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Recent advances in measuring and modeling root water uptake along with refined

electrical petrophysical models may help fill the existing gap in hydrological root model

parametrization. In this paper, we discuss the choices to be made to combine root-zone

hydrology and geoelectrical data with the aim of characterizing the active root zone. For

each model and observation type we discuss sources of uncertainty and how they are

commonly addressed in a stochastic inversion framework. We point out different degrees

of integration in the existing hydrogeophysical approaches to parametrize models of

root-zone hydrology. This paper aims at giving emphasis to stochastic approaches, in

particular to Data Assimilation (DA) schemes, that are generally identified as the best

way to combine geoelectrical data with Root Water Uptake (RWU) models. In addition,

the study points out a more suitable objective function taken from the optimal transport

theory that better captures complex geometry of root systems. Another pathway for

improvement of geoelectrical data integration into RWU models using DA relies on the

use of stem based methods as a leverage to introduce more extensive root knowledge

into RWU macroscopic hydrological models.

Keywords: hydrogeophysics, inversion, root water uptake, soil-plant modeling, geoelectrical imaging, data

assimilation, Wasserstein distance

FUNDAMENTAL CONCEPTS, ISSUES, AND OPEN QUESTIONS

The benefits of combining hydrological modeling with abundant information derived from
different observations have been successfully demonstrated at least over the past 20 years. In
order to support hydrological models of soil-plant interactions, observations are generally retrieved
from plants (e.g., water potential measurements–Sus et al., 2014), from the atmosphere (e.g.,
remote sensing measurements–Gelsinari et al., 2020; Lei et al., 2020), and from the soil (e.g., soil
moisture–Han et al., 2012; Gruber et al., 2015; Hu et al., 2017, 2019; Liu et al., 2017; Zhang et al.,
2018). However, most of the studies neglect the root architectural traits due to the difficulty in
collecting the relevant data. This is a major issue considering the fundamental role of roots in water
regulation in the Earth Critical Zone (ECZ) (Newman et al., 2006; Srayeddin and Doussan, 2009).
Existing studies combining observation of roots and root-system models are limited to laboratory
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experiments via X-ray or Magnetic Resonance Imaging (MRI;
Koch et al., 2019), but this is not the scale suitable for field and
real case applications.

The use of geophysical methods has been long advocated as
a possible approach to image roots and root water uptake (e.g.,
Werban et al., 2008). In particular, geoelectrical methods offer a
reliable tool to measure soil-roots interactions. These methods
rely on Electrical Resistivity (ER), which is very sensitive to soil
moisture (Michot et al., 2003) and salinity content (Kemna et al.,
2002). In particular, time lapse measurements have demonstrated
their effectiveness in characterizing processes inherent to water
movement due to root water uptake (e.g., Garré et al., 2012).
Alone, geoelectrical measurements are limited to the observation
of state variable changes (moisture content, solute concentration,
temperature). This requires that a link with the hydrological
processes inducing these state variable changes be made in order
to obtain useful information from the data. Also, advances in
characterizing the root zone directly using stem-based methods
(capacitive and Mise-à-la-masse) (Mary et al., 2020; Peruzzo
et al., 2020) are potentially a useful tool in refining hydrological
models of roots (Moreno et al., 2015; Cassiani et al., 2020;
Cimpoiaşu et al., 2020; Garré et al., 2021).

Great progress has been made over the past decade to
combine geophysical observation data with hydrological models
(Camporese et al., 2010, 2011; Tso et al., 2020). Relatively few
hydro-geophysical applications, though, have been focused on
root system parametrization (Manoli et al., 2015; Cassiani et al.,
2016; Mary et al., 2020; Rao et al., 2020). In a series of studies,
(Kuhl et al., 2018), Kuhl et al. (2021) propose a novel coupled
hydrogeophysical approach to estimate evapotranspiration (ET)
and root depth from ER, and soil water content combining both
soil water content from Time Domain Reflectometry (TDR) and
ER measurements with a hydrological and plant model. The data
integration using a coupled inversion showed the advantages of
ER tomography for extrapolation beyond the local scale of soil
water content sensors.

Despite these advancements, many uncertainties due to
model errors, data errors, inversion errors, transformation from
geophysical to hydrological quantities, and initial conditions
need to be accounted for (Rubin and Hubbard, 2005). Stochastic
methods provide a systematic framework for assessing or
handling some of the complexities that arise in fusing disparate
data sets. Their ability to include structural and parametric error
distributions make them particularly attractive for application to
the problem of dynamic parameter estimation (Linde et al., 2017;
Tso et al., 2020).

The inevitable difficulties along the way do not change the
value of these approaches for blending geophysical data with
hydrological models, as: (i) geophysical data offer spatially
extensive information, that can be also collected frequently in

Abbreviations: ECZ, Earth Critical Zone; ET, Evapotranspiration; RWU, Root
water uptake; ER(T), Electrical Resistivity (Tomography); SHP, Soil Hydraulic
Properties; PF, Particle Filter; PP, Petrophysical Parameters; RP, Root Parameters;
RLD, Root Length Density; EnKF, Ensemble Kalman Filter; KS, Kalman Smoother;
ES, Ensemble Smoother; PDF, probability density function; OMT, Optimal Mass
Transport; CSD, Current Source Density; MALM, Mise-à-la-masse; SWC, Soil
Water Content.

time; (ii) the “calibration” of hydrological models identify their
own governing parameters on the basis of the (time-lapse)
geophysical data, thus giving sense to the signals recorded by
the geophysical measurements. Geophysical time lapse survey
focused on ways to extract relevant hydrological information
using time series analysis techniques (Binley et al., 2015).
Relevant time scales for root hydrology range from single
measurement to daily, seasonal or even continuous monitoring.

This review paper focuses on the combination of geoelectrical
observations and hydrological modeling, with the aim of
characterizing the active root zone. We discuss the approaches of
model parametrization according to their degree of integration
from simple trials to fully coupled inversion. An emphasis
is given to Data Assimilation (DA) schemes as a stochastic
estimation problem. Finally, the review paves possible ways of
improving hydrogeophysical models based on the current state
of the art of geoelectrical methods view data assimilation.

DIFFERENT SCHOOLS OF THOUGHT

Root Water Uptake Models
Many authors underlined the importance of identifying the
best approach to describe RWU. Given the resolution of
geoelectrical methods, macroscopic models (e.g., Muma et al.,
2013; Vanderborght et al., 2021) describing RWU are often
preferred to microscopic (or functional structural) ones (e.g.,
Javaux et al., 2008). These two types of models are usually
based on solving a modified form of the 3D Richards equation
to account for a certain root distribution and root/trunk
xylem/stomatal hydraulic conductance (Volpe et al., 2013). The
two approaches differ in their complexity in considering the
inclusion of explicit root hydraulic features to simulate water
flow toward individual roots (Doussan, 1998; Javaux et al.,
2008). Currently, the link between hydraulic conductance and
electrical properties of individual roots is not sufficiently known,
limiting the use of combining geoelectrical measurements with
microscopic models. In macroscopic models, RWU intervenes
as a sink term in the soil water flow equation without solving
for flow toward individual roots and thus the root system
can be considered using a density formulation from empirical
models (Vrugt et al., 2001). Examples of successful applications
of macroscopic models are described by Couvreur et al. (2012),
Manoli et al. (2014) and Camporese et al. (2015b).

Typical application of macroscopic RWU models assumed
the root-zone averaged saturation (Manoli et al., 2014), making
the hydrological model segments’ length comparable with
geophysical ones. Note that one way to simplify the description of
microscopic water flow is to upscale hydraulic root architecture
models to macroscopic representations of root hydraulics
(Vanderborght et al., 2021). The resulting model has basically
three macroscopic parameters defined at the soil element scale,
or at the plant scale, rather than for each segment of the root
system architecture and are more appropriate for comparison
with geophysical segments.

The root parameterization employed in hydrological models
defines the “state model” which is commonly described by a state
vector xSW(t)(e.g., soil water content) with a Prior PDF function
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p(xSW). This prior PDF quantifies what we know about the state
of the system given the prior distribution of the parameters and
before considering the observed data.

xSW(t) = F
(

xSW(t−1),mt−1,ωt

)

(1)

Equation 1 describes the state vector at time t, F(.) is the
evolution operator, m is a model parameter vector with a
Prior distribution p(m), and ωt is an uncertainty model error
(Linde, 2014; Ghorbanidehno et al., 2020). For instance, soil
moisture dynamics are described by the Richards’ equation,
which is implicitly contained into F(.) and is highly non-linear.
The model uncertainty ωt accounts for structural model errors
(e.g., misrepresentation of physical processes), errors due to
the discretization, parameter errors, initial condition errors, etc.
In general, the actual value of each error is unknown, thus
it is often considered as a random variable described by a
Gaussian distribution.

One more pending issue in the application of RWU models
is linked to the uncertainty and difficulty of measuring or
predicting Root Length Density (RLD) with depth over time
(Cai et al., 2018). Large uncertainties on the RLD definition are
likely to lead to wrong estimates of model states. We discuss
further how to reduce this uncertainty as a perspective in section
Assimilation of Stem-Based Method Observation Data. What
about the microscopic models? There isn’t a lot mentioned
about them.

Formulating a Soil/Root Electrical

Conductivity Model and the Petrophysical

Relationship
Electrical resistivity tomography produces a set of injected
electrical currents and corresponding voltages. Poisson’s
equation, which expresses the relationship between the measured
voltage and the electrical conductivity of the medium, given
the injected current, is used to forward model the electrical
potential data (Binley and Kemna, 2005). Electrical conductivity
is a property of a medium that quantifies how easily electrical
charges are conducted and is linked to the soil properties
according to specific petrophysical relationships. The most
widely used is Archie’s law (Archie, 1942), which empirically
defines the dependence of the bulk soil electrical conductivity
on porosity, pore water conductivity and soil saturation).
Nevertheless, petrophysical relationships are site specific and
need to be calibrated before serving as translation between
ER and SMC. This implies that petrophysical relationships,
such as Archie’s law, have some parameters to be calibrated.
A review of the existing methods and limitations is presented
by Cimpoiaşu et al. (2020). Michot et al. (2016) showed that
the petrophysical relationships in the root zone are biased due
to the influence of the root system on the measured ER. In a
synthetic study, Rao et al. (2019) evaluated how geometrical
anisotropy of root networks impact the effective conductivity of
the rhizosphere (the zone near the root). As petrophysical model
uncertainty can be influenced by the presence of a root system, a
better knowledge of root electrical properties would help define

the formulation of a mixed root soil ER in order to refine the
petrophysical relationships (Ehosioke et al., 2020).

The impact of roots on the impedance properties of the
rhizosphere has been observed and modeled, even for relatively
small fractional volumes (Rao et al., 2019). This impact can be
direct and indirect. The former derives from the direct root-
current iteration and depends on the large surface area and
capacitance of roots, which, in turns, has been linked to root
physiology and suberization (Weigand, 2017; Peruzzo et al.,
2021; Tsukanov and Schwartz, 2021). The latter, indirect impact,
is a combination of the root-induced changes in the physical,
chemical, and biological properties of the rhizosphere, e.g., RWU,
root exudation, solute uptake and rhizosphere microbiome
changes (Landl et al., 2021).

The translation (or mapping) of soil and root electrical
resistivity to SWC defines the so-called ‘observation model’. The
observation model (i.e., predicted ER observations) is commonly
described by a state vector yER(t) at assimilation time t with a prior
PDF function p(yER(t)). HER(.) denotes the observation operator
describing the Poisson’s equation, xER(t) defines the ER values
after petrophysical transformation of xSW(t), n is a parameter
vector, and vt is a stochastic model error.

yER(t) = HER

(

xER(t), nt−1, vt
)

(2)

The term vtincorporates both measurement errors and
observation model uncertainties, by taking into account
the following criteria:

- Petrophysical model uncertainty should be considered in
order to avoid the creation of unrepresentative hydrological
models from geophysical inversions (Linde, 2014; Brunetti and
Linde, 2018; Tso et al., 2019). The Archie’s law parameters can
be assumed as stochastic multivariate Gaussian distribution
vectors (Botto et al., 2018) or as multivariate uniform
distributions (Tso et al., 2020).

- Regarding the ERT data, Rossi et al. (2015) stated that the
likelihood functions can be obtained from the measurement
error PDFs defined as a zero-mean Gaussian measurement
with a given variance.

- The uncertainty related to the mismatch between the spatial
resolution of the geophysical parameters and the scale
that characterizes the hydrogeological parameters should
be considered.

DEGREE OF INTEGRATION BETWEEN

DATA AND MODEL

The degree of integration of data with models may range
from simple trial-and-error calibration (e.g., Binley et al., 2002)
to fully coupled hydrogeophysical inversion and DA (e.g.,
Rajabi et al., 2018). Huisman et al. (2012) discussed whether
the information content of the data is sufficient to obtain
reliable estimates of model parameters. However, in general, the
availability of spatially extensive (and time intensive) data greatly
improves the model capability to identify the relevant governing
hydraulic parameters, and/or unknown forcing conditions. There
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are several methods to compare quantitatively observed and
simulated data such as moment analysis (e.g., Binley et al.,
2002; Monego et al., 2010; Haaken et al., 2017) or the data-
domain correlation approach of Johnson et al. (2009) that focuses
on maximizing the correlation of hydrological and geophysical
time series. Binley et al. (1996) introduced the concept of
pixel breakthrough curves for analyzing time-lapse geophysical
inversions of solute transport experiments. One may use such
system responses to calibrate a hydrological model (e.g., Kemna
et al., 2002; Crestani et al., 2015). For instance, Mary et al.
(2020) used ERT and Mise-à-la-masse (MALM) data in order
to constrain the initial values and boundary conditions of
hydrological models. Cassiani et al. (2016) applied hydrological
modeling for a quantitative interpretation of the ERT experiment
on a plant-root system. The next degree of integration consists
in incorporating additional knowledge during two sequential
inversions, i.e., applied to the ERT measurements and the
Richards’ equation. This latter approach does not ensure an
accurate quantitative description of the physical state, typically
violating the mass balance (Manoli et al., 2015) as a result of
resolution limitation in geophysical data. Conversely, a coupled
inversion links a hydrological model directly with a forward
model of the geophysical data, and the mismatch between
measured and modeled geophysical response is minimized
(Wagner et al., 2019; Wagner and Uhlemann, 2021). In doing
so, the soil hydraulic parameters used in the hydrological model
can be optimized, while error propagation is avoided (Rubin and
Hubbard, 2005; Vereecken et al., 2006; Binley et al., 2010, 2015;
Hinnell et al., 2010). Geolectrical inversion has known issues,
typically due to the non-uniqueness of the solution in addition
to incomplete or imperfect data due to practical limitations in
collecting them. Advantages and drawbacks (structural errors
in the hydrological conceptual model, dependency on known
petrophysical relationships) of coupled inversions have been
discussed by many authors (e.g., Hinnell et al., 2010; Camporese
et al., 2015a; Slater and Binley, 2021; Yu et al., 2021). An emerging
method for combining model predictions with observations
is provided by the DA framework. The biggest advantage
of DA methods over classical inversion is that they do not
require inverted ER values, thus reducing the uncertainty in the
estimation of the hydrological quantities, since no artifacts are
inserted in the method by solving a classical inverse problem
(see section Model Parametrization). Several studies show the
promises of DA schemes for dynamic model parametrization in
the context of soil-plant modeling (e.g., Han et al., 2012; Hu et al.,
2017, 2019).

MODEL PARAMETRIZATION

Prior Models and Global Sensitivity

Analysis
As a choice for the prior information we generally want to
define minimally subjective Prior PDFs (see sections Root water
uptake models, Formulating a Soil/Root Electrical Conductivity
Model and the Petrophysical Relationship). A Gaussian prior
will enforce smoothness via the prior covariance. Hence,

Gaussian priors are not suitable for characterizing discontinuous
(non-smooth) fields and we would prefer edge-preserving priors
(Arridge et al., 2019). Note that prior information is also
useful to constrain the deterministic inversion by setting the
lower and upper bounds for each parameter (e.g., Kuhl et al.,
2021). Prior knowledge can be estimated from onsite calibration
measurement or from literature values.

The number of parameters governing a hydrological system
can be high. A general rule of thumb is that parameters that
are not being updated are assumed to be known, and literature
values are used throughout the DA process. In order to decide
which of the model and observation parameters need to be fixed,
a global sensitivity analysis is often useful. To this end, Kuhl
et al. (2021) quantified the sensitivity of each tested value by
computing the root mean square error (RMSE) between the
reference synthetic ER data and the perturbed ER data modeled.
More advanced approaches can be used such as the Morris’
method (1991) employed to determine the few most influential
parameters among a large number of parameters (Hu et al.,
2017).

Definition of the Objective Function
Both for deterministic coupled hydrogeophysical inversion
and DA methods, an objective function (or cost function)
is defined, which expresses the misfit between observations
and model predictions. This function can take different forms
when considering the hydrogeophysical inversion (Rubin and
Hubbard, 2005; Vereecken et al., 2006; Hinnell et al., 2010; Mboh
et al., 2012).

To express the objective function for the variational approach
of DA, we follow the nomenclature used by Ning et al. (2014).
In the general case, we aim at estimating a time trajectory of the
state vector x = [x0, x1. . . , xT] (with the time steps ranging from
1 to T and T being the assimilation window), by minimizing the
cost function:

min
x0 ,...xT

{

‖x0 − xb‖
2
P−1
b

︸ ︷︷ ︸

Jb(x)

+

T
∑

t=0

∥
∥yt − Ht (xt)

∥
∥
2
R−1
t

︸ ︷︷ ︸

J0(x)

+

T
∑

t=1

‖xt − F (xt−1)‖
2
Q−1
t

︸ ︷︷ ︸

Jq(x)

}

(3)

The cost function is explicitly expressed as the sum of three
components to draw the similarities with classical inversion of
hydrogeophysical data. Jb (x), Jq (x) and J0 (x) stand respectively
for the a priori, the model and the data term. Here, xbis
a prior estimate of the true initial state commonly referred
to as the background state. The notation ‖e‖2

P−1
b

represents

the weighted quadratic norm, that is, eTP−1e, where T is the
transpose operator, and P represents the covariances of the error
e (same apply for ‖e‖2

Q−1
t

and ‖e‖2
R−1
t

where Q and R represent

the covariances of the error e for the model and the data
weighted quadratic norm, respectively). In section Optimal Mass
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Transport Metric in Variational Data Assimilation we introduce
a new objective function based on a different norm in order to
improve the estimation of the misfit for RWUmodels.

Model Update
After the prediction step (Eqs. 1, 2), DA requires one additional
step called update. This sequence is repeated recursively to
estimate unknown states at multiple times of the system’s
evolution when observations are available. Note that this
constitutes the main difference with single-step (also termed
“batch”) geostatistical inversion where all the time steps are
assimilated at once. Among DA approaches, we distinguish
between Bayesian filters and Bayesian smoothers. While Bayesian
filters (e.g., Kalman Filter, KF) in its basic form only computes
estimates of the current state of the system given the history
of measurements, Bayesian smoothers (e.g., Kalman Smoother,
KS) can be used to reconstruct states that happened before
the current time. Both filters and smoothers suffer from the
computational cost related to the propagation over time of the
covariance matrices. To overcome this limitation, the covariance
matrices can be reduced by representing them with a number of
random realizations generated from an appropriate distribution
(Ensemble based methods). The Kalman filter can be extended
to the Ensemble Kalman filter (EnKF) which allows for non-
linear models but is limited by the Gaussian assumption. An
alternative is the Particle Filter (PF) approach which extends
the application of DA methods to non-Gaussian parameters.
Many references report successful applications of both smoother
and filter families to integrate geophysical observations (Pasetto
et al., 2012; Manoli et al., 2015; Rossi et al., 2015) but also
plant and atmospheric observations (Dong et al., 2016) into
hydrological models.

TOWARD AN INTEGRATED RWU MODEL

USING DA

DA algorithms rely on the state model, the observations and
the observation models (petrophysical relationships) described
already in sections Root Water Uptake Models and Formulating
a Soil/Root Electrical Conductivity Model and the Petrophysical
Relationship. For the specific case of improving the combination
of geoelectrical data with hydrological root model we propose
two pathways for improvement.

Optimal Mass Transport Metric in

Variational Data Assimilation
In section Definition of the Objective Function, we have seen
that in most cases the discrepancy between measured and
predicted data is expressed as the Euclidean L2 misfit function.
Nevertheless, in reality, as the root system forms a network
this norm is not optimal to capture its complex geometry.
Recent studies show the potential of the optimal transport theory
in defining a more suitable objective function based on the
Wasserstein distance (Eq. 4, based on the formalism of Ning et al.,
2014).

min
x0 ,...xT

{

W (x0, xb ) +

T
∑

t=1

W (xt , F (xt−1))

+

T
∑

t=0

∥
∥ yt − Ht (xt)

∥
∥
2
R−1
t

}

(4)

Equation 4 describes the minimization of the time trajectory
of the state vector x = [x0, x1. . . , xT]. Compared to Eq. 3,
only the term corresponding to the measurement error is still
quantified by a quadratic norm, under the assumption that
observational errors (‖e‖2

R−1
t

) are well-represented by additive

(Gaussian) random noise. The other terms are based on the
Wasserstein metricW.

Several studies report the advantages of using Wasserstein
distance compared to Euclidean distance. For example, Ning
et al. (2014) advocate the relevance of transportation metrics
for quantifying non-random model error in variational DA for
non-negative natural states and fluxes when Prior knowledge
is not always reliably defined. Similarly, Métivier et al. (2016)
use the Kantorovich–Rubinstein (KR) norm as an optimal
transport distance to improve inversion of full waveform seismic
tomography while Hernández and Liang (2018) propose a hybrid
Bayesian and variational data assimilation method for high-
resolution hydrologic forecasting.

Assimilation of Stem-Based Method

Observation Data
Most of the studies cited above consider empirical functions
describing the root system length or density needed for the
macroscopic RWU model. Stem based geoelectrical methods
such as electrical capacitance or MALM methods aim at
retrieving the RLD via the distribution of current source density
(CSD) (Dalton, 1995; Peruzzo et al., 2020). In order to reduce the
solution’s non-uniqueness we can use: (i) a simplified observation
model approach which consists in informing the root-zone sink
term used in macroscopic RWU model with the known RLD
inferred from inverted CSD data (see e.g., Mary et al., 2019), (ii) a
more accurate model approach with a forward model predicting
the CSD based on the solution of the Poisson equation. This
DA approach would allow an assimilation of either ERT or
both ERT and CSD datasets, taking into account the associated
measurement uncertainties.

CONCLUSIONS

Time lapse ERT measurements are the most informative tools
to derive soil water movement and variation of soil water
content due to root water uptake. Thus, it appears natural
to cast geoelectrical monitoring data within a dynamical
parametrization framework. This is especially straightforward
considering the non-linearity and complexity of the soil-plant
system and all the uncertainties that need to be accounted for.
Improving our understanding of soil-plant interactions requires
the development of coupled numerical hydrogeophysical
models and data assimilation methods. Indeed, the governing
parameters of soil-plant systems are likely non-Gaussian
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variables and the forward and translation models are highly
non-linear. The parametrization strategy must then be adapted
from coupled optimizers, specific DA schemes (Particle
Filters) and/or improved error estimations (Wasserstein).
Additionally, the recent advances in characterizing roots
using geoelectrical methods such as stem based ones can
be seen as a leverage to introduce more extensive root and
soil knowledge into the hydrological model. We advocated
the use of macroscopic RWU models which have the
advantage of being easily informed by recent development
in root imaging (CSD). Considering that one of the biggest
challenges is to evaluate uncertainties in the model parameters,
geophysical data and forcing data, we can conclude that
there is an obvious advantage of the Bayesian approach over
deterministic methods.
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