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Chapter 11

Eliciting students’ preferences for 
the use of their data for learning 
analytics
A crowdsourcing approach

Maina Korir, Sharon Slade, Wayne Holmes and  
Bart Rienties

11.1     Introduction

Higher education institutions (HEIs) collect and use student data to improve oper-
ations and course delivery (Siemens, 2013), for research purposes (Gri!ths, 2017), 
and to improve teaching and learning in a process referred to as learning analytics 
(Long & Siemens, 2011). Examples of such uses are illustrated in Chapter 8 (Rizvi, 
Rienties, Kizilcec, & Rogaten, 2022) and Chapter 14 (Nguyen, 2022). With the 
growing shift to blended and online learning in higher education, virtual learning 
environments (VLEs) facilitate the collection of data about whether and how stu-
dents interact with learning resources. VLEs are designed to record a vast amount 
of information about students’ behaviour, including number of clicks, time spent 
on the VLE, number of videos viewed, and number of forum posts (Rizvi, Rienties, 
Kizilcec, & Rogaten, 2022). This information may be used as a proxy for student 
engagement with a course, and to predict student success. Furthermore, the insights 
allow HEIs to improve educational practice in teaching and learning (Nguyen, 
2022). Student support teams can identify students thought likely to drop out or 
fail the course (Foster & Siddle, 2020; Herodotou et al., 2017). These predictions 
can be made su!ciently early to allow tutors to intervene and support students to 
improve their performance and outcomes.

The institutional use of student data to facilitate various forms of student success 
has given rise to ethical and privacy concerns (Ferguson, 2012; Siemens, 2013; Slade 
& Prinsloo, 2013). Ethics in learning analytics may be understood as “the systemati-
zation of correct and incorrect behaviour in virtual spaces” (Pardo & Siemens, 2014, 
p. 439). Ethical considerations focus on issues such as morality, student identity, and 
the institutions’ obligation to use student data (Slade & Prinsloo, 2013). Privacy in 
learning analytics may be understood as “the regulation of how personal digital 
information is being observed by the self or distributed to other observers” (Pardo & 
Siemens, 2014, p. 438). The value of privacy lies in its ability to promote relationships 
and autonomy, allowing people to limit what is known about them and to make 
decisions based on their values, without outside interference (Rubel & Jones, 2016).

Empirical research has consistently demonstrated that students are often unaware 
of the use of their data for learning analytics (Jones et al., 2020; Roberts, Howell, 
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Seaman, & Gibson, 2016), and the student data their institution collects (Sun, 
Mhaidli, Watel, Brooks, & Schaub, 2019). When informed about potential uses of 
their data, students express varied responses: such as indicating a lack of concern 
about the use of their data in cases where the recipient and data uses are made clear 
(Vu, Adkins, & Henderson, 2019), and accepting institutional use of their data to 
bene"t their learning (Slade, Prinsloo, & Khalil, 2019). At the same time, students 
also express concern, for instance, about being surveilled or tracked (Slade & 
Prinsloo, 2014). Consequently, there seem to be inconsistent perceptions of stu-
dents and privacy concern in learning analytics.

An area for further research, within the context of student privacy and learning 
analytics, is that of students’ perceptions of the transactional nature of learning 
analytics (Ferguson, 2019; Wintrup, 2017). Students are asked (or are presumed) to 
consent to the use of their data for learning analytics so that data can be used for 
potentially bene"cial purposes such as the provision of learning recommendations, 
or recommendations for remedial action and to improve student performance (Ho, 
2017; Siemens, 2013). Use of student data in these ways has potential for privacy 
harms, that is, possible injury to students through the collection and use of their 
data (MacCarthy, 2014). This includes loss of autonomy (Rubel & Jones, 2016), 
pro"ling, and identi"cation of the individual whose data is used (Solove, 2009). 
While there is insightful research on students’ perspectives of the ethics and privacy 
of learning analytics, little is known about students’ perceptions of this risk/bene"t 
trade- o# and their preferences for the use of their data. Chapter 11 o#ers addi-
tional insights in this context.

11.1.1     Empirical research on students and privacy in learning 
analytics

Findings from a number of studies converge on a common theme that students 
lack an awareness of learning analytics and about how their data is used for this 
purpose (Jones et al., 2020; Sun, Mhaidli, Watel, Brooks, & Schaub, 2019). In 
general, where they are informed about learning analytics, what data is used, 
and for what purpose, it might be argued that students appear positive about 
institutional use of their data to enhance their own and other students’ learning. 
This is based on data collected using semi- structured interviews with 112 
undergraduate students across eight universities in the USA (Jones et al., 2020). 
Other work, with a sample of students at a UK university, involving a survey 
(with 674 students) and focus group discussions (with 26 students) (Tsai, 
Whitelock- Wainwright, & Gaševic ੜ, 2020) supports this perspective, as students 
in the focus groups indicated their support for institutional use of their data, 
but only for what they considered as legitimate purposes, namely, to comply 
with legal requirements, to improve educational services, and to improve the 
university’s overall performance. It is noted that this positive perspective is con-
ditional, thus, it is not clear whether negative perceptions of data use might 
arise in cases where there is insu!cient institutional transparency surrounding 
use of student data.
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One possible bene"t of transparency about institutional use of student data is a 
reduction in privacy concerns as suggested by the work of Vu, Adkins, and 
Henderson (2019) who distributed a survey to 1,647 students at various HEIs in 
the USA. However, as previously stated, there are mixed results within the context 
of students’ privacy concerns about data use for learning analytics. In contrast to 
the "ndings of Vu, Adkins, and Henderson (2019), students in the study by 
Ifenthaler and Schumacher (2016) were willing to share data related to their stud-
ies, but were less willing to share personal data or data trails collected from their 
use of a VLE. More speci"cally, of the 333 students who "lled out the survey, 84% 
were willing to share course enrolment data, compared to 8% who agreed to share 
their medical data, and 9% who agreed to share their online user path for learning 
analytics purposes.

The role of students’ acceptance of data use in exchange for learning- related 
bene"ts has been examined qualitatively in work by Tsai, Whitelock- Wainwright, 
and Gaševic ੜ (2020) and quantitatively in work by Slade, Prinsloo, and Khalil 
(2019). In the latter case, the authors indicate that 74% of the 215 study partici-
pants stated that they were comfortable with the collection of their personal data 
in exchange for bene"ts such as personalised support. However, to the best of our 
knowledge, there is currently limited to no empirical research that has explored 
students’ perspectives of the privacy risks inherent in the use of their data for 
learning analytics.

The privacy calculus theory and "ndings from related research (Dinev & Hart, 
2006; Laufer & Wolfe, 1977), suggest that there is a relationship between both per-
ception of privacy risks and bene"ts of data use, and willingness to share personal 
information. Speci"cally, where there is a high perception of privacy risk, users are 
less willing to transact with their personal information (Dinev & Hart, 2006), 
whereas users expecting to receive bene"ts are observed to share more data (Li, 
Rathindra, & Xu, 2010). Therefore, the following research questions were identi-
"ed for Chapter 11:

 1 To what extent does an awareness of the possible privacy risks and/or the 
bene"ts of data use for learning analytics in%uence students’ data use 
preferences?

 2 What do students indicate as the motivation for their data use preferences?

11.1.2     Methods

11.1.2.1     Setting and participants

Using the crowdsourcing platform Proli"c, a sample was drawn from UK- based 
students. We sought to recruit an equal number of male and female participants. 
With respect to participants’ ages, research "ndings have demonstrated that older 
adults express higher levels of privacy concern than younger adults (Black, 
Setter"eld, & Warren, 2018). Therefore, we recruited participants aged between 18 
and 25 years to enhance our evaluation of the in%uence of the interventions. A 
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total of 447 participants took part in the study. There were 216 male (48.3%) and 
231 female (51.7%) participants. The mean age was 20.6 (SD = 1.86). Most of the 
participants (409–91.5%) were studying at university and the remainder were in 
further education (38–8.5%).

11.1.3     Study materials

All participants were shown a sample learning analytics dashboard (Figure 11.1), a 
data use preference prototype (Figure 11.2), and the privacy risks and/or bene"ts 
interventions (Figure 11.3). The latter was not provided to participants in the con-
trol group. The design of the sample learning analytics dashboard was based on the 
OU Analyse interface (Kuzilek, Hlosta, Herrmannova, Zdrahal, & Wol#, 2015) and 
was simpli"ed to maintain participants’ focus on the study aims.

The data use preference prototype showed participants two types of data that 
can be used for learning analytics, speci"cally data about the student and data 
about the students’ activities on the online learning platform (Sclater, Peasgood, & 
Mullan, 2016).

The privacy risks intervention was developed using Solove’s (2009) taxonomy 
of privacy harms. The "rst risk (1) is referred to at the beginning and end of the 
description. It relates to the information collection category of the taxonomy and 
the risk of surveillance. The second risk (2) falls under the information processing 
category of the taxonomy, and the risk of aggregation. The third risk (3) is also in 
the information processing category of the taxonomy, under the risk of identi"ca-
tion. Additionally, the bene"ts intervention presented nudging, prediction, and rec-
ommendation of learning resources as bene"ts for students based on the use of 
their data.

Learning Analy!cs Dashboard
Performance

Assignment Predic!on Actual

1 Submit 88
2 Submit 74
3 Submit Not yet available
4 Submit Not yet available 

Personalised Reading and Ac!vity Recommenda!ons 

This sec!on shows that you 
are predicted to submit all 
your required assignments 
for this course.

This sec!on contains 
personalised study 
recommenda!ons.

Access prac!ce
assignments

Access relevant
e-books

Review course
concepts

Figure 11.1    The sample learning analytics dashboard.
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11.1.4     Study measures

Three measures of data use preferences, concern over data use, and concern over 
privacy risks were created. It was necessary to create these three measures as there 
was limited research on students’ data use preferences in the learning analytics 
context, and therefore there were few opportunities to identify questions from 
related research as recommended in best practice for questionnaire design (Bryman, 
2016; Groves et al., 2009).

Four other study measures were obtained from published research. The scale 
perceived usefulness of learning analytics was adapted from Arbaugh (2000) who 
developed it with 114 students in a study on student satisfaction with MBA courses. 
The sharing data scale was developed with over 300 students in Germany (Ifenthaler 
& Schumacher, 2016). The scale perception of bene"t from data use for learning 
analytics was adapted from Naeini et al. (2017) who used it with 1,014 participants 
in a study on privacy preferences in the Internet of Things. Finally, the Internet 

Data about myself, for example:

•  Age
•  Gender
•  Previous educa!on
•  Number of course a"empts

• Ac!vity on the student forum e.g. 
   forum posts
• Ac!vity interac!ng with the course 
   content e.g. downloads
• Interac!on with course material e.g.

reading text  

Data about my ac!vity in the virtual learning 
environment, for example:

Figure 11.2    Examples of student data used for learning analytics.

Possible privacy risks of data use

We will monitor what you and other students are doing on the online learning pla!orm [1]. Data that 
you and other students have provided to separate informa"on systems at your learning ins"tu"on 
(for example during registra"on) will be combined to form a digital profile [2]. The digital profile can 
be linked to the individual student [3], and this informa"on will be used to make decisions about you 
and other students, such as predic"ng your performance and giving you study recommenda"ons [1].

Possible benefits of data use

We can o#er you personalised support to help you complete the course, including nudging to submit 
assignments or follow up from the student support team. We can also provide you with personalised 
recommenda"ons of learning materials that can improve your understanding of the course material. 

Figure 11.3    Descriptions of the privacy risks and benefits.
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Users Information Privacy Concern (IUIPC) scale (Malhotra, Kim, & Agarwal, 
2004) was developed in two studies with over 700 participants and has been used 
extensively to measure users’ privacy concerns. The scales used in the study were 
modi"ed to include a “not applicable” option following recommendations by 
Aldridge and Levine (2001) and Krosnick (2018) to allow participants to respond 
even if a question did not apply to them. Additionally, attention check questions 
were used to ensure that spurious data could be detected in the data cleaning phase 
(Egelman, Chi, & Dow, 2014).

11.1.5     Study design and procedures

A between- subjects design was used where each participant was randomly assigned 
to one of four groups: the risks group, the bene"ts group, the risks and bene"ts 
groups, and the control group. After providing consent to take part in the study, 
participants indicated their data use preference (pre- test), choosing between pre-
ferring to share no data, only data about themselves, only data about their activities 
on the learning platform, or both data about themselves and their activities on the 
learning platform. They were given brief background information on learning 
analytics and then viewed the sample learning analytics dashboard. In the experi-
mental condition participants were shown the intervention, and afterwards they 
indicated their level of concern for the stated privacy risks and their perception of 
the bene"ts. Participants were then asked to assess the usefulness of the learning 
analytics dashboard features and indicate whether they were concerned about the 
use of their data. They again provided their data use preferences (post- test) and 
indicated their general privacy concern, before providing demographic informa-
tion at the end of the study.

11.2     Results

11.2.1     The influence of risks and benefits awareness on 
participants’ data use preferences

In terms of RQ1, the descriptive statistics for participants’ data use preferences in 
terms of the mean and standard deviation are shown in Table 11.1. There was a 
decrease in the mean values (post- test) for the control group and the risks group, 
and an increase in the mean values for the bene"ts group. At the same time, the 
mean values for the risks and bene"ts group remained unchanged. In other words, 
the results suggest that the awareness intervention might have had an in%uence on 
participants’ data use preferences in the risks, and in the bene"ts group, but made 
no di#erence in the risks and bene"ts group. It might be that any increase in par-
ticipants’ data use preferences (thereby indicating a willingness to share more data) 
resulting from the bene"ts intervention was tempered by the risks intervention.

There was a slight decrease comparing the overall post- test and pre- test mean 
scores (pre-test mean = 3.03, SD = 0.90; post-test mean = 3.00, SD = 0.94). A 
paired samples t- test revealed that these di#erences were not statistically signi"cant 
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(p > .340). A one- way ANOVA revealed no signi"cant di#erences among the 
means of the four groups on pre- test data use preferences (F(3, 443) = 0.637, p > 
.590), and post- test data use preferences (F(3, 443) = 0.786, p > .501). Finally, using 
McNemar’s test, as the variables were at the nominal measurement level, we deter-
mined that there was no statistically signi"cant di#erence in participants’ data use 
preferences pre-  and post- intervention (p > −.140).

11.2.2     Motivation for participants’ data use preferences

11.2.2.1     Theme 1: Support for institutional use of student data

Two main themes were identi"ed from participants’ open responses in order to 
address RQ2. The "rst theme indicated participants’ support for institutional use of 
student data (49% of codes, n = 238), and participants gave several reasons for their 
data use preferences (80% of codes, n = 190 (out of 238 codes)), for example, that 
the data shared was su!cient or appropriate for the stated purposes (19% of codes, 
n = 37 (out of 190 codes)). Their perception of the data being su!cient took on 
seve ral forms, for example, they shared what was most relevant (38% of codes, n = 14 
(out of 190 codes)), was less invasive (19% of codes, n = 7 (out of 190 codes)), felt 
comfortable or safe for them to share (19% of codes, n = 7 (out of 190 codes)), or 
what they thought showed their engagement (11% of codes, n = 4 (out of 190 
codes)). As participant 161 stated:

Because that is directly related to my learning and doesn’t take into consider-
ation other factors which may not assess academic performance.

(P161, risks group, Female, willing to share data about  
activities, no change in data use preference)

This code suggests that the way student data will be used is a useful information 
point in transparency initiatives as students might relate to one or more of the 
stated purposes, thereby agreeing to the use of their data, as seen in (Slade & 
Prinsloo, 2014).

Table 11.1    Descriptive statistics of students’ pre-test and post-test data use 
preferences by experimental group

Data use preference 
pre- test

Data use preference 
post- test

Condition Mean Std. Deviation Mean Std. Deviation N

Control 3.09 0.976 2.97 0.98 128
Risks 2.93 0.906 2.89 0.934 104
Benefits 3.04 0.858 3.07 0.906 104
Risks and 

benefits
3.05 0.824 3.05 0.923 111
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Participants additionally expressed several expectations of what the learning 
institution should do with their data (9% of codes, n = 21 (out of 238 codes)). 
For example, they expressed an expectation for purpose limitation (33% of codes, 
n = 7 (out of 21 codes), that is, that only academic data would be used for 
academic purposes:

I do not think it is appropriate to use data about a student’s private life and 
background to make a judgement on their academic performance. It is not fair 
to do so, as it could lead to discrimination and unfair bias. A student’s academic 
performance and private life should be separate and it is not the place of the 
university to be able to access that data or use it to judge a person’s abilities. 
Their abilities should be judged solely on their present engagement with the 
course and their previous academic record.

(P269, control group, Female, willing to share data  
about activities, no change in data use preference)

Here we see the role that context plays in students’ expectations of institutional 
data use. In contextual integrity (Nissenbaum, 2004), there are generally expecta-
tions around what information about a person can and cannot be revealed in a 
given context.

Finally, participants were observed to make trade- o#s in data use for bene"ts 
even while supporting the use of student data (4% of codes, n = 9 (out of 238 
codes)). For instance, participants indicated that they had shared just enough to 
protect privacy (44% of codes, n = 4 (out of 9 codes)), that they sought the best 
balance between privacy and services for students (22% of codes, n = 2 (out of 
9 codes)), they were getting something back for their information (11% of codes, 
n = 1 (out of 9 codes)), and that the bene"ts outweighed the privacy risks (11% 
of codes, n = 1 (out of 9 codes)).

11.2.2.2     Theme 2: Hesitation about institutional use of student data

The second theme highlighted participants’ hesitation about institutional use of 
student data (51% of codes, n = 247). Participants provided various reasons why 
they hesitated to share (all) their data. These reasons clari"ed why they chose to 
share some data, that is data about themselves or data about their activities (43% of 
codes, n = 104 (out of 247 codes)). One reason that participants agreed on was that 
personal details were either not needed or should not be shared (42% of codes, n 
= 44 (out of 104 codes)). A preference for privacy (23% of codes, n = 24 (out of 
104 codes)) was another reason why participants hesitated to share their data, as 
participant 64 stated:

I tend to avoid giving away personal information as I like to be private. 
Information about what I do on my university’s learning platform is ok 
though.

(P64, risks group, Male, willing to share data about  
activities, no change in data use preference)
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As explained previously, the context in%uenced the participant’s data use prefer-
ence, helping him make an exception because it was the university’s learning 
platform.

Furthermore, participants raised ethical and privacy considerations (35% of 
codes, n = 87 (out of 247 codes)). Their responses captured their concern about 
(potential) bias, discrimination, or prejudice (21% of codes, n = 18 (out of 87 
codes)).

I feel the knowledge of certain things such as my gender may be used to 
discriminate.

(P412, risks group, Female, not willing to share data,  
change to prefer to share no data)

The example above demonstrates that transparency initiatives may cause stu-
dents, where they can control whether their data is used, to prefer not to share 
any data. As this participant was in the risks group, the change in their data use 
preference was unsurprising. Transparency initiatives in learning institutions 
should seek to balance information about privacy risks alongside information 
about bene"ts, thereby enabling students to make informed decisions about the 
use of their data.

Additionally, participants raised concerns that institutional use of student data as 
described in the study could negatively impact students (18% of codes, n = 16 (out 
of 87 codes)), for instance, that students would be pressured to behave in a certain 
way:

With more information, I could determine that the personal information used 
would be almost a breach of my privacy, and even giving away data about my 
use of the learning platform is somewhat private to me, as I would like to 
privately access learning materials without feeling pressure (for example if  
I downloaded some materials a little late in the course, or past a deadline).

(P425, control group, Male, willing to share data about  
activities, change to prefer to share no data)

Finally, other concerns were raised including that the data use was privacy invasive 
(8% of codes, n = 7 (out of 87 codes)), and that the data could only give a partial 
picture of the student (8% of codes, n = 7 (out of 87 codes)).

There was some tension observed between understanding the need for data use 
and discomfort with data use (12% of codes, n = 29 (out of 247 codes)) where 
participants appeared in two minds about the use of data. Participants were seen to 
express an understanding, for instance, that institutional data use was needed, 
alongside seemingly contradictory views, such as expressing corresponding con-
cerns about discrimination, or a sense that the data use was privacy invasive:

I don’t mind giving basic information about myself since that would be fairly 
easy to get anyway, but I do not like to have everything about me being 
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tracked even it could have some minor bene"ts to helping me improve my 
performance.

(P424, Risks and bene"ts group, Female, willing to share  
data about self, no change in data use preference)

Finally, participants expressed a desire for boundaries or separation in data use 
across their personal lives and their lives as students (8% of codes, n = 19 (out of 
247 codes)). They were keen to keep academic and private life separate or their 
online activity separate from student life:

At "rst I thought it might be a good idea to share some data, but I believe that 
the suggested options of the data shared/what will be done with it oversteps 
its boundaries and could have negative e#ects on performance and mental 
health. I believe that if the only outcome of the data collection was to improve 
learning by providing support, then I’d be alright with sharing some of the 
suggested data.

(P326, control group, Female, willing to share data about  
self and activities, change to prefer to share no data)

11.3     Discussion and moving forwards

In Chapter 11 participants were presented with privacy risks and/or bene"ts inter-
ventions to examine whether and how these would in%uence their data use prefer-
ences. While we observed slight changes to participants’ data use preferences, these 
changes were not statistically signi"cant (RQ1). Therefore, we analysed partici-
pants’ open responses to better understand motivations for their data use prefer-
ences (RQ2).

We identi"ed nuances in participants’ responses as they expressed support for 
institutional use of student data for learning analytics alongside hesitation to sup-
port institutional use of student data. While one would expect either full support 
for use of student data or complete refusal to support the same, participants’ 
responses suggested a middle ground where this apparent tension between support 
and hesitation co- existed.

Participants’ responses indicated that they made trade- o#s to arrive at what was 
an acceptable use of student data for them. This suggests a hidden negotiation pro-
cess that students go through. Learning institutions can provide supporting struc-
tures such as inviting and publicly responding to students’ questions on institutional 
data use to make these tensions and negotiations visible. There are also di#erent 
student preferences to consider and support. While some students might want to 
choose what data is used, others may "nd this e#ort a step too far. However, this 
apparent apathy should not be construed as students lacking an interest in or hav-
ing no concerns over the privacy of their data (Hargittai & Marwick, 2016).

Throughout Chapter 11 we noted that participants had contrasting views on 
what data was appropriate to share and why. For example, one student shared data 
about themselves saying that was less invasive, while another student shared data 
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about their activities on the online learning platform for the same reason. This sug-
gests a need to enhance students’ data literacy. For instance, they may not know that 
their personal data has less prominence in the statistical models over time and data 
about their activities on the learning platform becomes more important (Kuzilek, 
Hlosta, Herrmannova, Zdrahal, & Wol#, 2015). Additionally, it may be unclear 
whether sharing di#erent data modi"es the digital pro"les created about students, 
how the resulting digital pro"le in%uences the bene"ts available to students, and 
the corresponding privacy harms. In this way, students can make more informed 
decisions about the use of their data which should be an aim of learning institu-
tions’ transparency initiatives.

11.3.1     Implications for practice

We recommend greater transparency from learning institutions about institutional 
uses of student data. This would require that the relevant content is made accessible 
and understandable for students, identifying what and how speci"c data is used for 
learning analytics purposes. This level of detail in learning institutions’ transparency 
initiatives will be received positively by some students. Teachers can also support 
institutional e#orts for transparency around data use by making students aware of 
when and how their course data is used for learning analytics. Furthermore, insti-
tutions should examine ways to empower students with respect to the use of their 
data by allowing them to indicate whether they want to participate in learning 
analytics, and which data items they would be willing to have used for the same. 
Whatever students choose, ethical practice places a burden on the learning institu-
tion to ensure that the bene"ts truly outweigh any harms.
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