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Efficient Semantic Segmentation via Self-attention
and Self-distillation
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Abstract—Lightweight models are pivotal in efficient semantic
segmentation, but they often suffer from insufficient context
information due to limited convolution and small receptive field.
To address this problem, we propose a tailored approach to
efficient semantic segmentation by leveraging two complementary
distillation schemes for supplementing context information to
small networks: 1) a self-attention distillation scheme, which
transfers long-range context knowledge adaptively from large
teacher networks to small student networks; and 2) a layer-wise
context distillation scheme, which transfers structured context
from deep layers to shallow layers within student networks for
promoting semantic consistency of the shallow layers. Extensive
experiments on the ADE20K, Cityscapes, and Camvid datasets
well demonstrate the effectiveness of our proposal.

Index Terms—Semantic segmentation, self-attention distilla-
tion, layer-wise context distillation.

I. INTRODUCTION

EMANTIC segmentation is a significant component of
S visual scene understanding. As a dense predicting task to
assign category labels for every pixel, semantic segmentation
has been widely applied in autonomous driving [1], [2].

Fully convolutional network (FCN) [3] is a pioneering work
in semantic segmentation and has achieved remarkable perfor-
mance. Based on FCN, several improvements have been pro-
posed. In addition to applying stronger backbone networks [4],
the most common idea is to enhance the sensitivity of the
model to global information via aggregating image context,
e.g. using dilated convolutions [5], multi-scale features [6],
conditional random field [7], and attention mechanism [&],
[9]. These methods could achieve good segmentation results,
but they often have large amounts of parameters and slow
inference, hindering their applications in real life.

In contrast, lightweight networks [10]-[13] have drawn
increasing attention for their efficiency. The characteristics of
small size, low delay and easy embedding make lightweight
networks attractive in resource-constrained applications, such
as mobile devices. These models, however, often have lower
accuracy than heavy networks.

To balance model accuracy and efficiency, knowledge dis-
tillation (KD) [14] was proposed as an effective approach,
by training a small student network with the supervision of
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a large teacher network. Useful information, such as intra-
class similarity and inter-class difference, is distilled from
the teacher to the student, which could improve the student
network’s performance without increasing its inference load.
Following KD, several distillation methods [I5]-[18] have
been developed and significantly improved the performance of
image-level classification. However, these methods produced
limited improvement in semantic segmentation, since they
only focus on separate pixel-wise information transferring but
ignore the dependency relationship among pixels, which is of
great importance for pixel-level segmentation tasks.

Therefore, in this paper, to address the issue of insufficient
context knowledge with lightweight networks and the issue
of lack of long-range context transferring with current KD
methods, we propose a tailored approach to efficient semantic
segmentation by leveraging two complementary distillation
schemes for supplementing context information to small stu-
dent networks: a self-attention distillation scheme, which
transfers long-range context knowledge adaptively from large
teacher networks to small student networks; and a layer-wise
context distillation scheme, which transfers structured context
from deep layers to shallow layers within student networks for
promoting semantic consistency of the shallow layers.

The self-attention distillation [19]-[23] selectively aggre-
gates the context information at each feature position, for
both teacher and student networks, via a weighted sum of
features among all positions, with the weight determined by
the feature similarity between two positions. Therefore, similar
features could benefit each other regardless of their spatial
distances, achieving spatial labeling contiguity and semantic
consistency. The layer-wise context distillation scheme is
motivated by self-distillation [24]-[26], and the goal is to
enrich semantic information in shallow layers via obtaining
long-range structured context information from deep layers
within the same network, as deep layers usually contain richer
spatial context information than shallow layers due to more
convolution and larger abstracting power.

Through the leverage of complementary self-attention and
self-distillation in knowledge distillation, our proposed method
can effectively transfer the long-range context information for
efficient semantic segmentation by a small student network. As
shown in Fig. 1, our method is effective in improving efficient
segmentation models without increasing any computation. For
traffic scene dataset, whose scene is complicated and contains
rich semantic content, there are some difficult segmentation
areas, e.g. small size objects (thin telegraph pole, people in the
distance) and obscured objects. Our proposed method could
enhance the feature representation of these areas, promote
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semantic consistence via transferring context knowledge from
the teacher network, and obtain more significant improvement.
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Fig. 1: The number of parameters and accuracy of different
models on the ADE20K val dataset. Blue dot denotes the
models without distillation. Red triangle denotes the models
distilled by our proposed distillation method. The proposed
method can increase segmentation accuracy significantly, with
no extra parameters.

In summary, our main contributions are as follows:

« We propose a tailored approach to efficient semantic seg-
mentation by leveraging two complementary distillation
schemes for supplementing context information to small
student networks: a self-attention distillation scheme and
a layer-wise context distillation scheme.

« We propose a self-attention distillation scheme, which can
help lightweight student network capture long-range con-
text knowledge adaptively from heavy teacher network.

e We propose a layer-wise context distillation scheme,
which can enrich structured context information of shal-
low layers, promote their semantic consistency, and in
return benefit deeper layers.

In the rest of this paper, Section II provides a review
of related work in semantic segmentation and knowledge
distillation, as well as the main difference between these work
and our proposed method. Section III details the proposed
knowledge distillation strategy, which includes self-attention
distillation and layer-wise context distillation. Section IV
presents experiments and analysis to validate the effectiveness
of proposed method, and Section V concludes the paper.

II. RELATED WORK
A. Semantic Segmentation

Recent works in semantic segmentation are mainly based on
FCN [3] and gain improvements through context aggregation.
For example, CRF [7], [27] is introduced as a post-processing
module to refine segmentation boundary; dilated convolutions
and multi-scale features [6], [28] are used to enlarge re-
ceptive field; Recurrent Neural Network (RNN) [29]-[31] is

adopted to model relationship among pixels; and attention
mechanism [32]-[35] is used to make models explore the
correlation knowledge of channels or spatial pixels and benefit
segmentation. These methods, however, are often with large
amounts of parameters and computation.

Lightweight models have been proposed for high efficiency.
Some works [11], [36], [37] simplify models via decomposing
the standard convolution into a more efficient form, e.g. ES-
PNet [11] combines point-wise convolutions and spatial pyra-
mid of dilated convolutions. There is also a way [12] to reduce
the complexity of the entire network via adopting channel
split and shuffle operation in each residual block. In addition,
lightweight models often have fewer convolutional layers,
e.g. ResNet18, compared with complex models, e.g. ResNet50,
but the receptive field and the ability to gain long-range context
information are limited.

B. Knowledge Distillation

Knowledge distillation (KD) [14] is an effective method
to improve the performance of a small student network
without increasing its inference load. Some methods [15]-
[18] transfer feature representation knowledge from hidden
layers. FitNet [15] and Mimic [16] align feature maps between
teacher and student networks, used as initialization weight
or loss function for training the student network. AFD [17]
trains multiple networks simultaneously and makes them learn
the feature map distribution from each other via adversarial
learning. AT [!18] aligns the feature attention map of two
networks. However, these methods have limited performance
in semantic segmentation, since they focus on separate pixel-
wise value transferring but ignore the relationship among
pixels.

Several KD methods [38]-[41] are specially tailored for
efficient semantic segmentation, mainly by adding context
information transferring. For example, [38] considers the
difference of center pixel and eight adjacent pixels as local
context information, and keep it aligned between the large
teacher network and the small student network. Knowledge
adaptation [39], structured KD [40] and CSC [41] extract and
transfer long-range context information in a fixed pair-wise
similarity from the teacher network to the student network.
MINILM [42] proposes self-attention distillation, but the self-
attention mechanism is a component of basic segmentation
network and the relation knowledge is still transferred in a
fixed form, similar to [39]-[41], and could not get transferred
adaptively. In addition, MINILM [42] is specially designed
for Transformer based models and could not be applied in
general to CNN models which is commonly used in semantic
segmentation.

Different from [39]-[41], which align pair-wise similarity
directly in a fixed pattern, our work adopts a self-attention
mechanism to transfer long-range context information in an
adaptive way, in which context information of all pixels are
aggregated to current pixel and the connection weights are
not fixed but determined by the feature similarities, hence
similar semantic features would benefit each other without
considering spatial distance. Furthermore, the context trans-
ferring obstacles due to different model structures would be
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Fig. 2: The architecture of proposed framework. Between the (upper) large teacher network and the (lower) small student
network, the self-attention (SA) distillation module consists of two components: self-attention teacher transform (SATT) and
self-attention student transform (SAST). The layer-wise context (LC) distillation module transfers a correlation map from deep

layers to shallow layers.

mitigated thanks to the adaptive context aggregating weights.
There are several works tailored for decreasing this obstacles:
[43] specially tailors different training data for the teacher
and student networks; and [44] additionally builds the teacher
assistant model to help training. Our method does not need to
design training data or assistant network, it could bridge the
model size gap via adaptive learning.

There are also some recent KD methods [24]-[26] transfer-
ring knowledge from the layer-wise point of view. However,
they distill separate pixel-wise knowledge without considering
context information: [24], [25] directly align feature maps
among shallow layers and the deepest layer with deep super-
vision; and [26] aligns attention maps among shallow layers
and deep layers. Long-range structured context information is
crucial to semantic segmentation, especially for lightweight
models with limited receptive field.

Different from [24]-[26], our proposed layer-wise context
distillation focuses on transferring semantic context knowledge
across layers, which would enrich semantic information of
shallow layers, e.g. by enhancing intra-class similarity and
inter-class difference, and improve the segmentation perfor-
mance.

III. PROPOSED METHOD

In this section, we propose a new KD strategy tailored for
efficient semantic segmentation. It contains two complemen-
tary distillation schemes: self-attention distillation and layer-

wise context distillation. The whole framework is shown in
Fig. 2. There are two separate networks: one is the large
teacher network, which has high segmentation accuracy, and
the other is the small student network, which is simple and
has high efficiency.

A. Self-Attention Distillation

1) Motivation: Semantic segmentation is not a separate
pixel classification task. In semantic segmentation, it is cru-
cial to consider the dependency among pixels for generating
discriminant feature representations and avoiding misclassifi-
cation of pixels. However, small networks have less ability
to gain this contextual dependencies compared with large net-
works, leading to weaker segmentation. Motivated by the self-
attention mechanism [20], which could exploit long-range spa-
tial semantic inter-dependency to improve the model’s aware-
ness of global contextual information, this paper proposes
a self-attention module to help supply the student network
with context knowledge. Different from general works [33]
that straightly embed self-attention in the interior of model,
which would largely increase the amount of parameters, we
use a self-attention module as a bridge to help small network
train better via context information supplement. As illustrated
in Fig. 2, the self-attention (SA) module consists of two
components: self-attention student transform (SAST) and self-
attention teacher transform (SATT).
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2) Self-Attention Student Transform (SAST): SAST is de-
signed for the student network to adaptively aggregate context
information from the student feature map. SAST is based on
self-attention mechanism and illustrated in Fig. 3.
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Fig. 3: The architecture of SAST.

Assume the student feature map is A% of size H x W x N¥
representing the height, weight and channels, respectively. It
gets through three convolution layers respectively to obtain
three feature maps B, C' and D of size H x W x N S and
then is reshaped as M x N S, where M equals H x W. The
transposition of B is multiplied with C, and an attention map
S of size M x M is obtained after softmax:

S;i = EXP(BZ Cj) ’ 0

> iz1exp(Bi - Cj)

where ¢ and j denote the indices of pixels in the feature map,
i,7 € {1,..., M}. The dot product is adopted to determine the
correlation of two positions. S is a correlation matrix, where
S;; measures the impact of position 7 on position j in the
feature map. The more similar of two positions, the greater
correlation. Matrix D is multiplied with S and reshaped as
the original size H x W x N, and the output is added to A
with scale factor o

M
E; = aZ(SﬁDi) + A3 )
i=1
The feature map E has a global view of context information
since each position value is a weighted sum of all positions in
the original feature map. Then, E gets through a convolution
layer to obtain feature map F', with the view of adjusting
channels to the same as the teacher feature map A”. The loss
function could be written as

L M
Lgy = MZ
j=1

The Lo loss is adopted to formulate the SA distillation loss.
F}, after acquiring knowledge from the teacher network A]-T,
not only transmits knowledge to the jth pixel Af , but also to
other relevant locations A7 . If A7 is more relevant to A7 (S,
is larger), it would gain greater knowledge from Fj.

The mapping relationship is shown in Fig. 5(b). For tra-
ditional KD method designed for image-level classification,
e.g. Mimic, the mapping relationship is illustrated in the first
row of Fig. 5(b), which only aligns individual pixel value
without considering the relationship among pixels. The SAST
method is illustrated in the second row of Fig. 5(b), which

Ly A7
5l ATl

3)

)
2

adaptively aggregates global context information to current
pixel with similar features benefiting each other regardless of
their spatial distances, thus achieving intra-class compactness
and semantic consistency.

3) Self-Attention Teacher Transform (SATT): SATT is de-
signed to transfer the latent rich context information from the
teacher network into an explicit form that can be easily learned
by the student network. The structure of SATT is illustrated
in Fig. 4.
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Fig. 4: The architecture of SATT.

The teacher feature map A’ is reshaped as M x NT, where
M equals H x W, and then the transposition of reshaped A7
is multiplied by itself to obtain a correlation map X of size
M x M after softmax:

exp(AT - AT)
S exp(AT - AT)’

where X;; represents the impact of position ¢ on position j in
the teacher feature map, ¢,5 € {1,..., M}.

SATT aims to use correlation weight X to aggregate all
associated pixels to current pixel. That is, the reshaped A7 is
multiplied with X and reshaped as the original size H X W x
N7 and then the result is added to original teacher feature
map AT to obtain feature map G:

X = (4)

M
Gy =Y (XuAD) + AT, 5)
i=1
Feature map G also has a global view of context information
since each position value is a weighted sum of all positions in
the original teacher feature map. The loss function could be
written as

F, G
[Ejll2 [1Gjll2

1M
Lsa= 37 Z (6)
Jj=1

Compared with SAST, F}; obtains knowledge from not only
the jth position in A” but also its relevant positions which is
determined by correlation map X. The mapping relationship
is shown in the third row of Fig. 5(b), which makes the student
feature map gain more context information from the teacher
network and further improves semantic consistency.

4) Visualization of Results with and without SA: To verify
the effectiveness of SA module, we present some results
via adding SAST and SATT step by step. One point is
selected in pillow area marked by red dot in Fig. 5(a). The
correlation map of this point and all other spatial positions
in the feature map is shown in Fig. 5(c). It can be seen that
both the inter-class difference, e.g. from wall and bed area,
and intra-class similarity, e.g. to the other pillow area, get
enhanced by adding SAST and SATT. The student feature map

2
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Fig. 5: The effectiveness of SA: (a) input image with random selected point marked by red dots and ground-truth label; (b)
the mapping relationship of mimic, SAST, and SAST+SATT; (c) the visualization of correlation map of given pixel point in
three methods; and (d) segmentation results of three methods.

Fig. 6: Two examples of segmentation results and correlation information of each block feature map before and after applying
layer-wise context distillation.
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fails to capture long-range context knowledge via mimicking
the teacher feature map straightly without considering the
relationship among pixels. Self-attention module could make
up for the deficiency and improve segmentation performance,
as shown in Fig. 5(d).

B. Layer-Wise Context Distillation

1) Motivation: Deep layers contain richer context infor-
mation than shallow layers in a same network due to more
convolution and larger abstracting power. For a network with
four blocks (like the one in Fig. 2), we visualize the correlation
information of one random selected point, marked by red dot
in input image, and other spatial positions in the feature map
of different blocks, as shown in Fig. 6. The feature maps in
preceding blocks more focus on local correlation information
and gain less long-range dependency among pixels compared
with deeper blocks.

Motivated by self-distillation methods [24]-[26] which
transfer useful knowledge from the layer-wise point of view,
layer-wise context (LC) distillation is proposed to enrich
long-range context information of shallow layers by distilling
it from deep layers, with the aim of promoting semantic
consistency of the shallow layers, and then in return benefit
deep layers and final segmentation results.

2) Layer-Wise Context Distillation: The LC distillation
only needs to distill long-range context information, so it
directly computes correlation between any two feature posi-
tions via bilinear pooling function as correlation map, which
is the same as with [39], [40]. The main difference between
the LC distillation and [39], [40] is that the LC distillation
transfers correlation map from layer-wise point of view within
the student network, while [39], [40] get it transferred from
the teacher network to the student network. The LC distillation
applies bilinear interpolation at each feature map of different
layers in a network to ensure the same spatial size. The feature
map is normalized before applying bilinear pooling.

Assume the feature map is A with size H x W x N, K(A)
denotes the correlation map of A, and i,5 € {1,..., HxW}.
The correlation of two random selected positions ¢, j in feature
map A could be written as

1 AT A,

K(A);; = . .
Wi = W TALTA

(7

Let A; represent the feature map of I/th layer in network
after interpolation, with [, A € {1,...,L —1}. The Ly loss is
adapted to formulate the layer-wise context distillation loss as

Lro(Ai, Apa) = La(K (A1), K(Aiya))- (®)

It is noteworthy that the connection paths between shal-
low layers and deep layers could be diverse. For instance,
knowledge flow in block4 — block3, block4 — blockl,
block3 — blockl1, etc. The number of possible paths among
two blocks for a network with L blocks is @ Dense
connections could also be applied by combining above paths.
We shall present an ablation study to find out which type of
connection could improve performance significantly.

3) Total Loss: The total loss comprises three terms: the
cross entropy loss L. with ground-truth label, the self-
attention distillation loss Lg4 in Eq.(6), and the layer-wise
context distillation loss Ly in Eq.(8):

L= Lce + BLSA + ’VLLCa (9)

where the effect of three losses is balanced by the loss weights
[ and y, which are set to 10 and 20 respectively, making these
loss value ranges comparable.

4) Visualization of Correlation Information with and with-
out LC Distillation: The effectiveness of LC distillation is
validated by investigating the correlation information of dif-
ferent layer features with and without the LC distillation. For
a given randomly selected point marked with red dot in input
image, the correlation with all other pixel positions in the
feature map is shown in Fig. 6. The intra-class similarity and
inter-class difference of shallow features are weaker than deep
features, but they could get enhanced after the LC distillation,
as shown in black dashed box. Furthermore, as for the deepest
feature, its intra-class similarity (shown in block4 of the first
image) and inter-class difference (shown in block4 of the
second image) are also enhanced due to the better semantic
consistency learned in the shallower features. With the help of
LC distillation, long-range context information among pixels
could be enhanced to make more robust decision, as reflected
in segmentation results (see the rightmost column of Fig. 6).

IV. EXPERIMENTS

In this section, we first introduce the datasets and imple-
mentation details, then discuss ablation studies to verify the
effectiveness of our proposed method, and finally present re-
sults on three publicly available datasets: ADE20K, Cityscapes
and Camvid.

A. Datasets

1) ADE20K: The ADE20K dataset [45] is a challenging
dataset with 150 objects and diverse scenarios. The pixel ratios
of different objects follow a long tail distribution. The dataset
contains 20k images for training, 2k images for validation, and
3k images for testing.

2) Cityscapes: The Cityscapes dataset [2] contains urban
street scene images with 30 classes of dense pixel annotations,
19 of which are used for evaluation. It includes Sk finely
annotated images and 20k coarsely annotated images. We only
use high quality finely annotated images, and they are divided
into 2975 for training, 500 for validation, and 1525 for testing.

3) Camvid: The Camvid dataset [46] is a driving scenarios
dataset with 12 classes, 11 of which are used for evaluation
since 12th class includes unlabeled data. The dataset contains
367 images for training, 100 images for validation, and 233
images for testing.

B. Implementation Details

To demonstrate the effectiveness of proposed method, we
choose two public lightweight models as the student network:
MobileNetV2 and ResNet18. PSPNet50 is used as the teacher
network for generating features with rich context information.



MANUSCRIPT TO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

1) Training: The mini-batch stochastic gradient descent
(SGD) is used for training the student network with momen-
tum (0.9) and weight decay (0.0005). We set initial learning
rate as 0.01 and use poly learning rate strategy with power
0.9. The training dataset is augmented by randomly scaling
(from 0.5 to 2.0), randomly flipping and cropping images
into 713x713 as input data. The batch-size is set to 8 in
training stage. The experiments employ 180K iterations for
ADE20K, 120K iterations for Cityscapes, and 120K iterations
for Camvid.

2) Evaluation Metrics: The segmentation performance is
measured by the mean Intersection Over Union(mIOU) and
the pixel accuracy. IOU is the ratio of intersection to union
between predicted results and ground truth for every object
category, while mIOU is the average of IOU in all categories.
The pixel accuracy is the ratio of correct predicted pixels to all
pixels. In addition, the experiments also evaluate the efficiency
of model, including model size and computation complexity,
which are measured by the amount of model parameters and
floating point operations (FLOPs), respectively.

C. Ablation Studies

1) Distillation Paths of LC: This section summarizes the
performance of segmentation when different connection paths
are conducted on the LC distillation, as shown in Table I,
where P;; denotes knowledge flow from the jth block to the
ith block.

TABLE I: Performance of different connection paths of
ResNet18 on the ADE20K val dataset. The best is in bold.

Path mIOU(%) Path mIOU(%)  Path  mIOU(%)
Pip 3572 Po3 3572 Poz+ Poy 3574
P13 3571 Paq 3582 Po3+ P3y  35.78
Py 3577 Py 3580 Pos+ P34 35.78

From Table I, we can make the following observations.
First, if distillation paths are conducted among shallow layers,
e.g. Pjo, the accuracy is not improved and even lower than
baseline accuracy 35.83%, since shallow layers lack rich scene
context. The accuracy is improved when extracting the context
knowledge from the deepest block feature, e.g. P4, P2y and
P34, as the deepest block feature encodes the most global
information. Secondly, single path works better than multiple
paths, e.g. Py, P34 outperform Po4 4 P34. We conjecture that
multiple paths may over-constrain the network and have an
adverse effect on the learning process. Therefore, single path
is shown in Fig. 2.

2) The Effectiveness of SA and LC Distillation Modules:
The SA and LC distillation modules are proposed to transfer
long-range context information from the teacher network to
the student network and from deep layers to shallow layers
within student network, respectively. To demonstrate the effec-
tiveness of each distillation module, this section enables and
disables different components of the proposed method. The
experiments are conducted in two student networks: ResNet18
and MobileNetV2 on ADE20K. The initial model pretrained
on ImageNet is adopted to help training. The segmentation
results are summarized in Table II, all results are tested in a

single scale on the ADE20K val set, and FLOPs is calculated
with input size 713x713.

TABLE II: Ablation studies on different components of the
loss in our method. T: Teacher; S: Student.

Method mIOU(%) Acc(%) Params(M) FLOPs(B)
T: PSPNet50 40.79  79.65 44.62 140.6
S1: ResNet18 3382  76.05 11.38 48.18
S1+SAST 3558  77.06 11.38 48.18
S1+SAST+SATT 3573  77.10 11.38 48.18
S1+SAST+SATT+LC 35.82 77.13 11.38 48.18
S2: MobileNetV2 30.79  75.22 1.96 6.53
S2+SAST 33.06 76.22 1.96 6.53
S2+SAST+SATT 33.18  76.30 1.96 6.53
S2+SAST+SATT+LC 33.24  76.36 1.96 6.53

As can be seen from Table II, each distillation scheme gains
higher mIOU and pixel accuracy, which implies the effective-
ness on training a better student network. The proposed dis-
tillation strategy boosts the performance from 33.82 to 35.82
for ResNet18, from 30.79 to 33.24 for MobileNetV2 in mIOU
(%), without extra parameters or computation. Furthermore,
the effectiveness of the SA and LC distillation modules is
visualized in Fig. 5 and Fig. 6, respectively. It can be seen
that, with our proposed method, more context information
and semantic consistency can be captured to help the student
network make a better decision. In addition, we present some
visualized segmentation results in Fig. 7 and Fig. 8 to show
the effect of each module. The results via the SAST module
are much closer to ground truth compared with the student
network without distillation, while the SATT and LC modules
could further promote semantic consistency within the objects
(e.g. the areas of internal misclassification are reduced in
curtain, ground, chair), and make the object segmentation more
complete (e.g. pillows and lamps are closer to the real shapes).

3) Comparison with Other Distillation Methods: This sec-
tion demonstrates the superiority of our proposed method to
other common distillation methods: KD [14], Mimic [16],
knowledge adaptation [39] and CSC [41].

a) KD: This method defines the probability output of
each category for every pixel in the teacher network as soft
label, and it is used to supervise the learning procedure of
the student network. The soften degree is controlled by a
temperature parameter, which is set 2 empirically.

b) Mimic: This method defines the feature map of
teacher network as knowledge. The feature maps are aligned
between the student network and the teacher network via a
33 convolution layer to match the dimension of channels.

c) knowledge adaptation: This method launches two
branches to gain knowledge for the student network at the
feature map level. It makes the student network mimic both the
feature map and affinity information of the teacher network.

d) CSC: This method considers both spatial and channel
correlations at the feature map level via pair-wise dot product.

The proposed method is compared with the above three
methods on ADE20K. Table III shows that the proposed
method promotes the student network most and achieves the
highest segmentation accuracy. KD and Mimic only align
separate pixels without considering the transfer of context
knowledge. Knowledge adaptation, CSC and our proposed
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(a) Image (b) Ground Truth

(c) W/o distillation

(d) SAST (d) SAST+SATT

Fig. 7: Visualized results before and after applying each component of SA.

(a) Image

(b) Ground Truth

(c) W/o LC (d) With LC

Fig. 8: Visualized results before and after applying layer-wise context distillation.

TABLE II: Comparison of KD [14], Mimic [16], knowledge
adaptation [39] and CSC [41] with our proposed method. The
performance is evaluated on ADE20K val with one single
scale.

Method mIOU(%) Acc(%)

T: PSPNet50 40.79  79.65

S: ResNet18 33.82  76.05
S+KD 3427  76.17
S+Mimic 35.06  76.97
S+knowledge adaptation 35.12  76.98
S+CSC 3525  77.00
S+SA(ours) 3573  77.10
S+SA+LC(ours) 3582 77.13

method make up for the deficiency and thus outperform KD
and mimic methods. Knowledge adaptation defines correlation
map via calculating dot product between any two feature
positions as context knowledge, and gets it aligned between
two networks. CSC considers channel correlation more than
knowledge adaptation does, and performs better in results,
but it still represents and transfers correlation information
in a fixed pattern via aligning pair-wise similarity directly.
Our proposed SA module transfers context information in an
adaptive way, compared with the fixed context representation
pattern in knowledge adaptation and CSC, it makes use of
adaptive context aggregating weights and could mitigate the
transferring obstacles caused by different model structures.
In addition, our proposed LC module could further promote
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semantic consistency via transferring context information from
layer-wise point of view within the student network, while
knowledge adaptation merely considers knowledge transfer-
ring from teacher network to student network. Therefore, our
proposed method achieves higher segmentation accuracy than
knowledge adaptation and CSC.

D. Segmentation Results on ADE20K, Cityscapes and Camvid

TABLE IV: Segmentation performance on the validation set
of ADE20K.

Method Acc(%) mlOU(%) Params(M)
SegNet [47] 71.00 21.64 47.52
DilatedNet50 [5] 76.35  34.28 62.74
FCN [3] 71.32  29.39 134.5
PSPNet50 [6] (teacher) 79.65  40.79 44.62
MobileNetV2 [10] 7522  30.79 1.96
MobileNetV2(ours) 76.36 33.24 1.96
ResNet18 [4] 76.05  33.82 11.38
ResNet18(ours) 7713  35.82 11.38

1) ADE20K: We evaluate the proposed distillation method
on ADE20K with two student networks: ResNet18 and Mo-
bileNetV2. The performances of student networks and other
public models on the dataset are listed in Table IV. For
MobileNetV2, the proposed method improves 2.45% mIOU,
making it outperform SegNet and FCN, with higher segmen-
tation accuracy and less model complexity. For ResNet18, it
improves 2% mlIOU, and outperforms DilatedNet50 after dis-
tillation. Fig. 9 visualizes some segmentation results obtained
from without distillation and traditional knowledge distillation
method KD. The results from our proposed method are much
closer to the ground truth and better in semantic consistency.

TABLE V: Segmentation performance on the validation and
test sets of Cityscapes.

Method val mIOU(%) test mIOU(%) Params(M) FLOPs(GB)
PSPNet50 [6] (teacher) 78.45 77.93 44.62 351.2
FCN [3] - 65.3 128.23 311.36
DeepLabv2-CRF [7] - 70.4 62.7 499.7
Dilation10 [5] - 67.1 25.6 192.7
SegNet [47] - 57.0 47.52 464.8
ENet [48] - 58.3 0.358 3.612
DANet50 [33] 78.32 - 45.16 397.4
ShuffleNetV2 [49] 70.85 - 12.6 132.85
ShuffleNetV2 [49]
+HANet [50] 71.52 - 13.7 132.9
ResNet18
+HANet [50] 71.34 - 14.9 117.37
ResNetl8 70.11 69.16 11.38 117.26
ResNet18(ours) 73.10 71.79 11.38 117.26

2) Cityscapes: Then, the proposed method is evaluated on
Cityscapes. We choose ResNetl8 as the student network and
the performances are presented in Table V. FLOPs is calcu-
lated with input size 512x 1024 for all methods. The proposed
distillation method improves segmentation accuracy by 2.99%
and 2.63% in mIOU for validation and test data, respectively.
Distilled student network outperforms DeepLabv2-CRF and
ShuffleNetV2 significantly, although it is weaker than these
models before distillation. Compared with HANet, which is a
lightweight add-on module and could improve the performance
by extracting the height-wise context information, our method

achieves higher improvement while not increasing the amount
of parameters. The segmentation results are visualized in
Fig. 10. The proposed distillation method can help the student
network classify, and provide details for, small objects, such as
telegraph pole and people in the distance, thanks to transferring
rich context information.

TABLE VI: Segmentation performance on the test set of
Camvid.

Method mIOU(%) Params(M)
PSPNet50 [6] (teacher) 73.54 44.62
FCN [3] 57.10 134.5
DeepLab-CRF-LargeFOV [51]  61.60 20.5
SegNet [47] 55.6 47.52
ENet [48] 51.3 0.358
ResNet18 66.12 11.38
ResNet18(ours) 70.16 11.38

3) Camvid: The performances on the test set of Camvid are
listed in Table VI. The proposed method improves the student
network segmentation accuracy by a large amplitude 4% in
mlIOU. The segmentation results are shown in Fig. 11. The
objects, e.g. car and telegraph pole, can be labelled correctly
after distillation.

V. CONCLUSION

This paper proposes a novel approach to efficient seman-
tic segmentation, by leveraging two complementary knowl-
edge distillation strategies. Through a self-attention distilla-
tion scheme, student models could gain long-range context
information adaptively from teacher models; through a layer-
wise context distillation scheme from deep layers to shallow
layers, semantic consistency of segmentation results can be
further enhanced. Extensive experiments have demonstrated
the effectiveness of our proposed method that lightweight
student networks can gain a large margin in segmentation
accuracy without any extra burden of inference.
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