that there can be at least one block of
nodes apart from the focal core-periphery structures [24].
They also propose a scalable algorithm based on the density
of edges in a network to detect multiple non-overlapping
core-periphery pairs in networks [18] and a method to detect
core-periphery structures through computing a constant
value along a core-periphery spectrum in [24]. Researchers
also develop an algorithm to detect the core-periphery
structure in multiple scales for a seaport network with nine
hundred nodes, namely, with different parameter choices,
the maximum pair size can vary from seventy nodes to all
the nine hundred nodes [23]. Gu et al. develop a model-
based approach to identify the core-periphery structure and
applied it to functional magnetic resonance imaging data
(fMRI) [13]. Battiston et al. propose a method to detect core-
periphery structure based on Belief Propagation for learning
through entropy maximization on both the stochastic block
model and the degree-corrected stochastic block model [33].
Ma et al. propose an algorithm for detecting core-periphery
structure based on a 3-tuple motif, which contains the
patterns of edges as well as the property of nodes [34].

The approaches mentioned above are mostly based on
edge densities between nodes and thus only take the nearest
neighbors of each node or the average connections of nodes
into account. However, in many real-world scenarios, nodes
not directly connected with each other can also have inter-
actions with each other. To address this gap, in this work,
inspired by node ranking models [35], [36], [37], we propose
to build an influence matrix to identify hidden relationships
between all the node pairs and use this hidden relationship
to find multiple pairs of core-periphery nodes. Theoretical
analysis and experimental results justify our approach.

3 METHOD

3.1 Influence-based detection algorithm
By introducing node influences, we propose an influence-
based core-periphery detection algorithm (ICPA). We as-
sume each node can emit a certain amount of influences,
and such influences can propagate to other nodes along
edges. Without loss of generality, if node j exerts the most
extensive influence on node i, node i belongs to the same
pair as node j. Nodes with relatively large influences are
considered core nodes.

In this work, we assume that each node has an influence
vector, recording how it is influenced by other nodes. We use
rows of a probability matrix P P r0, 1sN�N to represent the
influence vectors so that the row vector Pi is the influence
vector of the ith node. In our approach, we also want a
unique non-negative integer as the identity for each node,
so we use integers from zero to N � 1 for this purpose. We
also define a max-influence indicatorH of sizeN � 1, where
Hi P t0, 1, 2, ..., N � 1u represents the identity of the node
by which node i is mostly influenced. We define c P t0, 1uN

as an indicator for core nodes, where ci � 1 if node i is a
core node and ci � 0 if node i is a periphery node.

In the beginning, because no influence information is
available, we initialize the matrix P as a zero matrix.

Step (1): We update matrix P iteratively from k � 0,
until P converges. In each iteration, the algorithm performs
two steps.

Step (1.1): We assume each node emits a certain volume
of influences which is a linear function with respect to the
received self influence, such that we set the diagonal entries
of P as follows and off-diagonal entries are not changed:

diagpP kq � β � α� diagpP k�1q, (4)

where α P r0, 1s and β P p0,� infs are both scalars.
Step (1.2): Each node sums over all the influence vectors

from its neighbors using AP k, and normalizes its own
vectors so that the summation of each row vector is 1:

P k�1 � normpAP kq, (5)
k � k � 1. (6)

In short, the update rule of the ith influence vector is

P
pkq
i �

1

di

¸
j

AijrP
pk�1q
j � p1 � αqEj .� P

pk�1q
j � βEjs

1 � p1 � αqP
pk�1q
jj � β

(7)

where di �
°
j Aij represents the degree of the ith node,

and Ej represents the jth row of an identity matrix in
which only diagonal entries are one and other entries are
zeros. .� is the element-wise product for vectors. Therefore,
P
pk�1q
j � p1�αqEj .�P

pk�1q
j � βEj corresponds to Eq. (4).

The normalization 1{r1 � p1 � αqP
pk�1q
jj � βs corresponds

to the normpq function in Eq. (5) as
°
m P

pk�1q
jm � 1 and°

mEjm � 1.
In practice, if we choose α � 1, this step can be consid-

ered as a typical random walk with restart model [38], [39],
because Eq. (7) can be simplified as

P
pkq
i �

1

di

¸
j

AijrP
pk�1q
j � βEjs

1 � β
. (8)

The algorithm for obtaining the influence vectors for
nodes in networks is shown in Algorithm 1.

Algorithm 1 Computing Influence Vectors (Step 1)

Input:
A: an N �N Adjacency matrix of the input network

Output:
P : Influence vectors for nodes of the input networks

1: P Ð zerospN,Nq
2: for k = 0;k <MAX ITER;k++ do
3: for i = 0;i <N;i++ do
4: Update Pi according to Eq. (7)
5: end for
6: end for
7: return P

Intuitively, this step means that, in each iteration, each
node accumulates influence vectors from its neighbors plus
its own influence and then propagates the real influence to
its neighbors. It can be proved that the power matrix P can
converge to P� after a few iterations.
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Step (2): We compute vector H . For node i, we choose
node Hi such that it has the largest influence to node i.

Hi � arg max
j,j�i

P�
i,j (9)

We can consider H as a representation of a directed
graph where each node is only connected to the node
with the largest influence on it. In this directed graph, we
consider each disconnected component as a core-periphery
pair so that nodes and their corresponding influencers are
within the same pair. Similar to non-maximum suppression
in deep learning, this maximization-based approach can
suppress noises when finding node pairs. This step can
reduce noises in finding pairs. Although we connect each
node to its top influencer by default when building the
directed graph, it is also possible to connect each node with
several top influencers.

Step (3): We consider the column sum of P� as indicators
of node influences to others, and thus, nodes with large
influences are core nodes. We define the core score of node
i as

csi �
¸
j

P�
ji. (10)

Then, we choose a minimum number of nodes as core nodes
so that the total influences of those nodes are above a certain
ratio defined by a hyperparameter γ:

min
¸
i

ci (11)

s.t.

°
i cicsi°
i csi

¡ γ.

This optimization can be easily solved by sorting node core
scores in descending order and adding nodes to the set of
core nodes one by one in this order.

The algorithm of obtaining core-periphery pairs in net-
works is therefore shown in Algorithm 2.

Algorithm 2 Computing core-periphery pairs (Step 2 and 3)

Input:
P : Influence vectors for nodes

Output:
q: Pair indicator, node i belongs to qith pair
c: Core indicator, node i is a core node if ci � 1; vice
versa

1: % Step(2)
2: Compute matrix H according to Eq. (9)
3: Build an adjacency matrix A1 P t0, 1uN�N , where
A1pHi, iq � 1, i P t0, 1, 2, ..., N � 1u and all the other
entries are zero

4: For all the connected nodes in A1, set a same and unique
value to their corresponding qi

5: % Step(3)
6: Compute csi according to Eq. (10) for all the nodes
7: Compute ci according to Eq. (11) for all the nodes
8: return q, c

If A is a sparse matrix, the time complexity of Step 1 and
2 isOpMq, whereM is the number of edges. If we use merge

sort, the time complexity of Step 3 is OpN logNq. Thus, if
the average node degree is constant as N is increasing, the
time complexity of the whole approach is OpN logNq. On
the other hand, if the average degree increases along with
N , the time complexity is OpMq.

3.2 Theoretical analysis
In this section, we prove that our approach can converge af-
ter several iterations. For Step (1), we can have the following
convergence theorem.
Theorem 1. The power matrix P can converge to P� if it is

updated according to Eq. (8).

Proof 1.
Without loss of generality, we define P�

i as the optimal
solution of Pi. We also define the total error at iteration
k to be:

Errpkq �
¸
i

|P
pkq
i � P�

i |. (12)

Since P�
i is the optimal solution, it satisfies the following

equation:

P�
i �

1

dip1 � βq

¸
j

AijrP
�
j � βEjs. (13)

Therefore, by Eq. (8) and the equation above, we have

P
pkq
i � P�

i

�
1

dip1 � βq

¸
j

AijrP
pk�1q
j � βEjs

�
1

dip1 � βq

¸
j

AijrP
�
j � βEjs

�
1

dip1 � βq

¸
j

AijrP
pk�1q
j � P�

j s (14)

By Triangle Inequality, we can have

|P
pkq
i � P�

i | ¤
1

dip1 � βq

¸
j

Aij |P
pk�1q
j � P�

j |. (15)

Now we can sum over all the nodes to get the total error
as follows:

Errpkq

�
¸
i

|P
pkq
i � P�

i |

¤
¸
i

1

dip1 � βq

¸
j

Aij |P
pk�1q
j � P�

j |

�
1

1 � β

¸
j

¸
i

Aij
di

|P
pk�1q
j � P�

j |

�
1

1 � β

¸
j

|P
pk�1q
j � P�

j | (16)

�
1

1 � β
Errpk � 1q (17)

Therefore, as long as β ¡ 0, after each iteration, the error
can be decreased, so that the algorithm can converge.

For Step (2) and (3), all the computations can be done
within a definite number of iterations. Thus, the whole
approach can converge.
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In the following analysis, we further justify the reliability
of the computed results. For simplicity, similar to stochastic
block models in community detection [40], we can define a
stochastic model with core-periphery structure as follows.
Definition 1. Let A be the adjacency matrix for a graph with

N nodes and K core-periphery pairs. Each pair has the
same number of nodes, and the portion of core nodes in
each pair is δ. All the edges are randomly connected but
following constraints:
1. There are nc edges for each core node randomly
connecting to other core nodes in the same pair;
2. There are np edges for each core node randomly
connecting to other nodes in a different pair;
3. Connection probability between core-periphery nodes
and core-core nodes in the same pair are the same;
4. Connection probability between all the other pairs of
nodes are the same.

Therefore, the expected value and the variance for each
connection is as follows.

ErAijs �

$''&
''%

nc�K
N , if at least one of node i and j

is a core node, and both nodes
are from the same pair,

np�K
N , otherwise.

(18)

VarrAijs � ErAijsp1 � ErAijsq. (19)

Fig. 3: Adjacency matrix of a network with multiple core-
periphery pairs

Without loss of generality, Fig.3 shows an example net-
work with multiple core-periphery pairs following Defini-
tion 1. In this figure, edges connecting nodes in the same
pair are in the same red box and there are totally six pairs.
The number of edges of a core node corresponding to the
edges in the yellow box is nc. The number of edges of

a periphery node corresponding to the edges in the blue
block is np. Areas with the same color representing the same
connecting probability.

Theorem 2. For a network generated by Definition 1 and core
scores defined by Eq. (10), using the first order Taylor
series approximation, core nodes can have larger core
scores than periphery nodes with probability at least 1�
p1�δqpN�Knpqpnc�2Knpq

2Np1�δq2pnc�npq2 .

Proof 2. First, we define a diagonal matrixD, in whichDii �
di. From Eq. (13), we have

p1 � βqDP� � ArP� � βEs. (20)

Consequently, we can have

rp1 � βqD �AsP� � βAE. (21)
(22)

Therefore, as β is larger than zero, we can approximate
P� by the first-order Taylor polynomial:

P� �rp1 � βqD �As�1βA (23)

�β
inf̧

κ�0

rp1 � βqDs�κ�1Aκ�1 (24)

�βrp1 � βqDs�1A. (25)

Without loss of generality, we can consider two nodes
in a same pair, such that node ip is a periphery node
and node ic is a core node. Then, for random networks
generated from Definition 1, the expected difference of
core scores of the two nodes defined by Eq. (10) can be
approximated as

Ercsic � csips (26)

�Er
¸
i

P�
i,ic �

¸
i

P�
i,ips (27)

�βp1 � βq�1
¸
i

1

di
ErAi,ic �Ai,ips (28)

�βp1 � βq�1Np1 � δq

K

1

ncδ � nppK � δq

� r
ncK � npK

N
s (29)

�βp1 � βq�1 p1 � δqpnc� npq

ncδ � nppK � δq
(30)

where Eq. (29) the expectation of the summation of two
random variables is the summation of the expectation
of two random variables, and the expectations of all the
other entries in A:,ic and A:,ip can be canceled except
those representing connection to the periphery nodes in
the same pair. By definition, if node i is a core node,
di � nc� nppK � 1q, and if node i is a periphery node,
di � ncδ�nppK�δq. We also define an auxiliary variable
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σ � nc�nppK�1q
ncδ�nppK�δq . Thus, the variance of the core score

differences of node ip and ic is

Varrcsic � csips (31)

�Varr
¸
i

P�
i,ic �

¸
i

P�
i,ips (32)

�β2p1 � βq�2
¸
i

1

d2i
VarrAi,ic �Ai,ips (33)

�β2p1 � βq�2
¸
i

1

d2i
rVarpAi,icq � VarpAi,ipqs (34)

�β2p1 � βq�2
¸
i

1

d2i
tErAi,icsp1 � ErAi,icsq

� ErAi,ipsp1 � ErAi,ipsqu (35)

�β2p1 � βq�2 1

Nσ2rncδ � nppK � δqs2

� trNnc�Kpncq2srσ2p1 � δq � 2δs � rNnp

�Kpnpq2srσ2p2K � 1qp1 � δq � 2δpK � 1qsu. (36)

By Chebyshev’s inequality,

Prpcsic � csip ¥ 0q (37)

�1 �
1

2
Prp|csic � csip � Ercsic � csips|

¥ Ercsic � csipsq (38)

¥1 �
Varrcsic � csips

2pErcsic � csipsq2
(39)

¥1 �
p1 � δqpN �Knpqpnc� 2Knpq

2Np1 � δq2pnc� npq2
. (40)

Theorem 3. For a network generated by Definition 1, using
the first order Taylor series approximation, node i and
node Hi (defined by Eq. (9)) are in the same pair with
probability at least 1 � pN�ncKqp2�δqpncδ�npq

2δ2Kpnc�npq2p1�δq2 .

Proof 3. Without loss of generality, we can consider two
nodes, such that id is a node from a different pair with
respect to node i, and is is a node from the same pair as
node i.
By definition, node i is a core node with probability δ.
In this case, nodes in the same pair are all have dense
connections with i, and so ErAi,is � Ai,ids �

ncK�npK
N

by Eq. (18). Similarly, node i is a periphery node with
probability 1 � δ. In this case, if is is a core node with
probability δ, ErAi,is � Ai,ids �

ncK�npK
N , and if is is a

periphery node, ErAi,is �Ai,ids � 0.
Consequently, the expected difference is

ErP�
i,is � P�

i,ids (41)

�βp1 � βq�1 1

di
ErAi,is �Ai,ids (42)

�βp1 � βq�1rδ
1

nc� nppK � 1q

pncK � npKq

N
(43)

� p1 � δq
1

ncδ � nppK � δq

δpncK � npKq

N
s (44)

�βp1 � βq�1 δrσp1 � δq � 1s

σrncδ � nppK � δqs

ncK � npK

N
. (45)

The expected variance is

VarrP�
i,is � P�

i,ids (46)

�β2p1 � βq�2 1

d2i
VarrAi,is �Ai,ids (47)

�β2p1 � βq�2 1

d2i
rVarpAi,isq � VarpAi,idqs (48)

�β2p1 � βq�2 1

d2i
tErAi,issp1 � ErAi,issq

� ErAi,idsp1 � ErAi,idsqu (49)

�β2p1 � βq�2 1

N2σ2rncδ � nppK � δqs2

� tncKδpN � ncKqp1 � σ2 � σ2δq

� npKpN � npKqrδ � pσ2 � σ2δqp2 � δqsu. (50)

By Chebyshev’s inequality, we have

PrpP�
i,is � P�

i,id ¥ 0q (51)

�1 �
1

2
Prp|P�

i,is � P�
i,id � ErP�

i,is � P�
i,ids|

¥ ErP�
i,is � P�

i,idsq (52)

¥1 �
VarrP�

i,is � P�
i,ids

2pErP�
i,is � P�

i,idsq
2

(53)

¥1 �
pN � ncKqp2 � δqpncδ � npq

2δ2Kpnc� npq2p1 � δq2
. (54)

3.3 Extensions for Weighted Networks

For weighted networks, we can define a weight matrix W ,
where Wij is the weight of the edge between node i and
j. If we use ˆ to represent the variables in the update rule
for weighted networks, the simplified version, Eq. (8) can be
rewritten as follows:

P̂
pkq
i �

1

d̂i

¸
j

AijWijrP̂
pk�1q
j � βEjs

1 � β
, (55)

where d̂i �
°
j AijWij represents the degree of the ith node.

Similarly, in the proof of Theorem 1, if we replace Aij
and di with AijWij and d̂i respectively, that theorem can
still work. Therefore, our approach can also converge for
weighted networks.

We can also analyze the impact of edge weights by com-
paring the differences between Eq. (8) and (55, as follows:

|P̂
pkq
i � P

pkq
i | (56)

�|
¸
j

Aijr
Wij

d̂i
P̂
pk�1q
j � 1

di
P
pk�1q
j s

1 � β
| (57)

¤

°
j Aij |

Wij

d̂i
P̂
pk�1q
j � 1

di
P
pk�1q
j |

1 � β
(58)

¤

°
j AijpP̂

pk�1q
j � P

pk�1q
j q|

Wij

d̂i
� 1

di
|

1 � β
. (59)

If Wij with i, j P t0, 1, 2, ..., N � 1u are generated from a
random distribution of variance δW , the expected value of
the normalized edge weight Wij

d̂i
is 1

di
. If we use the second
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norm for | � � � |, |Wij

d̂i
� 1
di
| is actually the variance of the nor-

malized edge weight, namely, equal to δW
d̂i

. Therefore, for the
same adjacency matrix, the differences between weighted
networks and unweighted networks are proportional to the
variance of normalized edge weights. This phenomenon
is intuitively reasonable as unweighted networks can be
considered a special case of weighted networks with edge
weight equal to one.

4 EXPERIMENTS

In this section, we compare our approach with other al-
gorithms, where BE represents BorgattiEverett algorithm
[25], LC represents LapCore algorithm [32], LRC represents
LowRankCore [32], MIN represents MINRES algorithm
[26], and KM represents KMconfig algorithm [24]. We
make comparisons using random networks and real-world
networks. For our approach, we choose to set the amount
of the emitted influences and that of the received influences
the same, namely, β � 1. We also set γ to be 0.5 by default,
meaning that core nodes take up at least half of the total
influence.

For networks with ground-truth information, especially
for randomly generated networks, we can use normalized
mutual information (NMI) [41], [42] for evaluation. NMI
allows us to measure the agreement of a given partition ω
and the ground truth partition ω̂, and it is defined as follows

NMIpω, ω̂q �
Ipω, ω̂q

rHpωq �Hpω̂qs{2
, (60)

where I is mutual information, H is entropy. Based on the
basic NMI definition above, we develop an NMI metric for
the core-periphery structure

NMIcp �
1

2
rNMIpc, ĉq �NMIpr, r̂qs, (61)

where NMIpr, r̂q indicates the accuracy for pair labels, and
NMIpc, ĉq indicates the accuracy of core labels. As the
value of NMIcp takes both pairs and cores information into
account, the larger the value of the NMIcp, the better the
detection algorithm.

4.1 Case study I: Detection for random networks
We construct the random networks with several parameters:
pcc, pcp, and ppp, representing the connection probability
between core nodes, that between core and periphery nodes,
and that between periphery nodes. Typically, core-periphery
structure arises when pcc ¡ pcp ¡ ppp. Therefore, for
simplicity, we can define pcc � κ2p, pcp � κp, and ppp � p,
where p represents the connection probability and κ is a
constant. In this experiment, we use p � 0.25. We use
κ � 1.3, 1.5 and 1.8 respectively. Pair size varies between
N{30 and N{20 where N is the network size. Half of
the nodes in each pair are core nodes. We compare the
performance with different network sizes as well, from 1000
nodes to 10000 nodes. In each setting, we generate three
random networks and record the average performance for
each algorithm.

The accuracy of different algorithms are shown in Table
1, 2, and 3. In each row, the best performance in terms

of NMIcp is highlighted. From these tables, we can see
that ICPA performs significantly better than many others
because it can find multiple pairs. When comparing with
the KM algorithm, which can also identify multiple pairs,
our approach is still more accurate. In Fig. 4, we analyze
the sensitivity of accuracy with respect to γ. The horizontal
axis representing the network size and the vertical axis
representing the accuracy measured by NMIcp. Lines with
the same color indicate that these results are from networks
generated with the same κ. From this figure, we can see
that, for a given network size and generating parameter,
although there are small variances in NMIcp between dif-
ferent choices of γ, our approach always performs better
than other algorithms comparing with corresponding cases
in Tables 1, 2, and 3.

We also measure the run time of these algorithms using
networks generated by different parameters, as shown in
Figs. 5, 6, and 7. From these figures, we can see that although
our approach is not fast, the growth rate is similar to most
of the other approaches.

TABLE 1: NMIcp of different algorithms when κ � 1.3

N
NMIcp of κ � 1.3

ICPA BE LC LRC MIN KM
1000 0.5089 0.0270 0.0001 0.0050 0.0062 0.4900
2000 0.5177 0.0250 0.0001 0.0002 0.0028 0.4960
3000 0.5149 0.0250 0.0001 0.0002 0.0023 0.4910
4000 0.5174 0.0220 0.0002 0.0003 0.0014 0.4970
5000 0.5118 0.0230 0.0002 0.0001 0.0013 0.5000
6000 0.5115 0.0190 0.0002 0.0002 0.0011 0.4930
7000 0.5207 0.0230 0.0003 0.0001 0.0010 0.4970
8000 0.5232 0.0230 0.0009 0.0001 0.0012 0.5220
9000 0.5173 0.0210 0.0002 0.0002 0.1470 0.4990

10000 0.5270 0.0250 0.0002 0.0001 0.1070 0.5000

TABLE 2: NMIcp of different algorithms when κ � 1.5

N NMIcp of κ � 1.5

ICPA BE LC LRC MIN KM
1000 0.5697 0.0620 0.0004 0.0042 0.0096 0.4960
2000 0.5857 0.0710 0.0012 0.0010 0.0048 0.4940
3000 0.5663 0.0690 0.0007 0.0002 0.0038 0.5020
4000 0.5608 0.0680 0.0008 0.0003 0.0027 0.4990
5000 0.5772 0.0750 0.0010 0.0001 0.0024 0.5050
6000 0.5668 0.0640 0.0009 0.0001 0.0020 0.5010
7000 0.5716 0.0670 0.0013 0.0001 0.0018 0.5030
8000 0.5866 0.0570 0.0010 0.0001 0.0016 0.5040
9000 0.5828 0.0730 0.0007 0.0001 0.0013 0.5040
10000 0.5881 0.0620 0.0008 0.0001 0.0013 0.5040
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TABLE 3: NMIcp of different algorithms when κ � 1.8

N NMIcp of κ � 1.8

ICPA BE LC LRC MIN KM
1000 0.6402 0.0690 0.0045 0.0047 0.0125 0.5230
2000 0.6440 0.0640 0.0055 0.0008 0.0051 0.5260
3000 0.6371 0.0630 0.0055 0.0004 0.0047 0.5250
4000 0.6438 0.0620 0.0045 0.0001 0.0035 0.5230
5000 0.6520 0.0680 0.0034 0.0001 0.0026 0.5260
6000 0.6543 0.0660 0.0050 0.0003 0.0024 0.5190
7000 0.6480 0.0580 0.0038 0.0003 0.0018 0.5180
8000 0.6405 0.0650 0.0022 0.0001 0.0017 0.5200
9000 0.6560 0.0610 0.0051 0.0001 0.0014 0.5250
10000 0.6591 0.0610 0.0031 0.0001 0.0013 0.5160

Fig. 4: NMIcp of ICPA with different choices of γ under
different input networks determined by κ

Fig. 5: Runtime of different algorithms with κ � 1.3

4.2 Case study II: Detection in scientist co-authorship
network
In this section, we test our algorithm with a real-world
network: the co-authorship network. We use the scientist
co-authorship network from 2010 (NNS2010) [32] with 552
nodes. This network is expected to have a clear core-
periphery structure: each node represents one scientist, and
if two scientists have co-authorship, there is a connection
between the two nodes. The core nodes represent the scien-
tists who have large influences in the research community,
surrounded by periphery nodes representing loosely con-
nected and less influential scientists. The connection has a

Fig. 6: Runtime of different algorithms with κ � 1.5

Fig. 7: Runtime of different algorithms with κ � 1.8

weight based on the degree of the cooperation, which can be
considered as a factor affecting the influence propagation.

When comparing with algorithms detecting only a single
core-periphery pair, we show the names, scores, and pair
identities calculated by ICPA in Table4 and by other algo-
rithms in Table5. The node rankings are generally similar.
From Fig.8a, Fig.8c, and Fig.8e to Fig.8h, we can find that
the core nodes in yellow color identified by our approach
are more evenly distributed and better connected with pe-
riphery nodes when comparing with others, and thus our
approach is better.

When comparing with multiple pair detectors as shown
in Table6, we consider the pairs with two representative
nodes M.E.J. Newman and A.L. Barabasi, as an example.
In each pair, nodes are sorted in descending order of the
core score, and they are similar. From Fig.8b to Fig.8d in
which different colors represent different pairs, we can see
that our approach can find better clusters as core-periphery
pairs identified by our approach are more meaningful.

4.3 Case study III: Detection for Email networks
This section tests our algorithm using another real-world
network: the Email network [43]. Nodes in the network
represent email accounts, and when two accounts exchange
messages, there is a connection between two corresponding
nodes. Fig. 9 shows the comparison in detecting core nodes
and core-periphery pairs. In Fig. 9b and 9d, nodes in the
same pair are drawn using the same color. We can find that
comparing algorithms detecting multiple core-periphery
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TABLE 4: The top 30 names, scores, and pairs that nodes
belong to according to the top 30 nodes calculated by ICPA

Author’s name Score Pair-id
Newman,M.E.J. 0.0183 8
Barabasi,A.L. 0.0168 11
Jeong,H. 0.0111 11
Boccaletti,S. 0.0108 16
Sole,R.V. 0.0100 49
Vicsek,T. 0.0087 11
Kurths,J. 0.0083 36
Latora,V. 0.0083 32
Pastor-Satorras,R. 0.0082 24
Moreno,Y. 0.0081 2
Amaral,L.A.N. 0.0079 47
Arenas,A. 0.0076 21
Vespignani,A. 0.0076 24
Kahng,B. 0.0075 7
Porter,M.A. 0.0075 50
Kertesz,J. 0.0073 1
Diaz-Guilera,A. 0.0072 21
Stauffer,D. 0.0066 44
Caldarelli,G. 0.0064 31
Bornholdt,S. 0.0063 17
Guimera,R. 0.0063 47
Hu,G. 0.0060 22
Tomkins,A.S. 0.0060 13
Havlin,S 0.0059 37
Oltvai,Z.N. 0.0056 11
Koch,C. 0.0055 23
Sokolov,I.M 0.0053 54
Kleinberg,J.M 0.0053 4
Barthelemy,M 0.0053 47
Kaski,K 0.0052 1

TABLE 5: The ten names of co-authors who belong to the
same pairs as Newman,M.E.J. and Barabasi,A.L. are found
by single-pair algorithms.

Single-pair algorithms

BE LapCore MINRES LowRankCore
Newman,M.E.J. Newman,M.E.J. Newman,M.E.J. Newman,M.E.J.

Barabasi,A.L. Barabasi,A.L. Barabasi,A.L. Barabasi,A.L.
Boccaletti,S. Vicsek,T. Vicsek,T. Pacheco,A.F.

Vicsek,T. Kurths,J. Kurths,J. Albert,R.
Kurths,J. Kertesz,J. Boccaletti,S. Vazquez,A.
Kertesz,J. Albert,R. Jeong,H. Long,B.
Kaski,K. Kaplan,T.D. Latora,V. Vicsek,T.

Tomkins,A.S. Yoon,C.N. Kahng,B. Ravasz,E.
Jeong,H. Pacheco,A.F. Arenas,A. Jeong,H.

Amaral,L.A.N. Long,B. Porter,M.A. Boguna,M.

TABLE 6: Names of co-authors who belong to the same
pairs as the top two largest pairs found by multiple-pairs
algorithms.

Multiple-pair algorithm

ICPA KM-config

pairID=11 pairID=8 pairID=22 pairID=5
Barabasi,A.L. Newman,M.E.J. Barabasi,A.L. Newman,M.E.J.

Jeong,H. Watts,D.J. Jeong,H. Watts,D.J.
Vicsek,T. Strogatz,S.H. Oltvai,Z.N. Strogatz,S.H.

Oltvai,Z.N. Moore,C. Bianconi,G. Moore,C.
Albert,R. Dodds,P.S. Palla,G. Dodds,P.S.

Bianconi,G. Clauset,A. Farkas,I.J. Callaway,D.S.
Palla,G. Park,J. Mongru,D.A. Matthews,P.C.

Ben-Jacob,E. Girvan,M. Abel,D. Jin,E.M.
Farkas,I.J. Mirollo,R.E. Ravasz,E. Muhamad,R.

PerezVicente,C.J. Martin,M. Derenyi,I. Sabel,C.F.

(a) Cores detected by ICPA (b) Pairs detected by ICPA

(c) Cores detected by KM-
config

(d) Pairs detected by KM-
config

(e) Cores detected by BE (f) Cores detected by MINRES

(g) Cores detected by Lap-
Core

(h) Cores detected by
LowRankCore

Fig. 8: Core nodes and pairs detected by ICPA and other
algorithms in Author Network, which in (a),(c),(e),(f),(g),
and (h), the blue nodes represent the periphery nodes and
the yellow nodes represents the core nodes detected by
different algorithms. In (b) and (d), nodes in the same color
are identified as the same pair by ICPA and KM-config,
respectively.

pairs, node pairs identified by our method are more co-
herent in node clusters. In other subfigures, core nodes are
drawn in yellow, while periphery nodes are in blue. From
these subfigures, we can see that our approach can find the
core nodes that are better connected with periphery nodes
than other approaches. Therefore, our approach can find
multiple pairs and identify core nodes better than others.

4.4 Case study IV: Detection for Brain networks
Here we test how different algorithms detect core-
periphery structures in brain functional connectivity
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(a) Cores detected by ICPA (b) Pairs detected by ICPA

(c) Cores detected by KM-
config

(d) Pairs detected by KM-
config

(e) Cores detected by BE (f) Cores detected by MINRES

(g) Cores detected by Lap-
Core

(h) Cores detected by
LowRankCore

Fig. 9: Core nodes and pairs detected by ICPA and other
algorithms in Email Network, which in (a),(c),(e),(f),(g), and
(h), the blue nodes represent the periphery nodes and the
yellow nodes represents the core nodes detected by different
algorithms. In (b) and (d), nodes in the same color are iden-
tified as the same pair by ICPA and KM-config, respectively.

networks. The data was from our ‘Naturalistic Neu-
roimaging Database’ (NNDb), which consists of fMRI
scans from full-length movie-watching (data available at
https://openneuro.org/datasets/ds002837) [44]. We ran-
domly selected 20 of 86 NNDb participants for testing core-
periphery algorithms: 10 each who watched ‘500 Days of
Summer’ or ‘Citizenfour’.

The fully preprocessed fMRI data was first resampled to
a five mm3 voxel size to reduce computation time. Whole-
brain functional connectivity matrices were constructed us-
ing the AFNI program 3dDegreeCentrality, which performs
pairwise Pearson’s correlations between all voxel time series
[45], [46]. We used a sliding window approach with a
window size of 60 seconds and step size of 10 seconds, as
suggested by [47], [48]. This resulted in 542 and 675 matrices
for participants in ‘500 Days of Summer’ and ‘Citizenfour’,
respectively. The correlation values were then thresholded
at r = 0.1 as suggested by [49], resulting in an unweighted
binary (1,0) adjacency matrix.

To demonstrate that the algorithm detects core-periphery
structures in brain networks that are neurobiologically plau-
sible, we performed affinity propagation clustering on the
resulting coreness scores to identify spatially similar core
clusters across the duration of the movies [50]. Fig.10 shows
the cut half (i.e., top half) dendrogram of core clusters from
a sample participant watching ‘500 Days of Summer’. We
display four exemplars from branches with core clusters that
are prototypically associated with visual (blue), sensorimo-
tor (green), and auditory and language processing (red). The
latter, e.g., have previously been identified as forming cores
[51]. Furthermore, these and other networks qualitatively
display characteristics of typical patterns of brain activity
in that they form larger clusters, are often bilaterally dis-
tributed, and follow gyral and sulcal boundaries and other
anatomical landmarks.

To further test the performance of our algorithm against
existing algorithms for detecting core-periphery pairs in
brain networks, we computed the average spatial variance
of nodes in the same pair. The spatial information is not
used when computing the core-periphery pairs, but we can
use it to infer the algorithms’ performance. The assumption
was that nodes in the same pair should be, on average,
spatially closer than nodes in different pairs. Moreover, in
order to obtain comparable results, we merged small into
larger pairs so that the final pair numbers were similar to
those output by the KM algorithm, which we used as a
reference. Formally, the average spatial variance of nodes
in the same pair var is defined as follows,

var �
1

m

1

n� 1

m̧

j�1

ņ

i�1

rpxji �

°n
i xji
n

q2 (62)

� pyji �

°n
i yji
n

q2 � pzji �

°n
i zji
n

q2s, (63)

where xji, yji, and zji is the spatial location of the ith
node in jth pair in three dimensions, m is the number of
total pairs, and n is the number of nodes in each pair. The
results are shown in Table 7 and Table 8 for ‘500 Days of
Summer’ and ‘Citizenfour’ respectively. Pairs identified by
our algorithm had a much smaller spatial variance than
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others, indicating that nodes in each pair were spatially
closer.

Fig. 10: Core-periphery clusters in the brain during movie
watching detected by ICPA. The left is the cut half of the
dendrogram showing 56 core clusters after APC clustering
for one participant watching ‘500 Days of Summer’. Exam-
ple (multi)cores are presented on the inflated left (LH) and
right hemisphere (RH) lateral and medial cortical surfaces.
Blue is occipital-parietal areas involved in vision; Green is
pre/central sulcus and parietal cortices involved in senso-
rimotor processing, and red is temporal regions involved
in auditory and language processing. Regions not colored
constitute the periphery.

TABLE 7: Number of pairs detected by ICPA and other al-
gorithms and the average spatial variance between detected
pairs in brain networks of participants watching the movie
‘500 Days of Summer’.

Number of pairs detected by each algorithm

ICPA KM-config BE LapCore MINRES LowRankCore

4 3 1 1 1 1

Average spatial covariances between detected pairs in brain networks

ICPA KM-config BE LapCore MINRES LowRankCore

232.635 348.794 362.397 362.397 362.397 362.397

5 CONCLUSION

Core-periphery detection can be widely used in many ap-
plications. In this work, we propose a novel influence-based
approach to identify multiple pairs of core-periphery struc-
tures in networks in terms of both efficiency and accuracy.
It is also applicable to weighted networks, in which case
we can compute the influence vectors by dispensing the
influences of each node to its neighbors proportional to
the corresponding edge weights. Theoretically, our method

TABLE 8: Number of pairs detected by ICPA and other al-
gorithms and the average spatial variance between detected
pairs in brain networks of participants watching the movie
‘Citizenfour’.

Number of pairs detected by each algorithm

ICPA KM-config BE LapCore MINRES LowRankCore

6 3 1 1 1 1

Average spatial covariances between detected pairs in brain networks

ICPA KM-config BE LapCore MINRES LowRankCore

229.626 348.582 362.397 362.397 362.397 362.397

can be proved to converge and the error rate is bounded.
In the experiment with random and real-world networks,
our method outperforms other algorithms. Moreover, our
approach has computational efficiency in analyzing large
dynamic brain networks.
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