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Abstract
Curve shortening in the z-plane in which, at a given point on the curve, the normal velocity of the curve is equal to the
curvature, is shown to satisfy St Sz = Szz , where S(z, t) is the Schwarz function of the curve. This equation is shown to have
a parametric solution from which the known explicit solutions for curve shortening flow; the circle, grim reaper, paperclip
and hairclip, can be recovered.
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1 Introduction

The evolution of a smooth curve γγγ (x, t) in the plane with
given initial shape γγγ 0 in which the normal velocity at a given
point on the curve is proportional to the curvature κ at that
point, is known as the curve shortening problem:

∂γγγ

∂t
= κn(x, t),

γγγ (x, 0) = γγγ 0, (1)

where n is the normal. The problem, and its higher dimen-
sional generalisation, has attracted much attention since the
1980s. Important features of the curve evolution, such as the
shrinking of any closed, embedded curve first to a convex
curve and then to a round point in finite time, have been
established e.g. [5,6]. Curve shortening (1), and its variants,
also has practical application; for example in the late-time
evolution of Hele-Shaw free boundary flow in the presence
of surface tension [3]. In the time reversed sense when the
curve lengthens, the solutions have relevance to viscous fin-
gering and crystal growth e.g. [12] where the connection to
Saffman–Taylor fingering is made.

There are only four known, explicit, time-dependent
solutions describing curve shortening: the bounded, closed
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curve solutions of the (i) circle and (ii) paperclip, and the
unbounded, (iii) steadily translating grim reaper, and the
(iv) hairclip solution—see e.g. [1,12,15]. A straight line is
a trivial solution and remains stationary. More exotic, but
not explicit, solutions taking the form of spirals which rotate
and/or expand are described in [8].

Solutions (ii)–(iv) can be written (see e.g. [15] after a
suitable rotation of coordinates and choice of timescale)

Grim reaper: x = t − log(cos y);
Paperclip: x = cosh−1(exp(−t) cos y);
Hairclip: x = − sinh−1(exp(−t) cos y).

Sketches of evolving paperclip and hairclip solutions are
shown in Fig. 1.

There is interest in deriving these exact solutions sys-
tematically using simple methods. One approach has been
to show the fundamental solutions can be obtained from a
nonlinear diffusion equation [1,12] which can be solved by
functional separation of variables in conjunction with sym-
metry assumptions. More recently, Reference [15] presents
twomethods for deriving the four fundamental solutions. The
first is based on seeking explicit solutions to (1) in which the
function being sought is itself a function satisfying the clas-
sic heat equation ht = hxx . Assuming ht is either constant or
linear in h gives each of the four fundamental solutions. The
other approach detailed in [15] is an implicit method inwhich
the solution is sought in the form of separable functions of
the three variables x, y, t .
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Fig. 1 The evolution of the
paperclip solution (left)
collapsing toward a circle shown
at times t = −3,−2,−1,−0.1.
The evolution of the hairclip
solution (right) collapsing
toward the vertical line x = 0
shown at times t = −3,−1, 2
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An alternative and systematic procedure for obtaining the
exact solutions for time-dependent curve shortening is pre-
sented here. The key idea is to represent the curve in the
complex plane using the Schwarz function [4]. Then, in
Sect. 2, well-established results for representing the geomet-
ric properties of the curve in terms of the Schwarz function
are used to derive a PDE governing the evolution of the
curve. Section 3.1 shows that the self-similar, collapsing
circle is an exact solution of the PDE, and Sect. 3.2 uses
elementary methods to derive a steadily translating para-
metric solution of the PDE which is equivalent to the grim
reaper solution. In Sects. 3.3 and 3.4, the parametric solu-
tion is generalised and shown to yield the paperclip and
hairclip solutions. Section 4 reconsiders the steadily trans-
lating problem, and derives directly the grim reaper solution
from the Schwarz function equation cast in a complex plane
moving with the solution curve. The same approach is used
to find a new exact solution taking the form of a steadily
translating parabola to the problem in which the normal
velocity of the curve is given by the cube root of the cur-
vature.

2 The governing equation in terms of the
Schwarz function

The Schwarz function S(z) of an analytic curve γγγ in the
z-plane is the unique function which is analytic in the neigh-
bourhood of γγγ and such that S(z) = z̄ on γγγ [4]. For
example, a circle of radius a, centred at the origin, has
S(z) = a2/z. Representing curves using S(z) has proved
remarkably successful in obtaining exact solutions in fluid
mechanical applications where the evolving curve may rep-
resent, for example, the interface between fluids of different
viscosities such as occurs in a Hele-Shaw cell (e.g. [7,9,11]),
or, in 2Dvortex dynamics,where the interface separates flows

with different constant vorticities (e.g. [2,13,14]). The com-
mon theme in these applications is that the dynamics of a
planar curve can be cast in terms of an equation satisfied by
the Schwarz function which, when solved, determines the
shape of the curve. Often the success of this approach is
owing to the fact that S(z) is an analytic function, at least
in the neighbourhood of γγγ , enabling methods of complex
analysis, such as conformal mapping, to be used.

In terms of S(z), the curvature κ of γγγ is [4]

κ = i

2

Szz
(Sz)3/2

, (2)

where subscripts denote partial derivatives. For an evolving
curve S = S(z, t), the normal velocity vn at point z on γγγ is
(e.g. [11])

vn = i

2

St
(Sz)1/2

. (3)

Curve shortening equates (2) and (3), giving a nonlinear PDE
for S(z, t):

St Sz = Szz . (4)

The curve shortening problem involves solving (4) subject to
the initial shape of the curve S(z, 0).

An immediate feature of (4) is, given z̄ = S(z), that it
is invariant to the scaling z → λz (λ ∈ �), which implies
z̄ = S → λS, and t → λ2t—see also [15]. Moreover, as
expected, the governing equation (4) is invariant to rotations
through angle σ , since z → eiσ z implies S(z) → e−iσ S,
rendering (4) invariant.

Letting s be the arclength parameter of γγγ , it can be shown
(e.g. [4]) dz/ds = 1/

√
Sz , and upon conjugating dS/ds =√

Sz . These relations can be used in (4) to establish the known
connection between the curve shortening flow and the heat
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equation (e.g. [15]), which in term of the Schwarz function
is

St = 2Sss . (5)

3 Explicit solutions of the curve shortening
flow

3.1 The collapsing circle

By symmetry, an initially circular curve remains circular
under the action of curve shortening: this is a known exact
(self-similar) solution. It is simple to demonstrate using (4):
a circle of radius a(t)with (without loss of generality) centre
at the origin, has Schwarz function S(z, t) = a(t)2/z which
satisfies (4) exactly provided aȧ = −1, where ȧ is the time
derivative of a(t). This is equivalent to Ȧ = −2π where
A = πa2 is the area enclosed by the circle, and consistent
with the well-known result that the area enclosed by an arbi-
trary closed plane curve decreases at the rate of 2π per unit
time e.g. [6].

3.2 The grim reaper

Let a curve translate steadily, with unit velocity, in the posi-
tive real direction, and write it as

z = t + f (ζ ), (6)

where ζ = exp (iθ), −π ≤ θ ≤ π , and f̄ = f . The latter
condition implies the curve is symmetric about the real axis.
Now

S(z, t) = z̄ = t + f (ζ ) = t + f (ζ−1). (7)

It follows from (6) and (7) that

St = 1 + f ′(ζ−1)

ζ 2 f ′(ζ )
, and Sz = − f ′(ζ−1)

ζ 2 f ′(ζ )
. (8)

Also,

Szz = 1

f ′(ζ )
∂ζ Sz,

= 1

f ′(ζ )

(
f ′′(ζ−1)

ζ 4 f ′(ζ )
+ 2 f ′(ζ−1)

ζ 3 f ′(ζ )
+ f ′(ζ−1) f ′′(ζ )

ζ 2 f ′(ζ )2

)
.

(9)

Substituting (8) and (9) into (4) and simplifying gives

d

dζ
log

f ′(ζ−1)

f ′(ζ )
= 2

ζ
+ f ′(ζ ) + f ′(ζ−1)

ζ 2 . (10)

Let h(θ) = eiθ f ′(eiθ ) and using ∂ζ = ieiθ ∂θ , (10) gives a
functional-differential equation for the complex-valued h(θ):

d

dθ
log

h(−θ)

h(θ)
= i [h(θ) + h(−θ)] . (11)

Since f̄ = f , it follows that h(−θ) = h(θ) and that the real
part of (11) is satisfied by inspection with both sides of the
equation vanishing.

Letting h(θ) = r(θ) exp(iα(θ)) and substituting into (11)
gives

dα

dθ
= −r(θ) cosα(θ). (12)

But h(θ) = r(θ) exp(iα(θ)) = −α′(θ)[1 + i tan(α(θ))]
and is the general solution to (11). Now h(θ) = eiθ f ′(eiθ )
implies d f /dθ = ih and integrating gives

f (θ) = − log
(
1 + e2iα(θ)

)
, (13)

where a constant of integration (which is real since f̄ = f )
has been set to zero since it only serves to shift the curve
along the real axis.

Equations (6) and (13) gives

z = t − log
(
1 + e2iα(θ)

)
, (14)

and taking real and imaginary parts of (14) gives x =
t − log(cos y) which is the grim reaper solution. Note that
(14) does not admit embedded curve solutions; the curve
must close at infinity. That is, α(±π) = ±π/2. The choice
of function α(θ) is immaterial so long as it is a monotonic
function such that −π/2 ≤ α(θ) ≤ π/2. Choosing the sim-
ple form α(θ) = θ/2 gives the final parametric form of the
grim reaper solution

z = t − log
(
1 + eiθ

)
, −π ≤ θ ≤ π. (15)

3.3 The paperclip

The grim reaper solution in parametric form (15) suggests a
general form of solution to (4):

z = − log
(
a(t) + eiθ

)
+ g(t), (16)

where a(t) > 0 (without loss of generality) and g(t) are real-
valued functions to be determined. First, the choice a(t) > 1
is made and it is shown this corresponds to the paperclip
solution. In Sect. 3.4, the choice 0 < a(t) < 1 is shown to
correspond to the hairclip solution.
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Seeking a closed curve solution which is symmetric about
the imaginary axis implies z|θ=0 = −z|θ=π . From (16),
g(t) = (1/2) log(a2 − 1), and the corresponding Schwarz
function is

S(z, t) = − log (a(t)ζ + 1) + log ζ + 1

2
log(a2 − 1), (17)

where ζ = eiθ .
The first step is to show from (4) that a2 = 1/(1−exp(2t))

and so −∞ < t < 0, corresponding to what is known as an
ancient solution. From (17)

Sζ = ζz

ζ(aζ + 1)
= − ζ + a

ζ(aζ + 1)
, (18)

and from (16) and (17)

St = −(ȧζ 2 + ȧ)(a2 − 1) + (aζ 2 + 2ζ + a)aȧ

ζ(a2 − 1)(aζ − 1)
. (19)

In addition,

Szz = ζz
d

dζ

(
ζz

1

ζ(aζ + 1)

)
,

= − (ζ + a)(aζ 2 + 2a2ζ + a)

ζ 2(aζ + 1)2
. (20)

Substituting (18), (19) and (20) into (4) and simplifying gives
an ordinary differential equation for a(t):

ȧ = a(a2 − 1), (21)

with solution

a(t)2 = 1

1 − k2e2t
, (22)

where k is a real constant. The choice of k simply determines
the termination time of the solution, when a(t) becomes sin-
gular. Without loss of generality this is chosen to be t = 0
and therefore k = 1. Thus,

z = − log
(
a(t) + eiθ

)
+ 1

2
log(a2 − 1), (23)

where a2 = 1/(1 − exp(2t)) and −π ≤ θ ≤ π , is a time-
dependent, closed-curve, parametric solution of the curve
shortening problem.

The next step is to demonstrate the equivalence of (23) to
the paperclip solution exp(−t) cos y = cosh x . The real and
imaginary parts of (23) give

x = log
√
a2 − 1 − log

√
a2 + 2a cos θ + 1,

y = − tan−1
(

sin θ

a + cos θ

)
. (24)

Hence

e−t cos y = e−t a + cos θ

a2 + 2a cos θ + 1

= a(a + cos θ)√
a2 − 1

√
a2 + 2a cos θ + 1

, (25)

and

cosh x = 1

2

( √
a2 − 1√

a2 + 2a cos θ + 1
+

√
a2 + 2a cos θ + 1√

a2 − 1

)

= a(a + cos θ)√
a2 − 1

√
a2 + 2a cos θ + 1

. (26)

Comparison of (25) and (26) shows cosh x = e−t cos y and,
therefore, establishes the equivalence of (23) with the paper-
clip solution (see Sect. 1).

3.4 The hairclip

In this section, it is shown that the hairclip solution cor-
responds to the choice 0 < a(t) < 1 in the parametric
representation (16) with g(t) chosen to ensure that the solu-
tion curve is centred about the the imaginary axis, giving

z = − log
(
a(t) + eiθ

)
+ 1

2
log(1 − a2). (27)

Proceeding as in Sect. 3.3 and substituting (27) into (4) yields
an ordinary differential equation for a(t) with solution

a(t)2 = 1

1 + e2t
, (28)

where an unimportant choice of arbitrary integration constant
has been made. Note that −∞ < t < ∞ and the solution
(27) and (28) can be regarded as an eternal solution of the
curve shortening problem. Again, by considering real and
imaginary parts of (27) and following similar steps as in Sect.
3.3, it can be shown that (27) and (28) is equivalent to the
hairclip solution e−t cos y = − sinh x .

4 Revisiting the grim reaper solution

An alternative solution procedure based on solving (4) in
a steadily moving frame of reference gives the grim reaper
solution in the explicit form z̄ = S(z, t). Let the Z -frame
move in the positive real direction with unit speed so that
Z = z − t . Hence Z̄ = z̄ − t = f (Z) = f (z − t), where
f (Z) is the (stationary) Schwarz function of the solution
curve in the moving frame. Since z̄ = S(z, t), then S(z, t) =
f (z− t)+ t and the partial derivatives of S(z, t)with respect
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to t and z are

St = − fZ + 1,

Sz = fZ , and Szz = fZ Z . (29)

In terms of f (Z), (4) becomes the ODE

fZ Z = fZ − f 2Z , (30)

which has general solution

f (Z) = log(1 + K eZ ) + C, (31)

where K and C are constants. Without loss of generality the
condition f (0) = 0 is imposed, which implies the solution
curve passes through Z = 0, and gives C = − log(1 + K ).
Further, note that as z → ∞, f → Z + log(K/(1 + K )),
and so in this limit the solution curve behaves like y →
(i/2) log(K/(1 + K )). Thus |K/(1 + K )| = 1. Demanding
that the solution is symmetric about the real Z -axis implies
that K/(1 + K ) = −1 (i.e. y → ±π/2 as z → ∞) and so
K = −1/2. Finally

f (Z) = log(2 − eZ ), (32)

and the explicit Schwarz function representation of the grim
reaper solution is

z̄ = S(z, t) = log(2et − ez). (33)

By taking real and imaginary parts of (33) it is straightfor-
ward to verify that it is equivalent to the standard grim reaper
expression x = t − log(cos y).

While it is known that the grim reaper is the only steadily
translating solution to the curve shortening problem (e.g. [8]),
the demonstration in this section suggests that the search for
steadily translating solutions tomore general curve evolution
problems in which vn = F(κ), where F is a differentiable
function, might be fruitfully pursued by this approach. That
is, by formulating theODEversion of vn = F(κ) in amoving
frame, and solving the ODE to find explicit solutions of the
Schwarz function.

To give an example of this suppose F(κ) = κ1/3, so that
the curve evolution vn = κ1/3 gives the Schwarz function
PDE

i

2

St
(Sz)1/2

=
[
i

2

Szz
(Sz)3/2

]1/3
. (34)

Seeking a solution to (34) translating with unit speed in the
positive real direction implies that S(z, t) = f (Z)+t where,
from (34),

fZ Z = −1

4
(1 − fZ )3, (35)

where Z = z − t . The general solution of (35) is f = Z +√
4A − 8Z + B, where A and B are constants. Since f −

Z = −2iIm(Z), squaring and considering the imaginary part
gives B = −2. Further, requiring the solution curve passes
through Z = 0 gives A = 1. Thus, in the z-plane the solution
curve has Schwarz function

S(z, t) = z + √
4 − 8(z − t), (36)

which upon taking real and imaginary parts implies the curve
is the translating parabola y2 = 2(x − t). It is straight-
forward to verify that this translating parabolic solution γγγ

satisfies (34) by directly calculating its curvature and show-
ing κ1/3 = 1/

√
1 + y2, and showing this is the same as the

normal velocity vn = (∂γγγ /∂t).n.

5 Remarks

The Schwarz function formulation of the curve shortening
problem in the complex plane, Eq. (4), together with assump-
tions on the symmetry of the solutions, enables a relatively
simple derivation of the fundamental solutions of curve short-
ening. The four solutions can be summarised by the relation

z = − log(a + ζ ) + 1

2
log |a2 − 1|, (37)

where ζ = exp(iθ) and with the following realisations:

1. a2 = 1/(1− exp(2t)), −∞ < t < 0, −π ≤ θ ≤ π is the
paperclip solution;

2. a2 = 1/(1 + exp(2t)), −∞ < t, θ < ∞ is the hairclip
solution;

3. The limit t → −∞ of (37) gives a2 → 1 + exp(2t) and
recovers the grim reaper solution (15). That is, the ancient
time limit of the hairclip or paperclip consists of either an
ensemble, or pair, of grim reapers which approach each
other as t increases forming the hair- and paperclip solu-
tions respectively;

4. The limit t → 0 of the paperclip solution, gives a → ∞
and z → ζ/a; that is, a circle with vanishingly small
radius.

Note that solutions of the form (37) with |a(t)| ≤ 1 also
arise in the analysis of finger evolution resulting from the
instability of an interface separating fluids with different vis-
cosities in the absence of surface tension e.g. [9,10], where
superposition of such solutions was used to examine their
stability and to construct new solutions for evolving fingers.
Owing to the nonlinearity of (4) considering a superposi-
tion of solutions does not seem to be a way of generating
further exact solutions, but it may offer a useful approach
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to the numerical study of curve shortening of, say, periodic
interfaces.

Finally, as noted in Sect. 2, curve shortening flow satisfies,
in terms of the Schwarz function, the heat equation St = 2Sss
(5). This form of the evolution equation is strongly connected
to the geometric evolution equation used by, e.g. [15], to
find the fundamental curve shortening solutions. It would
be of interest to further pursue the connection between the
Schwarz function approach of the present work to geometric
heat equation-based methods.
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