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Abstract

Motivated by a longstanding conjecture of Thomassen, we study how large the average degree of a graph
needs to be to imply that it contains a C4-free subgraph with average degree at least t. Kühn and Osthus
showed that an average degree bound which is double exponential in t is sufficient. We give a short proof of this
bound, before reducing it to a single exponential. That is, we show that any graph G with average degree at

least 2ct2 log t (for some constant c > 0) contains a C4-free subgraph with average degree at least t. Finally, we
give a construction which improves the lower bound for this problem, showing that this initial average degree
must be at least t3−o(1).

1 Introduction

The girth of a graph G, denoted g(G), is the length of a shortest cycle in G. A celebrated conjecture of
Thomassen [13] from 1983 says that, for each t and g, there is some f(t, g) such that every graph G with av-
erage degree d(G) ≥ f(t, g) contains a subgraph with girth at least g and average degree at least t.

This is straightforward for regular graphs, or, more generally, for graphs whose maximum degree ∆(G) is at
most a constant multiple of d(G). Indeed, given an n-vertex d-regular graph G, take a subgraph H of G by keeping
every edge with probability p = d−(g−1)/g/2. The expected number of edges in H is ndp/2 = nd1/g/4 and the
expected number of cycles with length at most g in H is at most ndg−1pg = n/2g−1. Thus, deleting an edge from
each short cycle of a typical such H gives a graph with average degree at least d1/g/4 and girth larger than g.

This argument can, of course, be used for any graph containing an almost regular subgraph with high average
degree. Pyber, Rödl and Szemerédi [11] showed that any graph G whose average degree is at least logarithmic
in ∆(G) has an r-regular subgraph (with r growing together with d(G)). This can therefore be used to prove
Thomassen’s conjecture for such graphs. On the other hand, Pyber, Rödl and Szemerédi [11] also proved that
there are graphs G with average degree at least c log log ∆(G) that do not contain even a 3-regular subgraph. This
shows that one cannot prove Thomassen’s conjecture through reduction to the regular case. However, more progress
has been made for graphs where the maximum degree is bounded by a function of the average degree. Indeed,
Dellamonica and Rödl [3] proved the conjecture for each graph G with average degree at least α(log log ∆(G))β ,
for some constants α and β. Nevertheless, in general Thomassen’s conjecture remains widely open.

For general graphs, as every graph contains a bipartite (and hence odd cycle free) subgraph with at least half
of the edges, Thomassen’s conjecture is trivial for each g ≤ 4. The only non-trivial case of Thomassen’s conjecture
obtained so far was by the breakthrough paper of Kühn and Osthus [7], who proved the case where g = 6. More

precisely, they showed that, for some constant c > 0, every graph G with average degree at least 22
ct3

contains a
subgraph with average degree at least t and girth at least 6. An alternative proof of this, with a similar double
exponential bound, was later given by Dellamonica, Koubek, Martin, and Rödl [2]. Using their approach, McCarty
[10] recently proved that a bipartite graph G with large average degree and no copy of Kt,t contains an induced
C4-free subgraph with many edges. The assumption that G is bipartite can be further removed, using the result
from [8], which says that an H-free graph with average degree d contains an induced bipartite subgraph with

average degree at least log1−o(1) d.
With the establishment of an upper bound for the g = 6 case of Thomassen’s conjecture, it is natural to ask

whether this double exponential bound can be improved. In this paper, we study this, starting with a very short
proof of the result of Kühn and Osthus. Building on this, we then give the following single exponential bound.

Theorem 1.1. There exists c > 0 such that, for each t ∈ N, every graph with average degree at least 2ct
2 log t

contains a graph with average degree at least t and girth at least 6.
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On the other hand, it is known that there are graphs with average degree (1+o(1))t2 which contain no subgraphs
with average degree at least t and girth bigger than 4. Indeed, this follows easily from well-known bounds on the
Turán numbers of the 4-cycle proved by Erdős, Rényi and Sós [6] (see also Problem 10.36(a) in [9]). They showed
that the maximum number of edges in any n-vertex C4-free graph is at most (1/2 + o(1))n3/2. Therefore the
complete graph on n = (1 + o(1))t2 vertices has average degree (1 + o(1))t2 yet no C4-free subgraph with average
degree at least t. Thus, the bound in Theorem 1.1 must be at least quadratic in t. However, the discussion above on
techniques for almost regular graphs suggests we should look to graphs with irregular degree sequences to improve
this. By giving a new construction, we show the bound in Theorem 1.1 must be at least roughly cubic in t, as
follows.

Theorem 1.2. There is a constant c > 0 such that, for all t there exists a graph with average degree at least t3

yet no C4-free subgraph with average degree at least ct log t.

Notation. Given a graph G we denote by ∆(G) the maximum degree of G, by e(G) the number of edges of G
and by d(G) the average degree of G. For a vertex x we denote by NG(x) the set of neighbours of x and by N2

G(x)
the set of vertices in G of distance two from x. For any pair of vertices x, y ∈ V (G), the codegree dG(x, y) is the
number of common neighbours of x and y in G. Given A ⊂ V (G) and x ∈ V (G) we denote by d(x,A) the number
of neighbours of x in A. For a pair of disjoint vertex subsets A,B in G we denote by eG(A,B) the number of edges
of G between A and B and by G[A,B] the induced bipartite subgraph of G with all such edges. All logarithms
are to the base 2.

2 Double exponential upper bound

In this section, we give a short proof of the following slightly stronger form of the result of Kühn and Osthus [7].

Theorem 2.1. There exists c > 0 such that every graph with average degree at least 22
ct2

contains a graph with
average degree at least t and girth at least 6.

Since, as is well known, every graph contains a bipartite subgraph with at least half of the edges, we can assume
that G is bipartite. That is, we can assume the initial graph G has girth at least four and no odd cycles. In order
to obtain a subgraph of G with girth at least 6, we need only find a dense subgraph which has no 4-cycles, that
is, which is C4-free. The main idea of the proof (inspired by that of Kühn and Osthus) is to find either a dense
subgraph of G with small codegrees, and hence few 4-cycles, or a large complete bipartite subgraph of G. In the
first case a further random subgraph is likely to be still dense but have no 4-cycles, and in the second case we use
the following well known construction of Reiman for Zarankiewicz’s problem (see Problem 10.15(a) in [9]). It is
based on a projective plane and gives a dense C4-free subgraph of the complete bipartite graph.

Lemma 2.2. If s = 4k2, then Ks,s has a C4-free subgraph with average degree at least k.

The next lemma, which is one of the main steps in the proof, finds either a dense subgraph with small codegrees
or can be used to build a large complete bipartite subgraph, one vertex at a time.

Lemma 2.3. Let G be a bipartite graph with vertex classes A and B and let λ ≥ 1. Then, either

(1) there is some vertex v ∈ B and sets A′ ⊂ N(v) and B′ ⊂ B \ {v} such that d(G[A′, B′]) ≥ λ, or

(2) there is a spanning subgraph H ⊂ G with d(H) ≥ d(G)/(λ+ 1) and dH(x, y) ≤ λ, for all distinct x, y ∈ B.

Proof. Let G = G0, n = |B| and label B = {v1, . . . , vn}. For each i = 1, . . . , n, repeat the following. Given
a spanning subgraph Gi−1, let Vi be the set of all vertices in {vi+1, . . . , vn} which have at least λ neighbours
in the set NGi−1

(vi). By definition, there are at least λ|Vi| edges of Gi−1 from Vi to NGi−1
(vi). If in addition

eGi−1(Vi, NGi−1(vi)) ≥ λdGi−1(vi), then the induced subgraph Gi−1[Vi, NGi−1(vi)] has average degree at least λ.
Therefore, (1) holds with v = vi, A

′ = NGi−1(vi) and B′ = Vi. Otherwise, if eGi−1(Vi, NGi−1(vi)) < λdGi−1(vi),
remove all the edges of Gi−1 between Vi and NGi−1

(vi) to form Gi. Note that vi /∈ Vi, so that no edges adjacent
to vi are removed in this operation.

Suppose that (1) never holds, so that the process terminates with H := Gn ⊂ Gn−1 ⊂ . . . ⊂ G0 = G. Now, for
every i < j, by construction of Gi we have dGi(vi, vj) < λ. Thus dH(vi, vj) < λ for each i 6= j. Most importantly,
edges incident to vi in Gi−1 are never subsequently removed. Indeed, in step i no edges incident to vi are removed
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(as vi /∈ Vi), and, after step i, vi has codegrees less than λ with all vj , j > i and we only remove edges incident to
pairs with high codegree. Therefore, dGi(vi) = dGi−1(vi).

Since we removed fewer than λdGi−1
(vi) edges from Gi−1 to get Gi we have dH(vi) = dGi−1

(vi) > (e(Gi−1)−
e(Gi))/λ. Therefore,

e(H) =
∑
i∈[n]

dH(vi) >
∑
i∈[n]

e(Gi−1)− e(Gi)
λ

=
e(G)− e(H)

λ
.

Hence, e(H) > e(G)/(λ+ 1), and thus d(H) > d(G)/(λ+ 1). I.e., H satisfies (2).

If a graph has small codegrees yet many edges, a typical random subgraph will be C4-free with large average
degree, as follows.

Lemma 2.4. There is some d0 such that the following holds for each d ≥ d0. Let G be a bipartite graph with
vertex classes A and B, with |A| ≥ |B|, dG(x, y) ≤ d1/5 for each x, y ∈ B with x 6= y, d(x) ≤ d for each x ∈ A and
d(G) ≥ d3/4. Then, G contains a C4-free subgraph with average degree at least d1/4.

Proof. Let n = |A| and note that n ≤ |G| ≤ 2n. For each v ∈ A, there are at most d2 distinct pairs of vertices
x, y ∈ N(v), and hence at most d1/5 · d2 = d11/5 copies of C4 in G containing v. Thus, G contains at most nd11/5

copies of C4. Let H be a random subgraph of G formed by including each edge independently at random with
probability p = 3d−1/2. Let X be the number of copies of C4 in H. As e(G) = n · d(G)/2 ≥ nd3/4/2, we have

E
(
e(H)−X

)
≥ p · e(G)− nd11/5p4 ≥ 3nd1/4/2− 81nd1/5 ≥ nd1/4.

Thus, there is some subgraph H ⊂ G with e(H)−X ≥ nd1/4. As |G| ≤ 2n, removing an edge from each C4 in H
thus gives a C4-free subgraph with average degree at least d1/4.

We apply this lemma through the following corollary.

Corollary 2.5. There is some d0 such that the following holds for each d ≥ d0. Let G be a bipartite graph with
average degree d ≥ t4 which contains no C4-free graph with average degree at least t. Then, there is some vertex
v ∈ V (G) and sets A′ ⊂ N(v) and B′ ⊂ V (G) \ {v} such that d(G[A′, B′]) ≥ d1/5.

Proof. Remove from G one by one vertices of degree less than d/2. This does not decrease its average degree,
and produces a subgraph G0 ⊂ G with d(G0) ≥ d(G) and δ(G0) ≥ d/2. Suppose this (bipartite) subgraph has
vertex classes A and B with |A| ≥ |B|. For each v ∈ A, select dd/2e incident edges and add them to G1. Then,
e(G1) ≥ d|A|/2 and dG1

(v) ≤ d, for each v ∈ A. By Lemma 2.3 with λ = d1/5, if G1 does not satisfy the
assertion of the corollary, then G1 contains a spanning subgraph H ⊂ G1 with d(H) ≥ d(G1)/(d1/5 +1) ≥ d3/4 and
dH(x, y) ≤ d1/5, for all distinct x and y ∈ B. Then, by Lemma 2.4, H contains a C4-free subgraph with average
degree at least d1/4 ≥ t, a contradiction.

Applying this corollary iteratively, we can now prove Theorem 2.1.

Proof of Theorem 2.1. Suppose t is large enough that Corollary 2.5 holds for each d ≥ t5t
2

. Suppose G is bipartite,

with average degree at least t5
9t2

, and let G0 = G. Suppose, for contradiction, that G0 contains no C4-free subgraph
with average degree at least t, and note that d(G0) ≥ t4.

For each i = 1, . . . , 8t2, by Corollary 2.5, we can find a vertex vi and disjoint sets Ai ⊂ N(vi) and Bi ⊂
V (Gi−1) \ {vi} and a graph Gi = Gi−1[Ai, Bi] with average degree at least t5

9t2−i

. Moreover, note that, for each
j < i, Ai ⊂ N(vj) or Bi ⊂ N(vj).

Let s = 4t2. Thus, we have vertices v1, . . . , v2s and a graph G2s with average degree at least t5
t2

> s and vertex
sets A2s and B2s such that, for each i ∈ [s], either A2s ⊂ N(vi) or B2s ⊂ N(vi). Relabelling, we can assume that
we have vertices v1, . . . , vs with A2s ⊂ N(vi) for each i ∈ [s]. As d(G2s) ≥ s, |A2s| ≥ s, and therefore G2s, and
hence G, contains a copy of Ks,s. Then, by Lemma 2.2, G contains a C4-free subgraph with average degree at
least t, a contradiction.
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3 Proof of the main result

In this section we prove Theorem 1.1. We still use an iterative procedure which finds either a dense C4-free
subgraph or makes progress towards a complete bipartite graph (cf. Corollary 2.5). However, now the average
degree will decrease much less on each iteration. Instead of passing from average degree d to average degree at
least d1/5 (which led to our double exponential bound), the average degree d decreases to only average degree
at least d/50t at each iteration, where t is the average degree we are aiming for. To do this we wish to apply
Lemma 2.3 to a graph G with λ = d(G)/50t instead of λ = d(G)1/5. If (1) in Lemma 2.3 holds, we can iterate
as before. If (2) holds, we need to do more work. In general, the conditions in (2) are not strong enough for our
techniques to find the required dense C4-free subgraph, but we can do this if, in addition, the subgraph is a very
unbalanced bipartite graph (see Lemma 3.5). Therefore, as this subgraph is always spanning, we ensure this by
only applying Lemma 2.3 to very unbalanced bipartite graphs. Fortunately, in each dense bipartite graph we can
find either a very unbalanced dense bipartite subgraph, or a dense bipartite subgraph whose maximum degree is
at most polynomial in the average degree (see Lemma 3.1). This latter case can be solved using the techniques
for nearly regular graphs discussed in the introduction (see also Lemma 3.3). Therefore, by applying Lemma 3.1
before applying Lemma 2.3 in each iteration, we gain the additional property that the graph is very unbalanced,
which we use when (2) in Lemma 2.3 holds.

We start with Lemma 3.1, which finds a dense subgraph that is either very unbalanced or has low maximum
degree.

Lemma 3.1. Every bipartite graph G with d(G) ≥ k ≥ 2 contains a subgraph H with vertex classes A and B such
that d(H) ≥ k/4, dH(v) ≤ k for each v ∈ A, and either

(1) |A| ≥ k6|B|, or

(2) ∆(H) ≤ k7.

Proof. Remove from G one by one vertices of degree less than k/2. This does not decrease its average degree,
and produces a subgraph G0 ⊂ G with d(G0) ≥ d(G) and δ(G0) ≥ k/2. Suppose this (bipartite) subgraph has
vertex classes A and B0 with |A| ≥ |B0|. For each v ∈ A, select dk/2e incident edges and add them to G1. Then,
e(G1) ≥ k|A|/2 and dG1(v) ≤ k, for each v ∈ A.

Let B1 ⊂ B0 be the set of vertices with degree at least k7 in G1, and let B2 = B \B0. Note that

d(G1[B1, A]) + d(G1[B2, A]) =
2e(G1[B1, A])

|B1|+ |A|
+

2e(G1[B2, A])

|B2|+ |A|

≥ 2e(G1[B1, A]) + 2e(G1[B2, A])

|A|+ |B0|
≥ 2e(G1)

2|A|
≥ k

2
.

Therefore, either d(G1[B1, A]) ≥ k/4 or d(G1[B2, A]) ≥ k/4. If d(G1[B2, A]) ≥ k/4, then, letting H = G1[B2, A],
we have that ∆(H) ≤ k7, and so (2) is satisfied. On the other hand, if d(G1[B1, A]) ≥ k/4, then, letting
H = G1[B1, A], we have that |B1|k7 ≤ dk/2e · |A|, so that (1) is satisfied.

For graphs satisfying (2) in Lemma 3.1, we show that with a small reduction in average degree we can reduce
the maximum degree bound even further.

Lemma 3.2. Let G be a bipartite graph with vertex classes A and B satisfying ∆(G) ≤ k7, d(G) ≥ k/4, and
dG(v) ≤ k for each v ∈ A. If k is sufficiently large, then G contains a subgraph with maximum degree at most k
and average degree at least k/400 log k.

Proof. Note that we can assume that G has no isolated vertices. Let r = 10 log k, and, for each i ∈ [r], let
Bi = {v ∈ B : 2i−1 ≤ dG(v) < 2i}, noting that these sets partition B as 2r ≥ k7. For each i ∈ [r], let
Gi = G[A,Bi]. As e(G) ≥ k|A|/8, there must be some i with e(Gi) ≥ k|A|/80 log k.

Let d = 2i−1, so that, for each v ∈ Bi, d ≤ dGi
(v) ≤ 2d. If 2d ≤ k, then Gi satisfies the lemma, so assume that

2d > k. Thus, p := k/4d < 1/2. Now, let A′ ⊂ A be chosen by including each vertex in A independently at random
with probability p. Let B′ be the set of vertices in Bi with at most k neighbours in A′ and let H = Gi[B

′ ∪ A′].
Then, by definition, ∆(H) ≤ k.

For each v ∈ Bi, its degree in A′ is binomially distributed with expectation E(d(v,A′)) satisfying k/4 = pd ≤
E(d(v,A′)) ≤ 2pd = k/2. Therefore, using Chernoff’s bound (see, e.g, Appendix A of [1]), we have

P(d(v,A′) ≥ k) ≤ P(d(v,A′) ≥ 2 · E(d(v,A′))) ≤ 2 exp (−E(d(v,A′))/3) ≤ 2 exp (−k/12) .
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Thus, E(|Bi \ B′|) ≤ 2 exp (−k/12) |Bi|. Note that, as d|Bi| ≤ k|A|, we have |Bi| ≤ 4p|A|, and, therefore,
E(|Bi \B′|) ≤ 8 exp (−k/12) p|A|.

Let k0 = k/800 log k, so that e(Gi) = e(Bi, A) ≥ 10k0|A|. Note also that every vertex of Bi \B′ has degree at
most ∆(G) ≤ k7 in A′. Hence e(Gi[B

′∪A′]) ≥ e(Gi[Bi, A′])−k7|Bi \B′|. Since E
(
e(Gi[Bi∪A′])

)
= p ·e(Gi[Bi, A])

and E(|A′|) = p|A|, we have

E
(
e(Gi[B

′ ∪A′])− k0(|A′|+ |B′|)
)
≥ E

(
e(Gi[Bi, A

′])− k7|Bi \B′| − k0|A′| − k0|Bi|
)

≥ p · e(Gi[Bi, A])− k7 · 8 exp (−k/12) p|A| − k0 · p|A| − k0 · 4p|A|
≥ p(10k0|A| − k7 · 8 exp (−k/12) |A| − 5k0|A|)
= p|A|(5k0 − k7 · 8 exp (−k/12)) ≥ 0.

Thus, there is some choice of A′ for which e(H) − k0(|A′| + |B′|) ≥ 0. Then d(H) ≥ 2k0 = k/400 log k and
∆(H) ≤ k (as explained above), completing the proof.

Graphs produced by Lemma 3.2 have high enough average degree compared to their maximum degree that
taking a random subgraph is likely, with a small alteration, to find a dense C4-graph, as follows.

Lemma 3.3. Let G be a graph with maximum degree ∆ and average degree d ≥ ∆3/4. Then, G contains a C4-free
subgraph with average degree at least d ·∆−3/4/4.

Proof. Let n = |G|. For every v ∈ V (G), there are clearly at most ∆3 paths of length three starting at v and hence
at most ∆3 copies of C4 containing v. Thus, G contains at most n∆3 copies of C4. Let H be a random subgraph
of G formed by including each edge independently at random with probability p = ∆−3/4/2. Let X be the number
of copies of C4 in H. As e(G) = n · d(G)/2 = nd/2, we have

E
(
e(H)−X

)
≥ p · e(G)− n∆3p4 ≥ nd∆−3/4/4− n/16 ≥ nd∆−3/4/8.

Thus, there is some subgraph H ⊂ G with e(H)−X ≥ nd∆−3/4/8. Removing an edge from each C4 in H gives a
C4-free subgraph with average degree at least d∆−3/4/4.

By combining Lemma 3.2 and Lemma 3.3, we can now find a dense C4-free subgraph in graphs satisfying (2)
in Lemma 3.1. For convenience, we record this as follows.

Corollary 3.4. The following holds for sufficiently large k, and t ≤ k1/5. Every bipartite graph G with d(G) ≥ k
contains either

(1) a subgraph H with vertex classes A and B such that d(H) ≥ k/4, dH(v) ≤ k for each v ∈ A, and |A| ≥ k6|B|,
or

(2) a C4-free subgraph with average degree at least t.

Proof. By Lemma 3.1, if (1) does not hold, then G contains a subgraph H which is bipartite with vertex classes A
and B such that d(H) ≥ k/4, dH(v) ≤ k for every v ∈ A and ∆(H) ≤ k7. By Lemma 3.2, H contains a subgaph H ′

with maximum degree at most k and average degree at least k/400 log k. Then, letting ∆ = k, for sufficiently large
k, by Lemma 3.3 H ′ contains a C4-free subgraph with average degree at least (k/400 log k) · k−3/4/4 ≥ k1/5 ≥ t,
so that (2) holds.

We now find dense C4-free subgraphs in graphs which satisfy (2) in Lemma 2.3 and are very unbalanced.

Lemma 3.5. Let d ≥ 2. Suppose a bipartite graph G with vertex classes A and B satisfies

• |A| ≥ d6|B|,

• d(x, y) ≤ d, for all distinct x, y ∈ B, and

• dG(v) ≤ d, for every v ∈ A.

Then, G contains a subgraph G′ which is C4-free and has average degree at least d(G)/5.
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Proof. Let ` = d(G) and let A′ ⊂ A be a subset of vertices chosen independently at random with probability
p = 1/d6 and let G′ = G[A′ ∪ B]. Each vertex v ∈ B has at most d · d(v) paths of length two starting at
it. Since d(v, u) ≤ d for all u ∈ N2(v), v is contained in at most d2 · d(v) copies of C4. Thus, there are at
most

∑
v∈B d

2 · d(v) ≤ d2 · e(G) copies of C4 in G. Let X be the number of copies of C4 in G′, and note that
E(X) ≤ p2d2e(G) ≤ pe(G)/2. Also note that |B| ≤ p|A|, E|A′| = p|A| and `|A| ≤ 2e(G). Hence

E
(
e(G′)−X − (|A′|+ |B|)`/10

)
≥ pe(G)− pe(G)/2− 2p|A| · `/10 = p

(
e(G)/2− `|A|/5

)
≥ 0.

Thus, there is some subgraph G′ ⊂ G with e(G′) −X − (|A′| + |B|)`/10 ≥ 0. Taking G′ and removing one edge
from each C4 gives a C4-free graph with average degree at least `/5.

In our proof, at every iteration (if required), we wish to apply Corollary 3.4, then Lemma 2.3, then Lemma 3.5.
For convenience we combine these steps in the following corollary. The improvement we have made can be seen by
comparing this to Corollary 2.5.

Corollary 3.6. For sufficiently large t, let G be a bipartite graph with d(G) ≥ d ≥ t5. Then, G contains either

(1) a C4-free subgraph with average degree at least t, or,

(2) a vertex v and sets A ⊂ NG(v) and B ⊂ V (G) \ (A ∪ {v}) with d(G[A,B]) ≥ d/50t.

Proof. By Corollary 3.4, if the required C4-free subgraph does not exist, then G contains a subgraph H with vertex
classes A and B such that d(H) ≥ d/4, dH(v) ≤ d for each v ∈ A, and |A| ≥ d6|B|. Apply Lemma 2.3 to H with
λ = d/50t. If case (1) in Lemma 2.3 holds, then (2) holds here. Therefore, assume that there is some spanning
subgraph H ′ ⊂ H with d(H ′) ≥ d(H)/(λ+ 1) ≥ 6t and, dH′(x, y) ≤ λ ≤ d for all distinct x, y ∈ B. By Lemma 3.5,
H ′ contains a C4-free subgraph with average degree at least t, as required.

Proof of Theorem 1.1. Suppose G is bipartite, with average degree at least (50t)9t
2

and suppose, for contradiction,
that G contains no C4-free subgraph with average degree at least t. For each i = 1, . . . , 4t2, by Corollary 3.6, we
can find a vertex vi and sets Ai ⊂ N(vi) and Bi ⊂ Bi−1 \ {vi} or Bi ⊂ Ai−1 \ {vi} and a graph Gi = Gi−1[Ai, Bi]

with average degree at least (50t)9t
2−i. Moreover, note that, for each j < i, Ai ⊂ N(vj) or Bi ⊂ N(vj).

Let s = 4t2. Thus we have vertices v1, . . . , v2s and a graph G2s with average degree at least (50t)t
2 ≥ s and

vertex sets A2s and B2s such that, for each i ∈ [s], either A2s ⊂ N(vi) or B2s ⊂ N(vi). Relabelling, we can assume
that we have vertices v1, . . . , vs with As ⊂ N(vi) for each i ∈ [s]. As d(G2s) ≥ s, |A2s| ≥ s, and therefore G2s, and
hence G, contains a copy of Ks,s. Hence, by Proposition 2.2, G contains a C4-free subgraph with average degree
at least t, a contradiction.

4 Lower bound

In this section we prove Theorem 1.2. Recall, from the introduction, the following bound of Erdős, Rényi, and
Sós [6] on the Turán number of C4. It says that every n-vertex C4-free graph G has e(G) ≤ n3/2/2 + n/4. In
particular, then, the complete bipartite graph Kn,n has average degree n but no C4-free subgraph with average
degree larger than 2n1/2 + 1/2. As noted already in the beginning of the paper, such regular graphs are unlikely
to provide good lower bounds. Instead, we base our construction on (highly irregular) graphs without regular
subgraphs, constructed by Pyber, Rödl and Szemerédi [11], as follows.

Theorem 4.1. For all d, there exists a graph with d(G) ≥ d which contains no 3-regular subgraph.

To proved our lower bound, we take (essentially) the Pyber–Rödl–Szemerédi graph H with parameter 4d and
blow up every vertex into a set of d2 vertices, replacing each edge by a copy of Kd2,d2 . Intuitively, this graph should
not have a C4-free subgraph H ′ with average degree much bigger than d. Indeed, firstly, the above estimate for the
Turán number of C4 prevents the edges in H ′ between any two blown-up vertices from having C4-free subgraphs
with average degree ≥ d. Moreover, the subgraph of H whose edges corresponds to pairs of blown-up vertices
with large average degree between them in H ′, can be shown to have maximum degree bounded by d4. Then,
from the properties of the Pyber–Rödl–Szemerédi graph, it follows that such a graph has few edges. To prove this
rigorously, we first modify the Pyber–Rödl–Szemerédi graph slightly, using another result from [11].

Theorem 4.2. There is a constant c > 0 such that the following holds. Let G be a graph with ∆(G) = ∆ > 1 and
d(G) ≥ c log ∆. Then G has a 3-regular subgraph.
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Corollary 4.3. There is a constant c > 0 such that for all d ≥ 2 there exists a balanced bipartite graph H with
bipartition classes A,B having d(a) = d for all a ∈ A, and which contains no subgraph Γ with d(Γ) ≥ c log d and
∆(Γ) ≤ d4.

Proof. Let c be such that Theorem 4.2 holds with the constant c/4. Using Theorem 4.1, let G be a graph
with d(G) ≥ 8d and no 3-regular subgraph. By Theorem 4.2, G then must have no subgraph Γ with d(Γ) ≥
(c log ∆(Γ))/4. Thus, G has no subgraph Γ with d(Γ) ≥ c log d and ∆(Γ) ≤ d4.

Now, to deduce the corollary, we need only show that G has a balanced bipartite subgraph with all vertices in
one class having degree d. First choose a bipartite subgraph G1 of G with d(G1) ≥ d(G)/2 (a random bipartition
has this in expectation). Then, by iteratively deleting vertices with degree at most 2d and using that d(G1) ≥ 4d,
we find a subgraph G2 of G1 with δ(G2) ≥ 2d. Say G2 has bipartition classes A and B, with |A| ≥ |B|. For each
vertex a ∈ A, delete all but d edges adjacent to a. Then, delete |A| − |B| vertices from A. Note that the final
graph, H say, is bipartite, balanced, and every vertex in the class from A has degree d.

As we already explained, our example will be a blow up of the graph from the previous corollary. The following
lemma will be used to show that certain C4-free subgraphs of this example have to be sparse. The sets Ai and Bj
here represent the blown-up vertices.

Lemma 4.4. Let k ≥ 4 and d ≥ 2. Let G be a C4-free bipartite graph whose vertex classes are A and B. Let A
have partition A1 ∪ . . . ∪ Ar and B have partition B1 ∪ . . . ∪ Bs, with |Ai|, |Bj | ≤ d2 for all i ∈ [r] and j ∈ [s].
Define a graph H with the vertex set {a1, . . . , ar, b1, . . . , bs} and aibj an edge exactly if e(Ai, Bj) > 0. Suppose H
is k-degenerate. Then, d(G) ≤ 13kd.

To show this, we use the following lemma.

Lemma 4.5. Let d ≥ 2. Let G be a C4-free bipartite graph whose vertex classes are A and B. Suppose A has
a partition A1 ∪ · · · ∪ Am with |Ai| ≤ d2 for each i ∈ [m]. Suppose that for all b ∈ B and i ∈ [m], we have
|N(b) ∩Ai| = 0 or |N(b) ∩Ai| ≥ d. Then d(G) ≤ 18d.

Proof. Fix an arbitrary i ∈ [m]. Let B′ be the set of vertices b ∈ B with |N(b)∩Ai| ≥ d. As G is C4-free, every pair
of vertices in Ai has at most 1 common neighbour in B. Thus, as each vertex in B′ is adjacent to at least

(
d
2

)
different

pairs of vertices in Ai, we have
(|Ai|

2

)
≥ |B′|

(
d
2

)
. Combining this with |Ai| ≤ d2 gives |B′| ≤ d

d−1 (|Ai| − 1) ≤ 2|Ai|.
Since G is C4-free, by the bound of Erdős, Rényi and Sós [4], we have

e(Ai, B
′) ≤ (|Ai|+ |B′|)3/2

2
+
|Ai|+ |B′|

4
≤ (3|Ai|)3/2.

Thus, using |Ai| ≤ d2, we get e(Ai, B) = e(Ai, B
′) ≤ (3|Ai|)3/2 ≤ 9d|Ai|.

Summing this for all i ∈ [m], we get e(G) =
∑m
i=1 e(Ai, B) ≤ 9d|A| and hence d(G) ≤ 2e(G)/|A| ≤ 18d.

Using this lemma, we can now prove Lemma 4.4.

Proof of Lemma 4.4. For an edge ab with a ∈ Ai, b ∈ Bj , we say that ab is Type 1 if |N(a) ∩ Bj | ≥ d, Type 2 if
|N(b) ∩ Ai| ≥ d, and Type 3 if neither of these occur. (Note ab may be both Type 1 and Type 2). Let G1, G2,
and G3 be the subgraphs of G with vertex set V (G) consisting of Type 1, 2, and 3 edges respectively.

Notice that Lemma 4.5 applies to G1 and G2, so that d(G1), d(G2) ≤ 18d. We claim that G3 is kd-degenerate.
That is, every subgraph of G3 has a vertex with degree at most kd, and thus, by an easy induction, d(G3) ≤ 2kd.
Therefore, if we can show G3 is kd-degenerate, we will have d(G) ≤ d(G1) + d(G2) + d(G3) ≤ 36d+ 2kd ≤ 13kd.

To show G3 is kd-degenerate, let G′ be an arbitrary subgraph of G3. Let H ′ be the subgraph of H with aibj
an edge exactly if eG′(Ai, Bj) > 0. Since H is k-degenerate, there is a vertex of degree ≤ k in H ′, say ai. Let
v ∈ Ai ∩ V (G′). Since dH′(ai) ≤ k, there are at most k sets Bj with NG′(v) ∩ Bj 6= ∅. By the definition of G3,
|NG(v) ∩Bj | ≤ d for all j. Thus, d′G(v) ≤ kd. That is, G′ has a vertex with degree at most kd, as required.

We now prove the main result of this section.

Proof of Theorem 1.2. Note that it is sufficient to find, for all d ≥ 4, a graph with average degree at least d3 and
no C4-free subgraph with average degree greater than 15cd log d, where c is some fixed constant.

Let c be such that, by Corollary 4.3, we can find a graph H satisfying the conditions in that corollary. Let the
bipartition classes of H be {a1, . . . , am} and {b1, . . . , bm}. Let G be the graph formed from H by replacing each ai
and bj by a set Ai and Bj of d2 vertices, respectively, and by replacing each edge aibj of H by a complete bipartite
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graph Kd2,d2 between Ai and Bj . Let A = A1 ∪ · · · ∪ Am and B = B1 ∪ · · · ∪ Bm, and note that these sets have
size d2m. We have e(G) = d4 · e(H) = d5m, and hence d(G) = 2e(G)/(2d2m) = d3.

Now, let G′ be a C4-free subgraph of G. We will show that d(G′) ≤ 15cd log d, completing the proof. For this,
let H1 be the subgraph of H formed by including the edge aibj exactly if the subgraph G′[(Ai ∪Bj) ∩ V (G′)] has
a vertex in Ai with at least two neighbours in Bj . Let H2 = H \H1. Let G1 and G2 be the subgraphs of G′ on
vertex set V (G′) formed from the union of the pairs G′[(Ai ∪Bj) ∩ V (G′)] corresponding to edges aibj in H1 and
H2 respectively.

Similarly to the simple argument in the proof of Lemma 4.5, since G′ is C4-free, for each j there are at most(|Bj |
2

)
≤ d4 vertices a ∈ A with ≥ 2 neighbours in Bj . Therefore, dH1

(bj) ≤ d4. From the properties of H from
Corollary 4.3, we have dH(ai) = d for all i ∈ [m], and therefore ∆(H1) ≤ d4. Again, by the properties of H, we have
that d(H1) < c log d. This holds also for any subgraph of H1, since it has maximum degree at most d4 as well. Hence
H1 is (c log d)-degenerate. By Lemma 4.4, therefore, d(G1) ≤ 13cd log d (for this application notice that, by the
definition of G1, the only pairs with eG1(Ai, Bj) > 0 are those with aibj ∈ E(H1)). Notice that, by the definition
of G2, each a ∈ Ai has dG2

(a) ≤ dH(ai) = d. Indeed, by definition, a has in G2 at most one neighbour in every set
Bj with aibj ∈ E(H). Therefore, d(G2) ≤ 2d, and hence d(G′) = d(G1) + d(G2) ≤ 13cd log d+ 2d ≤ 15cd log d, as
required.

5 Concluding remarks

• Denote by f6(t) the smallest number such that every graph G with average degree at least f6(t) contains a
subgraph with girth at least 6 and average degree at least t. In this paper, we studied the growth rate of
f6(t) and proved that it is at most exponential in t2+o(1). The best lower bound that we obtained is roughly
cubic. It would be very interesting to close this gap further and, in particular, to decide whether f6(t) is
polynomial in t.

• The next open case of Thomassen’s conjecture remains a fascinating, and seemingly very difficult problem.
That is, do graphs with large average degree always contain subgraphs with large average degree and girth
at least 8?

• A related question, posed by Erdős and Hajnal [4, 5] in the 1960’s, asks whether, for every k and g, there
is a function χ(k, g) such that any graph with chromatic number at least χ(k, g) contains a subgraph with
chromatic number at least k and girth greater than g. Unlike Thomassen’s conjecture, here the case g = 3 is
already highly nontrivial, though it was solved by Rödl [12] using a very elegant argument. All other cases
remain open.
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