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Abstract 

A complete understanding of decision-making in military domains requires 

gathering insights from several fields of study. To make the task tractable, here we 

consider a specific example of short-term tactical decisions under uncertainty 

made by the military at sea. Through this lens, we sketch out relevant literature 

from three psychological tasks each underpinned by decision-making processes: 

categorisation, communication, and choice. From the literature, we note two 

general cognitive tendencies that emerge across all three stages: the effect of 

cognitive load and individual differences. Drawing on these tendencies, we 

recommend strategies, tools and future research that could improve performance 

in military domains—but, by extension, would also generalise to other high-stakes 

contexts.  In so doing, we show the extent to which domain general properties of 

high order cognition are sufficient in explaining behaviours in domain specific 

contexts. 

 

Keywords: uncertainty, category learning, dynamic decision-making, communication of 
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Applying insights on categorisation, communication, and dynamic decision-making: A 

case study of a ‘simple’ maritime military decision. 

To comprehensively understand the psychological mechanisms underpinning our 

behaviour in high stakes, applied, contexts (e.g., medical, legal, military, or financial decision-

making), we must integrate insights from many disparate fields. In this review, we demonstrate 

this by exploring psychological fields (e.g., judgment and decision-making, category learning, 

communication) and factors (e.g., cognitive load, individual differences) relevant to 

understanding the process of decision-making (i.e. choosing between different options) in 

military contexts. We are particularly interested in military tasks because the nature of the 

domain means relying on multiple actors, at different levels of a hierarchy, where effective 

coordination of information across actors is critical, because the stakes are high (Goodwin et 

al., 2018). The general approach we take is to draw domain general insights from psychology 

to explore how they apply to a specific domain, and then generalise back to consider the extent 

to which aspects of cognitive processes are found generally in high-stake, dynamic, real-world 

contexts,  

The review is organised in the following way. We begin by outlining a particular 

scenario in maritime military decision-making. We structure our review by dividing the 

scenario into three distinct tasks and considering the relevant psychological literature of each 

in turn. We end by identifying and discussing the key psychological factors that are important 

to consider for all three stages and discussing potential areas where improvements are possible. 

The scenario 

So, what do we mean by “maritime military decision-making”? By definition, maritime 

decision-making encompasses all the decisions that might be made at sea, from whether to 

enter potentially hostile waters, to whether to stock up the ship’s freezer at the next port. In this 

review, we focus on one specific, narrowly defined, scenario – from which we subsequently 
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draw broad parallels to other areas of high stakes decision-making. Specifically, we consider 

the key tactical decision of whether, where and how a ship engages a nearby enemy vessel 

(Holmes, 2001). For a simplified visualisation of the scenario, see Figure 1. 

A widely accepted prerequisite for making tactical decisions is Maritime Domain 

Awareness (MDA); an understanding of how the ship relates to its surroundings (Carvalho et 

al., 2011; Hammond, 2006). One aspect of this requires commanders (or other decision makers) 

to have awareness of the physical locations of surrounding craft as well as other relevant 

information such as their type (e.g., whether it’s an aircraft, submarine, or ship) and especially 

their status (i.e., whether they are friendly or hostile). Thus, the first task in our scenario is to 

determine the status of surrounding entities—ships, airplanes, and submarines. Entity status is 

typically estimated by integrating position data with information from the cooperative 

Automatic Identification System (AIS; Hammond, 2006). This is a signal emitted by all vessels 

over a certain tonnage and includes information such as the vessel’s identity number, 

navigation status (at anchor, underway using engines etc.), speed, direction, and details about 

course (destination, estimated arrival time etc.). 

On a Royal Navy vessel, junior operators situated in the operations room use available 

positional and AIS data to partition the surrounding entities into four categories: ‘unknown,’ 

‘neutral,’ ‘entity of concern’ or ‘entity of allies’ (“NATO Joint Military Symbology”, 2017). 

Unknown is the default category. New vessels that enter the monitored area are automatically 

assigned Unknown, until an operator decides otherwise. Entities might also be assigned to 

Unknown if the information available does not exceed the threshold for one of the other 

categories. Neutral craft are those which will not cause harm but are also not able to help if 

needed (e.g., a passenger airline). Entities of concern are those likely to be Hostile and, finally, 

entities of allies are those which are Friendly and could possibly provide or require assistance. 
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Once an entity’s status has been assigned by operators in the operation room, this 

information is passed up the chain of command, first to the Principal Warfare Officer who 

integrates the information from multiple operators and then passes up the chain of command to 

those making tactical decisions. Tactical decisions involve evaluating which of a set of possible 

actions is the optimal one to take, given information about classifications and positions of 

surrounding entities (Cummings et al., 2010; Kobus et al., 2001; Matthews et al., 2009). 

Options are evaluated based on the overarching goals of the mission as well as the proximity 

and inferred intentions of the surrounding entities and other considerations such as costs and 

available equipment. Further, these short- and long-term goals may change over time, as does 

the surrounding situation. Thus, the military planner must evaluate and prioritise between 

conflicting goals, whilst maintaining an up-to-date awareness and understanding of the 

situation. 

The ‘simple’ scenario which is the focus of the present review can thus be decomposed 

into three stages: classification of entities’ statuses, communicating that information up the 

hierarchy and finally, choosing an appropriate action. Each of these stages has parallels in areas 

of psychological research. In the following, we examine each of these tasks, and their 

corresponding literatures, in turn. 

Classification of entities 

 

The classification of entities, as described in the previous section, closely mirrors 

work from the categorisation (or “category learning”) literature. In a typical experiment in 

this field, naïve participants sort stimuli into categories; participants are shown a stimulus, 

asked to assign it to a category, then are given corrective feedback on every trial (Kurtz, 

2015). Generally, categorisation studies aim to understand how participants learn, understand, 

and generalise the underlying category structure(s), the (usually) experimenter-defined 

mapping of stimuli to category labels. The category structure is usually chosen to explore the  
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Figure 1.  

Simplified Naval structure shown alongside the principal psychological process shown at that 

point. Solid arrows represent the main direction of information flow as considered in the 

current article. Inclusion of the dashed arrows acknowledges that, in reality, there will be 

bidirectional communications.  

 

underlying psychological mechanisms of categorisation (Ashby & Valentin, 2018; Kurtz, 

2015).  Thus, these experiments examine how participants’ performance is affected by 

varying the category structure factorially with other features of the task. For instance, the 

experimenters may add a concurrent task or increase time pressure by only giving 

participants a limited time to respond. These manipulations affect the “cognitive load” of the 

task – that is, how many cognitive resources are needed to complete the task effectively.  

 

How are classification decisions made? 

In our maritime scenario, operators estimate entity status from diverse sources of 

information, principally AIS and position data. This data can be supplemented by information 

requested from others and by knowledge of the combat theatre. Reframing this as a 

categorisation problem, operators infer category membership by combining many stimulus 

dimensions. These stimulus dimensions could be continuous, such as bearing; ordinal, such as 

overall AIS transmission quality; or discrete, such as destination. This is not only difficult but 

also highly consequential as some of the objects of interest may be fast moving and pose a 
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serious threat (Finger & Bisantz, 2002; Liebhaber & Feher, 2002; Riveiro et al., 2018). In the 

following, we will explore the possible mechanisms by which operators may make these 

categorisation judgments. 

The dominant explanation, seen in many different theoretical accounts of categorisation 

(Pothos & Wills, 2011), is that operators compare information from every stimulus dimension 

to representations of every category (Nosofsky, 1986; Wills et al., 2020). The entity would then 

be assigned to the category to which it is most similar, where “most similar” is typically 

determined geometrically, in terms of minimising the psychological distance between the 

stimuli and the representation of the category (e.g., Nosofsky, 1986).  

To the unfamiliar, this account suggests that categorisation might be a long, tedious, 

and cognitively demanding process; not ideal during a high-stakes scenario when an enemy 

fighter jet may be flying towards you at speeds surpassing the speed of sound. However, 

seminal categorisation research suggests that increasing the cognitive load (by increasing time 

pressure or adding a second task) resulted in participants using more attributes to categorise 

(e.g., Kemler Nelson, 1984; Smith & Kemler Nelson, 1984; Ward, 1983). From these results, 

researchers inferred that people represent stimuli holistically, as an undifferentiated “mass”. 

Thus, comparing multiple attributes would be less cognitively demanding that differentiating a 

single attribute from that representation.  

Another theoretical approach argues that whether people use holistic representations of 

entities depends on the underlying category structure. The COVIS (COmpetition between 

Verbal and Implicit Systems) model of category learning proposes a dual-system mechanism 

(Ashby et al., 1998; Edmunds & Wills, 2016). This theory argues that simple category 

structures are learned using rules based on a subset of the available information.  Structures 

that are difficult to verbalise are learned through an implicit, overall similarity approach, where 

stimuli are represented holistically. Much evidence has been argued to support this perspective 



MARITIME MILITARY DECISIONS 7 

(for reviews see Ashby & Maddox, 2004, 2011; Ashby & Valentin, 2017; Smith & Church, 

2018). Given that the operator’s job of classifying an entity as hostile would be hard to 

verbalise, this approach supports the seminal research in recommending (somewhat 

paradoxically) that the way to optimise classification in a military setting would be to increase 

cognitive load.  

In contrast, and of critical importance, Wills et al. (2015) showed two critical findings 

that conflict with earlier theoretical claims. Firstly, participants used a wider range of strategies 

than previously supposed (many of them resulting in reduced accuracy). Secondly, participants 

were actually more likely to use fewer dimensions with a greater cognitive load.  

In a similar vein, there is no evidence that participants use different types of stimulus 

representation depending on the category structure (for partial reviews see Newell et al., 2011; 

Wills et al., 2019). Participants report using rule-based strategies in both simple and complex 

categorisation tasks (Edmunds et al., 2015, 2016, 2019, 2020). For instance, they may 

categorise using a single attribute or perhaps generate more complex rules (such as 

conjunctions or other combinations of single dimension rules). Thus, recent evidence suggests 

that participants are most likely to use a subset of the available information using a rule-like 

strategy, even though this type of strategy often results in reduced accuracy. 

 In sum, the categorisation literature suggests that only when participants have enough 

time or resources do they use all the available dimensions to categorise. The rest of the time 

they use a ‘satisficing’ heuristic: they use less of the available information than would be 

optimum (Simon, 1947). This finding is mirrored in the defence literature. For instance, 

Liebhaber et al. (2000) found that the number of potential cues available to inform the 

classification of an entity as a threat was independent of the actual threat rating given to an 

object. That is, it appears that military planners classify entities based on a small subset of 

attributes rather than integrating all the information together.  Further, the attributes that are 
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used depend on the prior knowledge of threat profiles that correspond to the available data the 

military planner has available to them. Altogether, this work suggests that minimising cognitive 

load may be critical in improving the performance of operators trying to estimate the status of 

surrounding entities. 

 

On what information are classifications made? 

The evidence in the previous section suggests that, in both military and lab settings, it is 

unlikely that all the available information at any one time will be used to make a classification. 

Failing to use all the available information could result in serious errors being made in a defence 

context. For instance, operators appear to be susceptible to focusing on information that 

confirms their initial hypotheses regarding the threat profile of particular entities (Matthews et 

al., 2009). Narrowing the focus of attention to data that is consistent with prior hypotheses 

comes at the expense of attending to evidence that contradicts and undermines the focal 

hypotheses that the planner(s) are working with. Thus, failing to incorporate all the available 

evidence could have significant negative consequences as potentially relevant information 

could be neglected.  

However, it is also possible that satisficing in this context is an adaptive way of 

responding given the considerable time pressure. After all, sorting and identifying the most 

valuable information is key in military decision-making (Mishra et al., 2015). Therefore, if 

operators are responding using a subset of the available information, but that information is 

almost as accurate as using all the available information and is made faster, then this is more 

efficient overall. In the next section, we explore whether people are tactical in selecting which 

subset of attributes they use.  
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Do people classify by picking the most useful dimensions, or choosing at random? 

For both participants in psychology experiments and operators on Royal Navy 

warships, the best approach would be to focus on the information that is most predictive of the 

outcome(s). For simple categorisation tasks, there is plenty of evidence that participants can 

identify the most predictive attribute in a unidimensional categorisation task (e.g., Ashby & 

Valentin, 2017; Shepard et al., 1961; Nosofsky et al., 1994; Wills et al., 2015), and can do so 

quickly (e.g., Nosofsky et al., 1994; Shepard et al., 1961).  

Yet, in the field, operators may have to classify stimuli that are far more complex, under 

considerable cognitive load. Laboratory studies suggest that, when there are many additional, 

non-predictive attributes (Vong et al., 2019), or when a cognitive load is added (Wills et al., 

2015), participants are less likely to find the optimum simple rule and instead rely on less 

predictive attribute, resulting in poorer accuracy.  

Two other features of our maritime military scenario are that the information that can 

be used to make classifications changes over time, and there is uncertainty in the data received 

by the operator (Irandoust et al., 2010; McCloskey, 1996; Potter et al., 2012). Unfortunately, 

very few categorisation experiments have examined scenarios where the category rule is 

maintained (for instance, Category A represents small stimuli), but the distribution of stimuli 

changes over time (for instance, at the beginning of the experiment, Category A stimuli are 

about 1cm, by the end they are around 0.1cm). Rather, studies have investigated the category 

structure changing over time (for instance, at the beginning of the experiment the participant 

needed to focus on size, later they needed to focus on orientation). Some have looked at 

analogical transfer where participants are first trained on one category structure and then in a 

second phase, they must transfer this knowledge to another set of stimuli, outside of the range 

of the training stimuli (Casale et al., 2012; Edmunds et al., 2020; Soto & Ashby, 2019; 

Zakrzewski et al., 2018). Helie et al. (2015) looked at categorisation performance after the 
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category structure was changed (see also Cantwell et al., 2015). Navarro et al. (2013) examined 

whether people could learn a unidimensional “height” category structure where the category 

boundary slowly changed over time. Generally, these studies show that people are poor at these 

tasks: participants are slow to adapt (Navarro et al., 2013), do not take advantage of previously 

acquired knowledge (Edmunds et al., 2020), or may even fail to notice the change (Cantwell et 

al., 2015; Helie et al., 2015).  

Similarly, uncertainty is rarely explored in the categorisation literature, but the limited 

available evidence suggests that people find it difficult to incorporate it effectively. For 

instance, people make slower and less accurate responses when unsure about category 

membership (Grinband et al., 2006). The predictiveness and uncertainty associated with 

stimulus features in category learning studies are also closely linked with reward. Typically, 

the studies follow the stimulus-response-feedback protocol (Kurtz, 2015) where reward is often 

contingent on the proportion of correct responses. Predictive dimensions are rewarded more 

often, whereas uncertain dimensions are likely to be rewarded less (or perhaps more 

erratically). This area is particularly relevant given the highly consequential nature of military 

decision-making. 

Given the high stakes in maritime military contexts, the incentives that may influence 

classification are preventing or minimizing significant losses. In the lab, the only way to 

approximate this ethically is to introduce high stakes by offering a greater reward for better 

responding. Fortunately for the maritime military context (and the ability to generalise results 

from the lab to this context) it appears that reward has a negligible effect of the quality of 

categorisation. Schlegelmilch and von Helversen (2020) examined categorisation of three-

dimensional stimuli, where one stimulus in each category was rewarded more for a correct 

answer than the other stimuli. Generally, they found that adding a high reward reduced 

performance on the stimuli with lower rewards. However, they also found that the addition of 
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a higher reward had no effect on participants’ self-reported attention to each stimulus 

dimension. This contrasts with other similar paradigms where the value of the outcomes 

modulate attention: predictors of high value rewards receive especially high levels of attention 

(Le Pelley et al., 2016). This evidence suggests that categorisation may only be slightly affected 

by reward magnitude. Thus, perhaps the extreme possible consequences of categorisation in 

our scenario may not affect performance. It remains an open question whether the pressure of 

anticipating a positive reward and the pressure of avoiding a negative consequence can be 

equated in a categorisation task. 

 

Categorisation: Recommendations, limitations, and future work 

Is the categorisation literature useful in providing insights to help field operators 

improve classification of entity status? Generally, the findings reviewed contribute some useful 

insights. The laboratory evidence suggests that it is unlikely that operators will use all available 

data in their categorisation decisions (e.g., Edmunds et al., 2020; Wills et al., 2015). Rather, 

they are likely to focus on a subset of the available information, probably that which they found 

worked on previous occasions (Liebhaber et al., 2000; Matthews et al., 2009). By being aware 

of these heuristics, we can design displays and formulate training to help operators make better 

classification decisions. For instance, if we know which types of evidence operators are 

focusing on, we can predict the types of errors they will make. In other words, the types of 

entities that will be misclassified given the internal representation of the category structure they 

have constructed. Thus, we can go some way to alleviating errors that might arise by using 

suboptimum, but efficient, strategies. Also, the laboratory evidence from the work examining 

changes in category structure over time suggests that operators might fail to notice changes and 

thus, may be overconfident in their judgements. However, this is an extremely tentative 

conclusion that needs to be investigated in future research.  
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Transferring insights from the general categorisation literature to maritime operators, 

requires an assumption that those laboratory experiments reported in the literature generalise 

to the real-world maritime situation. There are, however, key differences between these 

situations. Generally, laboratory studies of categorisation are substantially more restricted 

because they must allow researchers to isolate experimental effects from participants’ prior 

knowledge. In contrast, stimuli outside the lab are far more complex, with many more 

dimensions. Further, the dimensions in “real-life” stimuli are likely to be correlated (for 

instance, as size goes up, so does weight) whereas most experimenter-constructed categories 

deliberately avoid interactions between dimensions (Rehder & Murphy, 2003).  

There are other differences between a typical category learning study (Kurtz, 2015) and 

“real-world” classification. Operators’ estimation of a craft’s status may be influenced by the 

status of other surrounding craft and other features of the environment that are subject to 

change. Additionally, the dimensions operators are using to classify entities may be unreliable 

and subject to changing levels of uncertainty. Finally, the data from the AIS signal must be 

carefully scrutinised for errors or logical inconsistencies and the reason for mismatches 

ascertained (Riveiro et al., 2018).  

Therefore, conducting category learning studies with more complex stimuli and 

category structures is extremely important to check that the results generalise to military (and 

other high stakes) contexts.  Moreover, devising tasks that incorporate dynamic uncertainty can 

provide useful insights into the ways in which people detect (or not) discrepancies in changing 

information, and the reliability of the classifications resulting from it.  

 

Communication 

In our scenario, once the incoming data has been classified, it must be communicated 

to those who need to use it to make tactical decisions. Maritime military decision-making is 
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distributed across individuals and teams (Song & Kleinman, 1994; see Figure 1); information 

must be passed from operators near the bottom of the hierarchy to commanders near the top. 

An added difficulty is that this information may still be associated with some uncertainty. For 

instance, operators may only be 80% sure that a craft is friendly or there may be some 

uncertainty surrounding the craft’s position or direction. Failing to acknowledge and 

appropriately incorporate uncertainty into decision-making can result in failing to appropriately 

judge which options are least likely to result in negative outcomes (Kahneman, 2011; Pizer, 

1999; Sunstein, 2002, 2003). This means that it is important for commanders to consider any 

uncertainty associated with the information they are using to make tactical decisions. In other 

words, successful maritime military decision-making ought to incorporate uncertainty, and 

clearly. The question is, how are uncertainties best communicated? 

 

What are the best ways of representing and communicating uncertainty? 

The literature suggests three approaches to communicating uncertainty: verbal 

probability expressions (VPEs), numerical uncertainty statements, and visualisations. VPEs 

add a verbal qualifier to a factual statement to indicate uncertainty (Budescu & Wallsten, 1995). 

Numerical uncertainty statements go a step further and quantify the uncertainty (Joslyn et al., 

2011). The simplest numerical statements simply add an explicit, numerical estimate of the 

likelihood of something, whereas more complex numerical statements might add range 

information around a numerical estimate. Finally, uncertainty visualisations represent 

uncertainty visually using symbols or graphics rather than words or numbers (McDowell & 

Jacobs, 2017). Common visualisations of uncertainty include Euler diagrams, frequency grids, 

glyphs (discrete objects), hybrids of Euler circles and glyphs, and tree diagrams (see Figure 2 

for examples). 

 



MARITIME MILITARY DECISIONS 14 

 

Figure 2 

Examples of uncertainty communications showing the probability of potentially overlapping 

states in a military context. Here, the probability that a vessel is hostile (as opposed to 

Friendly), and the presence/absence of an automatic (but not perfect) warning alarm shown 

as a: A) Euler diagram, B) frequency grid, and C) tree diagram. 

 

These approaches all have their strengths and weaknesses. For instance, VPEs are 

simple and flexible but also prone to misinterpretation (e.g., Budescu & Wallsten, 1995; Dhami 

& Mandel, 2020; Theil, 2002). Adding numbers tends to increase precision in understanding 

but perhaps relies on the communicators being proficient in mathematical reasoning 

(Dieckmann et al., 2012). Visualisations can help and are often spontaneously generated by 

both civilians and military personnel (King, 2006; B. Tversky et al., 2011; Zahner & Corter, 

2010), but the precise format matters. Some visualisations have been found to aid reasoning, 

whilst others do not (Zahner & Corter, 2010). The general principle that appears to underlie 

these disparate results is that optimal decision-making is supported by formats that make 

uncertainty information easiest to use. As “easiest” is highly subjective, this means the 

optimum communication format is considerably impacted by the attributes of the context, task, 

and communicators. The focus of the remainder of this section is on visualisation of 

uncertainty, which is often the common mode of representation of uncertainty that appears in 

military contexts (Chung & Wark, 2016). 
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Effectiveness of visually communicating uncertainty  

The task in the military scenario we have described relies on operators communicating 

information to commanders, for the latter to remain apprised of the spatial-temporal context on 

which tactical decisions are based (Carvalho et al., 2011; Hammond, 2006; John et al., 2000). 

Practically, commanders need to quickly understand what an entity is (status), where it is 

(position), where it is going (direction) as well as any uncertainty associated with these 

dimensions. The research below indicates that the uncertainty communicated by operators 

needs to be represented in a manner congruent to the dimension it is associated with. 

First, consider the uncertainty associated with entity status. This is an inherent 

property of the entity, and thus, the literature suggests that its uncertainty is best represented 

intrinsically, where features of the extant display are manipulated, such as changing the colour 

or shape (Kinkeldey et al., 2014, 2017). In contrast, extrinsic representations of uncertainty add 

new items to a data display. Finger and Bisantz (2002) found that participants were more 

efficient when only using icons that were degraded to a greater or lesser degree (representing 

uncertainty) rather than using them alongside numerical probability estimates, an additional 

extrinsic element. Kolbeinsson et al. (2015) and Bisantz et al. (2005) also found superior 

performance with representations that used intrinsic representations of uncertainty for status 

information. 

Second, consider the assessment of the entity’s position. Andre and Cutler (1998) 

showed that spatial uncertainty was communicated most reliably when it was represented 

spatially (i.e., matching the task at hand). In one of their tasks, participants navigated a 

spacecraft to a goal, whilst avoiding a meteor. The position of the meteor was noisy, and the 

authors explored representing this uncertainty in various formats. They found a spatial region 

of uncertainty around the target (an additional ring) was preferable to other representations 

(colour or text). 
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Third, for the assessment of the entity’s trajectory, again visualisations that matched the 

task enhanced communication of the uncertainty associated with the judgement. Andre and 

Cutler (1998) asked participants to control a gun turret and shoot down hostile, whilst avoiding 

friendly, entities. Here, uncertainty was associated with the direction of the craft. Participants 

who saw visual representations of this uncertainty were not as negatively affected when the 

uncertainty level was high compared to a version where the uncertainty was displayed 

numerically. Along the same lines, John et al. (2000) found that directional information was 

superior to text information when trying to predict where a unit would be in the future.  

Thus, this literature suggests that optimal uncertainty communication in this context 

might be achieved by combining these representations of position, direction, and status. Indeed, 

this is frequently done in military contexts (see Figure 3 “NATO Joint Military Symbology”, 

2017). 

 

Figure 3 

Example of a symbol that incorporates position, speed, and direction in a single icon. Taken 

from “NATO Joint Military Symbology” (2017). The direction of the arrow represents 

direction, and the length represents speed. 

 

Cognitive abilities and prior experience 

Visualisation formats vary in the amount they challenge cognitive abilities (Anderson 

et al., 2011). Bisantz et al. (2011) used a missile defence game where participants had to select 

and destroy missiles heading towards a city whilst not harming birds or planes. They found that 

adding numerical uncertainty information to the visualisations did not improve performance. 
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Finger and Bisantz (2002) found similar results in a task where participants had to classify 

moving entities as either friendly or hostile (see also Bisantz et al., 2005). Others have found 

that including numbers can reduce the speed (Andre & Cutler, 1998; Finger & Bisantz, 2002; 

Hope & Hunter, 2007) and accuracy (Andre & Cutler, 1998) of decision making with 

uncertainty visualisations (for a review see Kinkeldey et al., 2017). 

Some of the practical benefits of using visualisations can be directly tied to the fact they 

reduce cognitive load. Hegarty and Steinhoff (1997) found that participants with lower visual 

working memory capacity, compared to those with a higher working memory capacity, were 

helped more by diagrams when solving a mechanical reasoning problem. This suggests that the 

diagrams might perform as external or distributed memory. Additionally, visualisations, 

compared to verbal, auditory communications, allow for asynchronous communication. As 

mentioned above, maritime military decision makers are often not in the same place as those 

gathering and classifying the information needed for a decision. Thus, to obtain the required 

information, decision makers monitor both an auditory communication channel and visual 

displays. Performing a visual task can result in inattentional deafness, where people fail to hear 

auditory stimuli because of high visual perceptual load (Molloy et al., 2015). This suggests that 

serious problems may arise by decision makers missing key pieces of information from one or 

other of these sources of information. However, visualisations are easier to understand and 

change more slowly. Thus, decision makers can go back and double-check information they 

might have missed. 

Thus, this literature suggests that by trying to include all the available uncertainty 

information simultaneously, we might increase the cognitive difficulty of the task beyond the 

point where communicating uncertainty is useful. However, people may be able to compensate 

for this limitation by using the representation as an external memory store. Indeed, this might 

explain why improvements associated with communication format are moderated by prior 
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experience. Kirschenbaum et al. (2014) looked at a submarine task where participants were 

asked to manoeuvre a submarine to torpedo another craft. Again, they found that participants 

performed better when positional uncertainty was represented spatially by a ring, rather than 

numerically in an associated table. However, in this experiment the benefit was limited to 

novices. This contrasts with previous evidence that found that experienced naval commanders 

also performed better when visual uncertainty information was included (Kirschenbaum & 

Arruda, 1994). One explanation for this apparent discrepancy is that the failure of spatial 

visualisations to improve performance for experts in Kirschenbaum et al. (2014) may be due a 

ceiling effect: the experts found the task easy, even with sub-optimum display formats.  

 

Interpretation errors and biases 

Although the evidence consistently suggests visualisations as the medium for 

communication in our scenario, the specific format of those visualisations still needs to be 

carefully considered. This is because in the literature there is no overall superior pictorial 

representation of uncertainties that has marked facilitative effects on decision-making 

performance (Binder et al., 2015; Butcherer-Linder & Eichler, 2017; Micallef et al., 2012; 

Spiegelhalter et al., 2011). For instance, the use of icons (or glyphs) has been shown to be 

generally effective in some studies (Brase, 2009; Zikmund-Fisher et al., 2014) but not others 

(Sirota et al., 2014). There is also not clear evidence that Euler diagrams are reliably effective 

in generating superior decision making (Brase, 2009; Micallef et al., 2012; Sloman et al., 2003; 

Sirota et al., 2015). Similarly, the use of roulette wheels in some studies only show marginal 

improvements (Brase, 2014; Starns et al., 2019), whereas others show significant superior 

performance as compared to tree-diagrams and text-only representations (Yamagishi, 2003). 

Others again have shown that tree diagrams are extremely effective as compared to other visual 

aids and text-only information (Binder et al., 2015; Friederichs et al., 2014). This demonstrates 
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the necessity to consider the requirements of the specific individual context when designing an 

appropriate visualisation. 

The existence of cognitive biases is an important issue to consider when selecting a 

visualisation format. Here we consider three biases. Deterministic construal error is where 

someone misinterprets an uncertainty communication as a deterministic one (for alternatives 

see Gigerenzer et al., 2005; S. Joslyn & Savelli, 2010; Juanchich & Sirota, 2016; Morss et al., 

2008, 2010; A. H. Murphy et al., 1980; Sink, 1995). The closely related containment error is 

where people perceive uncertain, fuzzy boundaries as representing fixed, deterministic points 

(Brown, 2004; Lundström et al., 2007; MacEachren et al., 2005; Ruginski et al., 2016). Finally, 

anchoring might guide the qualitative nature of such a construal (e.g., Bahnik et al., 2017; 

Broad et al., 2007; Oppenheimer et al., 2008; Tversky & Kahneman, 1973; Turner & Schley, 

2016).  Thus, the most effective visualisations will be those which minimises the likelihood of 

these errors being made. 

Correcting biases. Identification of such biases can aid with the design of 

visualisations such that participants are guided towards the correct inferences and away from 

incorrect inferences (see also Card et al., 1999; Padilla, 2018). Some ways of doing this have 

begun to be explored. The basic approach is to use features of attentional processes to design 

visualisations for which questions about the underlying data can be answered more easily, more 

accurately or faster (Jänicke & Chen, 2010). In other words, designing the visual representation 

so that it matches the demands of the task (Vessey, 1991, 1994, 2006; Vessey & Galletta, 1991). 

Human visual attention can be broadly defined as two processes: one bottom-up and 

stimulus-driven, the other top-down and goal-driven (Corbetta & Shulman, 2002; Petersen & 

Posner, 2012). Bottom-up attention is driven by external stimuli (Padilla, 2018) and is typically 

characterised as automatic, unconscious, and physiologically based (Connor et al., 2004). 

Visualisations can leverage bottom-up attention by manipulating the salience of visualisation 
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components (Padilla, 2018). Visual salience is the degree to which an item stands out from 

those nearby (Jänicke & Chen, 2010). These items might “pop-out” due to differences in colour, 

shape, orientation, size, or movement (Fabrikant et al., 2010; Haroz & Whitney, 2012). 

However, bottom-up attention is often modulated by top-down processes. Top-down 

attention involves deliberately searching for features in relation to a goal and is thought to be 

slow, conscious, and effortful (Connor et al., 2004). Haider and Frensch (1999) found that task-

redundant information tends to be ignored at the perceptual rather than the conceptual level. 

Visualisations that do not comply with existing schemas are generally less effective (Padilla, 

2018), whereas those that respect commonly inferred meanings are more effective (Norman, 

1988; B. Tversky et al., 2011). For example, if designing a coloured ‘danger’ scale in the UK, 

it would be misleading to provide a key whereby green represented a dangerous location and 

red the safest location, since this is contrary to people’s common expectations (Wogalter et al., 

2002). However, the opposite would be true in China where red is more likely to have positive 

connotations (e.g., He, 2009; Yu, 2014).  

The interaction of top-down and bottom-up processes can also improve how people 

interpret and use uncertainty information. Bisantz et al. (2009) tested the degree to which 

people agreed (with no instruction) on the mapping of different levels of saturation, brightness, 

and transparency to uncertainty. They found good agreement between individuals that greater 

brightness, saturation, and opaqueness (i.e., more ‘intense’ colouring) was typically associated 

with more certain information. However, this result was found to be driven predominantly by 

the degree of contrast between the target object and the background, and to be qualified by the 

requirements of the task. Objects with greater contrast against the background were perceived 

as more relevant for the task at hand. That is, if the task was to identify uncertain data points, 

greater contrast (and therefore visual saliency) was seen as representing greater uncertainty. 

This highlights the importance of considering the key requirements of the decision-maker 
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(Doyle et al., 2019; Griethe, 2006; Hegarty et al., 2016; Kinkeldey et al., 2014, 2017; Loucks, 

2003; Pang et al., 1997) who will be using the visualisation, such that the most task-relevant 

information can be highlighted within an uncertainty visualisation. 

 

Communication: Recommendations, limitations, and future work 

Is the communication literature useful in providing insights to help recommend how to 

represent uncertainty to military personnel? There are important insights from the vast literature 

on communication of uncertainty that can be applied to the military domain. The literature on 

effective communication suggests that the optimum format is one that best matches the 

information to be communicated. Thus, visualisations are likely to be superior for 

communicating the status, position, and direction of surrounding entities to decision makers. 

In this maritime military context, visualisations are less likely to be misunderstood and 

additionally allow for asynchronous communication, thereby reducing the cognitive load 

associated with understanding incoming information.  

Do laboratory experiments examining communication of uncertainty generalise to 

military contexts? The literature allows us to infer some general principles to be considered 

when designing displays for use in military contexts. However, the literature also suggests that 

it is very hard to predict exactly which factors are most important given a particular scenario, 

with a variety of personnel with different backgrounds. So, selecting the precise format these 

visualisations should take requires some finesse and further experimental study. Interpretation 

of visualisations can still be subject to cognitive biases, whether general pitfalls or those due to 

communicators’ unique abilities or background. One approach to minimising misunderstanding 

is to take advantage of attentional processes. Visualisation designs need to make sure that both 

top-down and bottom-up attentional processes support optimal performance in tasks. This 

means that the information that is conceptually most important to the task should be the most 
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salient (Vessey, 1991, 1994, 2006; Vessey & Galletta, 1991). This principle has shown to be 

effective in work by Hegarty et al. (2010). When trying to predict weather, participants were 

better able to use the (task-relevant) pressure information on a map when this information was 

highlighted with colour, rather than task-irrelevant temperature information. When these 

attentional processes are aligned, people will not have to work to inhibit irrelevant information. 

 

Making decisions 

So far in our scenario, the operators have determined the statuses of surrounding entities 

and communicated this information, along with the associated uncertainty, to a key decision-

maker (e.g., the Captain or their delegated Commander). In the final stage, the decision-maker 

must now decide what action to take (Szeligowski, 2018). They might decide to change course, 

engage an enemy craft, communicate with other vessels, or do nothing (Lipshitz & Strauss, 

1997). In the following, we review the literature relevant to making these types of dynamic 

decisions. 

 

Dynamic decision-making 

This scenario has much in common with tasks in the so-called dynamic decision-

making literature (for reviews see Holt & Osman, 2017; Osman, 2010, 2011). Studies in this 

area are concerned with investigating how decision makers cope with an environment where 

events and their probabilities change over time. Dynamic decision-making is also iterative. It 

requires sequential decision-making, where each decision taken generates an outcome that 

requires a further decision to be made (making the decisions interdependent over time). The 

outcomes of the decisions change over time, their effects are cumulative, and any changes 

experienced can result directly from the decisions made as well as independently of them 

(i.e., endogenous properties of the system; Brehmer, 1992; Dörner & Schaub, 1994; Holt & 
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Osman, 2017; Osman, 2010). Thus, whether or not the changes experienced are stable or 

unstable (Osman, 2011), whether the outcomes of decisions are experienced in real time or only 

periodically (frequent vs. intermittent outcome feedback; Osman et al., 2017), whether or not 

the goals of the decision process are highly specific or general (Osman, 2008a), and whether 

or not the outcomes of the decisions taken also included additional information (augment 

positive vs. negative feedback, financial costs and benefits; Osman, 2012b); all of these features 

have implications for the effectiveness of the decisions made. 

Here, we will discuss the literature about three key factors that affect decision-making 

in dynamic contexts. First, how the goals of the task influences decision-making. Second, we 

consider the uncertainty inherent in the task. Finally, we discuss the role of feedback in dynamic 

tasks. 

 

Goals 

Research, both in dynamic and military decision-making, has shown that goals can have 

a substantial impact on the way people make decisions. Generally, studies have shown that in 

highly uncertain dynamic contexts, specifying a precise, static goal, such as controlling an 

outcome to precise criteria (for instance, aiming for a chemical level of 5) leads to good 

decision-making performance in achieving that goal. However, when the decision-maker is 

required to adapt their decision-making to new goals in the same decision-making context, their 

performance suffers. In contrast, when the goals are broader to start with, then the decision-

maker is better able to sample relevant information from the decision context to learn plans of 

actions to a variety of goals they might face in the future (Burns & Vollmeyer, 2002; Locke & 

Latham, 2006; Osman, 2008a, 2008b, 2008c, 2012a; Vollmeyer et al., 1996). Moreover, when 

the costs (e.g., financial penalties) in failing to reach the goal are high, this can lead to highly 

erroneous decisions over time, regardless of whether the dynamic changes to the outcome are 
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stable or unstable. The reason for this is that the decision-maker is overly concerned with 

minimizing the negative consequences which leads to sub-optimal sampling of the information 

and poorer decision-making over time (Kerstholt, 1996; Kerstholt & Raaijmakers, 1997). 

These findings are echoed in the military literature. Indeed, goals can substantially 

influence situational awareness (van Westrenen & Praetorius, 2014). The military distinguishes 

between strategic, tactical and control decisions, each of which focus on different goals. 

Strategic decisions concern selecting the means to achieve a goal (e.g., ordering tugs), tactical 

decisions aim to deploy the means to achieve affordances (e.g., positioning the tugs or 

overtaking), and control decisions concern selecting the means to achieve a desired state (e.g., 

realising a speed and direction). Thus, the information a decision-maker needs to be aware of 

critically depends on the type of decision they are making.  

However, unlike existing psychological research, military scenarios often have many 

competing goals at different levels. For instance, typically the commander has been briefed on 

the overarching goals of the mission as well as more specific goals that their vessel is 

responsible for. In addition, they are responsible for the smooth running of the ship as well as 

other considerations such as limiting running costs. Thus, the psychological literature still has 

some ways to go before being able to completely understand how competing goals with varying 

stakes attached may impact decision-making in such a complex environment. 

 

Uncertainty 

Making good decisions in our dynamic decision-making scenario also requires dealing 

appropriately with uncertainty. Riveiro et al. (2014) examined dynamic decision-making in an 

air defense task. In this task, participants had to protect a radar station, while at the same time 

monitoring a map of the region to detect possible aerial threats. Practically, the decision makers 

had to identify and prioritise targets of interest to be communicated to a higher authority to 
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determine the appropriate countermeasures. They found that uncertainty information helped 

participants make a final judgment more swiftly, although it had no effect on decision accuracy. 

In other words, in this task uncertainty appeared to make participants more confident their 

decisions. 

However, in other military tasks, uncertainty appears to interact in unpredictable ways 

with expertise. Kobus et al. (2001) examined experts and non-experts in developing a battle 

plan in a dynamic tactical scenario. They found that the level of uncertainty interacted with 

experience in predicting time to gain situational awareness and time to execute their plan. They 

found that for both high and low uncertainty conditions, experts took more time to gain 

situational awareness than non-experts. However, in the high uncertainty condition, experts 

were much faster to then execute their plan, although the level of experience made no difference 

when uncertainty was minimal. John et al. (2000) also found that increasing uncertainty 

influenced tactical decisions. However, in contrast to Kobus et al. (2001), they only found this 

for less experienced Marines in Combat Operation Centers: the less experienced officers tended 

to adopt a ‘wait and see’ approach showing greater levels of caution. 

Perhaps part of the reason for these disparate results may come from how uncertainty 

is communicated to (and thus understood by) participants. These studies examine uncertainty 

using different tasks and thus, present the information in differing ways. This is an issue as 

many studies have found that the more salient the uncertainties around data are, the lower the 

confidence in decisions, and the greater the likelihood of making more conservative decisions 

(Finger & Bisantz, 2002; Riveiro et al., 2014; Svenson et al., 2010). Therefore, the differences 

between these studies could be driven by an interaction between the salience of information 

and expertise. After all, experts are obviously more experienced with the task. However, they 

may not have experience with how exactly the abstract research task is presented to them. 
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Dynamic tasks can also change their contingencies over time and there is preliminary 

evidence that participants are sensitive to this. When the fluctuations in outcome are moderately 

stable, decision makers tend to make small conservative changes to the system (Osman & 

Speekenbrink, 2011). In contrast, when experiencing large noisy fluctuations to the outcomes 

over time, decision makers often made multiple and dramatic changes simultaneously. It is 

important to note that, in these experiments, decision makers learn to make more effective 

decisions over time through extensive repeated exposure to the task environment. 

In sum, the effect of uncertainty on performance varies with the attributes of the 

participants and the method by which uncertainty is communicated. These factors need to be 

explored in much greater depth before we can determine how best to facilitate optimum 

performance. 

 

Feedback 

Optimum decision-making requires decision makers to understand which options lead 

to which outcomes with what probabilities and select the option that draws them closest to their 

goal. Receiving feedback is an important part of learning these relationships. In several studies 

the findings show that outcome feedback (i.e., simply finding out the actual effects on the 

outcome experienced because of a decision taken) leads to better performance than the presence 

of either positive or negative feedback (i.e., value judgments attached to the outcomes; Osman, 

2012a; Osman et al., 2017). The presence of positive or negative feedback has similar effects 

to decision makers being aware of the high stakes attached to their decisions, namely that they 

are overly focused on achieving positive feedback or reducing negative feedback than 

focussing on what information is relevant in achieving a desirable outcome over time. This 

aligns with a substantial body of literature looking at the role of feedback in many other 

decision-making contexts (for a review see Kluger & DeNisi, 1996). This work suggests that 
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unless the decision-making task is simple, additional feedback other than outcome feedback 

can, at best, add little additional benefits to decision-making performance and, at worst, impair 

decision-making performance. 

The probabilistic nature of dynamic decision-making tasks adds an additional hurdle to 

interpreting feedback. Feedback on a single trial is not particularly diagnostic due to the large 

role chance may play on achieving an outcome. Rather, what is most important is the success 

of decisions over time. One way of adapting feedback to prevent overweighting of the outcomes 

on single trials is to give feedback intermittently. That is, providing feedback (as well as reward 

information, financial benefits, financial costs; or social rewards and costs) periodically at set 

intervals, rather than every time a decision is made. Unexpectedly, however, direct 

comparisons of the effect of intermittent vs. consistent feedback show that overall dynamic 

decision-making performance suffered under intermittent outcome feedback (Osman et al., 

2017). This is consistent with other work that shows intermittent feedback does not perform 

well, even with non-probabilistic outcomes (Le Pelley, Newell, & Nosofsky, 2019; Smith et 

al., 2014). 

 

Decision-making: Recommendations, limitations, and future work 

Are laboratory studies on dynamic decision-making useful in providing insights to help 

recommend what strategies to adopt when facing military contexts? Work examining decision-

making in dynamic contexts reveals that, while people can learn to manage uncertainty and to 

determine plans of action that require regular interaction with an environment that is constantly 

changing, there are factors that contribute to less effective decision-making. Directing decision 

makers to focus on achieving highly specific outcomes, especially in a decision-context that 

they are unfamiliar with, can overly constrain what they learn, and lead to less adaptive 

decision-making in the long run. Feedback has a significant role to play in guiding the way in 
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which decision makers act in dynamic environments, because the environments often present 

a high level of uncertainty. Therefore, signals about the efficacy of decisions taken do provide 

useful guidance as to how to proceed, but can also overly constrain the focus of attention onto 

specific, narrow, features of the decision problem of the decision problem at the expense of 

other useful information. 

Do laboratory experiments examining dynamic decision-making generalise to military 

contexts? Although the experimental research above suggests that participants can be quite 

successful at dynamic decision-making tasks, there is one key (and likely obvious) difference 

between the experimental and military contexts that needs to be addressed. The dynamic 

decision-making scenarios are far simpler than the decision environments seen in military 

examples. For instance, in Osman et al. (2017) participants manipulated the proportions of three 

inputs to control a single output. In contrast, military decision-making is only becoming more 

complex as the sophistication, complexity, volume, and quality of information on which to base 

decisions increases (Mishra et al., 2015; Riveiro et al., 2014; Szeligowski, 2018; van Westrenen 

& Praetorius, 2014). This difference in complexity has implications for interpretation of the 

results. For example, within a simplified laboratory setup it is reasonable simple to determine 

whether a particular decision was optimal or not. Outside the lab, it is much more difficult. 

One approach to judging whether a decision was optimum or not is to look at the 

strategy that people use to come to their decision. Military decision makers are trained to weigh 

the pros and cons of each possible option and to select the alternative that leads to the best 

outcome (Kobus et al., 2001; Lipshitz & Strauss, 1997). However, the evidence suggests that 

often military decisions in the field are not optimal in this sense (Kobus et al., 2001; Riveiro et 

al., 2014). In a qualitative study exploring military decision-making, Kaempf et al. (1993) 

reported that 95% of operators use sub-optimum strategies based on matching the situation to 

past experiences. However, it is difficult to tell whether this is an appropriate way of dealing 
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with uncertainty. After all, decision makers are limited. They can be limited by gaps in 

knowledge, computation capacity (e.g., Frühling, 2014; van Westrenen & Praetorius, 2014; 

Yang et al., 2009), and motivational factors, such as time pressure (e.g., Frühling, 2014) and 

competing goals (Hammond, 2006; T. Murphy, 2010; van Westrenen & Praetorius, 2014). 

Further, given the dynamic nature of the environment, it may be the case that using a sub-

optimum strategy or heuristic that provides a quick answer may be better than carefully 

weighing the evidence, given that the scenario may change in that time. This is especially so as 

decisions in dynamic scenarios are interdependent: if the ship goes down because you failed to 

take prompt action, there will not be an opportunity to fix the mistake. 

One possible way future research might attempt to judge the efficacy of decisions, and 

thereby improving training and understanding, is by using causal models. We know from the 

empirical literature is that causal representations are essential in developing plans of actions in 

learning, decision-making and reasoning (Bramley et al., 2017; Meder et al., 2014; Sloman & 

Lagnado, 2015). By mathematically modelling the causal relations of a problem, we can better 

determine the optimal solution. This may be especially important given that there are a host of 

biases and heuristics found even when studying decision making in static environment 

(Kahneman, 2011). In addition, fleshing out causal models has been shown to reduce bias 

(Krynski & Tenenbaum, 2007).  

We could also use causal models as a decision-support tool. Much recent work in 

military decision-making talks about using decision-support tools. However, much of this work 

focuses on uncertainty visualisation, including uncertainty information so that it can be used in 

decision-making (e.g., Bisantz et al., 1999), rather than tools to help people make decisions. 

One approach to improving decision makers’ understanding of the underlying causal structure 

of the system is to use visualisations to represent that system. Some researchers have begun to 

explore the effectiveness of diagrams that represent the available options and their associated 
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probabilities in improving decision-making (e.g., Bae et al., 2019; Hänninen et al., 2014; 

Laskey et al., 2011; Pilato et al., 2012; Riveiro et al., 2014; Snidaro et al., 2015; Svenson et al., 

2010; Zhang & Buurman, 2008). Generally, these representations of the available options help 

decision makers improve their decision-making. However, like the visualisations mentioned 

above, they can still be subject to misinterpretations. Without training, the decision-maker is 

liable to impose their own understanding of the decision-problem and re-interpret the diagram 

to support their own preconceptions. 

 

General discussion 

In this review, we aimed to fully explore the psychological processes involved in a 

complex decision-making task. Specifically, we focussed on a simplified military scenario: 

how information is gathered and used in short-term tactical decisions (Figure 1). To make the 

task tractable, we first divided this overarching scenario into three parts (classification, 

communication, and choice) and then examined in detail the relevant literature at each stage. 

Like many other decision-making tasks, the complexity of the psychological processes 

involved in the scenario is demonstrated by the wide range of literature reviewed, from basic 

perceptual processes to the high-level influences of goal format. However, two core 

psychological factors repeatedly emerged as key factors in performance: cognitive load and 

individual differences.  

Throughout the three stages, we consistently found that task performance was related 

to participants’ ability to deal effectively with cognitive load. For instance, in the 

communication literature the most successful uncertainty communications are those that 

minimise the amount of cognitive effort required for understanding (e.g., Andre & Cutler, 

1998; Finger & Bisantz, 2002; Kirschenbaum et al., 2014). Participants also tend to ignore 

uncertainty information. Deterministic construal errors (Gigerenzer et al., 2005), containment 
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(MacEachren et al., 2005) and anchoring (Broad et al., 2007) are all examples of biases where 

participants mistakenly treat uncertain information as certain and thereby reduce the amount of 

information they must consider. Further, adding more information does not necessarily improve 

understanding or performance (e.g., Andre & Cutler, 1998; Bisantz et al., 2011; Finger & 

Bisantz, 2002; Hope & Hunter, 2007; S. L. Joslyn & Grounds, 2015). 

In categorisation and decision-making tasks, the role of cognitive load emerges as a 

tendency to satisfice: to use less of the available information than would be optimum (Simon, 

1947). For instance, in categorisation the evidence suggests participants are most likely to use 

simple rules based on a subset of the available information (e.g., Edmunds et al., 2015, 2018, 

2019; Rehder & Hoffman, 2005a; Wills et al., 2015, 2020). Similarly, in dynamic decision-

making participants will systematically vary one variable at a time to work out the underlying 

causal structure of a dynamic task (e.g., Osman & Speekenbrink, 2011; Osman et al., 2017). 

Therefore, at all levels of the scenario, people are likely to try and minimise the amount of 

information they use at any one time, at least when learning to figure out what is relevant in 

the task at hand. 

There is nothing wrong with this approach. After all, expertise is often associated with 

subjectively evaluating the cognitive load of a task as less. However, by considering this 

tendency carefully we can leverage it to improve performance in these tasks in military 

contexts: both by using them to promote desirable behaviour and devising strategies to 

attenuate undesirable behaviours. Some ways of doing this have begun to be explored. For 

instance, in the communication literature some have leveraged features of attentional processes  

to design visualisations for which questions about the underlying data can be answered more 

easily, more accurately or faster (Jänicke & Chen, 2010). In other words, designing the visual 

representation so that it matches the demands of the task (Vessey, 1991, 1994, 2006; Vessey 

& Galletta, 1991). This suggests that similar approaches may be fruitful in categorisation and 
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decision-making experiments. For instance, one could include explicit instructions to attend to 

a specific, randomly selected attribute every so often to avoid participants focusing on a small 

subset of the available information.  

These results also suggest that cognitive load is likely to be a key factor to consider in 

other complex decision-making tasks. The literature we reviewed here suggests that one 

approach to improving performance is by leveraging any small opportunity to reduce load. 

Such an approach will be beneficial in any high stakes, high load decision making context. For 

instance, the effectiveness of the compounding influence of numerous small changes (e.g., 

changing visual displays and alert sounds) to reduce load has been demonstrated within medical 

decision making (Phansalkar et al., 2010). Further, the literature reviewed here suggests that it 

is often difficult to know a priori which method of communication is most intuitive given a 

task. Thus, running (adequately powered, Bartlett et al., Under review) user studies that 

compare communication formats in scenarios as representative as possible is likely to improve 

final outcomes. For instance, military exercises could be used as an opportunity to test different 

ways of representing information. There’s a similar move in medical fields: virtual reality 

training is becoming more common and more realistic (Ruthenbeck & Reynolds, 2015).  

Another tendency that has emerged from the literature is that task performance can 

vary greatly due to differences between individuals. Although overall there is a tendency to try 

and minimise the amount of information needed to complete a task, people vary in the 

information they select to use (e.g., Edmunds et al., 2015; Haider & Frensch, 1996). Similarly, 

the success of particular uncertainty communication formats often depends on attributes of the 

recipient such as their background (e.g., Brun & Teigen, 1988; Doupnik & Richter, 2003; 

Harris et al., 2013), expertise (e.g., Kirschenbaum & Arruda, 1994; Kirschenbaum et al., 2014; 

Willems et al., n.d.), expectations (e.g., Norman, 1988; Padilla, 2018; B. Tversky et al., 2011; 

Wogalter et al., 2002), cognitive skills (e.g., Hegarty & Steinhoff, 1997). Thus, in some way, 
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successful maritime military decision-making requires adapting to the individual differences of 

the personnel involved. 

So, how do we overcome the difficulties raised by individual differences? Perhaps the 

most obvious answer is through training. Training is a core part of the military organisation 

and for the most part these training procedures are extremely effective. However, when it comes 

to decision-making there still appears to be a discrepancy between the strategies that military 

personnel are trained to use (Kobus et al., 2001; Lipshitz & Strauss, 1997) and those they 

actually use (Kaempf et al., 1993). Personnel are trained in how to determine the optimum 

option (Kobus et al., 2001; Lipshitz & Strauss, 1997). By weighing the pros and cons, personnel 

are likely to gain a deeper understanding of the situation and thereby, improve their decision-

making (Osman & Speekenbrink, 2012). However, this strategy is not consistent with how 

people make decisions: personnel will very rarely have the time or resources to consider every 

possible action. Rather, the evidence suggests that they focus on key information and the 

similarity to past events and choose the best seeming option. 

To some extent, the mismatch between the optimal strategy given in training and the 

ad-hoc strategies generated in the moment may be alleviated by many rounds of training 

operations. By repeating the same thing over and over, personnel can now use their imperfect 

strategy (matching to past experience), which will hopefully also match the optimum solution. 

However, this approach does not take into consideration that, due to their differences, people 

may interpret these training opportunities differently and thus, inadvertently learn different 

representations of the task. This suggests that perhaps more individualised training routines 

may help in making sure that military personnel are all on the same page. Indeed, work on 

developing more individualised training has begun in the decision-making literature. For 

instance, Parpart et al. (2015) developed active learning algorithms that could better determine 
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participants’ strategies whilst completing the task. Future work could take these algorithms and 

use them to guide participants to the optimum solution.  

Again, this suggests that individual differences need to be carefully considered in other 

complex decision-making tasks. The literature suggests that assuming that everyone uses the 

same approach (even broadly) in psychological tasks is something that needs to be 

demonstrated using appropriate evidence.  

 

Other factors 

This review focused on the flow of information from the bottom of the hierarchy to the 

top. It implied that the end of the scenario occurs when the commander decides what to do. 

However, military hierarchies are not one-way systems; information also travels from the top 

to the bottom, usually via orders (Szeligowski, 2018). Thus, decision-making is not the end of 

the scenario, rather command is. In other words, a commander’s success depends not only on 

making the optimum choice but also on implementing it effectively. This highlights a final key 

factor that influences behaviour in this scenario which we have avoided discussing in the 

current work: interpersonal dynamics. However, the scope of this literature is wide and would 

take too much space to explore here, although this is something critically important for future 

work. After all, making a good tactical decision but being unable to implement it because your 

crew has mutinied would in the end be equivalent to an incredibly poor decision. 

 

Conclusion 

To conclude, maritime military decision-making is an incredibly complex task. 

However, by drawing together diverse research from three different fields (categorisation, 

communicating uncertainty and dynamic decision making) we have gained a much greater 

understanding of the general tendencies that affect performance at each stage. Throughout the 
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three tasks, the evidence shows that people generally try to minimise cognitive load by 

simplifying the complex environment around them, but that the way they do this varies between 

individuals. By identifying these two features of complex decision making, we can, in future, 

exploit them to improve performance in maritime military decision-making as well as other 

high-stakes scenarios.  
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