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Background: Risk factors or interventions may affect the variability as well as the mean of health 20 

outcomes. Understanding this can aid aetiological understanding and public health translation, in that 21 

interventions which shift the outcome mean and reduce variability are typically preferable to those 22 

which affect only the mean. However, most commonly used statistical tools do not test for differences 23 

in variability. Tools that do have few epidemiological applications to date, and fewer applications still 24 

have attempted to explain their resulting findings. We thus provide a tutorial for investigating this 25 

using GAMLSS (Generalised Additive Models for Location, Scale and Shape). 26 

 27 

Methods: The 1970 British birth cohort study was used, with body mass index (BMI; N=6,007) and 28 

mental wellbeing (Warwick-Edinburgh Mental Wellbeing Scale; N=7,104) measured in midlife (42-29 

46 years) as outcomes. We used GAMLSS to investigate how multiple risk factors (sex, childhood 30 

social class and midlife physical inactivity) related to differences in health outcome mean and 31 

variability.  32 

 33 

Results: Risk factors were related to sizable differences in outcome variability—for example males 34 

had marginally higher mean BMI yet 28% lower variability; lower social class and physical inactivity 35 

were each associated with higher mean and higher variability (6.1% and 13.5% higher variability, 36 

respectively). For mental wellbeing, gender was not associated with the mean while males had lower 37 

variability (-3.9%); lower social class and physical inactivity were each associated with lower mean 38 

yet higher variability (7.2% and 10.9% higher variability, respectively).  39 

 40 

Conclusions: The results highlight how GAMLSS can be used to investigate how risk factors or 41 

interventions may influence the variability in health outcomes. This underutilised approach to the 42 

analysis of continuously distributed outcomes may have broader utility in epidemiologic, medical, and 43 

psychological sciences. A tutorial and replication syntax is provided online to facilitate this 44 

(https://osf.io/5tvz6/). 45 
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Introduction 55 

What is health? Contrary to simplistic notions of its being defined as the absence of disease, it is now 56 

increasingly understood that most outcomes of public health significance are continuous in nature.
1
 57 

This applies to both physical and mental health outcomes.2 3 The use of binary endpoints, while 58 

having utility in clinical applications, should not hinder investigation of the influences of health 59 

outcomes which are ultimately continuous. Further, analysing the determinants of health using 60 

continuous rather than binary outcomes is beneficial both practically (with more statistical power and 61 

less information loss) and substantively (greater aetiological understanding). Indeed, those at high risk 62 

of a developing an illness may comprise a minority of those who ultimately succumb.4 63 

 64 

Studies into the effect on continuous outcomes of exposures, be they risk factors in observational 65 

studies or interventions in randomised trials,3 typically focus on mean differences in the outcome, 66 

using linear regression. However linear regression assumes homoscedasticity, i.e. that the variability 67 

of the outcome is unrelated to the exposure, and often this is not the case. It is possible to extend 68 

regression analysis to model the variability as well as the mean, and this has benefits in terms of not 69 

only the model’s fit but also its interpretation. If for example the intervention in a trial can be shown 70 

to reduce variability in the outcome, this could reasonably be viewed as evidence of intervention 71 

success5 independent of the intervention’s effect on the mean. Treatment for refractive vision errors—72 

glasses, contact lenses, and/or corrective surgery—seeks to improve vision by shifting individuals 73 

towards a specified standard (e.g. 20/20 vision).6 Successful treatments alter the mean refraction, but 74 

they are even more successful if they also reduce the substantial variability in refraction arising from 75 

the mix of short- and long-sighted individuals.  76 

 77 

Similarly, obesity interventions aim to reduce body mass index (BMI) and shift treated individuals 78 

from overweight (25-30 kg/m2), obese (>30 kg/m2) or severely obese (>45 kg/m2) to the normal range 79 

(20-25 kg/m2). However here the effect of the intervention on variability is often to increase it. Even if 80 

not formally tested, visual comparisons of outcome distributions of some influential trials suggest that 81 

weight loss interventions increase rather than reduce BMI variability,7 presumably since they are 82 

effective in some but not all participants.  83 

 84 

Understanding if and how risk factors influence variability in health outcomes has aetiological 85 

significance, consistent with the goal of epidemiological science to understand the distribution of 86 

health.8 Risk factors could feasibly affect outcome variability yet not affect the mean—for example, 87 

one study found that breastfeeding was not related to mean childhood BMI, yet was related to lower 88 

childhood BMI variability.9 Similarly, sex may affect variability and/or average levels of an 89 

outcome—for instance, males may have greater variability than females in some cognitive traits10 and 90 

brain structures.11 91 
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 92 

Identifying associations between risk factors and outcome variability may also be useful to identify 93 

the absence or presence of heterogeneity in susceptibility to interventions or risk factors and thus aid 94 

aetiological understanding. Indeed, the finding that substantial increases in mean BMI in recent 95 

decades have been matched by increases in BMI variability indicates that there may be differential 96 

susceptibility to the obesogenic environment.12 13 In the context of randomised controlled trials, the 97 

finding of variability in treatment effects between individuals has been used to justify individualised 98 

approaches to treatment (personalised medicine). Reflecting the challenges of empirically testing this 99 

however, five separate meta-analyses have tested heterogeneity in response to antidepressant therapy; 100 

despite using the same dataset, different methods and divergent conclusions were drawn.14  101 

 102 

Another advantage of modelling varability arises in common situations where the outcome under 103 

study is non-linearly related to other outcomes of interest. For instance, BMI influences mortality and 104 

morbidity rates, but the relationship between BMI and mortality is thought to be J-shaped15; compared 105 

with those in the normal range, mortality risks are greater for those who are under- or overweight. In 106 

this case, the total effect of an intervention to reduce BMI on these wider outcomes is not fully 107 

captured by its average BMI effect. Rather, understanding the total distributional effect on BMI is 108 

required.  109 

 110 

Figure 1 shows three hypothetical scenarios for an intervention to affect the distribution of an 111 

outcome. In the first case (Panel A), the intervention has an impact that is consistent across the 112 

population: all individuals are affected and to the same extent. In the second case (Panel B), the 113 

intervention has the same mean impact, but variability is also increased: some are positively affected, 114 

others negatively. In the third case (Panel C), the mean is again increased, but so is skewness. There is 115 

heterogeneity in response, with some seeing more positive responses than others. The policy 116 

implications may be different in each case. In the second and third scenarios, efforts could be directed 117 

to identify those who are (more) positively impacted, so as to increase the net benefit or cost-118 

effectiveness of the intervention. Indeed, in a choice between interventions, an intervention generating 119 

lower expected benefits but smaller variability in outcomes may be chosen, in so far as reducing 120 

inequalities is seen as a policy goal in itself. 121 

 122 

Recent studies in biological,16 17 environmental18 and economic science19-21 have begun to examine 123 

how risk factors relate to the distribution of the outcome of interest. However, there have been few 124 

epidemiological applications of this approach to date;22 and fewer still that provide explanations for 125 

such findings, which are essential if such methods are to have utility. Indeed, one recent study which 126 

investigated the association between mental health symptoms and lower income explicitly avoided 127 
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interpretation of its findings on variability, focusing instead on issues relating to the application of 128 

such methods.20  129 

 130 

Regression methods that allow variability to be modelled are uncommon. One particular method, 131 

Generalised Additive Models for Location, Scale and Shape (GAMLSS)23 has become the standard 132 

for constructing growth reference centiles,24 where the aim is to model the outcome’s distribution as a 133 

function of age. It defines the distribution in terms of distribution moments, i.e. the mean, variance, 134 

and optionally skewness and kurtosis. This allows for factors influencing the higher moments to be 135 

identified in just the same way as for the mean, and it provides a simple and elegant interface for 136 

modelling variability in epidemiology. 137 

 138 

Another arguably underutilised25 and related statistical approach to investigating risk factors for 139 

continuous outcomes is quantile regression. Recent epidemiological studies using this method have 140 

found that risk factors for higher BMI—particularly lower social class and physical inactivity—have 141 

sizably larger effect sizes at higher BMI centiles.26 27 This has potentially important policy 142 

implications—risk factors which have larger effects amongst those at highest health risk are likely to 143 

have a more favourable effect on population health than alternatives which do not.26 However, the 144 

reason for this phenomenon is not yet understood—it is likely to be logically consistent with results of 145 

GAMLSS analyses in which risk factors influence outcome means, variability and/or skewness. 146 

 147 

In this paper, we provide a worked example of the use and interpretation of GAMLSS. Accompanying 148 

this is an online tutorial and full replication syntax for running GAMLSS in R (https://osf.io/5tvz6/). 149 

We investigate whether and how several established risk factors—sex, childhood socioeconomic 150 

circumstances, and physical inactivity28—relate to differences in outcome mean and variability. We 151 

choose two different continuous outcomes, an indicator of adiposity (body mass index, BMI) and 152 

mental wellbeing. These are two weakly correlated health outcomes, each of independent importance 153 

to population health. Each risk factor-outcome combination is the subject of previous (separate) 154 

literature which focuses largely on mean differences only. For instance, low socioeconomic position 155 

in childhood has been repeatedly related to higher BMI29 30 and worse mental wellbeing in 156 

adulthood;31-33 greater physical activity has notable likely bi-directional links with lower BMI34 and 157 

higher wellbeing;35-37 while males and females seemingly have similar mean BMI and wellbeing,33 158 

this may mask differences in variability or skewness, as suggested in the sizable sex differences in 159 

overweight and obesity rates.38  160 

 161 

The further investigation of differences in variability and skewness in these outcomes is therefore 162 

arguably of substantive interest, providing further motivation to the tutorial content. We highlight the 163 
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contribution of GAMLSS by contrasting results with the more commonly used linear regression and 164 

(less commonly used) quantile regression models.  165 

 166 

  167 
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Methods 168 

Study sample 169 

The 1970 British birth cohort study (1970c) consists of all 17,196 babies born in Britain during one 170 

week of March 1970, with 10 subsequent waves of follow-up from childhood to midlife.39 At the most 171 

recent wave (46 years), 12,368 eligible participants (those alive and not lost to follow-up) were 172 

invited to be interviewed at home by trained research staff—8,581 participants provided at least some 173 

data in this wave. At all waves, informed consent was provided and ethical approval granted. 174 

 175 

Health outcomes 176 

We selected two outcomes in midlife which capture different dimensions of health and are 177 

continuously distributed: adiposity (BMI), and mental wellbeing (Warwick-Edinburgh Mental 178 

Wellbeing Scale (WEMWBS)). BMI was measured at 46 years, and wellbeing at 42 years.31 179 

WEMWBS consists of 14 positively worded items—such as “I’ve been feeling optimistic about the 180 

future” and “…feeling cheerful”—measured on a five-point Likert scale, which are summed to give a 181 

total well-being score ranging from 14 to 70 (highest well-being).40  182 

 183 

Risk factors 184 

We chose three risk factors across different domains—each of them likely to independently influence 185 

health outcomes.28 They were coded as binary variables to simplify comparison of descriptive and 186 

GAMLSS results: sex (female/male), socioeconomic position (social class at birth; coded as non-187 

manual/manual), and a behavioural risk factor (reported physical activity at 42 years; reported days in 188 

which the participant took part in exercise for 30 mins or more in a typical week ‘working hard 189 

enough to raise your heart rate and break into a sweat’, coded as active (≥1 days)/inactive (0 days)). 190 

We examined if the binary split of risk factors influenced the inferences drawn—additional analyses 191 

were conducted with them coded instead as categorical variables (social class in 6 categories and 192 

physical inactivity from 0-7 days).  193 

 194 

Analytical strategy 195 

To visually inspect the outcome distributions and their differences across risk factor groups, we first 196 

plotted separate kernel density estimates alongside relevant descriptive statistics (mean, standard 197 

deviation, and coefficient of variation (CoV = SD/mean)). This enables a descriptive depiction of 198 

variability, with unadjusted GAMLSS results corresponding to each descriptive statistic. We then 199 

used GAMLSS23 separately with each outcome, to formally investigate whether risk factors were 200 

associated with 1) differences in mean outcome, 2) differences in outcome variability, 3) differences 201 

in outcome skewness. Linear regression analysis, in contrast, only enables mean differences in 202 

outcomes to be investigated. 203 

 204 
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GAMLSS is a form of regression analysis that estimates different ‘moments’ of the outcome 205 

distribution. The first moment is the location (see mean in Figure 1 panel a), the second is variance, 206 

which specifies the scale or spread (SD in Figure 1 panel b) the third is skewness which quantifies the 207 

relative size of the distribution tails (Figure 1 panel c). As in linear regression analyses covariates can 208 

optionally be included, and appropriate link functions can be chosen for use.  209 

 210 

GAMLSS requires that the distribution is specified at the outset. In this tutorial we use two 211 

distributions which we recommend for use in epidemiological research of continuous outcomes. First, 212 

the normal distribution (called NO in GAMLSS), where location is measured by the mean and scale 213 

by the standard deviation (SD). The normal distribution has no ‘shape’ moments, as there is no 214 

skewness and kurtosis is fixed. 215 

 216 

Second, a more complex distribution which enables skewness to be investigated: the Box-Cox Cole 217 

and Green (BCCG). Here location is the median, scale is the generalised coefficient of variation 218 

(CoV), which is calculated in the normal case as SD/mean, and shape is skewness as defined by the 219 

Box-Cox power required to transform the outcome distribution to normality. The transformation 220 

requires the outcome to be on the positive line, so zero or negative values are excluded. BCCG is 221 

effectively NO with added skewness, though parameterised differently. A Box-Cox power of 1 222 

indicates that the distribution is normal, 0 is log-normal and -1 inverse normal, so a smaller (i.e. more 223 

negative) power corresponds to more right skewness. 224 

 225 

After choosing a distribution, linear models are used to specify the relationship between the 226 

independent variables and the different moments of the outcome distribution. As with other regression 227 

models, GAMLSS provides a standard error for each estimated coefficient, from which 95% 228 

confidence intervals can be calculated. We note that more experienced users may wish to use 229 

alternative distributions which GAMLSS facilitates.41 230 

 231 

In our primary analyses we used the NO and BCCG families. Differences in variability are modelled 232 

with a log link, and can be multiplied by 100 and interpreted as percentage differences in variability to 233 

aid interpretation.42 Differences in the mean and median were also analysed as percentages, to aid 234 

comparability across outcomes and model estimates. To aid comparison of descriptive statistics and 235 

model estimation results, we first conducted analyses adjusting for each risk factor alone. We then 236 

adjusted for the risk factors jointly.  237 

 238 

Separately we fitted conditional quantile regression models to estimate risk factor and BMI 239 

associations at the lower, middle and upper quartiles of the outcome distribution, i.e. the 25th, 50th and 240 

75th centiles. To aid comparison with methods more commonly used in the existing epidemiological 241 
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literature, we estimated generalised linear models which show the association between each risk 242 

factor and mean differences in outcomes. 243 

 244 

All analyses were conducted using R v4.1.1. We used the gamlss package version 5.3-4 to produce 245 

gamlss models.43 Syntax to replicate all analyses is presented online (https://osf.io/5tvz6/). 246 

  247 
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Results 248 

6,007 participants had valid data for BMI and all risk factors, and 7,104 for WEMWBS. Mean BMI 249 

was 28.4 (SD = 5.5), and mean WEMWBS 49.2 (8.3). Higher BMI was weakly associated with lower 250 

wellbeing (r = -0.07, p<0.01). BMI was moderately right-skewed (Figure 2, left panel) and 251 

WEMWBS left-skewed (Figure 2, right panel). Visual and descriptive comparisons of the BMI and 252 

wellbeing distributions by risk factor suggest that differences in the outcome mean and variability are 253 

not always in the same direction.  254 

 255 

GAMLSS results for the binary risk factors are shown in Tables 1 and 2, with the results using the 256 

extra risk factor categories in Supplementary Tables 1 and 2. Associations were similar in the 257 

unadjusted and mutually adjusted analyses, so the former are described below.  258 

 259 

Body mass index 260 

Males had higher mean BMI yet lower variability than females—see Figure 2 and Table 1. The SD 261 

for BMI was lower in males (4.6) than females (6.1) i.e., a 27.6% difference (difference in log(SD) 262 

*100). This matches the estimate obtained from GAMLSS—males had 27.6% (SE: 1.8%) less 263 

variability than females (Table 1).  264 

 265 

In contrast, lower social class and physical inactivity were both associated with higher mean BMI and 266 

higher BMI variability (Figure 2 and Table 1). Those from lower social class households had 4% (SE 267 

0.5%) higher mean BMI than those from non-manual classes, and 6.1% (1.9%) more variability. 268 

Physically inactive participants had 3.3% (0.6%) higher mean BMI and 13.5% (2.1%) more 269 

variability.  270 

 271 

The GAMLSS results were similar with the BCCG distribution rather than NO (Table 1). That is, risk 272 

factors associated with higher mean BMI and higher SD were also associated with higher median 273 

BMI and higher CoV. Male sex and lower social class were both associated with less right skewness 274 

of the BMI distribution; the Box-Cox power was 0.5 (0.1) higher in males and 0.4 (0.1) higher for 275 

manual social class. Physical activity was not associated with outcome skewness.  276 

 277 

Mental wellbeing – Warwick-Edinburgh Mental Wellbeing Scale 278 

There was little evidence of sex differences in mean wellbeing, while males had marginally less 279 

variability than females by 4.0% (1.7%). Lower social class and physical inactivity were both 280 

associated with lower mean yet higher variability (Figure 2 and Table 2). Those from lower social 281 

class households had a 2.8% (0.4%) lower mean yet 7.2% (1.8%) higher variability. Physically 282 

inactive participants had 5.3% (0.5%) lower mean yet 10.9% (1.9%) higher variability. These findings 283 

were similar in mutually adjusted analyses (Table 2). 284 
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 285 

The results were similar with the BCCG distribution (Table 2). There was evidence suggesting that 286 

lower social class was associated with less skewness in the wellbeing distribution; sex and physical 287 

activity were not associated with outcome skewness. 288 

 289 

Comparison with quantile regression findings 290 

For BMI, the associations of lower social class and physical inactivity were stronger at upper 291 

quantiles (Table 3; e.g., manual social class had 3.7 (0.6) higher BMI at the the median, and 4.9 (0.7) 292 

at the 75th); estimates at higher centiles were also estimated less precisely than at lower centiles 293 

(larger SE). In contrast sex differences were present at lower centiles but absent at the 75th centile. 294 

These findings corresponded with those from GAMLSS using BCCG, with all BMI centiles plotted 295 

by risk factor group (Figure 3). This comparison highlights the utility of GAMLSS—risk factor 296 

differences in the mean, variability, and skewness can each be quantified and thus visually depicted.  297 

 298 

For WEMWBS, the associations of lower social class and physical inactivity were also stronger at 299 

lower quantiles (Table 3), yet had larger standard errors. Sex was not associated with WEMWBS at 300 

any centile. These findings corresponded with those from GAMLSS (Figure 4).  301 

 302 

 303 

  304 
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Discussion 305 

Using an underutilised analytical approach (GAMLSS), we present empirical evidence to support the 306 

idea that risk factors can relate to sizable differences in outcome variability, and even outcome 307 

skewness, in addition to differences in the outcome mean. Females had higher variability in BMI and 308 

mental wellbeing than males; lower social class and physical inactivity were each associated with 309 

higher variability in both BMI and mental wellbeing, despite having different directions of association 310 

with the mean (higher BMI yet lower mental wellbeing). 311 

 312 

Our findings add to an emerging literature which has investigated associations between risk factors 313 

and outcome variability. Studies11-17 have reported that risk factors associated with higher means are 314 

also associated with higher outcome variability. For example, Beyerlein et al (2008)22 found that 315 

multiple risk factors for high childhood BMI (such as more frequent television viewing and greater 316 

rapid infant weight gain) were related to both higher mean BMI and greater variability in BMI. 317 

However, previous studies have not utilised multiple outcomes or nationally representative samples, 318 

and have not systematically considered explanations for such findings or their implications.  319 

 320 

Our findings help to reconcile findings from GAMLSS with those using quantile regression22 26 27 321 

which have reported stronger effect sizes for BMI risk factors at higher BMI centiles. This finding is 322 

both consistent with and helps explain the GAMLSS findings. For instance, lower social class and 323 

physical inactivity are related to higher BMI mean and variability, yet less BMI skewness; the net 324 

result is higher effect estimates at upper centiles which are less precisely estimated, as seen in quantile 325 

regression. While both analytical approaches have merit, GAMLSS has a number of attractive 326 

features for use in aetiological research: it enables each distribution moment to be separately 327 

investigated, and uses predetermined distribution families which enable computation of sparsely 328 

distributed variables. 329 

 330 

Why are risk factors associated with differences in outcome variability? There are multiple possible 331 

explanations. First, risk factors may not be sufficient for an outcome to occur but rather only have a 332 

causal effect in the presence of other factors, for instance as posited in models such as the stress-333 

diathesis model of mental health.44 Such additional factors could also operate as effect modifiers 334 

which increase the strength of the risk factor. Factors such as genetic propensity to weight gain may 335 

for example modify the effect on weight gain of exposure to adverse socioeconomic circumstances.45 336 

Other environmental factors could operate similarly—such that the association between lower social 337 

class and higher BMI is weaker amongst those living in a local environment which is less 338 

‘obesogenic’ (i.e., less conducive to physical inactivity and lower energy intake).46 47 The net result of 339 

such divergent effects would be increased variability since the effects would range from zero to the 340 

upper bound of the effect. This explanation may also apply to mental wellbeing, given evidence for 341 
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the myriad environmental48 31 and genetic determinants49 50 which could modify the effects observed 342 

in the current study.  343 

 344 

Alternatively, between-person differences in confounding and/or measurement error may also lead to 345 

risk factors being associated with outcome variability. For example, in the present study physical 346 

activity was measured via a single item capturing reported activity of a moderate-vigorous intensity 347 

for at least 30 minutes per day; this is an imperfect reflection of the underlying exposure which may 348 

have a causal effect (e.g., total energy expenditure (across all intensities of activity) in the case of 349 

adiposity;51 or time spent in specific activities conducive to wellbeing in the case of mental 350 

wellbeing35). The net result would be higher variability in those reporting higher physical activity 351 

levels. A related issue is the extent to which the exposure captures the same ‘dose’ across participants 352 

in a given study. The physical activity measure used here counted the number of days that bouts of 353 

activity lasted at least 30 minutes; this likely reflects substantial variability in the level of exercise 354 

actually undertaken, thus leading to greater differences in outcome variability. This could partly 355 

explain the associations of lower social class with greater outcome variability, since social class is one 356 

dimension of socioeconomic position, such that there may be substantial between-person variation in 357 

other dimensions (eg, parental education, income and/or wealth38 39) which may each influence 358 

outcomes, leading to greater variability. 359 

 360 

The study highlights the fact that analyses by GAMLSS and quantile regression lead to similar results 361 

at the selected quantiles of the outcome distribution—see Figures 3 and 4. However GAMLSS, by 362 

analysing the whole distribution, can in some cases provide more efficient estimates of the quantiles. 363 

Compare for example the standard errors of the median as obtained by the BCCG distribution (Tables 364 

2 and 3) and quantile regression (Table 4); for BMI the standard errors of around 0.5 are broadly 365 

similar the two ways, but for WEMWBS the GAMLSS standard errors are appreciably smaller. 366 

 367 

Strengths and limitations 368 

Strengths of this study include the analytical approach used (GAMLSS) to empirically investigate 369 

differences in outcome variability. While differences in variability can be informed by descriptive 370 

comparison (e.g., comparing standard deviations), GAMLSS additionally enables computation of 371 

estimates of precision and incorporates multivariable specifications (e.g., confounder or mediator 372 

adjustment; and inclusion of interaction terms). The use of the 1970 birth cohort data is an additional 373 

strength, enabling investigation of multiple risk factors and two largely orthogonal yet important 374 

continuous health outcomes. The national representation of this cohort is also advantageous—highly 375 

distorted sample selection can bias conventional epidemiological results (i.e. mean differences in 376 

outcomes),54 and may also bias comparisons of outcome variability. 377 

 378 
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The study also has limitations. As in all observational studies, causal inference is challenging despite 379 

the use of longitudinal data. Associations of social class at birth with outcomes for example could be 380 

explained by unmeasured confounding—this may include factors such as parental mental health. This 381 

is challenging to falsify empirically owing to a lack of such data collected before birth. In contrast, 382 

sex is randomly assigned at birth, and thus its associations with outcomes are unlikely to be 383 

confounded. However, sex differences in reporting may bias associations with mental wellbeing. 384 

Physical activity and mental wellbeing were ascertained at broadly the same age, so that associations 385 

between the two could be explained by reverse causality; existing evidence appears to suggest bi-386 

directionality of links between physical activity and both outcomes.37 55 Finally, attrition led to lower 387 

power to precisely estimate smaller effect sizes (e.g. gender differences in mental wellbeing) or 388 

confirm null effects. Such attribution could potentially bias associations—those in worse health and 389 

adverse socioeconomic circumstances are disproportionately lost to follow-up.56 57 The focus of 390 

principled approaches to handle missing data in epidemiology has been on the main parameter of 391 

interest—typically beta coefficients in linear regression models—and further empirical work is 392 

required to investigate the potential implications of (non-random) missingness for the variability and 393 

other moments of the outcome distribution. 394 

 395 

Potential implications 396 

This study used an underutilised approach to empirically investigate associations between risk factors 397 

and outcome variability in a single cohort study. Thus, our findings require replication and extension 398 

in other datasets across other risk factors and health outcomes. Future studies should also seek to 399 

explain their findings, and where possible falsify potential explanations. Understanding how risk 400 

factors relate to and/or cause differences in outcome variability is not a standard part of 401 

epidemiological training, and it entails additional analytical and conceptual complexity. Thus, with 402 

greater application of these tools an emerging consensus on best practice should develop. In the first 403 

instance we recommend both descriptive and formal investigation, and that analysts carefully consider 404 

the use of both absolute (e.g., SD) and relative (e.g., CoV) differences in variability. Since the CoV is 405 

fractional standard deviation (eg, SD/mean or log SD), its suitability of use depends on the a priori 406 

anticipated relationship between the mean and variance. 407 

 408 

In the context of randomised controlled trials, the finding of variability in treatment effects between 409 

individuals has been used to justify individualised approaches to treatment (personalised medicine). It 410 

is beyond the scope of the current article to discuss the tractability of this for complex outcomes in 411 

which treatment effects are unpredictable.58 Trials are designed typically to detect only mean 412 

differences in outcomes;59 nevertheless, additionally presenting outcome variability before and after 413 

treatment would be helpful to better appraise intervention effects.5 GAMLSS provides a useful 414 

framework with which to formally investigate this, even where the homoscedasticity assumption does 415 
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not hold (i.e., where risk factors or treatment groups differ in their outcome variance). Where there are 416 

multiple potential efficacious interventions, further studies could meta-analyse existing trials to 417 

identify the types of intervention which additionally reduce outcome variability.  418 

 419 

Conclusion 420 

We provide empirical support for the notion that risk factors or interventions can either reduce or 421 

increase variability in health outcomes. This finding is consistent with results from quantile regression 422 

analysis where a risk factor vs outcome association is stronger (or weaker) at higher outcome centiles. 423 

Such findings may be explained by heterogeneity in the causal effect of each exposure, by the 424 

influence of other (typically unmeasured) variables, and/or by measurement error. This underutilised 425 

approach to the analysis of continuously distributed outcomes may have broader utility in 426 

epidemiological, medical, and psychological sciences. Our tutorial and syntax content is designed to 427 

facilitate this.  428 

 429 

Data availability 430 

Available from the UK Data Archive: 431 

https://beta.ukdataservice.ac.uk/datacatalogue/series/series?id=200001 432 

 433 

Legends 434 

Figure 1. Simulated data for three interventions each having the same effect on the mean, but different 435 

effects on the variability (middle panel) and skewness (bottom panel). 436 

Figure 1: Kernel density plots for body mass index and mental wellbeing, stratified by risk factor 437 

group. Note: CoV = coefficient of variation (SD/mean). 438 

Figure 3. Association between risk factors and BMI by BMI centile. Plotted lines are calculated using 439 

GAMLSS estimation results of the entire outcome distribution; points at the 25th, 50th, and 75th 440 

centiles are estimated using quantile regression models. Marginal effects show the differences in 441 

outcome between each risk group across the outcome distribution. 442 

Figure 4. Association between risk factors and BMI by BMI centile. Plotted lines are calculated using 443 

GAMLSS estimation results of the entire outcome distribution; points at the 25th, 50th, and 75th 444 

centiles are estimated using quantile regression models. Marginal effects show the differences in 445 

outcome between each risk group across the outcome distribution. 446 

 447 

Supplementary File 1a. Risk factors in relation to body mass index (BMI): differences in mean, 448 

variability and skewness estimated by GAMLSS   449 

 450 

Supplementary File 1b. Risk factors in relation to mental wellbeing (WEMWEBS): differences in 451 

mean, variability and skewness estimated by GAMLSS    452 

https://beta.ukdataservice.ac.uk/datacatalogue/series/series?id=200001
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 456 

Figure 2. Simulated data for three interventions each having the same effect on the mean, but different 457 

effects on the variability (middle panel) and skewness (bottom panel) 458 
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 459 

 460 

Figure 3: Kernel density plots for body mass index and mental wellbeing, stratified by risk factor group. Note: CoV = coefficient of variation (SD/mean)  461 
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 462 

Figure 3. Association between risk factors and BMI by BMI centile. Plotted lines are calculated using GAMLSS estimation results of the entire outcome 463 

distribution; points at the 25th, 50th, and 75th centiles are estimated using quantile regression models. Marginal effects show the differences in outcome 464 

between each risk group across the outcome distribution. 465 
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 466 

Figure 4. Association between risk factors and BMI by BMI centile. Plotted lines are calculated using GAMLSS estimation results of the entire outcome 467 

distribution; points at the 25th, 50th, and 75th centiles are estimated using quantile regression models. Marginal effects show the differences in outcome 468 

between each risk group across the outcome distribution.  469 



 

Table 1. Risk factors in relation to body mass index: differences in mean, variability and 470 

skewness estimated by GAMLSS (n = 6,007)  471 

 472 

  

NO distribution BCCG distribution 

Risk factor % Mean SD Median CoV Skewness* 

Female (ref) 52.4% 28.1 6.1 26.9 0.22 1.10 

Male 47.6% 28.7 4.6 28.2 0.16 0.75 

    Unadjusted difference, % (SE)  1.9 (0.5) -27.6 (1.8) 4.1 (0.4) -23 (1.8) 0.48 (0.11) 

    Adjusted# difference, % (SE)  2.2 (0.5) -27.4 (1.8) 4.4 (0.4) -22.6 (1.8) 0.54 (0.11) 

       

Non-manual (ref) 36.3% 27.7 5.2 27 0.19 1.15 

Manual social class 63.7% 28.8 5.5 28 0.19 0.90 

    Unadjusted difference, % (SE)  4.0 (0.5) 6.1 (1.9) 4.4 (0.5) 6 (1.9) 0.39 (0.11) 

    Adjusted# difference, % (SE)  3.8 (0.5) 5.5 (1.9) 4.3 (0.4) 5.6 (1.9) 0.40 (0.12) 

       

Physically active (ref) 73% 28.1 5.2 27.4 0.19 0.97 

Inactive  27% 29.1 6.0 28.3 0.21 0.94 

    Unadjusted difference, % (SE)  3.3 (0.6) 13.5 (2.1) 2.9 (0.5) 10.4 (2.1) 0.08 (0.12) 

    Adjusted# difference, % (SE)  3.3 (0.6) 12.1 (2.1) 3.1 (0.5) 9.3 (2.1) 0.12 (0.12) 

 473 

#Estimates mutually adjusted for sex, social class and physical inactivity. 474 

 475 

*Skewness is estimated as the Box-Cox power (that is, the power required to transform the outcome 476 

to a normal distribution); differences are the absolute difference in Box-Cox power in each subgroup 477 

estimated by GAMLSS. GAMLSS estimates multiple distribution moments simultaneously; thus, 478 

differences may not exactly correspond to descriptive comparisons reported above.  479 

 480 

NO: normal distribution; BCCG: Box-Cox Cole and Green distribution: SD: standard deviation; CoV: 481 

coefficient of variation; GAMLSS: Generalized Additive Models for Location, Scale and Shape; SE, 482 

standard error.  483 

 484 

 485 

 486 

  487 



 

 488 

Table 2. Risk factors in relation to mental wellbeing (WEMWBS): differences in mean, 489 

variability and skewness estimated by GAMLSS (n = 7,104)  490 

 491 

  

NO distribution BCCG distribution 

Risk factor % Mean SD Median COV Skewness* 

Female (ref) 52.8% 49.2 8.5 50 0.17 -0.41 

Male 47.2% 49.1 8.2 50 0.17 -0.40 

    Unadjusted difference, % (SE)  -0.2 (0.4) -3.9 (1.7) -0.3 (0.4) -3.5 (1.7) 0.02 (0.11) 

    Adjusted# difference, % (SE)  -0.6 (0.4) -3.6 (1.7) -0.7 (0.4) -2.6 (1.7) 0.00 (0.11) 

       

Non-manual (ref) 34.8% 50.1 7.9 51 0.16 -0.45 

Manual social class 65.2% 48.7 8.5 49 0.17 -0.37 

    Unadjusted difference, % (SE)  -2.8 (0.4) 7.2 (1.8) -2.9 (0.4) 10.9 (1.8) -0.20 (0.12) 

    Adjusted# difference, % (SE)  -2.5 (0.4) 6.0 (1.8) -2.7 (0.4) 9.8 (1.8) -0.24 (0.12) 

       

Physically active (ref) 72.4% 49.9 8.0 51 0.16 -0.38 

Inactive  27.6% 47.3 8.9 48 0.19 -0.36 

    Unadjusted difference, % (SE)  -5.3 (0.5) 10.9 (1.9) -5.2 (0.4) 16.2 (1.9) -0.12 (0.12) 

    Adjusted# difference, % (SE)  -5.3 (0.5) 9.9 (1.9) -5.1 (0.4) 15.2 (1.9) -0.10 (0.12) 

 492 

#Estimates mutually adjusted for sex, social class and physical inactivity. 493 

 494 

*Skewness is estimated as the Box-Cox power (that is, the power required to transform the outcome 495 

to a normal distribution); differences are the absolute difference in Box-Cox power in each subgroup 496 

estimated by GAMLSS. GAMLSS estimates multiple distribution moments simultaneously; thus, 497 

differences may not exactly correspond to descriptive comparisons reported above.  498 

 499 

NO: normal distribution; BCCG: Box-Cox Cole and Green distribution: SD: standard deviation; CoV: 500 

coefficient of variation; GAMLSS: Generalized Additive Models for Location, Scale and Shape; SE, 501 

standard error.  502 

 503 

 504 

  505 



 

Table 3. Risk factors in relation to body mass index (BMI) and mental wellbeing (WEMWBS): 506 

percentage differences at multiple points of the outcome distribution estimated by quantile 507 

regression  508 

 509 

 510 

Outcome Risk Factor 25th centile 50th centile 75th centile 

BMI @ Age 46 

Male vs female 6.8 (0.5) 4.5 (0.6) -0.8 (0.7) 

Father's Class 3.7 (0.6) 3.7 (0.6) 4.9 (0.7) 

Exercise Level 1 (0.7) 3 (0.7) 4.3 (0.8) 

WEMWBS @ Age 42 

Sex 0 (0.7) 0 (0.5) 0 (0.3) 

Father's Class -4.5 (0.7) -4 (0.5) -1.8 (0.3) 

Exercise Level -6.9 (0.5) -6.1 (0.5) -1.8 (0.5) 

 511 

Note: results show the percentage difference (log-transformed x 100) in BMI or mental wellbeing 512 

(WEMWEBS; standard errors in parenthesis) at different centiles of the outcome distribution; 513 

estimates are mutually adjusted.  514 

  515 
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