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Abstract 

The Organisation for Economic Co-operation and Development’s (OECD) 

Programme for International Student Assessment (PISA) has become one of 

the key studies for evidence-based education policymaking across the globe. 

Yet its psychometric and statistical properties – and therefore its limitations 

and implications – are often poorly understood by researchers and 

stakeholders. This thesis aims to shed new light on the impact that 

psychometric and statistical issues can have on key statistics and cross-

country comparisons.  

In the first study, I investigate the ‘conditioning model’, where background 

variables are used in the derivation of student achievement scores. Thereby, I 

systematically vary the background variables used within the conditioning 

model and analyse the impact upon country rankings. My key finding is that 

the exact specification of the conditioning model matters; cross-country 

comparisons of PISA scores can change substantially depending upon the 

statistical methodology used.  

The second study is an extension of the first, as I conduct a simulation study 

to further investigate research questions and additionally examine other key 

aspects influencing the achievement score computation, more specifically the 

preparation of variables and the test and background questionnaire design. 

This study confirms that the specification of the conditioning model matters, 

though bias in the results can be reduced by asking students questions in all 

subjects. In contrast, variable preparation and the background questionnaire 

design have negligible impact. 

The third study aims to provide a broader and more comprehensive review of 

different psychometric and statistical properties in PISA. By using a case 

study, six different properties that can potentially affect the validity of 

parental education group comparisons in Germany are evaluated. This study 

highlights how diverse sources of bias can be in PISA, and that they indeed 

impact the results. While I did not find that all the investigated issues 

introduce bias, several properties substantially impacted the results.  
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of PISA scores. The findings are hence relevant for three different audiences.  

Academia: The three conducted studies address different gaps in the 

literature. The first study generated insights about the impact that background 

variables can have upon student achievement scores in PISA through the 

computation. It was shown that the exact model specification is important, 

especially in the minor domains. The second study employed a simulation to 

further investigate questions about the measurement model and related 

properties, which would not be possible with real-life data. Apart from the 

confirmation that the model specification matters, one key finding was that 

bias decreases when students are administered questions in all domains. In 

contrast, the background questionnaire design and variable preparation had 

little impact. The third study examined the process of measuring student 

achievement in a more comprehensive way drawing upon the total survey 

error framework, which has been seldomly done before for PISA. Six 

potentially problematic properties were identified and examined in a case 

study. While not all turned out problematic, some introduced substantial bias 

into group comparisons.  

Users of PISA data: PISA data is used in varied ways, such as in applied 

research, the media, education debates or as a tool of soft governance. As a 

result, PISA scores and analyses influence education policies, daily school 

life and the public opinion on education. To put it in a nutshell, this thesis 

aimed to illustrate why the PISA data should be used and interpreted (more) 

carefully. Different psychometric and statistical properties that can bias the 

results are investigated. Especially the third study, a case study, highlights 
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how the comparability and validity of commonly used measures can be 

severely impacted through multiple pathways. Limitations and implications 

need to be better communicated and heeded, so that appropriate analyses are 

conducted and informed decisions can be made.  

Study makers: Throughout this thesis, two themes emerged which are 

relevant for study makers of international large-scale assessments. The first 

is a request for better and more transparent communication of psychometric 

and statistical properties and their implications. In all three studies, issues 

relating to the replicability and official communication of properties surfaced. 

The current practice significantly exacerbates in-depth scrutiny and makes it 

difficult for non-experts to judge the data quality. Transparent and open 

communication, such as published robustness checks and codes, would 

counteract these issues. On another note, the second study led to food for 

thought relating to test and questionnaire design. It suggests that it could be 

viable to not use a full background questionnaire design in order to free up 

time and space for additional topics in the questionnaire or cognitive items.  
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1 International large-scale assessments, the 

Programme for International Student Assessment, 

and the associated methodology: A brief 

introduction 

1.1 International large-scale assessment and the Programme 

for International Student Assessment 

As early as the 1950s, researchers were contemplating how to measure the 

quality of an educational system, make comparisons with other countries’ 

systems, and use these results to determine factors that foster student 

achievement. Even then, generalisations were being made about the inputs 

and outcomes of different national educational systems. Yet concepts such as 

internationally valid standards in education were still to be defined. In 1958, 

a meeting of educational psychologists, psychometricians and sociologists at 

the United Nations Educational, Scientific and Cultural Organization 

(UNESCO) Institute of Education aimed to address such issues and as a result 

large-scale assessments were born: The idea of an international study to 

measure educational outcomes of students and their determinants emerged. 

Subsequently, a pilot study was commissioned to evaluate the feasibility. This 

led to the first international large-scale assessment (ILSA) – a mathematics 

study involving 12 countries – which was conducted in 1961 (Husén & 

Postlethwaite, 1996). 

ILSAs have come a long way since then but the aim has stayed the same – to 

obtain a valid measure of student achievement in an international context and 

determine factors within and between educational systems that help or hinder 

students. In the 1990s and 2000s, a new generation of ILSAs began. The 

number of participating countries and students increased substantially, but 

also the aims, structure and organisation of the studies changed (Addey et al., 

2017; Howie & Plomp, 2005). Among this new generation of studies is the 

Organisation for Economic Co-operation and Development’s (OECD) 

Programme for International Student Assessment (PISA) as well as the 

Trends in International Mathematics and Science Study (TIMSS) and the 
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Progress in International Reading Literacy Study (PIRLS) of the International 

Association for the Evaluation of Educational Achievement (IEA). These are 

some of the most, if not the most, prominent contemporary studies in 

education. Importantly, the different ILSAs have different emphases in terms 

of topics and target populations (Fischman et al., 2019; Howie & Plomp, 

2005). 

PISA was administered in 2000 for the first time and has been repeated every 

three years since then. It aims to measure the mathematics, science and 

reading skills of 15-year-olds across countries all around the globe and over 

time. Over the years, PISA has experienced substantial growth as many (non-

OECD) countries have decided to join. Participation numbers rose from 

roughly a quarter million of students in 43 countries and economies in PISA 

2000 to over 600,000 students from 79 countries in 2018 (OECD, 2019b) – 

making PISA the largest ILSA of its kind (e.g. 49 countries in PIRLS 2016; 

Mullis et al., 2017, and 64 countries in TIMSS 2019; 2020). Another aspect 

that sets PISA apart from other ILSAs is its content focussing upon 

competencies in the domains which (the OECD deems) are relevant for life, 

rather than specific curricula. Furthermore, PISA’s developmental origin is 

different to the other ILSAs. Multiple governments within the OECD initiated 

PISA with the explicit aim to inform and serve their policy interests 

(Schleicher, 2000). In contrast, the IEA, which conducts most other ILSAs, 

evolved from the meeting of researchers interested in understanding 

education (Husén & Postlethwaite, 1996). 

PISA’s aim remains in the present day. The following quote of former OECD 

Secretary-General Angel Gurría  

PISA is not only the world’s most comprehensive and reliable 

indicator of students’ capabilities, it is also a powerful tool that 

countries and economies can use to fine-tune their education 

policies…That is why the OECD produces this triennial report on 

the state of education around the globe: to share evidence of the 

best policies and practices, and to offer our timely and targeted 
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support to help countries provide the best education possible for all 

of their students. (Schleicher, 2019, p. 2) 

highlights that it is still one of the key goals of PISA to support educational 

policy-making. The OECD has also had considerable impact in this area. 

From its origin, PISA has influenced international and national debates and 

education policies as well as daily school life. One of the first and most 

exemplary instances happened in Germany after the first cycle. The poor 

academic performance of Germany in comparison to the other countries came 

as a surprise to many stakeholders, leading to the so-called ‘PISA shock’ in 

Germany. In an attempt to improve the German educational system and PISA 

scores, extensive reforms to the German school system and curriculum were 

introduced (Ertl, 2006). Lingard stresses in Addey et al. (2017, p. 447) ‘that 

this kind of reaction is not the exception’. For example, PISA results also led 

to major educational reforms in Denmark (Egelund, 2008), other European 

countries (Grek, 2009) and Japan (Takayama, 2008), amongst others. 

While discrepancies between national expectations and the PISA results can 

create opportunities for (sometimes needed) reforms, its influence does not 

end there. As the results get large amounts of attention in media and politics, 

countries start to (indirectly) compete for top performances and rankings in 

the league tables (Addey et al., 2017; Steiner-Khamsi, 2003). As a result, 

countries that consistently perform well are considered ‘reference societies’, 

from which other countries borrow policies and ideas (Steiner-Khamsi & 

Waldow, 2012). While this can have positive effects on educational systems 

and lead to improvements, it can also be used to ‘scandalise’ (bad) results and 

shape national political landscapes (Addey, 2015; Steiner-Khamsi & Stolpe, 

2006). Thus, PISA has become an important tool in and source of soft 

(educational) governance. Over time, the OECD has thereby changed its role 

from a mere provider and analyst of data to a political actor who sets the 

educational discourse and provides guidance (Addey et al., 2017; Bloem, 

2015). 

As a result, while PISA might be a low-stakes assessment for students, as 

there is no feedback to schools, teachers or the students themselves, it is high-
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stakes for countries (particularly governments and policy officials) due to the 

widespread public scrutiny of the results. PISA thus, in turn, also has 

substantial influence on countries and their educational policies. By now, 

PISA should be understood as a ‘social phenomenon and political project’ 

(Sjøberg, 2017, p. 17), which shapes the political landscape and discourse in 

education. By releasing reports, including or excluding topics as add-ons and 

focusing on certain results, PISA influences the perception of education, the 

politics behind it and its value. This is especially true, as it is commonly seen 

‘as a reliable instrument for benchmarking student performance worldwide’ 

(Breakspear, 2012, p. 4).  

Communication from PISA officials and the OECD – both to more academic 

and boarder audiences – tries to establish that focusing on the national system 

alone and its improvement is longer enough. Instead countries should focus 

on adapting policies and characteristics from high-performing countries in 

order to perform better internationally (e.g. Schleicher, 2000 for expert 

audiences, 2013 for general audiences - TEDGlobal talk). Even though PISA 

itself might ‘just’ be a snapshot of the reality in different educational 

education systems at a specific point in time, it defines the reality and desired 

shape of education at the same time (Sjøberg, 2017). But the OECD is not 

even the only player in shaping PISA and its vision of education. For 

example, Pearson Inc. – the world’s largest commercial education company 

– was hired and tasked to develop the PISA 2018 framework and therefore 

what would be measured in that cycle (Molnar, 2014; OECD, 2019a; see 

foreword). 

Yet, it does not end there. The OECD is expanding the ‘PISA franchise’ and 

therefore its influence. With PISA for Development (PISA-D), the OECD 

addresses low- to medium-income countries, which are not included in PISA. 

They offer help in building testing capacities and conducting PISA-D, but 

thereby require that it can be linked up with national assessment while 

aligning PISA-D with PISA. This allows the OECD and PISA to implement 

and establish assessment cultures and standards in these countries (Addey, 

2017). PISA for schools on the other hand is a commercial product where 

schools can (voluntarily) pay to participate in an additional assessment which 
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compares them against the PISA main results. This enables a direct link of 

OECD’s global policies into local schools  (Lewis, 2020). But the OECD has 

also recently broadened its concept and impact across age groups with the 

International Early Learning Study (IELS, also called ‘baby PISA’) covering 

5-year-olds (Auld & Morris, 2019) and Programme for the International 

Assessment of Adult Competencies (PIAAC, the ‘adult version’ of PISA; 

OECD, 2019d) assessing adults between 16 and 65 years.  

Overall, the influence and reach of PISA and the OECD is impressively large 

and prominent. While single students might not be affected, the stakes for 

countries and its impact are clearly noticeable.   

1.2 The basics behind estimating student achievement in 

ILSAs 

As shown above, PISA scores and results can have a large influence on 

education politics and daily school life around the world. If such far-reaching 

decisions are made based on PISA scores, it is essential that these scores are 

carefully computed, sound, and validly comparable across countries and 

cycles.  

If one is unfamiliar with the workings of ILSAs, which stakeholders and 

applied researchers often are, it is easy to assume that the estimation of 

student achievement scores is straightforward – such as tests during school, 

i.e. everyone gets the same test with the same questions at the same time and, 

in the end, a sum score is formed in order to derive a grade. While this is a 

valid form of assessment in some situations, due to the nature of ILSAs they 

require a more complex set-up with extensive statistical and psychometric 

methods involved (von Davier et al., 2014). The two main drivers for this 

need are (i) that ILSAs aim to assess students from many diverse countries 

and (ii) that time for the assessment is limited and attached to large effort, 

especially for at least three domains at once.   

Regarding the first driver, it is impossible to test all students – in the case of 

PISA, all 15-year-olds in school – in all participating countries. The sheer 

amount of work and organisational effort would not be feasible. As a result, 
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schools and students are sampled in each country according to explicit and 

implicit stratification variables in order to get a much smaller but 

representative sample of the target population (OECD, 2014b). The aim is to 

have no substantial differences between the sample and the underlying 

population, so that cross-country comparisons can be validly made based on 

the PISA scores. Thereby, sampling criteria need to be comparable in all 

countries as well as the response rates, which includes schools agreeing to 

participate, students showing up and actually answering the questions they 

are presented among others (Micklewright et al., 2012; Rust, 2014). 

Additionally, working with so many diverse countries entails other issues 

which need also to be carefully considered. Most importantly, all items and 

questions should operate the same in all participating countries, i.e. they 

should capture the same construct or skill cross-culturally in a comparable 

way. This involves many facets. For instance, everything needs to be 

translated into the respective languages, no unfair advantages in solving items 

should be present between countries and variables, especially the background 

questions, need to be (coded) on an international and comparable scale (Behr 

& Zabal, 2019).  

While the first driver shapes the sampling and shows the need for checks of 

the comparability of populations, the second driver – time for and effort of 

conducting the student assessment – impacts the way that the test is designed 

and how the student achievement scores are computed. For perfect judgement 

of their knowledge, it would be necessary to ask students all questions 

relevant to a domain. Yet this is not possible. PISA is a low-stakes assessment 

that is conducted during school time. Usually, two hours are allocated to 

testing for PISA (OECD, 2014b). The aim is to assign achievement scores in 

mathematics, reading and science to all students. It is not possible for all 

students to be asked many questions across all domains and sub-domains in 

two hours, so students are randomly presented a fraction of all questions. 

Information about the parts which they did not answer is estimated based on 

those that they did answer. Students are administered items based on a 

systematic design, the so-called rotated test design. In PISA 2012, items 

within each domain were grouped into item clusters. Four of the 13 item 
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clusters were then systematically combined to form test booklets. Each 

student is randomly administered one booklet (OECD, 2014b). The resulting 

systematic missing data (of the not-administered item clusters) is not 

problematic per se but requires the usage of different statistical models in 

order to derive sound and valid scores which are comparable across 

populations. 

The estimation of student achievement scores is a multi-step procedure using 

all available information about the students, i.e. responses to the cognitive 

items but also information from the background questionnaires. Due to the 

rotated test design, students did not answer all questions and not even 

necessarily questions in all domains. This results in large amounts of missing 

data by design for each student, sometimes even a complete missing domain 

by design. Yet there are models which can handle this situation (at least when 

taken at face value) and estimate achievement scores for all students in all 

domains. In ILSAs, this is usually done via the so-called ‘conditioning model’ 

– a mixture of an Item Response Theory (IRT) model and a latent regression 

model. In the first step, all cognitive data is used in an IRT model to estimate 

a multi-dimensional achievement distribution. Subsequently, a latent 

regression model is conducted to adjust these distributions for population 

characteristics using students’ background information, such as gender, age 

and socio-economic status. While it may seem counter-intuitive for such 

background data to be used in the estimation of student achievement, it is 

unproblematic as long as the scores are not used for the individual but at 

higher levels, such as group- and country-level averages. Indeed, it is 

necessary for the computation of valid group measures to counteract 

attenuation bias (Mislevy, 1991; Mislevy et al., 1992).  

The gist behind the imputation of these scores can be explained using the 

following simplified example. Imagine that two different tests are handed out 

in school. Half of the students receive only mathematics questions whereas 

the other half also receives reading questions. Now assume boys and girls 

perform equally well in mathematics, but there is a gender difference in 

reading. Female students outperform their male counterparts by 10 points. If 

the estimation does not account for gender, girls who did not answer the 
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reading questions would be assigned the same reading scores as boys of the 

same mathematics performance. When one then estimates gender differences 

in reading achievement across the whole sample, one would find a difference 

of just 5 test points rather than 10. As a result, such test designs require that 

the achievement scores are adjusted for population characteristics in order to 

produce unbiased, unattenuated group analyses.   

While the results of tests in school is usually a single number, i.e. a sum score 

or percentage, the conditioning model does not directly return a single number 

or even an estimate in that form. Instead, an achievement distribution is 

returned, which reflects where the true student ability is most likely located. 

There are different ways to derive estimates for student achievement from this 

distribution. For instance, a simple estimate would be the mean of the 

distribution. In ILSAs, similar to the better known multiple imputation 

methodology (Rubin, 1987), for each student and domain multiple values, 

known as plausible values (PVs; five in PISA 2012), are randomly drawn 

from the achievement distribution (von Davier et al., 2009). In contrast to the 

mean, PVs are not only estimates for achievement, but also reflect the 

uncertainty of the estimate. For example, the uncertainty of a student who 

answered questions in the domain will be lower than the one of a student who 

did not answer a single question in the domain and where the achievement is 

solely based on their performance in other domains and background data. 

Thus, the achievement distribution of the second student will be broader and 

the PVs will be more spread out. As a result, the dispersion of PVs allows us 

to draw inferences about the uncertainty of the achievement estimates. If 

properly accounting for the PVs in the analyses, this is valuable additional 

information to the achievement estimate (Rubin, 1987). 

Overall, it can be said that the process behind the final ILSA scores is a 

complex procedure with many diverse statistical and psychometric aspects 

and subtleties. Yet there is little to no awareness of this in policymaking and 

most areas of research that use these scores (e.g. Jerrim et al. (2017) highlight 

in the appendix how seldomly methodological aspects are accounted for in 

economics) – even though all of this shapes the scores and in turn the results 

and country rankings based on them. As a result, it is of highest importance 
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that research is conducted to ensure the scores and results based on them are 

valid and comparable.    

1.3 Previous work surrounding psychometric and statistical 

issues in PISA  

Indeed, PISA does not only find favour but also receives criticism, especially 

from academia. There is an ongoing and active debate about the general idea 

behind PISA and its usage as well as the methodology behind it (see Zhao, 

2020, for synthesis). Psychometric and statistical issues have been 

investigated in varying forms and degrees of detail by many different 

researchers. Thereby, some aim to provide overviews or summaries of the 

general situation or multiple issues, whereas others focus on one specific issue 

to conduct in-depth investigations. For instance, Hopmann et al. (2007) 

dedicated a whole book to the question of whether PISA delivers what it 

promises, where the single chapters deal with different issues. Eivers (2010) 

gives a short overview of different issues relating to representativeness and 

cultural fairness in PISA with the help of brief explanations and examples.  

Over time, as more research has been published, syntheses of this research 

were also conducted. After a meta-evaluation of different studies looking at 

methodological concerns, Fernandez-Cano (2016) concludes that ‘PISA is 

undoubtedly an evaluative undertaking that generated a wealth of research 

but PISA needs to exercise greater methodological rigor and state its methods 

clearly in future technical reports’ (p. 11). A systematic review reached 

similar conclusions as it pointed out different technical issues, such as 

sampling and scaling which threaten the validity of the PISA results – 

‘structural weaknesses and cracks in the foundations of ongoing PISA 

foundations’ (Hopfenbeck et al., 2018, p. 347). 

The regarded issues include but are not limited to sample representativeness, 

non-response rates and cross-cultural comparability. For example, problems 

with the sampling and response rates can bias the results and leave cross-

country comparisons invalid. Anders et al. (2021) highlight how PISA results 

and rankings can be related to representativeness. In the case of Canada, low 

response rates paired with high exclusion rates (most likely) biased the results 
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in favour of Canada in comparison to the other top-performing nations. 

Likewise, Freitas et al. (2016) show that the sample in Portugal was not 

representative of the target population. Similar issues related to sampling can 

also be found in other countries, such as South Korea, England and Ireland 

(Eivers, 2010; Micklewright et al., 2012). But even if the response rates are 

acceptable, this is not necessarily a certain indicator that no bias is involved 

(Micklewright et al., 2012).  

Other issues deal with cross-cultural comparability, such as differences in 

translation, context and unfair advantages. For instance, test length in reading 

can vary substantially between countries, e.g. the reading test is 18% longer 

in German than in the original English version (Eivers, 2010). Furthermore, 

item difficulties and demands can be perceived differently depending on the 

language (El Masri et al., 2016). Overall, a substantial amount of studies 

showed measurement non-invariance or differential functioning of items in 

cognitive and non-cognitive domains between countries (Hopfenbeck et al., 

2018). As just seen, not only the cognitive but also the non-cognitive data 

suffers limitations and issues. Rutkowski & Rutkowski (2010) show the 

importance of background variables but also how they are impacted by 

missing data, misunderstanding of questions and low reliability. This led a 

call for improvement of background data and better non-cognitive scales 

(Avvisati et al., 2019; L. Rutkowski & Rutkowski, 2010). 

Another aspect that has a high impact on the PISA scores is the conditioning 

model, a combination of an IRT model and latent regression. It is one of the 

key foundations of PISA, as it is crucial for the estimation of student 

achievement scores. Yet only two of 19 chapters in the official technical 

documentation are dedicated towards it (OECD, 2014b) and it is not 

explained or even mentioned in the international report at all (OECD, 2014a). 

This is also reflected in the comparatively sparse literature. Goldstein (2017) 

states that the complexity of the model and the high level of required expertise 

lead to high opacity and a threshold for scrutiny and research.  

While there are multiple papers on the IRT part of the conditioning model, 

research on the whole conditioning model is much rarer. In general, key 
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assumptions of the IRT model are being challenged. Wuttke (2007) questions 

the unidimensionality of the different domains and whether all items function 

the same across all countries in PISA. Kreiner & Christensen (2014) go one 

step further and investigate if results based on the used IRT model, the so-

called Rasch model, can be compared sensibly at all. Model misfit and 

substantial differential item functioning thereby threaten the validity of the 

PISA results and cross-country comparisons. On the other hand, other 

research shows that alterations to the IRT model do not largely impact the 

country comparisons (Jerrim et al., 2018). Meanwhile, Rutkowski (2014) 

investigated the complete conditioning model with the help of a simplified 

simulation. She found that the model is sensitive to the misspecifications and 

systematic error in the background variables can lead to substantially biased 

country measures.  

Yet all those single issues cannot give a complete picture on their own, as 

they are generally regarded as isolated – even in work summarising or 

investigating multiple aspects. They are intertwined and impact each other. 

For example, if an item has a non-optimal translation, it can be biased and 

impractical for later secondary analyses, but before it is also used in the 

conditioning model and can thus introduce bias into the achievement scores 

(L. Rutkowski, 2014). Therefore, it is vital to have a realistic overview of all 

potential issues with the data. The Total Survey Error (TSE) framework 

considers the whole process behind surveys in general and aims to investigate 

all potential sources of error. Thereby, it encompasses ‘the entire set of survey 

design components that identify the population, describe the sample, access 

responding units among the sample, operationalise constructs that are the 

target of the measurement, obtain responses to the measurements, and 

summarise the data for estimating some stated population parameter’ (Groves 

& Lyberg, 2010, p. 850). The underlying aim is to gauge the quality and 

meaningfulness of the survey and identify improvements, if possible. Schnepf 

(2018) discusses why this is not only important for surveys in general but also 

for ILSAs and PISA. Thereby, examples for the different error components 

are showcased in order to raise awareness for the fact that the TSE is unlikely 

to be negligible, which in turn raises doubts about the current usage and 
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interpretation of the PISA data and results. To my best knowledge, I am not 

aware of any published work apart from Schnepf (2018) that investigates the 

TSE in PISA or even attempts a broader and more comprehensive 

investigation of potential error sources in PISA. 

1.4 Thesis outline 

This thesis is structured in five main parts. In this first chapter, the 

introduction, I outline the motivation and relevance of my research.  

Chapter 2 focuses on one part of PISA’s student achievement computation, 

the conditioning model, where background variables are used in combination 

with the cognitive items to derive student achievement scores. Thereby, the 

aim is to investigate the impact background variables can have upon the PISA 

results. As a starting point, the PISA 2012 PVs were replicated as closely as 

possible to allow conclusions and references to PISA in further analyses. The 

resulting model was then systematically varied by including and excluding 

different sets of background variables in its specifications. Differences in 

scores were analysed to gauge the impact that this had upon the relative 

position of countries in the PISA rankings. The key finding is that the exact 

specification of the conditioning model matters; including or excluding 

variables can substantially change student achievement scores. As a result, 

cross-country comparisons of PISA scores, such as country rankings, can 

change quite dramatically depending upon the statistical methodology used. 

This is most pronounced for achievement scores in the minor domains 

(reading in my empirical application) and for cross-national comparisons of 

educational inequality. 

Chapter 3 builds upon the foundations laid in the second chapter: A 

simulation study was conducted to further investigate some of the research 

questions relating to the impact of background variables in student 

achievement estimation. But additionally, the simulation is used to examine 

the impact that other key aspects surrounding the plausible value computation 

have on country averages and inequality measures. The simulation is based 

upon the design of the PISA 2012 assessment and allows me to investigate 

some research questions which would not be possible with real-life PISA data 
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only. Thereby, I systematically vary the variables included in the conditioning 

model, how these are prepared, the selection of test questions that students 

were required to answer and whether the background questionnaire has a full 

design. This study confirms that specification of the conditioning model 

matters. The presence of a single variable can introduce bias into the results, 

especially in the minor domains, though this impact can be reduced by asking 

students test questions in all subjects (something not done in PISA). In 

contrast, how the conditioning variables are prepared and whether a full 

background questionnaire is used or not has little to no impact upon the 

results. 

While the previous two chapters already suggest that country measures can 

be impacted through multiple pathways, it is the explicit aim of Chapter 4 to 

provide a broader and more comprehensive review. It aims to show different 

psychometric and statistical properties of PISA and their corresponding 

issues, by using a case study, exploring the link between highest parental 

education and achievement scores in Germany in PISA 2012, in order to 

allow for an in-depth investigation. Overall, I investigated six different 

psychometric and statistical properties that potentially impact parental 

education group comparisons in Germany. Thereby, the study shows how 

diverse and different sources of bias can be in PISA, how they are intertwined 

and that they indeed affect the validity of the results. While not all 

investigated issues introduce bias into the scores and results, multiple aspects 

did.  

This thesis closes with conclusions in Chapter 5. Thereby, the key findings 

from Chapters 2–4 are summarised first. Subsequently, the different findings 

are set into reference of each other and the general theme in order to highlight 

the overarching contribution of this thesis. Furthermore, limitations that apply 

to either single chapters or the complete thesis are discussed critically. While 

this thesis led to new knowledge and added to the literature, it has also raised 

further research questions specifically connected to the psychometric and 

statistical properties in ILSAs. So, to bring this thesis to an end, potential 

opportunities for future research based on this thesis are shown.  
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1.5 Contribution of this thesis  

Subchapter 1.3 illuminates the situation of research regarding ILSAs and 

related methodological issues. Diverse aspects can threaten the validity and 

comparability of PISA scores and results. Thereby, it is natural that some 

areas receive more attenuation than others. With the help of Chapters 2, 3 and 

4, I intend to address gaps in the literature so far and make valuable 

contributions in this area of research.  

Chapter 2 aims to shed further light on the conditioning model. While there 

is literature about the conditioning model, the theory behind it and its benefits 

(e.g. Khorramdel et al., 2020; Mislevy, 1991; Mislevy et al., 1992), little work 

has been published scrutinising the usage of the conditioning model in ILSAs. 

Due to the complex nature of ILSAs, the model and the large sets of items 

and questions, research investigating the conditioning model in ILSAs 

requires great amounts of computational effort and time. For instance, 

Rutkowski (2014) looked at conditioning in ILSAs, but through a simplified 

and reduced simulation in order to highlight how bias in the conditioning 

variables could potentially bias ILSA results. In comparison, this chapter 

substantially adds to the literature, as  

• it scrutinises the conditioning model in a realistic PISA setting. This 

means that the actual PISA 2012 data for all countries is used, the 

methods are replicated as closely as possible and the same items and 

questions are included in the model as in PISA.  

• my key finding shows that key measures and country rankings can 

change substantially depending on the exact model specification.  

• the OECD does not publish its code for the PV estimation, but I make 

my code publicly available (Zieger, 2021) for researchers to scrutinise 

and reuse.  

As a result, this chapter does not only fill a gap in the literature but is relevant 

in general, as little rationale and explanation behind the conditioning model 

specification and its impact are communicated in the official PISA reports.  
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Chapter 3 also addresses the lack of critical literature about the conditioning 

model in ILSAs. Thereby, it starts by further investigating some aspects from 

Chapter 2 but also assesses the impact that properties (indirectly) affecting 

the conditioning model can have on country measures. This is done via a 

simulation study that replicates the PISA data and design and enables the 

investigation of research questions that would not be possible otherwise. 

Consequently, the primary contributions to the literature of this chapter are:  

• To provide the first evidence on the impact of conditioning variables 

and design characteristics on plausible values in a real-life setting. 

This is important as no official (in-depth) robustness checks and 

analyses are publicly available for PISA. 

• It provides further evidence (over and above that presented in Chapter 

2) that the conditioning model specification matters. The inclusion or 

exclusion of one single variable can bias the results. 

• I find that this bias can be reduced significantly if all students were 

administered questions in all domains, which PISA does not do. This 

is an interesting finding, as most other ILSAs (e.g. TIMSS) administer 

questions in all tested domains to all students.  

• I show – for the first time – that some aspects of the conditioning 

model have little to no impact upon the PISA results, such as the 

background questionnaire design, i.e. if all students answered all 

questions. This finding is new and relevant, as it opens test design 

options, especially in combination with the previous finding.  

Thus, this chapter contributes both to the academic and general debate about 

ILSAs and how students should be tested as well as how their achievement 

scores are estimated.  

Most work surrounding methodological issues in ILSAs focuses on a single 

isolated aspect, like Chapter 2, or also includes a few related properties, such 

as in Chapter 3. Yet those issues do not occur separately in reality and 

regarding them (semi-) isolated does not give the full picture. ILSAs have 

numerous steps and properties which all affect and relate to each other. The 

TSE framework acknowledges this and provides a guideline on which aspects 
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of surveys can potentially be problematic and should therefore be assessed. 

Schnepf (2018) highlights the need for transparent evaluation and 

communication of the aspects of the TSE framework in ILSAs, but little to 

no empirical research has been done regarding PISA and the TSE framework. 

Chapter 4 therefore contributes to the existing literature by: 

• Comprehensively investigating diverse ways how country measures 

can be biased outlined in the TSE framework.  

• Identifying six statistical and psychometric aspects, including the 

influence of background variables via the conditioning model, that can 

potentially impact group comparisons.  

• Illustrating how diverse and intertwined sources of bias are in PISA, 

which is also a valuable lesson for users of PISA data and results that 

can be applied to other situations. 

Overall, this thesis sheds light on the details of how student achievement 

scores are computed, how different psychometric and statistical properties 

impact student scores and in turn the validity and comparability of key 

measures. Thereby, the overall contribution to the academic literature is 

twofold: 

1. The conditioning model is scrutinised closely and the indirect impact 

of background variables through the achievement score computation 

is highlighted.  

2. The relationship between background variables, achievement scores 

and statistical and psychometric properties of ILSAs is investigated 

on a more comprehensive level in order to identify potential issues and 

bias in country measures.  

All three research projects in this thesis identify points of concern in the 

process. Yet the main contribution to the literature does not lay in the sole 

identification but its consideration from different points of view and in 

relation to the total picture. Furthermore, this thesis does not only add to the 

scientific debate but also two further general contributions emerge:  
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3. This thesis aims to highlight the dependency of country measures on 

different statistical and psychometric properties. Limitations and 

implications should be better communicated to researchers, 

stakeholders, and the media.  

4. The need for better transparency and official documentation is 

addressed. It becomes clear that a lack of details and adequate (and 

consistent) documentation remains a problem with PISA.   
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2 Conditioning: How background variables can 

influence PISA scores 

2.1 Introduction 

The Programme for International Student Assessment (PISA) is an important 

international study that compares mathematics, science and reading skills of 

15-year-olds across countries. It has been conducted every three years since 

2000 and has become the largest and most influential study of educational 

achievement across the world. After the publication of the PISA results, 

national and international stakeholders study the scores to determine who the 

‘winners’ and ‘losers’ are, with reference societies (such as Finland) having 

emerged (Sellar & Lingard, 2013). The results from PISA have consequently 

led to governments across the world making substantial changes to their 

education system. For instance, after the ‘PISA shock’ in Germany in 2000, 

major changes were made to school curricula (Ertl, 2006). Many other 

countries, such as Japan (Takayama, 2008), Denmark (Egelund, 2008) and 

other European countries (Grek, 2009), have undertaken similar reforms 

based upon their PISA results. PISA has hence become a source of soft 

educational governance, with policymakers across the world keeping a close 

eye upon the results.   

Yet despite the impact PISA has had over the last two decades, it has not been 

without its critics. While some ethical concerns about the administration of 

PISA have been raised (e.g. Meyer, 2014), it is the methodology underpinning 

the study that has perhaps sparked the most concern. As discussed by 

Rutkowski and Rutkowski (2016) and others (Gillis et al., 2016; S. Hopmann 

et al., 2007) this includes issues such as sample representativeness, non-

response rates, population coverage and cross-cultural comparability. For 

instance, in the case of Portugal, Freitas et al. (2016) found substantial 

differences between the target population and the sample which may have 

introduced bias into the results. Other countries, such as South Korea, 

England and Ireland, have also experienced questionable movements in PISA 

scores over time, potentially due to sampling issues (Eivers, 2010; 

Micklewright et al., 2012). Other criticisms of PISA include potential bias 
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introduced by cross-national and cross-cultural differences in the translation, 

interpretation and understanding of the test questions (El Masri et al., 2016; 

Kankaraš & Moors, 2014). 

However, perhaps the most controversial element of PISA is the scaling 

model used (i.e. how a country’s PISA scores are derived from students’ 

responses to the test questions). This consists of two core components: an 

Item Response Theory (IRT) model and a latent regression model. Together 

they form the so-called ‘conditioning model’, from which estimates of 

students’ achievement in reading, mathematics and science are derived 

(OECD, 2014b). This is a complex, multi-step procedure; one which has been 

criticised for being opaque (Goldstein, 2017) and is not well understood 

outside the psychometric community. 

This scepticism about the PISA scaling model has been shown to be 

warranted by some academic research. For instance, Wuttke (2007) has 

challenged the assumption that each PISA subject can be measured via a 

single unidimensional latent trait. He also questioned whether all test items 

really function the same across all populations in such a diverse sample. 

Fernandez-Cano (2016) questioned PISA’s historic use of Rasch over other 

possible IRT models, and the fact that certain characteristics of test questions 

(e.g. different response formats, position effects) are not accounted for. A 

paper by Kreiner and Christensen (2014) made a similar criticism, providing 

evidence of general misfit of test questions within the PISA scaling model 

and evidence of significant differential item functioning (i.e. a lack of 

measurement invariance across countries). They consequently concluded that 

cross-country comparisons of educational achievement in PISA should be 

handled with great care (Kreiner & Christensen, 2014). Meanwhile, 

Rutkowski (2014) illustrated how systematic error within background 

variables could bias subpopulation estimates of students’ achievement. In 

contrast, Jerrim et al. (2018) suggest that relative differences between OECD 

countries remain largely unchanged after a series of alterations to the IRT 

component of the PISA scaling model were made. 
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However, one element of the PISA scaling model that has been subject to less 

scrutiny – despite it being the subject of quite some criticism and confusion – 

is the role that background information about students (provided within the 

background questionnaires) plays in the derivation of PISA scores. 

Specifically, students’ responses to questionnaire items (e.g. their socio-

economic background, their attitudes towards school, etc.) are used in 

conjunction with their responses to the PISA test questions to generate the 

PISA ‘plausible values’ (PISA estimates of students’ academic achievement). 

For those outside the psychometric community, the idea that such background 

data plays a role in the generation of PISA scores is difficult to understand. 

However, it is argued that, as PISA is only interested in achievement at the 

aggregate (e.g. country) level, and not in the achievement of individual pupils, 

then this should not bias the results. At the same time, the use of background 

data in the scaling model (in theory) brings two important advantages. First, 

if this is not done, then attenuation bias may be introduced when looking at 

the covariation between PISA scores and background characteristics 

(Mislevy, 1991; Mislevy et al., 1992). Second, by conditioning upon pupils’ 

background characteristics, the precision of population estimates should be 

enhanced (e.g. smaller standard errors in average PISA scores; van Rijn, 

2018). On the downside, this adds substantial complexity to the generation of 

PISA scores, leading to the criticisms that it is opaque.  

While conditioning upon background characteristics is a key part of the 

production of PISA scores, only two out of nineteen chapters of the PISA 

2012 technical report are dedicated to the computation of plausible values 

(OECD, 2014b). This highlights the lack of examination of the topic, which 

is also evidenced by the scarcity of research conducted on this matter in 

international large-scale assessments (most of the literature cited above 

focuses upon the IRT part of the scaling model). For instance, do cross-

country comparisons of PISA scores change depending upon if (and how) the 

conditioning model is specified? Does it really bring the supposed benefits 

that motivate its use (smaller standard errors and more accurate estimates of 

covariation with background characteristics)? Or does it simply add a great 

deal of complexity for little discernible gain?   
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This chapter aims to answer such questions about the conditioning model 

used in PISA and fill the gap in the literature. It begins by investigating how 

closely the PISA plausible values can be reproduced using publicly available 

documentation about the procedures used. I then compute alternative 

plausible values using different variants of the conditioning model. Results 

from using the full conditioning model are then compared to those using only 

basic parts of the model, and to those using no conditioning model at all. This, 

in turn, allows us to establish whether (a) cross-country comparisons of PISA 

scores change depending upon the conditioning model used and (b) whether 

the theoretical benefits of conditioning upon background data are empirically 

observed in this setting.  

The results from this analysis lead us to four key conclusions. First, while the 

publicly available information provided by the OECD allows close 

replication of the plausible values in the major domain (mathematics in the 

PISA 2012 data I use), replications for the minor domains (especially reading) 

are less successful. The OECD, consequently, need to be much more 

transparent about exactly how PISA scores (plausible values) for the minor 

domains have been derived – and particularly about the precise specification 

of the conditioning model. Second, while the specification of the conditioning 

model has little influence upon the PISA ranking within the major domain 

(mathematics), there is an impact in some of the minor domains (particularly 

reading). In other words, different versions of the conditioning model can lead 

to different country-level PISA scores. Third, there is evidence that the 

specification of the conditioning model can have substantial, but not 

necessarily predictable, impacts upon important measures of educational 

inequality.  Finally, I find no evidence that population estimates (e.g. average 

PISA scores) become more precise (i.e. standard errors are smaller) when a 

complex conditioning model is used. Actually, the opposite holds true 

(standard errors inflate rather than deflate). 

This then leads me to two key recommendations. First, as others have 

previously suggested, the scaling procedure used in PISA is not sufficiently 

transparent to facilitate exact replication of the results by independent 

researchers. The technical reports supplied by the OECD do not contain 
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sufficient detail about the procedures used (let alone in a language suitable 

outside of a highly specialised field) and should therefore be extended. 

Second, the specification of the conditioning model can lead to non-trivial 

changes to average PISA scores, particularly within minor domains. Based 

upon this evidence, I conclude that the OECD should publish more sensitivity 

analyses around the conditioning model and make more detailed information 

about their methodology publicly available.  

2.2 Methods 

2.2.1 Data 

In this chapter, I use PISA 2012 data to illustrate score computation in PISA. 

Generally, PISA aims to compare the mathematics, reading and science skills 

of 15-year-olds between countries. To achieve this aim, nationally 

representative samples of 15-year-olds who are enrolled in at least Grade 7 in 

an educational institution are drawn (OECD, 2014b, p. 66). A two-stage 

stratified sample design is used. In the first stage, at least 150 schools are 

sampled per country with probability proportional to school size. 

Subsequently, 35 students per school are randomly sampled. In some 

countries, larger samples are drawn in order to facilitate subpopulation 

(within-country) comparisons (OECD, 2014a, p. 256). The average school 

and student response rates after replacement are 98% and 92%, though there 

are substantial differences between countries. Overall, PISA 2012 

encompasses 478,413 students in 64 countries and economies (Cyprus 

excluded1). 

2.2.2 Test design 

As time is a limiting factor in educational assessment, PISA uses a rotated 

test design. This means that, in PISA 2012, students were randomly assigned 

to complete one of 13 different test booklets. Each of these booklets contained 

four out of 13 possible ‘item clusters’ (groups of questions). As mathematics 

 
1 Not all participating countries recognised Cyprus as an independent country. Data for 

Cyprus was not published. 
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was the focus of PISA 2012, seven of the 13 item clusters were about this 

subject, with three of the clusters about science and three clusters about 

reading.2  All booklets contained at least one mathematics item cluster, but 

only five of 13 booklets included questions in each of reading, mathematics 

and science. In other words, only around 40% of students answered questions 

in all three core PISA domains (OECD, 2014b, pp. 30, 31). Therefore, 

complex techniques (IRT and latent regression) are used to impute data in 

domains where students have not answered any test questions (e.g. reading) 

from how they performed upon test questions in other domains (e.g. 

mathematics and science) and their background characteristics (e.g. gender, 

socio-economic status, attitudes towards mathematics, enjoyment of school). 

See OECD (2014b, pp. 145, 146) for further details. 

A unique feature of PISA 2012 (which did not occur in prior or subsequent 

PISA rounds) was that rotation was also used for the student background 

questionnaire. Specifically, there were three different versions of the student 

questionnaire, to which students were also randomly assigned. These 

questionnaires shared a common core component, while also including a 

rotated part that differed. Hence, while some information (e.g. gender, 

language and parental education) is available for all students, some other 

background data is only available for a subset (OECD, 2014b, p. 58). In 

addition to the mandatory questionnaires and domains (student and school 

questionnaires and the mathematics, reading and science test), countries could 

also administer some optional elements of PISA. This included parental, 

educational career and information communication technology 

questionnaires as well as additional assessments in digital reading, computer-

based mathematics, financial literacy and problem solving  (OECD, 2014b, 

pp. 22, 259, 260; see also Appendix A.1 for details). The additional domains 

were computer-based assessment, while the core domains were paper-based. 

 
2 Each cluster contained 30 minutes of test material. Two of the mathematics item clusters 

exist in an easy and a standard version (mathematics item cluster 6 and 7). Countries with a 

low expected performance can administer the easy versions instead of the standard versions. 

This leads to 13 booklets per country in either the easy or standard version with an overlap 

of six booklets. 
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2.2.3 A summary of how PISA scale scores (plausible values) are 

generated 

Using students’ responses to the test questions and questionnaire items to 

which they were randomly assigned, the survey organisers follow five main 

steps to compute the PISA plausible values (see Chapter 9 and 12, especially 

pp. 159, 253, 254 of OECD, 2014b). 

• First, for each core domain (reading, mathematics, and science) the 

item difficulties are determined using a common sample3 via IRT 

model. These are then fixed for all later stages. 

• Second, responses to the background questionnaires are recoded for 

each country. These are then used as ‘conditioning variables’ in 

subsequent steps. Further details about this part of the procedure will 

be discussed below.  

• Third, student achievement distributions are estimated. This is done 

separately in each country via a combination of IRT and latent 

regression (known in the psychometric literature as a conditioning 

model). In short, both students’ responses to the test questions and the 

responses provided to the background questionnaires are used to 

estimate students’ achievement in each subject. A simplified 

illustration of the model used can be found in Figure 2.1. However, 

rather than providing a single point estimate of the achievement for 

each student, a conditional achievement distribution is generated. This 

distribution reflects, for each student, the uncertainty in their 

estimated reading, science, and mathematics achievement. 

• Fourth, for each student, five plausible values are randomly drawn 

from this distribution. Within the literature, these are viewed as 

‘imputations’ for unobserved (latent) student achievement (Mislevy, 

1991).  

 
3 The common sample consists of 500 students from each country, except for Liechtenstein, 

where students were randomly selected (OECD, 2014b, p. 233). 



43 

 

• Finally, these plausible values are transformed by common item 

equating onto the PISA scale. This final element facilitates 

comparisons of PISA scores over time. 

The focus of this chapter is the role of the conditioning model (i.e. the use of 

school and student background data) detailed in the third bullet point above4.  

Figure 2.1 Simplified illustration of the PISA scaling model used to generate 

the plausible values 

 

Note: Squares refer to observed variables, ovals to latent variables and circles 

to error terms. S.., M.., and R.. refer to students’ responses to PISA test 

questions, where i is the number of items in the domain. Curved lines 

connecting errors indicate correlated errors. 

 

2.2.4 Why are background variables used within the construction of 

PISA scores? 

Despite conditioning models having now been used for decades in large-scale 

international assessments, the PISA technical reports provide little rationale 

for their use; it has simply been described as a ‘natural extension’ of IRT 

(OECD, 2014b, p. 145). In a nutshell, they are essentially an application of 

Rubin’s (1987) well-known multiple imputation (MI) methodology applied 

 
4 As a result, the first and final part of the procedure described above will not be directly 

replicated in this chapter. Rather, the officially published numbers (e.g. values of item 

difficulties) will be used instead. 



44 

 

to IRT, treating students’ latent abilities as an extreme form of missing data. 

The motivation for their use hence closely follows the rationale put forward 

in the MI literature; it is necessary to include background variables in the 

estimation of students’ latent abilities in order to (a) facilitate unbiased 

estimations of group differences (e.g. difference in achievement between 

boys and girls)5 – see (Mislevy, 1991; Mislevy et al., 1992) and (b) reduce 

uncertainty in measurement (van Rijn, 2018). 

The idea behind the first of these points is best explained with a simplified 

example. Imagine a rotated assessment design where only half of the students 

receive reading questions, but all receive mathematics questions. Now 

assume that female students achieve 10 achievement points more in reading 

than their male counterparts, but that there is no gender difference in 

mathematics. If a standard IRT model is applied (without conditioning upon 

gender), students who did not answer the reading questions would be assigned 

a reading score based solely upon their responses to the mathematics 

questions. Consequently, for the part of the sample that were given only 

mathematics questions, girls would be assigned the same reading scores as 

boys. This would in turn mean that, were we to estimate gender differences 

in reading achievement across the whole sample, we would find a difference 

of just 5 test points rather than 10 (i.e. there would be attenuation bias 

affecting the results). When using complex rotated test designs, estimates of 

such group differences hence need to be adjusted in order to produce unbiased 

results. Within PISA, this is likely to be particularly important for the minor 

domains, where there are large amounts of ‘missing data’. 

This simple example illustrates why it is important that PISA (and other 

international surveys) use a conditioning model. However, as noted by 

Rutkowski (2014) and Wu (2005), it is important that this model is correctly 

specified. Otherwise, bias might be introduced. At a minimum, it is vital that 

 
5 In the MI literature, it is widely suggested that (in the presence of missing data) the 

relationship between a variable and the outcome of interest will be attenuated (i.e. there will 

be downward bias in the estimated coefficient) unless that variable is included in the 

imputation model. This idea is also applied within the conditioning modelling literature, with 

it being claimed that the relationship between students’ background characteristics and their 

achievement will be attenuated unless that variable is included in the conditioning model. 
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thorough investigations are undertaken to consider how PISA results might 

change if a different conditioning model is used. This not only holds true for 

average PISA scores (the subject of much attention), but also measures of 

educational inequality and differences between key sub-groups (e.g. how 

gender and migrant-native student gaps compare across countries).  Indeed, 

while there are strong theoretical arguments for PISA’s use of a conditioning 

model, the substantial complexity it introduces has meant it has thus far not 

been closely scrutinised (Goldstein, 2017).  

2.2.5 Replication of the PISA methodology 

In order to investigate how the specification of the conditioning model 

influences PISA results, I begin by attempting to replicate the PISA 

methodology of creating plausible values as closely as possible. Following 

the formulas and annotation used within the OECD technical reports (OECD, 

2014b, pp. 144–146), let:  

- the items be  𝑖 = 1, … , 𝐼 and 

- response category 𝑘 = 0, … , 𝐾𝑖 with 𝐾𝑖 = 1, if item 𝑖 is binary or 𝐾𝑖 =

2 if item 𝑖 has partial credit. 

- The value vector is denoted as 𝑿𝒊 = (𝑿𝒊𝟏, … , 𝑿𝒊𝑲𝒊
)

𝑻
 with 𝑋𝑖𝑗 = 1, if 

the value of item 𝑖 is in the respective category, otherwise 0.  

- Let 𝝃𝑇 = (𝛏𝟏, … , 𝛏𝒑) be the 𝑝 item parameters, 

- 𝜽 = (𝜃1, … , 𝜃𝐷) denote the latent variable of the 𝐷 domains, 

- 𝒂𝑖𝑗 , (𝒊 = 𝟏, … , 𝑰, 𝒋 = 𝟏, … , 𝑲𝒊) of length 𝑝 denote the design vectors 

in the IRT model which form design matrix 𝑨𝑇 =

(𝒂11, … , 𝒂1𝐾1
, 𝒂21, … , 𝒂2𝐾2

, … , 𝒂𝐼𝐾𝐼
), 

- 𝒃𝒊𝒋𝒅 denote how response category 𝑗 of item 𝑖 loads onto dimension 

𝑑, which is combined into 𝑩 as follows 𝒃𝑖𝑘 = (𝑏𝑖𝑘1, … , 𝑏𝑖𝑘𝐷)𝑇, 𝑩𝑖 =

(𝒃𝑖1, … , 𝒃𝑖𝐾𝑖
)

𝑇
 and 𝑩 = (𝑩1

𝑇 , 𝑩2
𝑇 , … , 𝑩𝐼

𝑇)𝑇, 

- 𝑓𝜃(𝜽; 𝜶) be the density of the of the latent variable 𝜽, 

- 𝜶 = (μ, σ2) denote the parameters of the density for a unidimensional 

latent variable and 𝜶 = (𝝁, 𝚺) for a multidimensional, 
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-  𝒀𝒏 denote a vector of 𝑢 values (e.g. background characteristics) for 

student 𝑛 and 

- 𝛃 be a vector of regression coefficients. 

The following paragraphs first state the IRT model used in PISA 2012 and 

then focus on the conditioning model. The IRT model is based on the concept 

of a 1-pl IRT model, meaning that only item difficulty is estimated (the 

discrimination and ‘guessing’ parameter are held fixed as 1/0). In contrast, to 

2-pl and 3-pl IRT models also estimate item discrimination and guessing 

parameters. Yet, the model is not used in its basic form but in a generalised 

form, the Multidimensional Random Coefficient Multinomial Logit Model 

(MRCMLM Adams et al., 1997), to facilitate some characteristics of PISA – 

multidimensionality and partial credit.  

While most items in PISA 2012 have only one correct answer and are 

therefore binary, a few items (15 out of 206 items in the core domains) were 

partial credit, i.e. students could gain up to two points in constructed 

responses items, but also only one if the answered was not exactly as desired, 

which results in a scoring of 0, 1 or 2. In the partial credit model, the 

probability for achieving both one and two points is estimated. Furthermore, 

PISA aims to estimate student achievement in (at least) three domains at once, 

resulting in (at least) three dimensions. 

The MRCMLM can estimate numerous models of different complexity, e.g. 

it can estimate a simple 1-pl IRT model without any extension. But it is also 

able to accommodate a 1-pl IRT model which is extended for partial credit 

and multidimensionality. The probability of scoring 𝑗 in item 𝑖 is thereby 

defined as follows:  

𝑃(𝑋𝑖𝑗 = 1|𝑨, 𝑩, 𝝃|𝜽) =
exp(𝒃𝑖𝑗𝜽 + 𝒂𝑖𝑗

𝑇 𝝃)

∑ exp(𝒃𝑖𝑘𝜽 + 𝒂𝑖𝑘
𝑇 𝝃)𝐾

𝑘=1

. 

Where 𝑩 manages the relationship between items and the 

dimensions/domains; in 𝒃𝑖𝑗 is the dimension determined to which the item 

belongs. 𝑨 handles the relationship between the item and its model 



47 

 

parameters, in case of partial response 𝒂𝑖𝑗
𝑇  builds the linear combination of 

respective item difficulties.  

Based on this IRT model, the latent achievement of student can be estimated. 

Assuming that the density of a certain latent achievement (𝜃𝑖) follows a 

normal distribution with 𝑁(μ, σ2), as done within PISA, then the density 

function becomes6: 

𝑓𝜃(𝜃𝑖; 𝜶) = (2𝜋𝜎2)−
1
2𝑒𝑥𝑝 [−

(𝜃𝑖 − μ)2

2𝜎2
]. 

In the above, no conditioning model has been applied. Now, let’s assume that 

students from different subpopulations (e.g. boys and girls) have different 

abilities. The density function above now needs to be tweaked to reflect this 

(which is done via the conditioning model). While the variance of the density 

is fixed, the mean μ is replaced with the regression model estimate 𝒀𝒏
′ 𝜷. As 

a result, the latent variable is now represented through 𝜃𝑖𝑛 = 𝒀𝒏
′ 𝜷 + 𝜀𝑛, with 

the independent error term having zero mean and being normally distributed. 

Note that 𝒀𝒏 can consist of several different background characteristics (e.g. 

gender, grade, parental education, attitudes towards school, young people’s 

self-efficacy) which researchers may want to relate to student achievement 

within secondary analyses. 

If I plug this regression into the density function, I end up with the following 

conditioning model: 

𝑓𝜃(𝜃𝑖𝑛; 𝒀𝒏, 𝜷, 𝜎2) = (2𝜋𝜎2)−
1
2 exp [−

1

2𝜎2
(𝜃𝑖𝑛 − 𝒀𝒏

′ 𝜷)′(𝜃𝑖𝑛 − 𝒀𝒏
′ 𝜷)]. 

This can be generalised to facilitate multidimensional latent variable 

estimation (e.g. the estimation in PISA of students’ reading, science, and 

mathematics abilities) using a multivariate normal distribution with 

respective parameters: 

 
6 For the estimation of an IRT model, some assumptions need to be made. There are different 

approaches to enable the estimation. The approach involving the specification of a density 

for the latent variables is called the ‘marginal approach’ and is used in PISA.  
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𝑓𝜃(𝜽𝒏; 𝒘𝒏, 𝜸, 𝜮) = (2𝜋)−
𝐷
2 |𝜮|−

1
2 exp [−

1

2
(𝜽𝒏 − 𝜸𝒘𝒏)′𝜮−1(𝜽𝒏 − 𝜸𝒘𝒏)]. 

In this case 𝜸 is a matrix of the regression coefficients with the different 

dimensions, 𝚺 is the variance-covariance matrix for the 𝐷 dimensions and 𝒘𝒏 

is the vector of fixed variables equivalent to 𝒀𝒏 in the unidimensional case. 

Empirically, I apply this approach to the PISA 2012 data as described in 

Appendix A.2. 

2.2.6 How is student background data incorporated into the plausible 

values? 

As stated above, the conditioning variables are a vital part of the conditioning 

model. In PISA 2012, all variables from the background questionnaires are 

recoded, pre-processed7 and then used as conditioning variables (𝒀𝒏). Within 

the conditioning model, each background variable is treated as either (OECD, 

2014b, p. 157): 

•  A direct regressor. These are added straight to 𝒀𝒏 without any further 

processing, just recoding. Only the following handful of variables are 

direct regressors: gender, school ID, grade, mother’s and father’s 

socio-economic index and booklet IDs8. These variables are therefore 

available for all students in the PISA conditioning model9. 

• An indirect regressor. The remaining (vast majority) of background 

variables are recoded in one of three ways: (a) combined into 

 
7 By recoding, I mean altering and transforming the format of the variable without changing 

the meaning or value of the variables (e.g. contrast/dummy-coding of categorical variables: 

instead of having one variable existing for all different categories, I have an indicator for the 

categories (-1 due to not adding a reference category indicator) which is 1 if the student 

answered in that category, -1 if the reference category was selected or 0 if neither). By pre-

processing, I mean altering and transforming the values of the variables (e.g. computing a 

new questionnaire index by averaging multiple variables or using principle components). 

Further details on the recoding and pre-processing used in PISA 2012 can be found in the 

technical report (OECD, 2014b, pp. 157, 421–431). 
8 The contrast coding for booklets was further tweaked so that the information for students 

who only answered questions in two domains is based on information from all booklets that 

have items in a domain (OECD, 2014b, p. 157). Furthermore, the regression coefficients for 

booklets which covered two of three domains were set to zero for the third domain in the 

latent regression. 
9 This is true even with the questionnaire rotation used in PISA 2012, as questions capturing 

this information were situated in the core part, i.e. items were seen by all students. 
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preliminary questionnaire indices; (b) dummy-coded if categorical or 

(c) centred and a dummy variable added for missing information if 

numerical10. A principal component analysis is then conducted on 

these recoded variables, with as many components retained as 

necessary to explain 95% of the variance. The retained components 

are then included in the vector of conditioning variables 𝒀𝒏. 

According to the official documentation, no imputation, or other 

approaches to dealing with the large amounts of missing background 

data (due to the rotated questionnaire design) were applied. The 

conditioning variables 𝒀𝒏 are computed separately by country and 

may therefore vary (e.g. in terms of the number of components that 

were retained). For each country, all available information was used11. 

2.2.7 Variations of the conditioning model  

After trying to reproduce the published values, I then alter how the 

conditioning variables are used in the PISA scaling process to examine how 

the specification of the conditioning model affects cross-country comparisons 

of PISA scores.  

To achieve this goal, the conditioning variables are divided into three groups: 

(a) school-level direct regressors (contrast codes for school ID), (b) 

individual-level direct regressors (all remaining contrast codes) and (c) 

indirect regressors. Using different combinations of the above, I will generate 

eight alternative sets of plausible values, each based upon a different 

specification of the conditioning model. These eight alternatives can be 

summarised as follows: 

0. No conditioning variables (i.e.  no conditioning model at all) 

1. School direct regressors only 

2. Individual direct regressors only 

 
10 The exact details for all recoding can be found in Annex B in the technical report (OECD, 

2014b, pp. 421–431). 
11 For example, Germany administered the parental questionnaire. This meant that more items 

were included in the Principal Components Analysis (PCA) for the computation of indirect 

regressors in Germany than in most other countries. 
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3. Indirect regressors only 

4. All direct regressors (school + individual) 

5. School direct regressors and indirect regressors 

6. Individual direct regressors and indirect regressors 

7. All regressors (as used in PISA). 

This enables us to analyse how the specification of the conditioning model 

affects cross-country comparisons of PISA scores.  

All computations and analyses within this chapter are done within R (R Core 

Team, 2019) using the ‘TAM’ (Robitzsch et al., 2018) and ‘intsvy’ (Caro & 

Biecek, 2017) packages. Further details about the computational procedures 

(both the replication and altering the conditioning variables) can be found in 

Appendix A.3. For the comparisons and analyses of the produced plausible 

values, I accounted for the sample design by using Balanced Repeated 

Replication (BRR) weights in combination with the final student weight. 

2.3 Results 

2.3.1 Average scores 

Figure 2.2 illustrates the relationship (at the country level) between my self-

computed country average PISA scores and the ‘official’ OECD scores. The 

upper panel refers to my plausible value computation without conditioning 

(i.e. background variables have not been included in the conditioning model). 

The lower panel is where the full conditioning model (including all variables 

stated in the PISA 2012 technical report) has been used.  

My replication of the PISA plausible values has succeeded to different 

degrees. The correlation between the self-computed country averages and the 

‘official’ country averages is very good for the major domain (mathematics) 

where correlations are above 0.998.  Similar results hold for science (one of 

the minor domains). Although there is slightly more variation between the 

official country average science scores and the replicated values, the cross-

country correlation in the results is still strong; the Pearson correlation is .996 
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with full conditioning and .998 without. In other words, in these two domains, 

the impact of conditioning upon the results is trivial.  

 

Figure 2.2 Countries’ average PISA scores. Official versus self-computed 

scores 

 

Note: The ‘official’ country average scores are plotted along the horizonal 

axis and self-computed scores along the vertical axis. The upper panel refers 

to results where no conditioning upon background characteristics has been 

applied. The lower panel is where the full conditional model (as described in 

the PISA 2012 report) has been applied. The 45-degree line is where these 

two values are equal. The Pearson correlations, starting in the top, left-hand 

graph and working right, are .999, .997, .998, .998, .965 and .996.  

 

The results for reading (the other minor domain) are, however, more of a 

concern. In the upper panel, when no conditioning is applied, the self-

computed country averages closely replicate the official OECD scores 

(Pearson correlation = .997). This changes in the bottom panel once I 

condition upon background data, with the correlation falling slightly to .965, 

leading to many countries experiencing an important change to their results. 

For instance, at the extreme, the average reading score in Chile increases from 

441 to 479 (i.e. by more than 0.3 standard deviations), while it falls in the 
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Netherlands from 511 to 490 (i.e. a drop of around 0.2 of an international 

standard deviation). Indeed, when conditioning upon background 

characteristics, the self-computed estimates of average reading scores in 

lower performing countries have a slight tendency to be higher than the 

official results, while the self-computed average reading scores for high 

performing countries tend to be slightly lower.  

Given these results, from this point forward, I focus mainly upon findings for 

reading in the main text. Full (or additional) results for all three domains 

separately can be found in Appendix A.4 (mathematics), A.5 (science) and 

A.6 (reading).  

2.3.2 The impact of conditioning 

To illustrate the possible impact of conditioning on average reading scores, I 

focus on the comparison of the self-computed plausible values with and 

without conditioning. This can be found in Figure 2.3. The length of the lines 

depicts the effect that conditioning has on country average reading scores. 

Figure 2.3 Country average reading scores with and without conditioning 

 

Note: Triangles provide estimates without conditioning and circles with 

conditioning. Solid markers are OECD countries and hollow markers non-

OECD countries.  
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In general, average reading scores within most countries decline when 

conditioning is applied (triangular markers in Figure 2.3 tend to be lower than 

the circular markers), with only 13 out of 62 countries experiencing an 

increase. Indeed, as Figure 2.3 demonstrates, the impact of conditioning in 

low-performing countries is relatively small (the circular and triangular 

markers tend to sit on top of each other) while in middle-to-high performing 

countries the impact of conditioning seems larger (the circular and triangular 

markers are further apart). Yet, there are some expectations in lower-

performing countries like Chile and Colombia, which also experience a 

substantial impact on their average scores. In terms of the often-cited PISA 

‘country-rankings’, conditioning has relatively little impact upon the 

composition of the top and bottom performing groups (though with some 

exceptions). It does, however, lead to important changes around the middle, 

where country averages are close to each other and changes due to model 

specification occur in different magnitudes and directions. For instance, Israel 

drops 13 places (from 25th to 38th) while Portugal rises 15 places (form 29th   

to 14th). 

What part of the conditioning model leads to this difference? The next part of 

the analysis compares results using different specifications of the 

conditioning model, focusing upon three different subsets of conditioning 

variables: (a) school direct regressors (i.e. contrast codes for each school); (b) 

individual direct regressors (e.g. gender, socio-economic status); and (c) 

indirect regressors (i.e. the rest of the background questionnaire variables that 

have been reduced into a set of principal components). 

Figure 2.4 displays the correlation between the plausible values (at the 

individual level) using different specifications of the conditioning model. The 

greener a square is, the closer the correlation is to 1.0. On the other hand, red 

shading denotes a correlation of 0.7 (just below the minimum I observe across 

any model).  

Two points come to attention. First, the shading clearly illustrates that the 

correlation varies between the domains. As expected, the results for 

mathematics (the major domain) have the strongest correlations across 
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different conditioning model specifications. While the correlations for 

science are slightly lower, those for reading are particularly low (as illustrated 

by the predominance of orange squares). This highlights how, although the 

precise specification of the conditioning model has little impact upon the 

results in the major domain of mathematics, it has important implications in 

the minor domains (particularly reading). As the minor domains have a lot 

fewer test questions in the PISA test design than the major domain – and given 

that the correlation between mathematics and reading achievement is likely 

to be substantially lower than the correlation between mathematics and 

science achievement – this finding makes sense.  

Figure 2.4 Correlations of the individual-level plausible values in 

mathematics, reading and science with different specifications of the 

conditioning model 

 

Note: The correlations are based on individual-level plausible values across 

all countries. The colour scale ranges from 𝑟 = .7 (red) to 𝑟 = 1 (green). M0 

= no conditioning; M1–M6 correspond to conditioning with different subsets 
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of conditioning variables (1: school direct regressors, 2: individual direct 

regressors, 3: indirect regressors, 4: all direct regressors, 5: school direct and 

indirect regressors, 6: individual direct and indirect regressors); M7 = full 

conditioning. 

Second, these findings are reinforced when looking at the diagonals in Figure 

2.4. The correlations sit between 0.91 and 0.94 in mathematics, 0.90 and 0.92 

in science and 0.84 and 0.88 in reading. As plausible values incorporate 

uncertainty about individual achievement, higher correlations between the 

plausible values created using different conditioning models partially reflect 

the greater certainty in measurement. Reading hence has lower correlations 

than mathematics and science due to the extra uncertainty in the results for 

this domain.  

Overall, in both aspects reading stands out, as its correlations are noticeably 

lower (more orange) than those of mathematics and science. While it is 

impossible to say with certainty where this stems from, there are different 

factors which most likely contribute to it. First of all, reading is a minor 

domain which means that less questions (and thus less information) is 

available to compute achievement scores in comparison to mathematics. Yet 

science is also a minor domain but the correlations are higher – suggesting 

other factors are also likely at play One possibility is that achievement scores 

in reading are at least partly derived based on the mathematics and/or science 

performance of the students. If the items in mathematics are less predictive of 

reading achievement (than science achievement), then this might also lead to 

higher uncertainty in the reading scores. Another possibility may be that the 

reading items are constructed in a particular way, e.g. many questions 

focussing on one text, which may also lead to more uncertainty and lower 

discrimination of students’ reading achievement. 

Table 2.1 goes one step further and shows the average country reading scores 

of the OECD countries for different specifications of the conditioning model. 

The shading should be read vertically (within conditioning model 

specification) with green (red) cells indicating higher (lower) average scores. 

The rows at the bottom provide the OECD average/median and the correlation 

of results across different model specifications. 
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Table 2.1 Variation in estimated average PISA reading scores by 

conditioning model specification in the OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 

Japan 537 526 519 524 530 527 519 526 

South Korea 534 542 521  -  523 542 519 524 

Finland 523 524 500 524 504 523 504 506 

Canada 521 545 535 530 541 537 539 543 

Ireland 520 518 516 523 516 523 536 507 

Poland 516 529 509 516 508 517 508 507 

Estonia 514 529 522 536 519 535 519 517 

New Zealand 512 512 498 512 498 511 498 498 

Australia 509 501 493 497 500 505 495 502 

Netherlands 508 509 488 509 489 509 490 490 

France 508 512 491 500 486 510 490 497 

Belgium 508 502 499 506 495 510 498 498 

Norway 506 492 457 462 467 494 464 496 

Germany 505 507 499 509 499 513 496 499 

Switzerland 504 508 492 506 494 507 493 494 

United Kingdom 500 499 492 500 495 499 491 495 

USA 496 510 500 503 503 509 498 500 

Denmark 495 489 485 506 488 501 486 493 

Israel 493 505 489 498 469 502 481 469 

Czech Republic 493 490 478 490 476 489 478 477 

Italy 492 491 481 490 483 490 483 485 

Sweden 489 519 489 506 492 503 487 498 

Portugal 489 526 502 501 502 500 501 499 

Austria 489 490 479 489 472 493 473 475 

Hungary 488 484 487 489 483 487 491 493 

Spain 488 490 479 488 482 489 481 482 

Luxembourg 487 488 473 487 473 487 473 473 

Iceland 484 484 471 483 466 483 468 467 

Greece 480 479 485 479 485 479 489 489 

Slovenia 477 484 475 476 472 492 474 475 

Turkey 474 474 460 473 465 473 466 467 

Slovak Republic 462 479 461 472 472 479 457 462 

Chile 447 489 489 494 484 477 479 479 

Mexico 435 433 427 432 427 432 429 428 

OECD mean 497 502 489 497 490 501 490 491 

OECD median 496 502 489 500 489 502 490 495 

Cor with M0 1.00 0.83 0.78 0.80 0.80 0.92 0.81 0.85 

Cor with M7 0.85 0.90 0.91 0.85 0.96 0.91 0.92 1.00 

Note: Figures illustrate how average PISA reading scores vary depending 

upon the specification of the conditioning models. Results for non-OECD 

countries reported in Table A.10. Green shading indicates higher scores 

relative to other countries and red cells lower scores. M0 = no conditioning; 

M1–M6 correspond to conditioning with different subsets of conditioning 

variables (1: school direct regressors, 2: individual direct regressors, 3: 

indirect regressors, 4: all direct regressors, 5: school direct and indirect 
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regressors, 6: individual direct and indirect regressors); M7 = full 

conditioning. South Korea is missing scores due to computational difficulties. 

 

While most countries stay roughly in the same area of relative achievement, 

there remain variation and changes in ranking between the different model 

specifications. For some countries, the relative position changes quite 

substantially depending upon specification (e.g. Portugal, Norway, and 

Chile). For instance, the cross-country correlation between the results with no 

conditioning (M0) and with any form of conditioning tends to be around 0.78 

to 0.85 with the exception of M5 (school direct and indirect regressors) with 

a correlation of 0.92. Likewise, there is variation in the extent of correlation 

of the different specifications with the full model. No conditioning (M0) and 

indirect regressors only (M3) show the lowest correlation with 0.85, while the 

model with the other two components (M4 – school direct and individual 

direct regressors) reaches a correlation of 0.96 with the full conditioning 

model (M7). This suggests that it is not only the decision of whether to use 

conditioning that is important, but also the precise specification of the 

conditioning model.  

The average reading scores (and ranking) for selected countries are 

particularly sensitive to conditioning model specification. For example, the 

performance for Israel drops substantially when all direct regressors are used 

as in M4 and M7 (orange cell, corresponding to 30th place). But it displays 

visibly lighter orange/yellow colour for the other models (between 16th and 

19th place for other models with exception of 23rd place for individual direct 

and indirect regressors). Especially Norway is also salient as the colour 

change seems highest here. Throughout this chapter I find that Norway is one 

of the countries with the highest impact of conditioning in reading. Thereby, 

average scores are consistent in mathematics and science (see Appendix A.4.1 

and A.5.1), which highlights that most likely there are much higher levels of 

uncertainty in reading leading to higher influence of the conditioning model. 

Reasons for this in comparison to other countries could potentially be that 

reading does not work as in this language or culture (which is similar to 

Sweden which also showed noticeable differences). Furthermore, both the 
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school component and the background components have strong influences 

but not necessarily in the same way. This suggests the selection of 

conditioning variables can have a significant (and yet unpredictable) impact 

upon countries’ average PISA scores in at least one of the minor domains. 

2.3.3 Inequality in PISA scores 

While country average PISA scores receive a lot of attention, the data is also 

used in many other ways. One of the most prominent is in cross-country 

comparisons of educational inequality; e.g. since 2009 PISA dedicates the 

whole second volume of their international reports towards equity and 

outcomes (e.g. OECD, 2013), and UNESCO uses PISA data for their report 

on educational inequality  (Gromada et al., 2018) as well as in research such 

as Oppedisano and Turati (2015) and Gamboa and Waltenberg (2012). I 

therefore illustrate in Table 2.2 how sensitive a widely used measure of 

educational inequality (the difference between the 90th and 10th percentile) is 

to different specifications of the conditioning model. Green (red) shading in 

this table illustrates lower (higher) levels of inequality. 

The first key point of note from Table 2.2 is that conditioning leads to an 

increase in estimated educational inequality (on average) across OECD 

countries. Specifically, the average percentile gap rises by 23 points, from 

211 with no conditioning to 234 when full conditioning is applied. The gap 

between the 90th and 10th percentile increases substantially as soon as any 

conditioning is used.  

Second, the relative position of countries in international comparisons of 

educational inequality appears more sensitive to the specification of the 

conditioning model than the average scores. The cross-country correlation 

between M1–M6 and M7 (full conditioning) generally falls between 0.79 and 

0.91. At the same time, none of the specifications shows a particularly high 

correlation (𝑟 between 0.63 and 0.83) with M0 (no conditioning applied).  In 

general, high variation between the different specifications can be seen 

through the varying colour patterns. 
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Table 2.2 Estimates of inequality (90th–10th percentile difference) in PISA 

reading scores across countries by specification of the conditioning model in 

the OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 

Mexico 161 191 195 192 196 193 197 197 

Chile 174 128 127 125 139 149 148 150 

Estonia 179 172 192 138 200 164 201 202 

Turkey 190 216 234 216 224 218 223 221 

Denmark 191 190 176 131 196 193 204 209 

Ireland 193 175 193 186 189 189 213 201 

Poland 196 240 212 209 212 213 212 212 

Spain 199 226 231 227 233 227 233 234 

Czech Republic 200 218 226 220 222 217 224 221 

Switzerland 204 235 240 231 243 234 239 241 

Canada 205 215 243 189 231 200 229 226 

USA 207 210 192 174 187 168 183 183 

Hungary 208 191 205 203 191 200 204 214 

Austria 209 208 234 236 235 231 242 240 

Germany 210 198 216 203 216 216 225 230 

Finland 213 239 259 235 254 236 251 249 

United Kingdom 213 240 240 236 240 241 239 239 

Slovenia 213 231 264 242 258 204 265 259 

Italy 214 245 252 245 253 245 252 251 

Portugal 214 213 206 188 224 205 200 219 

Netherlands 215 237 245 240 241 239 245 242 

Iceland 216 242 253 241 250 243 249 249 

Greece 218 250 257 252 255 251 262 259 

Norway 220 204 145 165 187 231 192 244 

Australia 223 240 239 240 251 256 249 258 

Japan 223 270 277 273 253 263 268 231 

Belgium 229 209 187 223 216 226 226 232 

Sweden 231 230 244 234 245 235 258 243 

New Zealand 238 266 270 265 271 266 270 272 

Israel 239 216 300 247 265 227 298 271 

France 240 247 260 258 253 255 261 274 

Luxembourg 240 268 276 269 277 269 277 277 

Slovakia 240 262 258 256 263 261 254 272 

OECD mean 211 222 229 218 229 223 233 234 

OECD median 213 226 239 231 235 227 239 239 

Cor with M0 1.00 0.71 0.63 0.71 0.73 0.77 0.74 0.83 

Cor with M7 0.83 0.80 0.79 0.82 0.91 0.88 0.89 1.00 

Note: Figures illustrate how the difference between the 90th and 10th 

percentile of PISA reading scores changes depending upon the specification 

of the conditioning model. Results for non-OECD countries reported in Table 

A.11. Green shading indicates less inequality in reading scores relative to 

other countries and red cells greater inequality. M0 = no conditioning; M1–

M6 correspond to conditioning with different subsets of conditioning 

variables (1: school direct regressors, 2: individual direct regressors, 3: 
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indirect regressors, 4: all direct regressors, 5: school direct and indirect 

regressors, 6: individual direct and indirect regressors); M7 = full 

conditioning. 

 

Second, the relative position of countries in international comparisons of 

educational inequality appears more sensitive to the specification of the 

conditioning model than the average scores. The cross-country correlation 

between M1–M6 and M7 (full conditioning) generally falls between 0.79 and 

0.91. At the same time, none of the specifications shows a particularly high 

correlation (𝑟 between 0.63 and 0.83) with M0 (no conditioning applied).  In 

general, high variation between the different specifications can be seen 

through the varying colour patterns. 

Finally, no clear country patterns can be identified, either in relation to 

changes in average scores nor concerning changes between model 

specifications. Again, Norway has high fluctuation in the level of inequality 

measure depending on the chosen specification (between 2nd and 24th place). 

This matches with before, especially as the other two domains mainly 

experience difference between no conditioning and conditioning which is in 

line with the general picture there (see Appendix A.4.2 and A.5.2). Whereas 

other countries, such as Turkey, see a rather constant shift also in reading as 

soon as conditioning is applied (4th place without conditioning and between 

10th and 15th place as soon as conditioning is applied).  

When examining the corresponding tables in mathematics and science 

(Tables A.2 and A.4 for mathematics and Tables A.6 and A.8 for science), it 

becomes obvious that the specification of the conditioning model also has 

substantial influence upon estimates of educational inequality in both other 

domains. In other words, unlike the results for average scores (where the issue 

was isolated to reading), estimates of educational inequality are affected 

across all three domains.  
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2.3.4 The association between PISA scores and background 

characteristics 

PISA is also often used (including by the OECD) to compare the performance 

of groups (e.g. gender, socio-economic status, language). But it is well-known 

that IRT, when used in conjunction with rotated test designs, can lead to 

attenuation of such group differences (Mislevy, 1991).  One of the main 

motivations for using conditioning models is to counteract such attenuation 

bias. I begin by illustrating this issue with respect to gender differences, as 

this is one of the major group comparisons focused upon within the OECD 

PISA reports (e.g. three of the 14 statements in the 2012 executive summary 

address gender gaps; OECD, 2014b). Gender is one of the individual direct 

regressors meaning that, once direct regressors have been included in the 

conditioning model, the potential problem of attenuation bias should be 

resolved.  

Figure 2.5 illustrates the estimated gender gap across all three domains with 

and without full conditioning applied (this has been computed by regressing 

reading performance upon an indicator of whether the student is female). The 

45-degree line marks where the gender gap is the same whether conditioning 

is applied or not. For reading and mathematics, the magnitude of gender 

differences clearly increases once conditioning has been used (i.e. the data 

points – countries – are further away from the 45-degree line). Although the 

points for science are closer to the 45-degree line, Figure 2.5 nevertheless 

highlights the general point (already well established in the literature) that 

failing to include a given factor in the conditioning model can lead to 

attenuation bias in the results (Mislevy, 1991). 

The gender gap differs in magnitude and direction depending upon the 

domain. In reading, girls perform better than boys independent of the 

specification of the conditioning model, though the gender gap gets 

noticeably bigger when conditioning is used (the average gender gap 

increases from 14 to 36 points). In mathematics, before conditioning is 

applied, there is (on average across countries) no gender gap (0 points). Yet, 

when conditioning is applied, boys achieve average mathematics scores 7 
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points higher than girls.12 The gender gap is more concentrated in science, 

with little obvious change occurring when conditioning is used, especially 

around zero where there is no gender gap to be attenuated to begin with. 

Figure 2.5 Country gender gap in mathematics, reading and science with and 

without conditioning 

 

Note: The gender gaps when using no conditioning are plotted along the 

horizontal axis and those when using full conditioning along the vertical axis. 

The 45-degree line is where these two values are equal. The country-level 

Pearson correlations, starting left and working right, are 𝑟 = .954, 𝑟 = .917 

and 𝑟 = .966. 

 

Next, I take a closer look at models M0, M2 and M7 in reading to further 

examine how the specification of the conditioning model impacts the gender 

gap. Figure 2.6 hence illustrates the gender gap in reading using model M0 

(no conditioning – circle), M2 (just direct individual regressors including 

gender – diamond) and M7 (the full model – triangle).  

For most countries, the diamond (M2) and triangle (M7) are pointing in the 

same direction, and for about half of those, they sit on top of each other. This 

suggests that, in most countries, the gender gap is not sensitive to the exact 

specification of the conditioning model (once gender has been included as a 

direct regressor) with a potential small increase or decrease in the full model. 

 
12 Interestingly, almost all points are below the 45-degree line for mathematics, even the ones 

with values above zero without conditioning. This means that the mathematics gender gap 

shifts in favour of boys but is not necessarily moving away further from zero. As a result, 

attenuation can still be observed in some cases. Finland, for example, has a gender difference 

of 9 points without conditioning, but only a gender gap of 2 points with full conditioning. 
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There are, nevertheless, some important changes to the results for some 

individual countries (that are somewhat difficult to explain). Visible 

differences between M0, M2 and M7 occur in multiple countries. For 

instance, in Norway and the United Arab Emirates (framed by the two boxes) 

the estimated gender gap from M2, the model including gender, is even more 

similar to M0, with a large jump in the magnitude of the gender gap in M7.  

Looking closer at Norway, gender has a positive latent regression coefficient 

in both models, but the remaining variables differ significantly. Thereby, 

principal components (and school IDs) are included in M7 which partly have 

negative coefficients and also seem to interact with gender. Such changes are 

perplexing and again suggest that the precise specification of the conditioning 

model applied can have an impact upon a key aspect of a country’s results.  

Figure 2.6 Country reading gender gap without conditioning (M0), just with 

individual direct regressor incl. gender (M2) and with full conditioning (M7) 

 

Note: Circles provide estimates without conditioning, diamonds for 

conditioning only with individual direct regressors and triangles for full 

conditioning. Solid markers denote OECD countries and hollow markers non-

OECD countries. The two boxes highlight the examples given in the main 

text for substantial differences between the gender gap for M2 and M7. 

 

Thus far, I have focused upon gender as a ‘direct regressor’ (meaning it is 

entered directly into the PISA conditioning model). Yet most background 
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data collected in PISA is used as ‘indirect regressors’ – meaning they are only 

incorporated into the conditioning model having first been pre-processed 

using a Principal Component Analysis (recall Subsection ‘2.2.6 How are 

student background data incorporated into the plausible values?’ in ‘2.2 

Methods’ for further details). Investigating whether the relationship between 

indirect regressors and PISA scores changes depending upon the specification 

of the conditioning model is hence also of interest. 

The results from an analysis focusing upon migrant status (one of the most 

widely used contextual variables from PISA that is an indirect regressor in 

the conditioning model) are presented in Figure 2.7. These show us how the 

reading gap between native and migrant students changes between M0 (no 

conditioning), M3 (just indirect regressors – as captured within the retained 

principal components) and M7 (the full conditioning model). The key finding 

from this graph is that the three symbols often sit on top of each other. In 

other words, for those countries, it does not matter which conditioning model 

is used (or whether conditioning is used at all) – you generally get the same 

result (and indeed the average gap is -22 points for M3 and -23 points for M7, 

while it is -20 without any conditioning). Yet there are again some important 

exceptions to this finding, most notably Norway with a migrant-native 

reading gap of -43 points under M0, -2 points under M3 and -32 points under 

M7. Other countries with large variation in migrant-native achievement gaps 

tend to have very small proportions of migrant students in the PISA sample, 

such as Bulgaria (0.4%), Peru (0.5%), Poland (0.2%), Romania (0.1%) and 

Thailand (0.5%). In Norway, on the other hand, around one in 10 students are 

migrants – meaning the fluctuation in the results for this country are unlikely 

to be due to the small sample size, but I established throughout this chapter 

that Norway seems especially susceptible to the impact of the conditioning 

model which can drive such an effect.  

One might be tempted to conclude from this that conditioning does not matter 

for the gap between migrant and native students in most countries. However, 

an alternative explanation could be that migration status has not been 

sufficiently represented within the principal components that form the 

individual indirect regressors.  Would the magnitude of the migrant-native 
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gaps change if migrant status was included as a direct regressor in the 

conditioning model instead? I explore this issue in Appendix A.7, where a 

further alternative version of the conditioning model was computed:  

• Model M7, the full conditioning model was re-estimated having 

included migrant status as a direct regressor, rather than being 

included within the indirect regressor principal components (PC)s 

(M7a)  

This allows us to assess whether including a variable as a direct (rather than 

indirect) regressor changes the results. In summary, I find that making this 

change has relatively little impact upon the substantive results with some 

exceptions. At least in the case of migrant status, including this variable only 

as an indirect regressor seems to be sufficient. 

Figure 2.7 Country reading gap between migrant and native students without 

conditioning (M0), with indirect regressors (migration status was pre-

processed) in conditioning (M3) and with full conditioning (M7) 

 

Note: Circles provide estimates without conditioning, diamonds for 

conditioning only with individual indirect regressors and triangles for full 

conditioning. Solid markers denote OECD countries and hollow markers non-

OECD countries. 
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2.3.5 The impact of conditioning upon standard errors 

Another goal of conditioning, apart from counteracting attenuation, is higher 

precision in group estimates (van Rijn, 2018). To conclude this section, I 

therefore investigate how conditioning affects the standard error of country 

average scores. Figure 2.8 provides a boxplot illustrating how the standard 

error of the mean changes for different specifications of the conditioning 

model. One would anticipate that the boxplots should move southwards as 

one moves from left (M0) to right (M7) – as more information is being used 

about students to derive the plausible values. But this is not the case; standard 

errors are typically higher once conditioning is used. In fact, in mathematics 

and reading no country had a smaller standard error when full conditioning 

was used (compared to no conditioning). In science, only four countries 

(Singapore, Macao, Estonia, and Canada) experienced an increase in 

precision when full conditioning was applied. However, in general, no 

substantial benefit can be found for precision from conditioning, with 

standard errors actually inflating, if anything.  

 

 

 

 

 

 

 

 

 

 

 



67 

 

Figure 2.8 Boxplots of standard errors of country average scores in 

mathematics, reading and science with different specifications of the 

conditioning model 

Note: The boxplots show the standard errors of the country average score of 

different countries. M0–M7 denote different specifications of the conditioning 

model. M0 = no conditioning; M1–M6 correspond to conditioning with 

different subsets of conditioning variables (1: school direct regressors, 2: 

individual direct regressors, 3: indirect regressors, 4: all direct regressors, 

5: school direct and indirect regressors, 6: individual direct and indirect 

regressors); M7 = full conditioning. 

 

2.4 Conclusions 

PISA is an international large-scale assessment which examines the 

educational achievement of 15-year-old students across the world. It aims to 

provide comparable achievement scores in mathematics, reading and science 
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between countries and groups, as well as over time. This has resulted in PISA 

becoming one of the key studies used for evidence-based education 

policymaking across the globe. As a tool which can potentially influence 

many people’s lives, it is essential that the statistical foundations that 

underpin this study are sound. Yet, time and again, criticisms have been made 

about the opaqueness of PISA’s methodology (Goldstein, 2017). Despite this, 

relatively little research has closely scrutinised key aspects of the PISA 

scaling model. This includes ‘conditioning’, where background variables are 

used in the derivation of the PISA plausible values.  

This chapter has tried to fill this gap in the literature. Specifically, I have re-

estimated PISA 2012 scores for each participating country having altered key 

aspects of the conditioning model. This includes investigating how key results 

change when different sets of background variables are used in the PISA 

conditioning model, and what happens when no conditioning variables are 

used in the construction of PISA scores at all. I not only document the impact 

that this has upon average country scores, but also cross-national comparisons 

of educational inequality (i.e. the spread of achievement) and gaps in 

performance between different groups (e.g. gender differences).  

My results illustrate how the precise specification of the conditioning model 

does indeed matter, though the impact this has depends upon both the subject 

and the statistic of interest. In terms of average scores, results for the major 

domain can be considered ‘robust’ (i.e. unaffected by whether/how 

conditioning variables are used). Yet, results for the minor domains are more 

mixed. Although the specification of the conditioning model has little impact 

upon cross-country comparisons of average scores in science, the same is not 

true for reading, where average scores (and, consequently, rankings) change. 

Rather different results were obtained for educational inequality, where cross-

country comparisons in all three domains were sensitive to the specification 

of the conditioning model. The conditioning model specification was also 

found to have some impact upon the magnitude of group differences, with 

particularly big changes observed for gender differences in reading and 

mathematics in a few countries.  
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While I believe this study illustrates some important points about the PISA 

scaling methodology, findings should be interpreted considering its 

limitations. First, while great effort has been made to replicate the official 

PISA methodology, there remained some differences between the self-

computed plausible values and those provided in the OECD PISA database. 

Although I believe that the approach I have taken provides a sufficient basis 

for the present study, it is not a perfect replicate for what the OECD (and their 

contractors) have done. Unfortunately, the OECD do not release their code 

for how they have constructed the PISA scores (and were unwilling to provide 

it when requested). To be as open as possible about my own approach (and to 

allow other researchers to independently scrutinise my findings) I have made 

freely available the code I have used to produce these results (Zieger, 2021). 

I now encourage the OECD to improve their transparency, and to do the same. 

Second, I focus on the methodology used for one specific PISA cycle (2012). 

I note that the scaling model (including the conditioning) changed in PISA 

2015 and with the introduction of computer adaptive testing in 2018. This 

means that this chapter is not directly applicable to subsequent PISA cycles, 

though still yields some important lessons learnt. Finally, I did not recompute 

the scale identification but used the transformation provided within the PISA 

technical reports. As it is a linear transformation, this could potentially affect 

the comparability of absolute numbers between the official and the self-

computed scores. Yet this issue does not affect relative achievement positions 

(such as rankings) or the cross-country correlation of results, which are the 

focus of this chapter.  

Despite these limitations, I hope this chapter has made a valuable contribution 

to ongoing debates about PISA’s methodology. It adds three key points. First, 

the technical report is not detailed enough to allow independent researchers 

to exactly replicate and closely scrutinise the scaling model and its resulting 

plausible values. The OECD must become more transparent in its 

methodology and make its technicalities more digestible – particularly to non-

specialised audiences. Second, educationalists and policymakers the world 

over should note from these findings that, while results from the major 

domains appear to be more trustworthy and robust, measures of inequality 
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and results for the minor domains in general should be treated with more care. 

Finally, I question PISA’s reliability as a way to compare educational 

inequality across countries, given the major impact the conditioning model 

specification can have upon the results.  
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3 The effect of background variables and design 

choices on student achievement scores: A 

simulation study based on PISA 2012 

In Chapter 2, I showed that the conditioning model can have a substantial 

influence on student achievement scores. Yet, the impact was not always easy 

to explain or anticipate. Furthermore, it was not possible to identify which 

conditioning model specification captured the underlying ‘true’ ability best. 

Using real-life data, this information is not available. In this chapter, I 

therefore conduct a simulation study based upon the PISA 2012 data and 

design. This builds upon the foundations laid in Chapter 2. Specifically, as I 

know the ‘true’ values used in the data generation process, I can establish 

which conditioning model specification works ‘best’ (i.e. was least biased in 

student achievement scores). I am also able to examine other properties 

surrounding the conditioning model, such as the impact of alternative test and 

student background questionnaire designs.  

3.1 Introduction 

It is hard to imagine educational policymaking without international large-

scale assessments (ISLAs), yet the systematic administration of ILSAs in 

their current form only started in 1995. Since then, studies such as the 

Organisation for Economic Co-operation and Development (OECD)’s 

Programme for International Student Assessment (PISA) and the 

International Association for the Evaluation of Educational Achievement 

(IEA)’s Trends in Mathematics and Science Study (TIMSS) have seen a sharp 

increase in the numbers of participating countries and educational systems – 

from 43 in 2000 to 79 in 2018 for PISA and from 41 in 1995 to 64 in 2019 

for TIMSS. These studies are regularly used by participating countries as a 

tool to monitor and evaluate their educational performance and equity 

(Hopkins et al., 2008), and thus help to shape educational policy as a result 

(e.g. Breakspear, 2012). This includes the ‘PISA shock’ in Germany in 2000, 

which led to major changes in the curriculum (Ertl, 2006), as well as 

significant impacts in Japan (Takayama, 2008), Denmark (Egelund, 2008) 

and several other European countries (e. g. Grek, 2009). 
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Given the prominence and influence of ILSAs, it is of utmost importance that 

the methodology underpinning them is both sound and transparent. Yet, 

although the technical reports provide a broad overview of the procedures 

used (e.g. Martin et al., 2016; OECD, 2014b), the complexity of the 

approaches means that the processes used to generate PISA and TIMSS test 

scores is only fully understood by a handful of specialised researchers 

(Goldstein, 2017). While the broad idea behind the approaches used is 

explained in general terms (e.g. von Davier et al., 2009), the rationale for 

certain methodological decisions and specifications (including alterations 

made to the scaling model over time) are not always clearly discussed and 

justified in the technical documentation. The comparability and reliability of 

the results for various different purposes (e.g. whether test scores are really 

comparable over time) therefore becomes difficult for independent 

researchers to judge.  

As a result, there is an ongoing academic debate about the statistical 

methodology in ILSAs. While some discuss and challenge the general idea 

and usage of ILSAs, especially PISA (e.g. Johansson, 2016; Meyer, 2014), 

there has also been research and criticism of the methodology underpinning 

these studies even among those who are sympathetic to the approach in 

general. The studies involve several complex steps in their administration 

across culturally diverse countries, all of which can potentially affect the 

results. These include cross-cultural comparability and translation issues, as 

well as challenges with sampling, non-response and population coverage (e.g. 

Anders et al., 2021; S. Hopmann et al., 2007; Kankaraš & Moors, 2014; 

Micklewright et al., 2012; L. Rutkowski & Rutkowski, 2016). Others have 

questioned key assumptions underpinning the psychometric approach of the 

studies, such as unidimensionality of the measured latent traits (Wuttke, 

2007), or call for fewer but better (non-cognitive) scales, with clearer 

communication of the complexities ILSAs involve (Avvisati et al., 2019). 

Some methodological aspects of ILSAs have naturally been focused upon 

more in research than others. One area which has received relatively little 

attention, and is comparably poorly understood, is the way that achievement 

scores are derived. This includes both the underlying methodology and the 
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influence of the data choices surrounding it. Most ILSAs employ rotated test 

designs which means that students only answer a fraction of all questions and, 

in some studies, not even questions in all domains. Therefore, complex 

methodology, i.e. ‘conditioning’, is necessary to derive good achievement 

estimates. This is where information drawn from the background 

questionnaires (e.g. gender, parental education) is used to adjust students’ 

estimated achievement distributions, over and above the responses they 

provided to the test questions. While this technical aspect of studies such as 

PISA and TIMSS does not often draw great attention, research has shown that 

it can have an impact upon the results (Mislevy et al., 1992; L. Rutkowski, 

2011, 2014). 

Indeed, when computing the scores, there are three factors which can have an 

influence: (a) the form of the data (e.g. are questions asked in all domains and 

how many?), (b) the quality of the background data (which may be subject to 

measurement error) and (c) how the conditioning model is specified. With 

respect to the former, Mislevy et al. (1992) showed that the design of the data 

(e.g. complete data, data with missing by design) can influence students’ 

scores and that the models need to be chosen accordingly. Regarding the 

quality of data, Rutkowski (2014) found measurement error in background 

variables (such as students misreporting parental education) can lead to 

meaningful under- or over-estimation of group differences. I showed in 

Chapter 2 that different conditioning model specifications (i.e. which 

variables the model includes) can have a substantial impact upon cross-

national comparisons of educational inequality. Yet, despite this, the technical 

documentation for PISA, TIMSS and other ILSAs provide little guidance or 

detail about the conditioning model chosen, and the robustness of results to 

alternative specifications. 

This chapter aims to expand understanding of the conditioning process used 

in ILSAs and the repercussions of the choices made. As a starting point, I use 

Chapter 2 which used PISA 2012 data to show that the exact specification of 

the conditioning models matters. Yet, the reasons and mechanics that drive 

changes in results remain unclear. This can be challenging in empirical 

studies, using ‘real world’ data, where the true value of the latent construct of 
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interest is unknown, while the data and their structure is fixed. Indeed, in such 

situations, researchers are restricted to analyse questions which can be 

naturally answered by existing data. This makes it difficult to establish why 

non-trivial changes occur and to assess related questions which go beyond the 

available data.  

Simulations, on the other hand, can help to shed light on such matters. When 

using simulated (rather than real) data, both the ‘true’ values and those 

derived from statistical models (plausible values in the case of student 

achievement in ISLAs) are known. This enables us to not only examine the 

impact that systematically varying the variables in the conditioning can have, 

but also change underlying characteristics of the data and judge whether these 

decisions help or hinder the bias and precision in the estimates of interest. I 

thus aim to extend the study in Chapter 2 by identifying the factors that lead 

to changes in the PISA results and study the impact of these choices via a set 

of simulations. 

More specifically, this chapter presents a simulation study drawing cognitive 

test score and background data following the structure of PISA 2012. I 

compute eight alternative sets of ‘plausible values’ (PISA test scores) varying 

the background variables and data included in their computation, closely 

following the methodological approach taken in PISA 2012 (and ILSAs more 

generally). In conjunction with the simulated true values, these computed 

plausible values allow investigation of: (a) how background variables 

influence the final PISA scores and whether this varies by country and 

measure; (b) whether entering background variables directly into the 

conditioning model (rather than being first combined using principal 

component analysis) leads to a different result; (c) if less biased population 

or subpopulation student achievement estimates can be recovered if everyone 

would have answered questions in all core PISA cognitive domains; and (d) 

whether substantially different results emerge when using a rotated 

background questionnaire design instead of a full one. 

These simulations lead to four key conclusions. First, conditioning model 

choice matters. Including or excluding a few variables can lead to substantial 
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changes in bias, especially in PISA 2012’s minor domain of reading. There 

does not seem to be a general pattern of bias which holds true across measures 

and domains; substantial variation occurs (particularly between measures). 

Second, while the composition of background variables used in the 

conditioning model can have a large impact, the same does not hold true for 

the way the variables are prepared. The difference between entering the 

variables directly or indirectly (i.e. via first reducing them into a smaller set 

of principal components) is minimal. Third, when the measures are only 

based on students who actually answered questions in all domains, the bias in 

estimates is dramatically reduced in the minor domains. Finally, I find that 

using a complete (rather than rotated) student background questionnaire 

generally has no impact on the bias and if it does, the impact is negligibly 

small. This, in turn, has important implications for the design of ILSAs in the 

future. 

3.2 Methods  

The overarching methodological intuition behind this chapter is displayed in 

Figure 3.1. The simulation (displayed by the box) is a tool which enables the 

comparison of different models and measures. Thereby, the simulations 

encompass the ‘analysis of interest’ (in this case the computation of plausible 

values using different conditioning models and settings) and account for 

chance by having n repetitions. In each run, data is drawn according to 

properties defined a priori. These data are then used in the analysis of interest. 

As a consequence, I end up with n results from the simulations runs, which 

are evaluated together with a specific goal in mind. My particular interest is 

in the bias between the ‘true’ achievement values (defined within the data 

generating process) and the plausible values derived from the conditioning 

model used following the method employed in PISA 2012. 
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Figure 3.1 Simplified procedure of the simulation in this chapter  

To describe the simulation and subsequent analysis of interest, this section is 

structured in two parts, based upon Morris et al. (2019). To begin, I provide 

an overview of the simulation method. This contains information about the 

data generation process, the estimand and the performance measure. I then 

move on to describe the ‘method inside the simulation’, which focuses upon 

how plausible values are computed and the conditioning model used. All 

computations within this chapter are done within R (R Core Team, 2019) 

using the ‘lsasim’ package for the data generation (Matta et al., 2018) and 

‘TAM’ (Robitzsch et al., 2018) for the computation of plausible values.  

3.2.1 Simulation method 

This simulation aims to study how certain data characteristics and the 

inclusion of background variables in ILSA conditioning models affect cross-

national comparisons of educational performance and inequality, particularly 

the bias it may introduce into the results. My particular interest is in estimates 

of the spread of the achievement distribution (measured as the difference 

between the 10th and 90th percentile) and gender differences in achievement 

scores. These are both commonly discussed measures in educational 

inequality discourse and are the estimands in this analysis. Overall, I look at 

the following three estimands in this chapter:  

• θ𝑚: Country mean of student achievement,  

Repeat 

n times 

Combine measures for final results 

Input parameter for data generation 

Data generation 

Analyse data and compute 

measures 
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• θ𝑔 : Gender gap by regressing student achievement on reported gender 

(indicator for reporting female), 

• θ𝑠 : Spread of student achievement by subtracting the 10th percentile 

from the 90th. 

The ‘true’ value of the estimand (denoted θ𝑙 , 𝑙 ∈ {𝑚, 𝑔, 𝑠}) is based upon the 

simulated ‘true’ achievement values. In contrast, the estimator of the estimand 

(denoted θ𝑙̂, 𝑙 ∈ {𝑚, 𝑔, 𝑠}) is based on the five derived plausible values13. I 

compare eight different versions of plausible values with each other and the 

true value; therefore, I end up with eight estimators of the estimand 

(θ𝑙̂

(0)
, … , θ𝑙̂

(7)
) and the corresponding estimand (θ𝑙) in each country and 

simulation run. The estimators of the different simulation runs of a given 

conditioning model are evaluated with regard to bias, given by the 

performance measure: 

𝐵𝑖𝑎𝑠θ𝑙
(θ𝑙̂

(𝑗)
) =

1

𝑛𝑠𝑖𝑚
∑ 𝜃𝑙,𝑖

(𝑗)𝑛𝑠𝑖𝑚
𝑖=1 − θ𝑙,𝑖,  

where 𝑖 = 1, … , 𝑛𝑠𝑖𝑚 is the number of the simulation run, 𝑗 the set of plausible 

values and 𝑙 the estimand of interest. In the following, estimands that are 

computed based on the simulated underlying trait are called ‘true values’ and 

the ones estimated on the cognitive data are called ‘estimated values’. Bias 

thereby denotes the difference between those two and reflects the deviance 

caused through the computation model. 

The other core part of the simulation method is data generation, which I want 

to resemble the PISA 2012 data. This data consists of two main parts: (a) 

responses to test questions and (b) background questionnaire.  

PISA tests students in three core domains (mathematics, reading and science) 

and thereby uses a rotated test design. This means that students in PISA 2012 

were randomly assigned to one of 13 booklets. Each booklet consists of four 

item clusters (groups of items), which are selected from seven mathematics, 

 
13 In later cycles, PISA uses 10 plausible values instead of five. As a sensitivity check, I redid 

this analysis with 10 plausible values and found there to be little difference to the substantive 

conclusions reached. 
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three reading and three science item clusters. Every year one of three domains 

(mathematics in 2012) is the ‘major domain’, meaning that each booklet has 

at least one mathematics item cluster. Nevertheless, only five of the 13 

booklets contain items of all domains. As a result, only around 40% of the 

students answered questions in all three core domains (OECD, 2014b, pp. 30, 

31). 

With respect to the background questionnaire(s), only the student 

questionnaire is administered in all countries. In PISA 2012, this had one 

common component (including gender, language at home, parental 

education) for all students and one of three other components randomly 

assigned to each student (covering topics such as questions about school, 

problem solving, learning mathematics). Countries could also opt to 

administer additional questionnaires (e.g. about educational career, 

information communication technology, information gathered from parents) 

and/or additional assessments in digital reading, computer-based 

mathematics, financial literacy and problem solving  (OECD, 2014b, pp. 22, 

259, 260; see Appendix A.1 for more details). 

The ‘lsasim’ R package (Matta et al., 2018) specialises in the data 

generation/simulation of large-scale assessments including rotated test 

designs. I use this package to replicate the design and structure of the PISA 

2012 data (OECD, 2014b, pp. 30–32). In doing so, data is drawn from 

‘known’ parametric models in two steps. First, the background 

questionnaire(s) and the ‘true’ achievement values are simulated. The known 

model is thereby constructed with the correlations14 between the background 

variables and the plausible values (as proxies for true achievement) as well as 

the characteristics of the items (mean and standard deviation for numeric 

items, proportion per category for categorical ones). Second, corresponding 

cognitive data (item response patterns) is generated. This was done using the 

published PISA 2012 item difficulties, which were grouped into item clusters 

and booklets (OECD, 2014b, pp. 406–413). These, in combination with the 

 
14 The pairwise correlations were extracted from the real PISA 2012 data for each country. 

Depending on the variable types, the correlations were either Pearson, polychoric or 

polyserial. 
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simulated ‘true’ achievement values, were used to form the parametric model 

and draw the simulated item response data. The whole data generation process 

was executed separately for each country. For the sake of simplicity, clarity 

and run-time, I decided to focus on the eight countries (and their 

characteristics) listed in Table 3.1 and did not include optionally administered 

cognitive domains and background questionnaires. These eight countries 

were chosen because they are the G8 countries with similar economic 

conditions while displaying clear difference in student achievement. The 

rotated design of the student background questionnaire was computed 

‘manually’ by randomly assigning students to student questionnaire booklet 

IDs and setting the corresponding items to missing. Additional non-response 

was added randomly according to the proportions in the actual PISA 2012 

data. 

Table 3.1 Sample sizes in PISA 2012 of the countries which are used in the 

simulation 

Country Abbr. Sample size 

Canada CAN 21544 

France FRA 4613 

Germany DEU 5001 

Italy ITA 31073 

Japan JPN 6351 

Russia RUS 5231 

United Kingdom GBR 12659 

United States USA 4978 

Note: The sample size shows the number of students with valid data in the 

major domain, mathematics (OECD, 2014b, p. 241). 

 

The minimum number of simulation runs is defined by: 

𝐵 = (
𝑧

1−
α
2

σ

δ
)

2

, 

where δ is the level of accepted accuracy, 𝑧1−
α

2
 the (1 −

α

2
)-quantile of the 

standard normal distribution and σ2 the variance of the parameter of interest 

(Burton et al., 2006). A preliminary simulation study (which had exactly the 

same set-up but was limited to just 100 simulation runs) was used to get first 

estimates for σ2. These estimates were then used to determine the number of 
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simulations within the main study. In this case, the percentile gap in France 

yielded the highest variance across the simulations with σ2 = 0.005. As I 

want to achieve estimates within 5% significance and 0.005 permissible 

difference from the true estimand, I set the number of simulation runs to: 

𝑛𝑠𝑖𝑚 = 1000 > 𝐵 with  𝐵 = (
𝑧0.975√0.005

0.005
)

2

= 768.29. 

The number of observations 𝑛𝑜𝑏𝑠 in each simulation run varies by country. 

For those with sample sizes of less than 10,000 students, the data is drawn 

according to the original PISA 2012 sample size (see column 3 in Table 3.1). 

For countries with sample sizes greater than 10,000 students, the number of 

simulated observations is set to 10,000.15 

3.2.2 Method inside the simulation 

With the help of the method inside the simulation, I want to gauge the effect 

that choices around the data that are included can have on the plausible values. 

In order to do so, I compute plausible values in line with common practice in 

ILSAs. While there are differences between ILSA studies (e.g. PISA 2012 

uses a 1-parameter logistic (pl) Item Response Theory (IRT) model versus a 

2-/3-pl model in TIMSS 2015; Martin et al., 2016), the general steps in the 

computation of plausible values  remain the same. In this chapter, I use the 

method used in PISA 2012 (see Chapter 9 and 12, especially pp. 159, 253, 

254 of OECD, 2014b) as the starting point.  

3.2.2.1 General steps in plausible value computation  

Both the students’ responses to the test questions and the background 

questionnaire(s) are used in order to estimate achievement through the 

following five steps. 

• First, an IRT model is estimated on a common sample16 to determine 

the item difficulties of the core domains (e.g. mathematics, reading 

and science in PISA) for all subsequent steps. 

 
15 This is done because countries with sample sizes above 10,000 were split into smaller 

subsamples for the plausible value computation in PISA 2012. 
16 The common sample can consist, for example, of random subsets of all countries or data 

from all countries which participated in two subsequent cycles.  
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• Second, background variables are prepared (recoded and/or pre-

processed) for use in the plausible value computation. Henceforth, the 

prepared background variables are denoted ‘conditioning variables’.  

• Third, the ‘conditioning model’ estimates the student achievement 

distributions. In the first step, an IRT model uses students’ responses 

to the test questions to estimate a preliminary multi-dimensional 

achievement distribution encompassing the various domains. 

Subsequently, the conditioning variables are used in a latent 

regression to adjust the distributions for population characteristics. 

Figure 3.2 shows a simplified illustration of the conditioning model 

for PISA. 

• Fourth, five plausible values17 are randomly drawn from each 

student’s achievement distribution. The concept behind the plausible 

values can be described as ‘imputations’ for unobserved (latent) 

student achievement (Mislevy, 1991). 

• Finally, via common item equating (or methods with the same aim) 

these plausible values are transformed onto a common scale with 

previous PISA cycles. This step aims to facilitate comparisons of 

student achievement over time (and, hence, carries little importance 

for this chapter in which I focus on a single PISA cycle alone). 

The focus of this chapter is the role of data and background variables in the 

conditioning detailed in the second and third bullet point above. As a result, I 

will not address issues relating to the first, fourth and fifth points in this 

chapter. The most obvious difference in these estimates compared to the 

official PISA 2012 values is due to Step 5, as PISA scores are transformed 

onto another scale for cross-cycle comparability. 

 

 

 

 
17 The choice of five or 10 plausible values in this chapter does not lead to any substantial 

differences. As five plausible values were used in PISA 2012, I choose that as well. 
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Figure 3.2 Simplified illustration of the PISA scaling model used to generate 

the plausible values 

 

Note: Squares refer to observed variables, ovals to latent variables and circles 

to error terms. ‘S..’, ‘M..’, and ‘R..’ refer to students’ responses to PISA test 

questions, where i is the number of items in the domain. Curved lines 

connecting errors indicate correlated errors. 

 

3.2.2.2 Background variables in International Large-Scale Assessments 

Conditioning models have been used for decades in ILSAs. Yet few people 

(especially non-specialists) understand how and why background variables 

are used in the computation of PISA scores, with the technical reports simply 

describing it as a ‘natural extension’ of IRT (OECD, 2014b, p. 145).  

There is, however, a clear scientific justification for their use. Because of the 

complex PISA test design (where students only answer a subset of questions 

within each subject area) conditioning is necessary to reduce attenuation bias 

when comparing test score differences between groups, i.e. it is designed to 

facilitate unbiased estimations of group differences (Mislevy, 1991; Mislevy 

et al., 1992). This can be illustrated by a simple example.  

Take a hypothetical test where all students are assessed in mathematics, but 

only half are randomly selected to also receive questions in reading. For those 

students who answer both reading and mathematics questions, I see that girls 

outperform boys in reading by 10 points, with there being no gender 

difference in mathematics. If I were to try to predict reading scores for those 
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students who did not answer the reading test question, and I did not ‘condition 

upon’ gender, girls and boys would be assigned the same reading score (given 

that boys and girls performed equally well at mathematics). As a result, the 

gender gap in reading would be estimated as 5 points instead of 10 (i.e. there 

would be attenuation bias). Therefore, in rotated psychometric test designs 

where each student only answers a subset of questions (as in ILSAs), 

population characteristics (such as gender) need to be adjusted in order to 

produce unbiased results.18 As in the example above, PISA does not 

administer questions in all domains to all students. This is different to other 

ILSAs, such as TIMSS, where every test taker receives questions in all core 

domains. 

The above highlights the importance of the conditioning model in PISA. 

Nevertheless, it is vital that the model is correctly specified in order to avoid 

bias (L. Rutkowski, 2014; Wu, 2005). Yet, there is little research or guidelines 

on the correct specification of conditioning models and the repercussions if 

they are not implemented appropriately. The documentation of ILSAs also 

contains little information on the conditioning model selection process or 

robustness checks, making it difficult to judge this part of the plausible value 

computation. Furthermore, the same holds true for the robustness of the 

models depending on whether all students answered questions in all domains 

or not, or whether the background questionnaire was administered using a 

rotated design. 

3.2.2.3 Plausible value computation in this chapter 

In order to investigate how certain choices around the data involved in the 

plausible value computation influence the PISA results, I simulate data and 

compute different sets of plausible values. Thereby, I conduct Steps 2–4 

(from the bullet-point list above) in each simulation run. The conditioning 

 
18

 Another approach to explain conditioning is in reference to Rubin’s (1987) well-known 

multiple imputation (MI) method. Conditioning models can be seen as MI applied to IRT, 

treating students’ latent abilities as an extreme form of missing data. Following this approach, 

the same rationale for inclusion of background variables in the estimation of students’ latent 

abilities surfaces: unbiased estimates of group differences (Mislevy, 1991; Mislevy et al., 

1992) 
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model and the draw of plausible values follows the PISA 2012 method and 

the formulae and annotation used within the OECD technical reports (OECD, 

2014b, pp. 144–146), let:  

- 𝜽 = (𝜃1, … , 𝜃𝐷) denote the latent variable of the 𝐷 domains, 

- 𝑓𝜃(𝜽; 𝜶) be the density of the of the latent variable 𝜽, 

- 𝜶 = (μ, σ2) denote the parameters of the density for a unidimensional 

latent variable and 𝜶 = (𝝁, 𝚺) for a multidimensional latent variable, 

-  𝒀𝒏 denote a vector of 𝑢 values (e.g. background characteristics) for 

student 𝑛 and 

- 𝛃 be a vector of regression coefficients. 

Furthermore, the underlying theory of the IRT model and its response vector 

are adopted from the PISA technical report (for a description and explanation 

of the IRT model in PISA, see also Chapter 2.2.5 ‘Replication of the PISA 

methodology’). The density function of the IRT model without conditioning 

is defined as: 

𝑓𝜃(𝜃𝑖; 𝜶) = (2𝜋𝜎2)−
1
2𝑒𝑥𝑝 [−

(𝜃𝑖 − μ)2

2𝜎2
], 

with the density of latent achievement assumed to be normally distributed 

with 𝑁(μ, σ2).19 

I want to allow students from different subpopulations to have different 

abilities. As a result, the density function needs to be altered. The latent 

variable is, hence, now represented through 𝜃𝑖𝑛 = 𝒀𝒏
′ 𝜷 + 𝜀𝑛.20 Instead of a 

general mean μ, the abilities of subpopulations are represented through the 

regression model estimate 𝒀𝒏
′ 𝜷. Thereby, 𝒀𝒏 should include all variables 

which could potentially be of interest for later group comparisons.  

The substitution of μ with 𝒀𝒏
′ 𝜷 leads to the following adjusted formula: 

 
19 There are different assumptions which enable the estimation of an IRT model. This 

‘marginal approach’ which specifies the density of latent variables is common in ILSAs but 

is not the only available one. 
20 𝜀𝑛 is normally distributed with mean zero. 
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𝑓𝜃(𝜃𝑖𝑛; 𝒀𝒏, 𝜷, 𝜎2) = (2𝜋𝜎2)−
1
2 exp [−

1

2𝜎2
(𝜃𝑖𝑛 − 𝒀𝒏

′ 𝜷)′(𝜃𝑖𝑛 − 𝒀𝒏
′ 𝜷)]. 

In ILSAs, the student distributions are usually assumed to be 

multidimensional, including all tested domains (e.g. mathematics, reading 

and science in PISA). The previous formula can be altered to facilitate the 

estimation of multidimensional latent variables with conditioning. In this 

case, 𝜸 is the multidimensional version of the regression coefficients 𝜷, 𝒘𝒏 

denotes the equivalent for 𝒀𝒏 and 𝚺 is the corresponding variance-covariance 

matrix for the 𝐷 dimensions: 

𝑓𝜃(𝜽𝒏; 𝒘𝒏, 𝜸, 𝜮) = (2𝜋)−
𝐷
2 |𝜮|−

1
2 exp [−

1

2
(𝜽𝒏 − 𝜸𝒘𝒏)′𝜮−1(𝜽𝒏 − 𝜸𝒘𝒏)]. 

In this case 𝜸 is a matrix of the regression coefficients with the different 

dimensions, 𝚺 is the variance-covariance matrix for the 𝐷 dimensions and 𝒘𝒏 

is the vector of fixed variables equivalent to 𝒀𝒏 in the unidimensional case. 

These formulae set out the theoretical foundation for the simulations. I then 

implement it empirically as follows.  

• The official reported item difficulties from PISA 2012 are used for 

both the test response simulation and the IRT models.21  

• The simulated data is used to form eight different settings of involved 

cognitive and background data for the plausible value computation. 

Details are described in the next section. 

• Using the simulated test data (or subsets), the prepared conditioning 

variables and the reported item difficulties, the conditioning model is 

estimated. This is done separately for each country. The models 

compute student achievement distributions for the three main domains 

in PISA22 using a ‘divide-and-conquer’ approach (Patz & Junker, 

1999; van Rijn, 2018). This means that the IRT model and latent 

regression of the conditioning model are not computed at the same 

 
21 It is worth noting that I believe that the step difficulty of item PM155Q03D contains a 

typographical error. We substituted the value with the average value across all cycles before 

where it was used (τ1 = 0.184, τ2=-0.184 instead of τ1 = −1.569, τ2 = 1.569). 
22 This is a difference to PISA 2012 computation. In PISA 2012, where applicable, 

additionally administered domains were also integrated into the computation in additional 

steps. 
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time, but instead take place sequentially. First, the student 

achievement distributions are computed via the IRT model 

[tam.mml() from the R package ‘TAM’ (Robitzsch et al., 2018)]. 

Second, the distributions are tweaked with the help of latent 

regression [tam.latreg()from ‘TAM’ (Robitzsch et al., 2018)]. 

Splitting the estimation in two parts substantially reduces the 

computational effort and is therefore the default approach in most 

large-scale assessments (van Rijn, 2018).23 Quasi-Monte Carlo 

integration (Pan & Thompson, 2007) with 2000 nodes and 

convergence criteria of 0.001 for deviance and 0.0001 for the 

coefficients is used within the computations.  

• Finally, I draw five plausible values for each student and domain from 

the student achievement distributions. Thereby, I draw from an 

achievement distribution (which is assumed to be multivariate 

normally distributed) with the help of Monte Carlo estimation with 

2000 ability nodes  (OECD, 2014b, p. 146).24 

3.2.2.4 Preparation of different sets of conditioning variables  

This chapter highlights the influence and importance of background variables 

in the plausible value computation in ILSAs. Importantly, these variables are 

not necessarily used directly within the PISA conditioning model. While all 

variables from the background questionnaire (in this study, the student 

background questionnaire, but in PISA also parental, information 

communication technology and educational career questionnaires, where 

administered) are included in the conditioning variables (𝒀𝒏), not all are 

prepared the same way. Again, I prepared the conditioning variables in line 

with PISA 2012, with all background variables entering the conditioning 

 
23 This approach does have some limitations, however. For instance, it ignores the uncertainty 

in parameter estimates within the latent regression. 
24

 Note that I refrain from transforming the values onto a common scale, as is done in PISA. 

This is because my goal is not to compare PISA scores across cycles, but rather to investigate 

the effects of conditioning. Estimates are all on the same scale through the item sets used. 

Further transformation of the scale is therefore not necessary to compare estimates between 

models. 
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model as either ‘direct’ or ‘indirect’ regressors (OECD, 2014b, pp. 157, 421–

431). These are defined as follows: 

• Direct regressor. A few selected variables are directly included in 𝒀𝒏 

with just some basic recoding. In this chapter, the following variables 

are treated as direct regressors: gender, grade, mother’s and father’s 

socio-economic index and booklet IDs.25 In PISA 2012, school ID, 

which I did not simulate, was also a direct regressor.  

• Indirect regressor. The remaining background variables are included 

in 𝒀𝒏 in a different way in order to reduce dimensionality. First, they 

are recoded in one or two of the following ways: (a) recoded into 

indices; (b) dummy-coded if categorical or (c) centred with an 

additional dummy for missing if numerical. Afterwards, all variables 

were included in a principal component analysis for mixed data26 (a 

combination of principal component analysis and multiple 

correspondence analysis, Chavent et al., 2014). The indirect 

regressors consist of as many principal components as it takes to 

explain 95% of the variance27. According to the official 

documentation, the background variables were not imputed or altered 

in regard to missing values apart from a missing indicator. 

Both direct and indirect regressors are computed separately by country. As a 

result, the number of regressors varies between countries due to differences 

in available information (e.g. no variation in grade for Japan) and number of 

retained principal components. 

3.2.2.5 Different settings for the plausible value computation 

To gauge the effect that choices surrounding the plausible value computation 

can have, I use different sets of included cognitive data and conditioning 

 
25 The contrast coding for booklets was further tweaked so that the information for students 

who only answered questions in two domains is based on information from all booklets that 

have items in a domain (OECD, 2014b, p. 157). Additionally, for booklets which included 

only two domains, the latent regression coefficient is set to 0 in the third domain.  
26 While the usage of a principal component analysis is described in the technical 

documentation (OECD, 2014b), no details were given, e.g. if a standard principal component 

analysis is used or one for mixed data. As I have mixed data, I decided to use a principal 

component analysis specifically for mixed data. 
27 The exact number of retained principal components varies by simulation run and country, 

but they vary roughly around 100. 
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variables. The baseline model (V0) does not condition on any background 

variables and has the same design of major and minor domains and 

background questionnaire(s) as in PISA 2012 (i.e. not all students answer 

questions in all domains and the background questionnaire has a rotated 

design). Five different conditioning model specifications (V1–V5) are 

estimated with this PISA 2012 design but including different combinations 

and alterations of direct and indirect regressors into the conditioning model. 

These are complemented by another two settings (V6, V7) which use a fixed 

set of conditioning variables but are based on slightly alternative versions of 

the data. In the end, I compute eight different sets of plausible values in each 

simulation run, based upon eight different settings. These versions are 

denoted as follows in Table 3.2: 

Table 3.2 Definition of the eight different settings for the plausible value 

computation 

Model 

Direct 

regressors 

Indirect 

regressors 

Variable 

preparation 

Questions 

in all 

three 

domains 

Background 

questionnaire 

V0 - - - No Rotated 

V1 X - Direct No Rotated 

V2 - X Indirect No Rotated 

V3 X X Direct/indirect No Rotated 

V4 X X All direct No Rotated 

V5 X X All indirect No Rotated 

V6 X X Direct/indirect Yes Rotated 

V7 X X Direct/indirect No Full 

Note: X in the column ‘Direct regressors’ denotes that the direct regressor 

variables from PISA 2012 (gender, grade, mother’s and father’s socio-

economic index and booklet IDs) are included in the conditioning model. X 

in the column ‘Indirect regressors’ denotes that the remaining background 

variables are included in the conditioning model. The variable preparation 

corresponds to Subchapter 3.2.2.4; ‘Direct/indirect’ denotes that the 

conditioning variables are prepared as in PISA (part as direct and part as 

indirect regressors). ‘No’ in column ‘Questions in all three domains’ means 

that all students are used, whereas ‘Yes’ only considers students which were 

administered questions in all three domains. The column ‘Background 

questionnaire’ denotes whether a rotated or full background questionnaire is 

used.  
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The first four models (V0–V3) are used to evaluate how conditioning 

variables affect the achievement scores and whether this varies between 

countries and measures. Models V3–V5 help show whether there is a 

difference depending on how the variables are prepared (i.e. whether they are 

included in a PCA first or not). When I look at differences between major and 

minor domains, I focus upon model V3, which is closest to the conditioning 

variables used in PISA 2012, but vary the set of students included in the 

computation in model V6. Finally, the difference between model V3 and 

model V7 shows the difference that stems from using a full background 

questionnaire versus a rotated background questionnaire design.  

3.3 Analyses 

3.3.1 How does conditioning affect achievement measures? 

Figure 3.3 shows the bias of the mean (difference between the estimated and 

‘true’ achievement) in standard deviations for four different conditioning 

model specifications. The horizontal line highlights the optimal case where 

no bias is present. V0 (square – no conditioning) acts as the baseline model 

and V3 (cross – all regressors) as the full model, where V1 (circle – direct 

regressors only) and V2 (triangle – indirect regressors only) are variations.  

In mathematics and science, the models with conditioning (V1–V3) 

outperform the baseline (V0), in terms of minimising bias in the mean score. 

Yet, there are still differences between the various conditioning model 

specifications. This is more notable in science, where the average bias across 

countries is 0.046 standard deviations when no conditioning is used, 

compared to 0.013 standard deviations in for V1, -0.001 for V2 and 0.014 for 

V3. For mathematics, the bias amounts to 0.058 for V0 and between 0.013 

and 0.018 for the remaining models. While there is a clear decline in bias 

when conditioning is used, the absolute magnitude of the bias in both science 

and mathematics is small.  

The results for reading give a different picture. While the bias of V0 and V2 

behave similarly to mathematics and science, it increases significantly for V1 

and V3. This suggests that one or more of the direct regressors has a 
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substantive undesirable influence, introducing significant bias into the 

estimated plausible values. The bias increases from 0.043 in V0 and 0.000 in 

V2 to -0.123 in V1 and -0.113 in V3. This means that, depending on the 

choice of the specification of the conditioning model, country averages can 

be biased by more than 0.1 standard deviations (equivalent to 10 PISA 

points). 

Figure 3.3 Average bias of the country means in standard deviations  

 

Note: V0: No conditioning variables, V1: Individual direct regressors only, 

V2: Indirect regressors only, V3: Individual direct regressors and indirect 

regressors. 

 

As reading yielded some unexpected results with bias increasing as soon as 

direct regressors were used, I decided to conduct some further investigations 

into direct regressors. As a result, I ran four sub models of the conditioning 

model with direct regressors only (V1.a: test booklet ID only, V1.b: gender 

only, V1.c: socio-economic index only, V1.d: grade enrolled). This revealed 

that the inclusion of booklet ID in the latent regression introduces substantial 

bias to the country averages. Further investigations showed that removing 

booklet ID from the conditioning model led to the least biased result in most 

cases. Including booklet ID in the latent regression without any restriction 

was counterproductive (in PISA 2012 the latent regression coefficients for 
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booklet IDs were set to zero for the domains which the booklet did not 

include) and led to some substantial increase in bias in some cases, especially 

in reading. See Appendix B for more detail. 

Recall that the rationale for conditioning is to yield unbiased estimates of 

group differences, such as the gender gap in achievement. Here, the simulated 

data is used to estimate the gender gap under different conditioning model 

specifications by regressing gender (an indicator for girls) upon the simulated 

PISA plausible values. In this project, the ‘true’ gender gap (on average, 

across countries) is equal to 0.059 in mathematics, -0.181 in reading and 

0.012 in science. Table 3.3 displays the bias between the ‘true’ and 

‘estimated’ gender gap across countries. In line with multiple imputation 

theory, all biases have the opposite sign of the initial gender gap, meaning 

that the estimates are attenuated. As expected, the bias in the gender gap 

shrinks close to 0, especially in mathematics and science, as soon as gender 

is introduced into the conditioning model, meaning that attenuation is 

significantly reduced. The conditioning model specification without gender, 

V2 (indirect regressors only), on the other hand, still displays substantial 

amounts of bias, especially in reading.  

Table 3.3 Average bias of the gender gaps across countries 

 Average bias of the gender gap 

Model Mathematics Reading Science 

V0 -0.056 0.153 -0.019 

V1 -0.001 0.007 -0.002 

V2 -0.031 0.093 -0.023 

V3 -0.001 0.008 -0.001 

Note: V0: No conditioning variables, V1: Individual direct regressors only, 

V2: Indirect regressors only, V3: Individual direct regressors and indirect 

regressors. Bias is reported in standard deviations on average across the 

countries.  

 

The difference between the 90th (P90) and 10th (P10) percentile, i.e. the spread 

of achievement scores in a country, is another way to look at inequality. 

Figure 3.4 shows how this measure is affected by different specifications of 

the conditioning model. While there are systematic differences between the 

model specifications in all domains, the magnitude of the bias for this 
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measure is small in all cases. Indeed, even at the extreme, the average bias is 

still below |0.03| of a standard deviation. When no conditioning is used, the 

bias in P90–P10 is around 0.02 standard deviations (independent of the 

domain) – with the simulated percentile gap consistently being slightly bigger 

than the ‘true’ value. In mathematics and reading, the bias in percentile gaps 

drops consistently as soon as conditioning is applied. Thereby, the values for 

V2 (with indirect regressors only) show the lowest amount of bias and tend 

to be around zero. V2 also produces the least biased results for science on 

average. There, there is a systematic shift in the bias – including a change of 

sign – when direct regressors are included in the conditioning model. Like the 

country averages in reading, this change is triggered by the booklet ID in the 

direct regressors (see Appendix B for more information). Nevertheless, bias 

remains comparatively small for all specifications. 

 Figure 3.4 Average bias of the 90th–10th percentile difference in standard 

deviations 

 

Note: V0: No conditioning variables, V1: Individual direct regressors only, 

V2: Indirect regressors only, V3: Individual direct regressors and indirect 

regressors. Bias is shown in standard deviations for each country. 

 

The previous two graphs combined with the last table highlight how including 

or excluding variables in the conditioning model can affect bias. Conditioning 
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model specification consistently affected the amount of bias, but not in a 

uniform way across measures and domains. In most cases, accuracy increased 

but that does not hold true for all cases. In some, bias increased after adding 

variables, e.g. director regressors and country means in reading or spread in 

science. Additional analyses showed that indeed one block of variables 

(booklet IDs) can introduce substantial bias to the results. More generally, 

there are some similarities between the major domain, mathematics, and the 

minor domains, reading and science, in terms of the behaviour and magnitude, 

but this depends largely on the measure, e.g. mathematics and science show 

similar patterns for country averages, but differences for spread, where 

mathematics and reading display similar findings. In general, the picture can 

be quite different between measures. With regard to countries, there does not 

seem to be a clear ranking in terms of bias across measures. Some countries 

with comparatively low bias in one measure can have larger bias in 

comparison in other measure.  

3.3.2 What is the effect of entering variables directly or indirectly into 

the conditioning model? 

One step of the score computation which changes across the PISA cycles is 

how the conditioning variables are used. PISA used a mixture of direct and 

indirect variables (as explained in the methods section) from 2000 until 2012. 

However, from 2015 onwards, all background variables entered as indirect 

variables.28 As a result, I want to investigate whether these different 

approaches lead to the same results. The full model (V3; including both direct 

and indirect regressors) was, therefore, re-estimated in two further ways: (a) 

all variables treated as direct regressors (V4) and (b) all variables treated as 

indirect regressors (V5). In V3 and V4, booklet IDs are treated as direct 

regressors and some restrictions are applied to the coefficients in the latent 

regression (i.e. the coefficient of booklet IDs which only included two 

domains is set to zero for the third uncovered domain). In V5, booklet IDs are 

 
28 But in this case only retaining the sufficient number of principal components for 80% of 

the variance explained instead of 95% of variance explained, as in PISA 2012. Furthermore, 

the maximal number of principal components was limited to 5% of the raw country sample 

size. 
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included as indirect regressors. Thereby, they cannot be ‘untangled’ from 

other variables in the principal components and no restrictions in the latent 

regression can be applied. To enable a fair comparison between direct and 

indirect regressors (V3) and all variables as indirect regressors (V5), I 

compared V5 to a tweaked version V3 (denoted V3a), which has no 

restrictions for booklet IDs in the latent regression. 

Table 3.4 shows the average bias across countries for the three different 

measures and domains. For all domains and measures, the effect of the 

variable preparation is minimal, with differences of less than 0.01 standard 

deviations (i.e. approximately 1 PISA test point) between V3 and V4, as well 

as between V3.a and V5. Furthermore, there is no clear pattern emerging of 

one of the approaches being any better (i.e. less biased) than the other. 

Overall, the preparation of the conditioning variables leads to very small 

differences in terms of magnitude and has just a fraction of the effects that 

other conditioning model choices have.  

Table 3.4 Comparison of the bias of country averages, gender gaps and 90th–

10th percentile differences when using different forms of conditioning variable 

preparation 

 Mean Gender gap P90–P10 

Mathematics  

V3 0.015 -0.001 0.004 

V4 0.015 -0.002 0.005 

V3.a 0.009 -0.016 -0.027 

V5 0.010 -0.016 -0.025 

Reading  

V3 -0.113 0.008 0.010 

V4 -0.112 0.009 0.010 

V3.a -0.337 0.073 0.033 

V5 -0.331 0.076 0.031 

Science  

V3 0.014 -0.001 -0.014 

V4 0.013 -0.001 -0.014 

V3.a -0.012 -0.011 -0.066 

V5 -0.006 -0.011 -0.064 

Note: V3: Individual direct regressors and indirect regressors, V3.a: 

Individual direct regressors and indirect regressors without regression 

coefficient restrictions for booklet IDs, V4: All variables treated as direct 

regressors, V5: All variables treated as indirect regressors. Bias is shown in 

standard deviation on average across countries. 
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3.3.3 Would the scores change if all students answered questions in all 

domains? 

As explained above, less than half of the students in PISA answer questions 

in all domains. In the minor domains, where not all participants answered 

questions, the bias tends to be larger. This is especially true for reading, where 

more bias in the scores is found than in mathematics. I am consequently 

interested in whether the bias is smaller when focusing upon students that 

answered questions in all three of the core PISA subjects. To do this, I re-

estimated the full model (V3) using only the subset of students that answered 

at least one question in each domain. Achievement levels should thereby not 

vary between groups, as students are randomly assigned to booklets. Yet, 

even if there is variation between subsets of students, I am not examining the 

absolute achievement level of the students, but the bias – the difference 

between the true and estimated value. 

Table 3.5 highlights that bias can decrease substantially if all students answer 

questions in all domains (rather than the situation in PISA 2012, where some 

students did not answer questions in some domains). As expected, this leads 

to improvement in terms of bias for both minor domains, reading and science. 

Especially for country averages in reading, which are heavily biased through 

the inclusion of booklet IDs in the conditioning model, this helped to 

counteract the bias – it dropped by roughly 60% or 0.075 standard deviations 

(equivalent to more than 7 PISA points). Similar or higher percentage 

improvements were also found for country averages in science and percentile 

differences in reading. Overall, administering questions in all domains to 

everyone had a positive influence on all results in the minor domains. The 

results in the major domain, mathematics, remained relatively stable with the 

potential for a slight increase in bias (most likely due to achievement scores 

now being based on only a subset of booklets).  
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Table 3.5 Comparison of the bias country averages, gender gaps and 90th– 

10th percentile differences in reading and science based on the students who 

answered questions in all three core domains  

 Mean Gender gap P90–P10 

Mathematics  

V3 0.015 -0.001 0.004 

V6 0.020 -0.002 0.002 

Reading  

V3 -0.113 0.008 0.010 

V6 -0.047 0.005 0.003 

Science  

V3 0.014 -0.001 -0.014 

V6 0.003 -0.001 -0.010 

Note: V3: Individual direct regressors and indirect regressors, V6: Individual 

direct regressors and indirect regressors, but only based on students which 

answered questions in all three domains. Bias is shown in standard deviations 

on average across countries.  

 

3.3.4 What is the impact of the student background questionnaire 

design on the plausible values? 

In contrast with the other cycles of PISA, not all questions of the compulsory 

student background questionnaire were administered to all students in PISA 

2012. Thereby, all students saw one core component of the questionnaire 

(including gender and parental socio-economic status) but only a fraction of 

the remaining questions. As a result, the indirect regressors were based on 

questions with high proportions of missing. I am interested to see whether it 

would make a difference to the plausible values if all questions were 

administered to all students. In order to do this, I skip the step in the 

simulation data generation where certain questions in the background 

questionnaire are set to missing according to their student questionnaire 

booklet ID. This way, I end up with data as they would have been if all 

students were administered all questions. Model V7 has the same set of 

conditioning variables as V3 but is based on the ‘full’ background 

questionnaire data.  

Table 3.6 shows the difference it would make if all students had been 

administered all student background questionnaire questions (V7). Overall, 

there is little to no difference in all domains. Bias stays the same in most cases 
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and there was a difference of |0.003| standard deviations – less than a third of 

PISA point – in extreme cases. It can therefore be described that using a 

rotated background questionnaire (at least in the form of PISA 2012) has 

minimal to no impact on country averages, gender gaps and percentile 

differences. The usage of rotated background questionnaire has been 

discussed in academia before. While von Davier (2013) dissuades the usage 

of rotated background questionnaires based on theoretical deliberations, 

Rutkowski (2017) neutrally explains the benefits and limitations of different 

questionnaire designs and the advantages of using a non-full design. In line 

with my results, a retrospective simulation of a rotated background 

questionnaire, similar to the one used in PISA 2012, also found negligible 

impact on student achievement measures (Adams et al., 2013). As a result, 

analyses based on real-life data support the benefits of rotated background 

questionnaires. This is especially true in comparison to the repercussions of 

other choices regarding the conditioning model and used data. It in turn has 

important implications for designs of ILSAs in the future, suggesting that 

more background data can be collected about pupils (via the use of rotated 

questionnaires) without biasing the student achievement results. 

Table 3.6 Comparison of the bias of country averages, gender gaps and 90th–

10th percentile differences in reading and science if all students were 

administered all questions in the student background questionnaire 

 Mean Gender gap P90–P10 

Mathematics  

V3 0.015 -0.001 0.004 

V7 0.015 -0.002 0.004 

Reading  

V3 -0.113 0.008 0.010 

V7 -0.110 0.008 0.010 

Science  

V3 0.014 -0.001 -0.014 

V7 0.013 -0.001 -0.014 

Note: V3: Individual direct regressors and indirect regressors, V6: Individual 

direct regressors and indirect regressors, but based on a background 

questionnaire which was simulated as complete. Bias is shown in standard 

deviations on average across countries.  
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3.4 Conclusion & discussion 

Over time, ILSAs have gained in both size and importance, and are now 

widely used in education policymaking. Yet, despite this influence, the 

methodology underpinning these studies and the associated analytical 

decisions remains poorly understood by most stakeholders – including 

researchers – who use the data and the results. This is especially true with 

respect to the role that student background data plays in the derivation of the 

‘plausible values’.  

This chapter aims to broaden understanding of this topic. In particular, I seek 

to shed new light on how conditioning variables and data choices influence 

the results of ILSA studies, such as PISA. This has been done by simulating 

data in the style of ILSAs, specifically PISA 2012, and computing different 

sets of plausible values based upon different conditioning models and data 

situations. These are subsequently evaluated with respect to the bias that they 

introduce. Thereby, I assess two main areas of interest: (a) the influence of 

background variables on the scores and (b) the impact of test and 

questionnaire design decisions. I start by systematically changing the 

variables which are used in the conditioning model and assessing how they 

influence the plausible values. I also consider whether there are differences 

across different countries and subject domains. This part does not only 

consider the impact of making different variable selections, but also how 

these variables are pre-processed and prepared. Specifically, I compare 

results from conditioning models where variables are entered directly to those 

where they are pre-processed using a principal component analysis (as is 

commonly applied in ILSAs such as PISA). Secondly, in contrast to other 

ILSAs (such as TIMSS), PISA does not administer test questions in all 

domains to more than half of the students. I am interested to see how this data 

choice affects the results: I investigate whether bias in the estimates of student 

achievement could be substantially decreased if all students answered 

questions in all domains. Furthermore, one specific trait of PISA 2012 is that 

the student background questionnaire also had a rotated design, meaning not 

all students were administered all background questions. As a consequence, I 
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also examine the previous issue for the student questionnaire to see whether 

using a rotated design there also affects the results. 

This simulation confirms that conditioning model choices matter. It shows 

that even making subtle changes – such as adding or removing a few selected 

variables – can have a non-trivial impact upon the results. The magnitude 

hence strongly depends both on the domain and the measure. While the 

impact tended to be larger in the minor domains, where fewer children have 

completed test items, and could be substantial, in some cases the impact was 

small to negligible. Furthermore, I could find no uniform pattern of bias 

across countries and measures. While I find that conditioning model choice 

matters, the same does not hold true with respect to variable preparation (i.e. 

whether covariates enter the conditioning model as direct or indirect 

regressors). Hence it does not seem to matter how the selected variables are 

pre-processed; what matters more is the choice of the variables. Furthermore, 

this simulation suggests that bias in the minor domains, which is introduced 

through the conditioning model specification, can be effectively counteracted 

and reduced by up to roughly 75% if all students answer some questions in 

all domains. Finally, I found that the same does not necessarily hold true for 

the design of student background questionnaires. There was essentially no 

difference in bias between the PISA background questionnaire design and a 

full design in most cases.  

These findings have important implications. One key result is that it makes a 

substantial difference in terms of bias whether all students answer questions 

in domains in which they are scored. This is especially true if a model is 

misspecified, which can seldomly be determined with real-life data. While 

asking every student questions in all domains is the standard in multiple 

ILSAs, it is not in all – such as PISA. Furthermore, having students answer 

questions in all domains turned out to be substantially more important than 

having a complete background questionnaire design. As ILSAs usually use 

complete background questionnaires (PISA 2012 was an exception), one idea 

could be to change the form of the background questionnaire and thus shorten 

it in favour of more cognitive items. Another possibility regarding the student 

background questionnaire could be to use an incomplete design and add 
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additional topics to get more contextual data whilst keeping it the same length 

for the individual student. With respect to the conditioning model, this 

research showed model specification matters and can impact country scores. 

Yet, the technical reports fail to offer rationale, details, and guidance on 

analytical decisions behind it. As small decisions behind these models can 

make a difference, this lack of information makes it difficult to judge and 

replicate the details. The publication of more details and sensitivity analyses 

as well as an open scientific discourse about the repercussion of those models 

should be encouraged.  

I believe that these simulations highlight some important properties about the 

conditioning applied in international large-scale student assessments. Yet this 

study is not without its limitations and should be interpreted accordingly. One 

caveat is that each ILSA uses a slightly different variant of the test design. I 

have focused upon PISA 2012 due to it being part of a well-known ILSA 

series and having a particularly interesting set of design characteristics. 

Nevertheless, the topics investigated in this study are, to some extent, 

common amongst all ILSAs, with the results providing at least indicative 

evidence outside of this single study alone. A second caveat is that I have 

tried to replicate the PISA 2012 method – as detailed in the technical report – 

as closely as possible. While I believe I have achieved this sufficiently to meet 

my study aims, I cannot completely rule out there being some differences due 

to a lack of clarity about certain aspects of the PISA 2012 method within the 

technical reports. Relatedly, it has also not been feasible for me to simulate 

student data in organisational units (e.g. schools or classrooms) and to model 

the relationship between these and student characteristics.   
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4 Group comparisons in PISA: What can go wrong 

along the way? A case study of differences in 

achievement by parental education in Germany  

The previous two chapters highlight how student achievement scores can be 

impacted through the conditioning model and related decisions and 

properties. Yet, both studies are very focused upon a single aspect of ILSAs 

– the conditioning model – and directly involved properties, such as the data 

preparation and design. Looking more broadly, ILSAs are large, complex 

endeavours that require and involve many more properties and decisions. 

None of these are completely separate from all others; they are all intertwined. 

In this chapter, I expand my focus and take a more comprehensive perspective 

of the process behind measuring student achievement and potential sources 

of bias in ILSAs. To do so, I make use of the total survey error framework to 

identify six statistical and psychometric properties, which can potentially 

introduce bias. I closely scrutinise their impact on group comparisons using a 

case study.  

4.1 Introduction 

International large-scale assessments (ILSAs), such as the Organisation for 

Economic Co-operation and Development (OECD)’s Programme for 

International Student Assessment (PISA) and the International Association 

for the Evaluation of Educational Achievement (IEA)’s Trends in 

Mathematics and Science Study (TIMSS), are surveys which aim to collect 

information about the cognitive skills of students around the world. For more 

than 20 years they had considerable influence on both education policy and 

daily school life. As ILSAs provide student achievement scores that are 

considered to be comparable across countries and over time, they have long 

played an important part in national and international education debates and 

in subsequent policy decisions (Breakspear, 2012; Hopkins et al., 2008). 

These studies do not only gather data about students’ cognitive skills, but also 

administer extensive background questionnaires, which include questions 

about their socio-economic background, upbringing, and attitudes. As a 
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result, ILSAs, such as PISA, are increasingly being used to analyse the 

association between different background variables and student achievement 

across countries and over time  (e.g. Davoli & Entorf, 2018 for policy 

application; Jerrim, 2013 for research; OECD, 2019c for reports of ILSAs). 

Among other findings, stark differences in educational outcomes by socio-

economic status were found; a topic which has become a key area of public 

policy interest and intervention (e.g. Carpenter et al., 2013; Kaiser, 2018; 

Karsten, 2006; Volante et al., 2019). The influence of parental background 

and its transmission has been widely researched by academics spanning 

across different disciplines (most notably sociologists and economists) and 

shown to affect children’s educational achievement (e.g. Davis-Kean, 2005; 

Guryan et al., 2008; Ludeke et al., 2021; Pishghadam & Zabihi, 2011; Yeung 

et al., 2002). On the other hand, research has also shown that education can 

act as an important mediator between social origin and destination (e.g. Breen 

& Jonsson, 2005; Jerrim & Macmillan, 2015), arguing for a need to level the 

education playing field. In an ideal world, primary and secondary education 

should at least provide everyone with a set of core basic abilities that equip 

them with the skills needed for later life. 

Of course, if this ideal is to be implemented, these associations – including 

the role of education – need to be understood in detail first. A common way 

to achieve this is studying patterns in quantitative survey data, such as ILSAs. 

However, when doing so, one needs to be aware of the limitations with such 

data. Specifically, it is important that the methodology and measures 

underpinning the data are sound and valid. Although this may sound simple, 

the reality is not quite so straightforward. ILSAs are large, complex projects 

that require great amounts of work, organisation, and effort, gathering data 

from hundreds of thousands of children from many countries. While 

numerous steps are taken to ensure data quality, there remain ways in which 

bias can creep in. As early as the 1940s, research started to engage with the 

‘total survey error’ (TSE) framework, which aims to evaluate the ‘usefulness’ 

and ‘meaningfulness’ of surveys in general by comprehensively considering 

various sources of error and bias (Groves & Lyberg, 2010). Data quality can 

be affected through numerous pathways. This can happen if the data does not 
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represent the underlying population well due to factors such as survey non-

response, missing data (amongst respondents) and coverage, as well as 

sampling error. Yet, even if the sample covers the population perfectly, error 

can still be present in the data due to the measurement itself. Bias can be 

introduced through the actions of respondents (e.g. inaccurate reporting, 

misunderstanding), the mode of the study, the instrument or even (data) 

processing post-survey. All of these aspects and pathways can affect the 

distribution of the quantity of interest, which in turn could lead to substantial 

under- or over-estimations of socio-economic group comparisons (Billiet & 

Matsuo, 2012).  

In this chapter, I want to highlight different sources of possible bias that 

should be considered when conducting analyses using ILSA data. Thereby, 

drawing upon the TSE framework, I investigate six factors that could 

potentially bias socio-economic comparisons of educational achievement: (i) 

Schools and students are sampled in ILSAs, but some schools refuse to 

participate, and students do not show up to the test. There are also important 

issues due to (ii) non-coverage (Anders et al., 2021) and (iii) missing item 

data for crucial information, such as parental education (L. Rutkowski, 2011). 

As a result, ILSAs such as PISA continue – as all surveys – to have issues 

with missing data (L. Rutkowski, 2011; Wise, 2009). Furthermore, (iv) some 

students may also misreport information about their family background, 

particularly as they often act as proxy respondents for their parents (e.g. 

children report their parents’ level of education or occupation; Jerrim & 

Micklewright, 2014). Moreover, (v) due to the way that achievement scores 

are constructed in ILSAs, students’ background variables can affect their 

cognitive scores (von Davier et al., 2009), leading to potentially biased 

estimation of socio-economic group differences (L. Rutkowski, 2014). 

Finally, (vi) it should be verified whether socio-economic background 

measures (such as parental education, captured within the International 

Standard Classification of Education (ISCED) framework) validly measure 

the construct in the international context and whether the students’ responses 

are correctly coded according to it (D. Rutkowski & Rutkowski, 2013). 
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The key contribution of this chapter is to add to the existing literature by 

undertaking a comprehensive review of possible errors – from sampling to 

missing data and computing cognitive scores – that may affect socio-

economic group comparisons in international studies. Previous research has 

investigated several aspects of ILSAs which can introduce error (e.g. Anders 

et al., 2021; Heine et al., 2017; D. Rutkowski & Rutkowski, 2013; L. 

Rutkowski, 2011). Yet, few studies have considered multiple aspects at once 

or provided a comprehensive review. I address this aim by conducting a case 

study for highest parental education in Germany for PISA 2012. This 

particular choice allows us to investigate the six aspects mentioned above in-

depth, as I focus on a feasible setting with a particularly rich data situation. A 

subsection is devoted to each of these six aspects, where I gauge the impact 

that each has on socio-economic achievement gaps (as measured by 

differences in PISA scores by level of parental education). I thus aim to foster 

awareness and understanding for potential sources of bias in group 

comparisons and the necessity of careful consideration of data quality and 

measure validity – over and above the specific setting of this case study. 

My analyses show that some – but not all – of the six aspects considered 

impacted the results in a substantial way. Survey and item non-response, 

(correct) coding of a parental education measure and the quality of students 

as proxies for their parents’ background were all found to be particularly 

important. Survey and item non-response are found to be related to both 

highest parental education and student achievement, meaning group 

comparisons are not representative of the wider population. When checking 

the coding of the German items to the ISCED scale, I found a procedural 

error, leading to a substantial change to the distribution of parental education. 

Moreover, I found that only around half of German students provided the 

same response about parental education level as their parents – with the socio-

economic achievement gap changing depending upon whose response is used. 

Overall, I find that the data on highest parental education in Germany suffers 

from serious flaws. These results highlight that the background variables 

should be checked carefully and not be trusted blindly.  
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This chapter proceeds as follows. Section 2 elaborates on the total survey 

error framework and sources of error investigated in this chapter. Section 3 

describes the data I use and the methodology, during which I also explain why 

I use Germany’s PISA 2012 data as a case study. Section 4 presents results 

where I sequentially focus upon six sources of error in socio-economic group 

comparisons. The chapter is then wrapped up in Section 5 with conclusions, 

recommendations, and limitations.  

4.2 Total survey error and socio-economic group 

comparisons  

This chapter is situated in the total survey error framework literature in 

ILSAs, in order to assess the quality and meaningfulness of PISA data and 

group comparisons (Schnepf, 2018). The total survey error has been defined 

in different ways by different authors, with multiple typologies and schemas 

now existing (Groves & Lyberg, 2010). In this chapter I use the following 

description from Groves and Lyberg (2010, p. 850) as a guideline for my 

analysis:   

Inherent in the term total survey error is attention to the entire set 

of survey design components that identify the population, describe 

the sample, access responding units among the sample, 

operationalize constructs that are the target of the measurement, 

obtain responses to the measurements, and summarize the data for 

estimating some stated population parameter.  

In accordance with this description, I identify six issues that may affect the 

validity of socio-economic gaps in educational achievement using ILSA data. 

These are: (i) identifying the target population; (ii) survey non-response; (iii) 

item non-response; (iv) socio-economic group measurement; (v) 

measurement error in indicators of socio-economic background; (vi) 

construction of ILSA test scores. I do not claim that this completely captures 

all aspects of total survey error. But rather, I provide a comprehensive review 

of (potential) sources of bias and illustrate the importance and impact of 

addressing these in common analyses with such data. 
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4.2.1 Identifying the (target) population  

Coverage addresses the degree to which students from the population are 

covered and participating in an ILSA. This is influenced by multiple factors. 

First, the target population must be defined. Although this may seem trivial 

at first, it can have an important impact upon estimates of socio-economic 

inequalities. For instance, differing school enrolment rates between countries 

can lead to results which are counter-intuitive and easy to misinterpret 

(Education Datalab, 2017). Second, the whole target population may not be 

covered in a survey. It is common that some groups of the target population 

are not covered due to pre-defined reasons such as accessibility or feasibility. 

For example, in some countries children with special educational needs 

(SEN) are excluded from the study, which will have an impact upon 

estimation of socio-economic gradients if it means certain groups (e.g. 

children from lower socioeconomic status (SES) backgrounds) are more 

likely to be excluded. This becomes even more complex in cross-national 

comparative research, as there are general guidelines about the definition and 

treatment of SEN children, but the implementation is up to each country. As 

a result, exclusion and inclusion rates differ drastically between countries 

(LeRoy et al., 2019).  

4.2.2 Survey (unit) non-response 

All social surveys are subject to some degree of non-response. In large, cross-

national studies of school children, non-response can occur at the school level 

(as the primary sampling unit) and at the student level. Such non-response is 

likely to be driven by conscious decisions made by schools and students to 

not participate in the study but could also be due to technical problems with 

test or survey administration. If such non-response occurred completely at 

random, socio-economic group comparisons would not be biased. Yet, in 

reality, such a strong assumption is highly unlikely to hold. For instance, 

Heine et al. (2017) showed via an extension to PISA in Germany that non-

participation at both the student and school level was related to family 

background and socio-demographic measures, as well as prior attainment. 
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When schools and students selectively choose to not respond, this can lead to 

substantial bias in ILSAs results (Anders et al., 2021).  

4.2.3 Item non-response 

In contrast to unit non-response, item non-response refers to survey units (e.g. 

students, parents or schools) that participated in the study, but who did not 

answer a particular question (or set of questions). This can be done 

intentionally, by skipping a question, or unintentionally because they were 

either out of time or the item was not administered. While missing responses 

are unproblematic when the data is missing completely at random (such as 

missing due to test design), it can bias results if survey units with particular 

characteristics choose not to answer specific questions (Rubin, 1976). 

Previous research has found this to be a problem for measures of socio-

economic status in large-scale international assessments. For instance, Caro 

& Cortés (2012) found that students missing socio-economic status data 

differed systematically from those with complete data. There may be bias in 

estimates of socio-economic gaps as a result of using such data. 

4.2.4 Constructing and operationalising a comparable group measure 

In order to reliably compare socio-economic differences in outcomes across 

countries, it is vital that the primary measure of interest (family background) 

carries the same meaning in each nation. Yet, in a diverse world few things 

have the same meaning everywhere. Take, for example, the case of education. 

Each country individually decides the organisation and content of its 

education system, resulting in different qualifications and knowledge at 

graduation. This, in turn, poses a major challenge for cross-national 

comparisons of educational qualifications, both amongst parents and 

children. As a result, considerable time and effort has been invested into 

building international classifications (such as ISCED; OECD, 1999) and 

developing measures for use in an international context (e.g. Chapter 16 in 

OECD, 2014b).  

Yet, this is not an easy task. The first option – application of the ISCED 

framework – offers the potential for misclassification of educational 
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qualifications, as national qualifications do not always easily fit into such 

international classification schema (Schneider & Kogan, 2008). Moreover, 

this has been further complicated by the required extensive recoding of 

national qualifications onto the ISCED schema as well as across different 

versions. In contrast, developing new measures faces other difficulties, such 

as cultural comparability and translation issues. For instance, Rutkowski & 

Rutkowski (2013) showed threats to the validity and reliability of one of the 

socio-economic measures in PISA (the Economic, Social and Cultural Status 

index) due to poor cultural comparability (as well as poor model-to-data fit 

of subscales). 

4.2.5 Measurement error in indicators of socio-economic background 

The usefulness of background measures depends upon whether they manage 

to capture the true value of the respective measure. In addition to the 

difficulties mentioned above of constructing a valid measure, background 

measures also face further challenges if participants act as proxies for other 

people (e.g. students providing information about their parents). This can 

easily lead to misreporting which then, in turn, introduces bias into group 

comparisons. For instance, when students are used as proxies for their parents 

their answers are generally less accurate, with this also varying by factors 

such as age and gender (Ridolfo & Maitland, 2011). In ILSAs, socio-

economic status is mainly measured by students’ responses to questions about 

their parents’ occupations and education, as well as possessions at home (only 

a handful of countries administer additional optional questionnaires where 

this information is also collected from parents). In a cross-national context, 

Jerrim & Micklewright (2014) showed that deviations in the answers of 

students and parents can lead to biased comparisons of socio-economic 

inequalities across countries. 

4.2.6 Socio-economic measures and the construction of ILSA test scores  

ILSAs only have limited time available to test students. They thus employ a 

rotated test design, meaning each student only gets asked a subset of 

questions. This results in large amounts of missing test-item data by design. 
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In order to estimate the achievement of sub-groups (e.g. average test scores 

of students from socio-economically advantaged and disadvantaged 

backgrounds), a complex statistical methodology (known as ‘conditioning’) 

is used. As noted in Chapters 2 and 3, this is in reality an application similar 

to multiple imputation. Specifically, answers to the test items actually 

administered are used to estimate the students’ achievement distributions, 

with information from background questionnaires (e.g. gender, age, socio-

economic status) then used to adjust the achievement distributions for 

population characteristics (Mislevy et al., 1992; von Davier et al., 2009). 

Importantly, this means that measures of socio-economic status (such as 

parental education) have an influence on the construction of ILSA test scores. 

Indeed, previous research has shown that measurement error in background 

variables (such as socio-economic status) can lead to bias in ILSA measures 

of achievement (L. Rutkowski, 2014).  

4.3 Data & methods 

4.3.1 Data  

I used the PISA 2012 data from Germany (n = 5001 students) to illustrate 

potential bias that can affect socio-economic group comparisons (see 

Subchapter ‘2.2.1 Data’ for more details about PISA 2012 data in general). 

This setting was chosen due to the uniquely rich information available for this 

country in this particular PISA cycle. Specifically, PISA 2012 was the last 

cycle to administer my measure of interest – highest parental education – in 

both the student and parental questionnaires. This is important, as 

measurement error in family background variables is likely to be one of the 

major sources of survey error when attempting estimate socio-economic 

achievement gradients using ILSAs. Yet, the number of items about parental 

education and the corresponding answer categories deviated between students 

and parents. Moreover, while questions about parental education were asked 

in all countries, students could actually provide more fine-grained responses 

than has been published in the publicly available PISA dataset (OECD, n.d.-
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b).29 This is available in a country-specific version of the PISA 2012 data, 

which I have obtained for Germany (Prenzel et al., 2015). Importantly, this 

data included much more detailed questions on parental education for parents 

and students in contrast to the publicly available PISA 2012 dataset. As I will 

illustrate, this allows us to investigate whether the coding of parental 

education into the ISCED framework was appropriate in the case of Germany, 

and the affect that this has upon estimates of socio-economic disparities in 

student achievement.  

4.3.2 Sampling design in PISA 2012 

PISA 2012’s sampling design consists of two main components: the 

definition of the target population and the sampling procedure. The target 

population in PISA is defined as 15-year-olds who are enrolled in at least 

Grade 7. As a result, some 15-year-olds, such as home-schooled children, 

permanent exclusion, those who have repeated many grades and drop-outs 

past the school compulsory age, are not covered. While the target population 

in Germany is the same as the general population of 15-year-olds, this does 

not necessarily hold true for other countries (e.g. low school enrolment rates; 

Education Datalab, 2017) and could thus bias international comparisons. 

Furthermore, countries can decide to not cover their whole target population 

in the sampling. They are allowed to exclude schools and students as long as 

the overall exclusion rate is below 5% (OECD, 2014b, pp. 66–68). These 

exclusions can happen due to one of five criteria, four of which apply to all 

countries: 1. intellectual disability, 2. physical disability, 3. non-native 

students with insufficient language skills within their first year of arrival and 

4. students who speak languages for which the mathematics test is not 

available. The fifth criterion can vary by country, at the discretion of the PISA 

national project manager. Among the listed exemplary reasons are remote 

geographical regions, language groups due to political or organizational 

 
29 Specifically, the parental education questions in Germany included many more options 

than the variable available in the publicly available PISA 2012 dataset suggests. This is due 

to the latter condensing Germany’s national qualifications to fit into the ISCED framework.  
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reasons and special educational needs students, e.g. students with dyslexia 

(OECD, 2014b; Chapter 4). 

Once the sampling criteria are defined, students get selected into PISA using 

a two-stage procedure. Schools are first selected and then students are 

randomly sampled within schools. There is also stratification in the sampling 

of schools in order to maximise efficiency. In Germany, schools are separated 

into 18 explicit strata, based upon: (a) 16 federal states; (b) all vocational 

schools; and (c) all special needs schools. Subsequently, within each of these 

explicit strata, schools are sorted by a set of implicit stratification variables 

(school type and school size in Germany as well as federal state for vocational 

and special needs schools). Schools are then sampled proportional to their 

size.30 Two replacement schools are immediately drawn in case the initially 

sampled school refuses to participate. The replacement schools are supposed 

to be as similar as possible to the original school. They are identified as the 

schools in the same explicit strata – ranking directly above and below on the 

implicit stratification variables – as the originally sampled school. In PISA 

2012 in Germany, within each school, 25 students were sampled randomly 

without replacement (OECD, 2014b; Chapter 4; Prenzel et al., 2013; Chapter 

10). 

4.3.3 Test design 

As time is a limiting factor in ILSAs, students only get asked a fraction of all 

cognitive questions. This is done using a rotated test design. Specifically, 

students get randomly assigned to one of 13 test booklets. Each booklet 

contains four item clusters, which each contain multiple questions in one 

domain. In PISA 2012, there are 13 item clusters.31 As mathematics is the 

 
30 The sampling chance of small schools (35 or less enrolled suitable students) was equal. 

This means that schools with 35 suitable students were as likely to be sampled as those with 

less. Schools with more than 35 students experienced a proportional increase in the sampling 

probability according to their size. 
31 Each country gets administered questions from 13 different item clusters. Countries with 

low expected results can opt to exchange two of the ‘standard’ mathematic item clusters with 

easier ones. 
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major domain,32 seven of the 13 item clusters address mathematical topics 

and only three each are about science and reading. While each booklet 

contains at least one mathematical item cluster, the majority of the booklets 

only contain two of three domains – only 40% of the students answer 

questions in all three domains. As a result, the data of each student consists 

mainly of missing data by design (OECD, 2014b, pp. 30, 31).  

In contrast to other PISA cycles or other ILSAs, PISA 2012 extended their 

rotated test design to the student questionnaire. Yet, this was done in a 

different way to the cognitive test. All three versions of the student 

questionnaire included one common part, where basic information, such as 

gender, language and parental education, was recorded. Fortunately, my 

variable of interest (parental education) was in the common part and 

therefore, administered to all students. As a result, all missing data in parental 

education was due to either students not answering the question or not 

returning the questionnaire.33  

As I am interested in student achievement and parental education in this 

chapter, I am using students’ answers in the three core cognitive domains, the 

student questionnaire, and the parental questionnaire. While the core 

cognitive domains and student background questionnaire are administered by 

default, the parental questionnaire is an additional domain which only a few 

countries, including Germany, choose to administer. 

4.3.4 Measure of interest 

In this chapter, I am examining potential bias that can affect (socio-economic) 

group comparisons in ILSAs. While socio-economic status has multiple 

facets, for the sake of comprehensibility and feasibility I focus on one aspect, 

parental education, for several reasons. First, parental education is a measure 

of socio-economic status which is commonly used in secondary analyses of 

 
32 On a rotation basis, in each cycle one domain receives special attention. As a result, more 

cognitive question are asked in that year and additional information about it is collected in 

the student background questionnaire. 
33 Each questionnaire booklet also included rotated parts, which covered other topics such as 

their experience with mathematics and their school. If one is interested in those variables for 

group comparisons, appropriate handling and implications due to this limited information by 

design need to be considered. 
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ILSA. In practice, it is used as a main variable as well as a covariate and is 

thought to be related to academic achievement (e.g. Hansen & Gustafsson, 

2016; Jerrim & Macmillan, 2015; Martins & Veiga, 2010). Second, the aim 

is to highlight the issue of total survey error in ILSA group comparisons and 

I am not specifically interested in the theoretical implications of the results 

with respect to transgenerational achievement. Finally, the data in PISA 2012 

enables us to comprehensively investigate bias in parental education gaps in 

academic achievement. 

The publicly available PISA 2012 data contains students’ answers about their 

parents’ education in two subtopics, schooling and professional education, 

each for mother and father. Using responses to these questions, the OECD 

derives the ISCED 1997 level for mother and father by recoding the answers 

for national qualifications onto the ISCED scale. The highest parental 

education overall is then computed by combining categories and the 

responses for mother and father.34 In contrast to the student questionnaire, the 

parent questionnaire only mainly enquires about the parents’ professional 

education and not about their schooling, i.e. no information on education 

below ISCED level 3A – see Table 4.1. Furthermore, the items are not the 

same as in the student questionnaire – at least in the official published version. 

As a result, highest parental education based on the student and parent 

questionnaire from the publicly available data cannot be compared directly 

(compare column Student Int. and Parent Int. in Table 4.1). 

The German data is available upon request (Prenzel et al., 2015) and has more 

fine-grained questions about parental education than the international version 

(the ISCED levels in Table 4.1 are already combining categories in some 

cases). While the questions are still structured into schooling and professional 

education, each topic has more options than the international version. The 

German school and professional education system is complex with multiple 

tracks and an extensive apprenticeship system which cannot be briefly 

explained. For example, after primary school (usually Year 4), students are 

usually transferred into one of three tracks (lowest track: Hauptschule – 9 

 
34 This information is available as a composite measure in the dataset. The procedure is 

outlined for understanding. 
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years, middle track: Realschule – 10 years, highest track: Gymnasium – 12/13 

years), which have different orientations and lead to different qualifications 

and ISCED levels. For a comprehensive summary of the German system and 

ISCED level classifications, see Schneider (2008).  

Table 4.1 Available information on parental ISCED levels in the different 

background questionnaires and versions 

Student  Parent 

Ger. Int. CM  Ger. Int. CM 

Did not complete ISCED 1 

 Did not 

complete 

ISCED 1 ISCED 3B, C or 

below ISCED 1  ISCED 1 

ISCED 2  ISCED 2 

ISCED 3B, C  ISCED 3B, C 

ISCED 3A ISCED 3A 

ISCED 4 

 ISCED 3A 

ISCED 4  ISCED 4 

ISCED 5B  ISCED 5B 

ISCED 5A ISCED 5A 

ISCED 6 

 ISCED 5A 
ISCED 5A, 6 

ISCED 6  ISCED 6 

Other - -  Other - - 

Note: Ger. = German Items. Int.= International Items. CM = (International) 

Composite Measure. ISCED levels correspond to: 1 – Primary education, 2 

– Lower secondary education, 3 – Upper secondary education, 4 – Post-

secondary non-tertiary education, 5 – First stage of tertiary education, 6 – 

Second stage of tertiary education. The letter after the number depends on to 

which further level it grants you access. All international items were valid 

for Germany, but in some countries certain ISCED levels do not occur/were 

not asked for, e.g. ISCED level 5B in Poland. 

 

In contrast to the international version, the German data has the major 

advantage that the same questions and response options were posed to 

students and their parents, i.e. I can directly compare their responses. Yet, the 

pre-computed highest parental education variable (in ISCED levels) in the 

German data does not make use of the more-detailed questions in the German 

version. Rather, it classifies highest parental education into the fewer and 

broader categories from the international version. The mapping of the 

German responses to ISCED levels (in PISA) is outlined in the official PISA 

scaling manual for Germany (Mang et al., 2018, pp. 173–176). The exact 

questions and details of highest parental education can be found in Appendix 

C.1. 
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4.3.5 Method of plausible value computation 

As described previously, not all students answer questions in all three core 

domains. Yet, PISA assigns every student a score in mathematics, reading 

and science. In order to do this, complex multi-step statistical procedures are 

needed. Thereby, background variables (such as gender and highest parental 

education) are used in combination with the cognitive items to derive student 

achievement distributions (OECD, 2014b). Thereby, student achievement 

distribution is estimated through an IRT model using the students’ cognitive 

responses. Subsequently, prepared background variables are used in a latent 

regression, the so-called ‘conditioning model’ to adjust the distributions for 

population characteristics. Subsequently, plausible values are randomly 

drawn from the resulting student achievement distribution.  

The aim of this chapter is to illustrate the potential sources of bias in group 

comparisons. In Subchapter ‘4.4.6 Plausible value computation’, I analyse the 

impact that including highest parental education in the plausible value 

computation can have upon estimates of the parental education achievement 

gap. As a result, I use a simplified and altered version in comparison to PISA 

to analyse the impact that highest parental education can have through the 

plausible value computation process. I conduct three different versions of the 

conditioning model – 0. No variables in the latent regression, 1. Only highest 

parental education based on the students’ responses (no other variables) in the 

latent regression and 2. Only highest parental education based on the students’ 

responses (no other variables) – and draw plausible values afterwards. The 

resulting different sets of plausible values are then used to investigate the 

impact. For further details of plausible value computations, see Subchapters 

2.2 and 3.2.2. For further information on the practical implementation of this 

chapter, see Appendix C.2 

4.4 Analysis 

All analyses in this chapter are conducted within the statistical programming 

language ‘R’ (R Core Team, 2019). In order to account for the design in PISA 

and compute valid scores, the ‘intsvy’ package (Caro & Biecek, 2017) is used 
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together with the Balanced Repeated Replication (BRR) weights and the final 

student weight. 

4.4.1 Coverage of the (target) population  

The target population in PISA 2012 is defined as all 15-year-olds which are 

enrolled at least in Grade 7. The sampling framework allows countries to not 

cover parts of their target population due to a few reasons; see Subchapter 

‘4.3.2 Sampling design in PISA 2012’ for more details. Key information and 

numbers about the conducted sampling are published by the OECD with an 

international focus (OECD, 2014b; Chapter 4, Chapter 11) and the national 

centres with a focus on the national situation (Prenzel et al., 2013; Chapter 

1.3.1).  

The German target population equals the number of all 15-year-olds in 

Germany (N = 798,136). Overall, the number of (weighted) excluded students 

due to school exclusion was 10,914 or 1.4% of the target population. In the 

sampled schools, eight students were excluded and 56 were withdrawn or 

deemed ineligible35, which corresponds to a weighted estimate of 1,30236 and 

7,805 in the whole target population or 0.2% and 1.0% respectively. The 

number of not covered schools and students accumulates to a non-coverage 

rate of 2.6%. Thinking back to the reasons for exclusion (e.g. language, 

special educational needs), it is likely that exclusion is not random but related 

to achievement. While a (direct) relationship to highest parental education 

cannot be definitively proved (due to a lack of data), an association between 

parental educational background and student achievement is often found (e.g. 

Gamboa & Waltenberg, 2012; Ludeke et al., 2021). 

Nevertheless, Figure 4.1 shows that this non-coverage rate is small in 

comparison to most other countries in PISA 2012. It clearly highlights that in 

most countries a larger proportion is either excluded or withdrawn/deemed 

ineligible than in Germany. Eight countries (Canada, Denmark, Estonia, 

 
35 Students were considered ineligible if they were age-eligible first, but subsequently not 

meeting other definitions of the target population, e.g. left school after sampling but before 

the assessment. 
36 This number varies slightly between the German (1,357) and the international (1,302) 

report but both documents state the same percentage of the total population.  
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Luxembourg, Norway, Sweden, the United Kingdom, and the United States) 

even exceed the official threshold for the overall exclusion rate (yet have still 

managed to pass to OECD’s data adjudication process). While non-coverage 

rates should never be ignored and can always have an impact on results, 

especially if systematic, other countries are at substantially higher risk of bias 

than Germany due to significantly higher non-coverage rates.    

Figure 4.1 International comparison of the overall exclusion rate and the 

‘deemed ineligible or withdrawn’ rate in Germany 

 
Note: Dashed line refers to the rate threshold of acceptable exclusions 

according to the official OECD documentation. Solid point represents 

Germany, while the hollow points represent the other countries participating 

in PISA 2012. 

 

4.4.2 Survey non-response 

When schools and students are sampled, there is no guarantee that all 

participate. While public schools in Germany were obligated to participate in 

PISA 2012, private schools could decide whether they wanted to participate 

or not. According to Prenzel (2013), five private schools declined to 
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participate in PISA 2012. Two of these were replaced. Overall, 23037 of 23338 

schools participated (after replacements included) resulting in a school 

response rate of 98.7%. I cannot test for any relationship between the three 

private schools that declined to participate and highest parental education, as 

I do not have any information about those schools, but Lohmann et al. (2009) 

showed that parental education is a central factor whether a child goes to a 

private school in Germany. 

Student non-response (in the cognitive domains) can stem from different 

reasons such as sampled students were unavailable at test day or difficulties 

during administration. The realised student sample for Germany in PISA 

2012 encompassed 5001 students.39 Using the number of 5355 sampled 

students from the technical report (OECD, 2014b, p. 185), this leads to a 

student response rate of 93.4%.40  

As with the coverage rates, Germany does fairly well in international 

comparison of these response rates. School response rates (unweighted after 

replacement) vary internationally between 77.8% in the United States and 

100% in multiple countries in PISA 2012. Similar variability between 

countries can be found for student participation: Canada had the lowest 

student participation rate with 80.8% – barely meeting the required threshold 

of 80%. In contrast, in Vietnam 99.9% of the sampled students participated. 

In general, it is especially troublesome if both rates are low, as in the 

Netherlands in 2012 (student response rate: 85.0%, school response rate: 

88.9%). While Germany has comparatively high participation rates, it does 

 
37 The technical report states 228 schools after replacement for Germany (OECD, 2014b, p. 

183). I decided to use the number of the German report, as it coincides with the number of 

schools in the data. 
38 The sampling frame encompassed 247 schools, but 11 schools were dropped completely 

because they did not have any 15-year-olds, one school did not exist anymore and one school 

was excluded due to language feasibility and should therefore (hopefully) be included in the 

coverage rate in the previous subchapter (Prenzel et al., 2013, pp. 319, 320). 
39 The number of participating students in Germany is stated either as 4990 or 5001 in the 

official technical report depending on the page (OECD, 2014b, pp. 178, 185). I decided to 

use 5001 students, as it coincides with the number of students in the German report and the 

dataset.  
40 The German report states a student response rate of 93.2% but without any statement of 

the number of sampled students (Prenzel et al., 2013, p. 320). 
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not necessarily mean that little or no bias is introduced, though the risk is 

lower than elsewhere.  

PISA also aims to collect additional information via student questionnaires. 

While I do not have any information on students that declined to participate 

in the PISA test, it is possible that students who took the test did not complete 

the background questionnaire. The 16 German states enjoy educational 

sovereignty and handled the administration of the student questionnaire 

differently: five states made the student questionnaire obligatory, 10 states 

opted for voluntary return and required parental approval and the final state 

decided that parts of the questionnaire were compulsory. As a result, response 

rates in Germany differed between states (Prenzel et al., 2013, p. 33). 

Additionally, different states in Germany are also associated with different 

demographic structures (Statistische Ämter des Bundes und der Länder, 

2011). Overall, the data contained 684 of 5001 cases with missing data only 

in the questionnaire items. This results in a student questionnaire return rate 

of 86.3%.41 When combining the general student response rate with the 

student questionnaire return rate, 80.6% of the sampled students answered 

and returned both key parts of PISA. Germany chose to administer further 

additional questionnaires, such as the parental background questionnaire. The 

return of the parental background questionnaire was voluntary in all states. 

Overall, 2885 questionnaires were returned – a parental background 

questionnaire return rate of 57.7%.  

Figure 4.2 compares the distribution of highest parental education in PISA 

201242 to the distribution of highest household education in the German 

socio-economic panel (SOEP) data in 2012 (Socio-Economic Panel, 2019). 

While the SOEP sample is different to PISA, as it covers the whole 

population, steps were taken to align the samples as closely as possible43. The 

 
41 The German report states a return rate of 82% but without any further breakdown/numbers 

and the official and publicly downloadable data contains information for more cases.  
42 Some responses are also missing due to item non-response, but missing data is driven in 

large parts by survey non-response, especially for the parents’ responses. 
43 Highest education was calculated for the adults, born between 1952 and 1982, of each 

household where an adult had at least lived in a household with a child at one point. This was 

done in order to get as close as possible to the sample of parents who could have had a 15-

year-old in 2012. The SOEP variable ‘pgisced97’ was slightly recoded to match highest 

parental education in PISA. 
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figure shows large differences between the PISA distributions and the one 

based on SOEP data. While the highest category stays roughly the same 

across all rows, in all other categories there are substantial differences. This 

is most prominent for Category 3 (ISCED 3B, C), which is mainly 

corresponds to apprenticeship in Germany. In PISA, only 12% of the students 

and 11% of the parents indicated that this was their highest education. In 

contrast, apprenticeship amounts to 37% in the SOEP sample. While the 

information based on the SOEP data clearly deviates from the PISA 

distribution, it is not necessarily unrealistic. The German statistical yearbook 

in 2012 (Statistisches Bundesamt, 2012; Chapter 3) states that an 

apprenticeship is the highest professional education for roughly half of the 

population. While that amount will decline slightly when looking at highest 

education in general (there are cases where the educational level of schooling 

is higher than an apprenticeship), the amount of apprenticeship as highest 

education will still exceed the 37% in the SOEP sample. Overall, while the 

SOEP data is not a representative sample of parents of 15-year-old students 

in Germany, it gives sufficient indication that the response and return rates in 

PISA are biased in terms of socio-economic background. 
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Figure 4.2 Distribution of highest parental education in Germany based on 

(i) student’s answers in the PISA dataset, (ii) parents’ answers in the PISA 

dataset and (iii) household data in the German SOEP dataset 

 

Note: Categories: 0 = Below ISCED 1; 1 = ISCED 1; 2 = ISCED 2; 3 = 

ISCED 3C, 3B; 4 = ISCED 3A, 4; 5 = ISCED 5B; 6 = ISCED 5A, 6. The 

student sample is based on 3936 students from the German PISA 2012 dataset 

(with the parental education variable coded as described in ‘4.3 Constructing 

and coding a valid socio-economic group measure’). The parent sample is 

based on 2832 parental background questionnaires from the German PISA 

2012 dataset (with the parental education variable coded as described in ‘4.3 

Constructing and coding a valid socio-economic group measure’). The SOEP 

data sample is displaying highest education in 19629 households, which were 

selected according to the following criteria: (a) person was not interviewed as 

child or youth of the household, (b) person born between 1952 and 1982, (c) 

one household member lived in a household with at least one child at one time 

point. Minor recoding of the SOEP variable ‘pgisced97’ was necessary in 

order to align it with the highest parental education in PISA. The planned 

assignment of parental highest education is used in this figure instead of the 

initially observed one (see Subchapter 4.4.3 for more information). 

 

4.4.3 Constructing and coding a valid socio-economic group measure 

In order to validly measure parental education in an international large-scale 

assessment, education needs to be on an internationally comparable scale. In 

PISA 2012, this was the ISCED 1997 scale. In the most straightforward case, 

students and parents would classify their education correctly as ISCED 
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categories. Yet, this is not feasible, as they are mostly only aware of their 

country-specific qualification and not the international ‘equivalent’ (ISCED 

classification). As a consequence, they are asked about the country-specific – 

German in this case – qualifications. These questions then need to be 

‘translated’ or more precisely recoded to the ISCED scale in order to facilitate 

international comparisons. The precise procedure for this in Germany is 

outlined in Mang et al. (2018, pp. 173–178).  

Errors in processing and coding in such situations are known as procedural 

errors in the total survey error framework. Indeed, when checking the 

(re)coding of the German questions to the international items, it became clear 

that a systematic error in the (re)coding occurred, as highlighted in Table 4.2. 

Importantly, these errors are present in the PISA 2012 public use PISA data 

files for Germany, downloadable from the OECD website. 

Table 4.2 Procedural error in highest parental education in the case of 

Germany: Comparison of the planned and observed assignment  

Variables in the German 

dataset ISCED level 

Planned 

assignment 

(Mang et 

al., 2018) 

Observed 

assign-

ment* 

DEU_ST1XN01𝜖 {8,9} Below ISCED 1 0 0 

DEU_ST1XN01 = 6  ISCED 1 1 1 

DEU_ST1XN01 𝜖 {3, 4, 5} ISCED 2 2 2 

DEU_ST1YA06 = 1 ISCED 3B, C 3 Ignored. 

DEU_ST1XN01 = 1  ISCED 3A, 4 4 4 

DEU_ST1YN05 = 1 ISCED 3A, 4 4 3 

DEU_ST1YN04 = 1 ISCED 5B 5 5 

DEU_ST1YN03 = 1  ISCED 5A, 6 6 6 

DEU_ST1YN02 = 1 ISCED 5A, 6 6 6 

DEU_ST1YN01 = 1 ISCED 5A, 6 6 6 

Note: X corresponds to 3 for the mother and 7 for the father. Y corresponds to 

14 for the mother and 18 for the father. The highest parental education is the 

highest score of mother and father. *These are the conclusions derived from 

comparing the variables in the German dataset to the recoded items in the 

international dataset. As a result, I cannot be 100% sure if this is what 

happened. According to the data, there were also a few minor exceptions 

where the values were set to missing due to plausibility checks, e.g. if no 

question about schooling was answered and no ‘lower’ professional education 

was ticked, but PhD was ticked as highest education.  
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As a result, while the two highest categories remain unaffected, the other 

categories experience changes as highlighted in Figure 4.3. The bar chart in 

the first row shows the proportions for highest parental education based on 

student answers as they can be found in the international PISA dataset (i.e. 

the observed assignment). In the row below, the corrected scale according to 

the official documentation (i.e. the planned assignment) can be seen. The 

comparison of these highlights how the proportion of parents in Category 3 

increased substantially, while the proportion in Category 2 was halved, if 

highest parental education is properly coded. Naturally, this will impact group 

comparisons, as the proportion of students within each category has changed 

substantially. In the last row, the bar chart of the highest parental education 

based on answers from a parent is displayed. There is no counterpart in the 

international dataset as it does not exist in the same detail, because the 

international parental questionnaire did not include the necessary questions. 

The more detailed German data allows us to compute a composite measure 

which can be compared to the measure for highest parental education based 

on the student answers.  
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Figure 4.3 Distribution of highest parental education in Germany for (i) 

observed students’ answers in the international dataset (with procedural 

error), (ii) students’ answers according to the planned assignment and (iii) 

parents’ answers using the planned assignment 

Note: Categories: 0 = Below ISCED 1; 1 = ISCED 1; 2 = ISCED 2; 3 = 

ISCED 3C, 3B; 4 = ISCED 3A, 4; 5 = ISCED 5B; 6 = ISCED 5A, 6. Sample 

size students = 3936. Sample size parents = 2832. The first row displays the 

observed assignment of highest parental education (student response) in the 

German PISA 2012 data. The second row displays the planned assignment 

according to the German scale manual (Mang et al., 2018) based on student 

responses. The third row displays the planned assignment according to the 

German scale manual (Mang et al., 2018) based on parental responses. 

 

The procedural error also impacts the average mathematics PISA scores for 

each parental education group, as shown in Figure 4.4, with all affected 

categories experiencing change. With the exception of Category 3 (ISCED 

level 3B, C), mathematics achievement dropped. Thereby, Category 2 

(ISCED level 2) had the largest decline with 29 points, while the average 

achievement rose by 12 points in Category 2. 
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Figure 4.4 Comparison of average mathematics achievement of the highest 

parental education group based on the observed scale in PISA and based on 

the planned (and corrected) assignment 

 
Note: Categories: 0 = Below ISCED 1; 1 = ISCED 1; 2 = ISCED 2; 3 = 

ISCED 3C, 3B; 4 = ISCED 3A, 4; 5 = ISCED 5B; 6 = ISCED 5A, 6. Group 

means were computed using plausible values and accounting for sample 

weights. 

 

In the international report in PISA 2012, one important predictor of disparity 

between socio-economic groups is the difference in achievement of students 

with highly skilled parents in comparison to students with low-educated 

parents (OECD, 2013, pp. 38, 40, 189). This is computed through the mean 

difference between students with at least one parent who completed ISCED 

Level 5 or 6 (Categories 5 & 6) and students where the highest parental 

education is ISCED Level 2 (Categories 0-2). The mean difference is 62 

points in Germany when using the observed scale from the official published 

PISA dataset, whereas it is 92 points when the errors are corrected. This leads 

to a substantial underestimation of the gap between students with high-

educated parents and low-educated parents by 30 PISA points (or, 

equivalently, the gap has been underestimated by almost 50%). When using 

the flawed scale, Germany ranks 24th in an international comparison of 

parental education achievement gaps (OECD average = 77 points), but it 

drops substantially to 56th place based on the corrected scale. 
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4.4.4 Item non-response 

For roughly 20% of the students, no data is available about highest parental 

education. Overall, Germany has the highest proportion of missing data (on 

student reported parental education levels) by far. The next highest amount 

of missing data occurs in the Netherlands with 8.6% and the OECD average 

is substantially lower (3.8%). But, on the upside, Germany administered the 

parental background questionnaire, so additional information is available in 

comparison to most other countries, which can also be used to investigate 

missing student data further. The missing data in Germany can occur through 

two pathways: (i) the student and parent(s) did not return the questionnaire – 

survey non-response covered in Section 4.4.2 – or (ii) items relating to 

parental education were not answered validly or skipped – item non-response. 

This is illustrated in Figure 4.5, highlighting the different pattern between 

students and their parent(s). In general, survey non-response is the prevailing 

reason for missing data. It becomes obvious that far fewer parental 

background questionnaires were returned, but most (98%) of those that did 

provided a response to the question about parental education. For the students, 

I have substantially more information available overall (for 79% of 

observations highest parental education data is available). The missing data 

(the remaining 21% for students) had a higher proportion of missingness due 

to item non-response than for the parents – but still about a third of 

missingness was caused by item non-response (and two-thirds by survey non-

response).  
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Figure 4.5 Percentage of different types of missing data for highest parental 

education in the student and parent background questionnaire  

Note: Student sample is 5001 with 381 item non-response and 684 survey 

non-response. The parental sample is 5001 with 53 item non-response and 

2116 survey non-response.  

 

Table 4.3 shows that mathematics achievement is higher on average in the 

cases where students or parents answered questions about highest parental 

education. Achievement was at least 36 points (or more than a third of the 

PISA standard deviation) lower when no information was available. 

Furthermore, in both cases item non-response, i.e. actively choosing not to 

answer the questions relating to parental education, was associated with even 

lower scores than survey non-response, i.e. choosing to not return the 

questionnaire at all. By far the biggest difference is between parents with 

valid answers and parents with item non-response. While the mean 

achievement is based on a small sample size (n=53)44, it is still indicative of 

the direction and magnitude of potential bias and fits the overall picture.  

 

 
44 The sample size is small, as most parents answered all questions if they chose to return the 

questionnaire.  



128 

 

Table 4.3 Mathematics achievement conditional upon whether questions 

about parental education were answered or survey or item non-response 

occurred 

 Average mathematics achievement 

when the 

 student 

response is… 

parent   

response is… 

… available 522  532 

… missing (survey non-response) 486 490 

… missing (item non-response) 473 448 

Note: Group means were computed using plausible values and accounting for 

sample weights. Sample sizes from top to bottom, then left to right: 3936, 

684, 381, 2832, 2116, 53.  

 

Another way of looking at potential bias is comparing the distribution of 

highest parental education based on students’ responses where I have 

information from both students and parents to those where I only have the 

students’ responses – and vice versa. Overall, I have information from both 

parties for half of the cases. For roughly another quarter (28%), I have 

information from the student but not the parents. The opposite direction 

(parents answered questionnaire and items, but students did not) was only 

present in 3% of the cases. Figure 4.6 displays the differences in the 

distribution of highest parental education between these groups (response of 

the common party is used, e.g. student answer for response from student only 

versus response from student and parent available). It becomes obvious that 

the distributions differ depending on whether one or both parties have 

information available, with most categories experiencing noticeable 

deviations. In general, parental highest education was lower if either the 

parent or student did not provide an answer. The proportion of students with 

high-educated parents was higher if both parties answered, whereas the 

proportion of students with low-educated rose if only one party answered. 

This is a strong indicator that missingness does not occur (completely) at 

random. Estimates of socio-economic inequalities based upon this variable 

are hence likely to be subject to some bias, though the exact magnitude of this 

bias is hard to determine with the data available. 

 



129 

 

Figure 4.6 Distribution of highest parental education based on whether 

information is available from both parties or just one  

 

Note: Categories: 0 = Below ISCED 1; 1 = ISCED 1; 2 = ISCED 2; 3 = 

ISCED 3C, 3B; 4 = ISCED 3A, 4; 5 = ISCED 5B; 6 = ISCED 5A, 6. The 

sample size of students with information about parental education from both 

parties is 2658, with information from students only is 1278 and with 

information from parents only is 174. The planned assignment of parental 

highest education is used in this figure instead of the initially observed one. 

 

4.4.5 Measurement error: Agreement of parents and students  

Germany was one of only 10 countries that administered the parental 

background questionnaire in PISA 2012. As they asked students and parents 

the same questions about parental education, I can evaluate the level of 

agreement between those two. Table 4.4, a cross-tabulation between parent 

and student responses, shows that students do indeed report their parents’ 

education level with error (assuming that parents know and reveal their ‘true’ 

level of education). Out of the 2658 cases where I have information from both 

parties, only 1376 – slightly more than half of them – selected the same 

category.  In total, 540 students assumed that their parent(s) had a higher level 

of education than they stated, while the other 742 thought the opposite. In 

general, there is no clear evidence in Table 4.4 that students provide an answer 

‘close’ to (i.e. within one category) of their parents’ answer. Overall, the 

polychoric correlation is 0.656, with the Kappa statistic (a measure of inter-

rater reliability that takes into account chance agreement) standing at 0.36. 

While these values are generally considered fair, they mainly refer to 
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agreement over single items in a test. Parental education is used as a grouping 

variable and to derive measures of inequality. These measures can change 

dramatically depending on the respondent. Therefore, to get robust and 

consistent results it would be desirable that agreement between students and 

parents is higher and thus realistically depicts their families’ socio-economic 

status.  

Table 4.4 Crosstab of the students’ and parents’ responses for highest 

parental education 

   Student response 

  0 1 2 3 4 5 6 Total NA 

Parent 

response 

0 7 1 1 0 2 0 0 11 6 

1 1 2 2 0 0 1 1 7 1 

2 3 0 31 20 14 8 7 83 15 

3 1 1 42 83 104 40 14 285 26 

4 1 1 69 148 313 131 75 738 57 

5 0 0 37 59 150 251 119 616 36 

6 1 0 17 9 140 62 689 918 33 

Total 14 5 199 319 723 493 905 2658  

NA 26 2 186 147 322 230 365  894 

Note: Categories: 0 = Below ISCED 1; 1 = ISCED 1; 2 = ISCED 2; 3 = 

ISCED 3C, 3B; 4 = ISCED 3A, 4; 5 = ISCED 5B; 6 = ISCED 5A, 6. NA 

stands for missing data. The planned assignment of parental highest education 

is used in this table instead of the initially observed one. 

 

Returning to the previous illustration of bias using the mathematics gap 

between students with high- and low-educated parents, there are changes 

depending on whose response for highest education is used. After restricting 

the sample to those with valid information on highest parental education from 

both students and parents, the gap in mathematics achievement is 89 points 

using students’ responses, but 116 points when using parental responses. This 

is an increase of more than 25 points (approximately a quarter of a standard 

deviation). Assuming that parents know their own education better than their 

children, this shows that the gap is severely underestimated when using 

students’ reports. Yet, Germany is one of the few countries where information 

from both parents and students is available at all, and where in turn the 

difference can be investigated. Even for the countries which administered the 

parental questionnaire, comparable ISCED measures based on students’ and 
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parental response are not available in the official published dataset. Similar 

bias may occur in other participating countries but cannot be detected.  

4.4.6 Plausible value computation 

In addition to other sources, plausible value computation can also lead to bias. 

The conditioning model (see ‘4.2.6 Socio-economic measures and the 

construction of ILSA test scores’ and ‘4.3.5 Method of plausible value 

computation’ for details) is used to counteract possible attenuation in group 

comparisons. As a result, when conditioning is not conducted or based on 

incorrect information, bias is introduced. 

I illustrate this using an oversimplified exemplary plausible value 

computation and subsequent analysis: first, computing three sets of plausible 

values (including or excluding different information on highest parental 

education) and second, analysing the gap between students with high- and 

low-educated parents. Thereby, I want to show the difference in gaps that 

stems just from using the students’ responses to the parental education 

questions versus using the parental responses in the conditioning model. 

Again, I reduced the sample to students with information about highest 

parental education from both parties. I then compute the three different sets 

of plausible values based on three different conditioning model 

specifications:  

0. No conditioning 

1. Only highest parental education based on the students’ responses (no 

other variables) 

2. Only highest parental education based on the parental responses (no 

other variables) 

After drawing the plausible values, the gap in mathematics achievement 

between students with high- and low-educated parents is computed and stated 

in standard deviations,45 which are shown in Table 4.5. The first column 

 
45 The gaps are reported in effect sizes and not PISA points because the plausible values are 

not automatically computed on the PISA scale and correctly transforming them on the scale 

would be disproportionately time-consuming and complex. The standard deviation of 

mathematics in PISA 2012 is 96 points for Germany.  
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shows the gap when the grouping (high-/low-educated parents) is based on 

students’ responses, while the second grouping uses parental responses. The 

rows correspond to the different conditioning model specifications. As 

expected, the effect sizes are smallest when no conditioning is applied and 

rise as soon as any measure of highest parental education is included in the 

model. Yet there are differences between the results from conditioning model 

(1) and (2) which are solely attributed to the different variables in the latent 

regression. For the gap based on students’ responses, the impact is 0.02 

standard deviations (or around 2 points in PISA) and for the gap based on 

parental responses it is 0.11 standard deviations (or around 11 points in 

PISA). Overall, this shows that it matters both (a) whether the grouping 

variable (parental education in this instance) is included in the conditioning 

model and (b) whether there is potential measurement error within this 

variable.  

Table 4.5 Difference in standard deviation between students with high- and 

low-educated parents based on different conditioning models and grouping 

variables 

Conditioning model  
Grouping variable based on 

Students’ response Parents’ response 

0. No conditioning  0.72 1.10 

1. Students’ response 0.75 1.17 

2. Parents’ response 0.77 1.28 

Note: In the first row, no conditioning was used, i.e. only IRT. In the other 

two rows, the conditioning model only included a single variable each: 

Highest parental education (corrected scale) based on the students’ response 

in the second row and based on the parents’ response in the third row. Only 

students who had valid information from both parties were included in the 

analysis. The effect size is the mean difference between students whose 

parents had at least ISCED 5 as highest education and those with parents with 

ISCED 2 as highest education and divided by the pooled standard deviation. 

The classification between high- and low-educated parents was either done 

based on the student’s response or parent’s response. The planned assignment 

of parental highest education is used in this table instead of the initially 

observed one. 

 

4.5 Conclusions & recommendations 

The influence of ILSAs, such as PISA, has increased over time. They have 

long become an important part in national and international education debates 
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and as a result, a tool in education policy decision-making. Therefore, it is of 

great importance that the data underlying ILSAs has a solid foundation. Yet, 

this is not always guaranteed. The data and methodology can be biased at 

different points in the process, from sampling through to the derivation of the 

plausible values. This, in turn, may bring into question the robustness of the 

results.   

While there are many studies focusing on one single (potentially) problematic 

aspect of PISA, few have taken a broader, more comprehensive perspective. 

As a result, investigations are more in-depth, but fail to show the total picture 

of things to consider and set into reference. The aim of this chapter has been 

to start to fill this gap, thus fostering a deeper understanding about various 

psychometric and statistical properties of PISA. This has been done within 

the total survey error framework, identifying multiple aspects that can 

potentially impact upon country measures, via a case study of socio-economic 

status differences (measured via highest level of parental education) in 

Germany.  

Specifically, six different statistical and psychometric properties of PISA 

have been considered. First, the target population and its sampling have been 

inspected in terms of non-coverage rates. Second, school response and student 

attendance as well as questionnaire return rates are analysed to judge quality 

of the sample selected. Third, the construction and coding of the ISCED 

measure has been checked for underlying (procedural) errors. Fourth, I have 

investigated whether there is evidence of selective item non-response to 

questions students are asked about their parents’ education. Fifth, the 

agreement between students and parents about parental education levels has 

been investigated to consider whether measurement error may affect the 

results. Sixth, I have also investigated whether (potentially) biased socio-

economic background measures impact PISA test scores solely through the 

computation of plausible values.  

My analyses show that some – although not all – of the above have a 

substantial impact. For instance, comparing the (more detailed) German 

national data on parental education to the (less detailed) OECD categorisation 
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illustrated how a procedural error occurred when information was recoded 

into the ISCED scale. As a result, many parents were falsely classified as low-

educated even though they completed an apprenticeship, widely considered 

to be a good, solid level of education in Germany. This affects all analyses 

using parental education, e.g. the gap between students with high- and low-

educated parents rose from 62 to 92 PISA points due to this coding error 

alone. Another aspect is survey and item non-response rates. Just above 80% 

of the sampled students completed the test and the questionnaire, with some 

also missing data to single items. Analyses showed that student achievement 

is typically lower when ISCED data is missing. The same holds true for 

parental education of students with information from only one party in 

comparison to students with information from students and their parents. 

Where the information was available, students’ and their parents’ responses 

were used to compare their agreement on parental education. Just about half 

of them agreed and no clear pattern was found to explain the differences. Yet, 

if used as grouping, it is vital that students act as good proxy respondents for 

their parents. Yet this is not the case, meaning that, in Germany, the gap 

between students with high- and low-educated students differs by 25 points 

(0.25 standard deviations) depending upon whether student or parental reports 

are used. On the other hand, although the computation of the PISA plausible 

values can lead to some bias in parental education group comparisons, the 

impact of these were relatively small. Nevertheless, my overall interpretation 

of results is that comparisons of achievement differences by parental 

education level in Germany using PISA do not appear to be particularly 

robust.  

ILSAs, such as PISA, are large and complex studies which administer 

hundreds of test and background questions to students. I acknowledge that it 

is not feasible to examine every background variable in each country as 

closely as I did in this case study. Nevertheless, this study poses important 

questions about the reliability of background variables in PISA and whether 

they should be used as ‘blindly’ as they currently are.  

This leads me to two key recommendations. First, better communication of 

potential issues and troublesome aspects is needed. The limitations about the 
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background data should be more thoroughly investigated and the caveats 

articulated. This should ideally be accompanied by a brief guide about 

different psychometric and statistical aspects as well as ways to check for 

potential pitfalls. Second, many researchers often come across issues with the 

background variables they use. As a result, they either decide to use another 

variable or briefly note it somewhere in their paper. It would be of great 

benefit if such information could be easily shared with other data users. One 

idea would be a log or database on the PISA data homepage, where concerns 

can be raised unbureaucratically. Whether these claims are maintained or 

verified by the OECD or not, it would be valuable information to other 

researchers, especially for countries or variables that they are unfamiliar with. 

While this chapter aims to show different sources of bias and is set in the 

framework of total survey error, I do not claim to look at all potential issues 

with the data. This study serves as a review and attempts to shed light on some 

infrequently discussed psychometric and statistical properties that can 

potentially influence secondary analyses and results. A single-country case 

study has been presented to facilitate an in-depth investigation, with different 

aspects likely to change in other settings. Nevertheless, this chapter highlights 

the importance of conducting such detailed investigations and how they can 

be systematically approached.  
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5 Conclusions  

5.1 Key findings 

The Programme for International Student Assessment (PISA) is a triennial 

international large-scale assessment (ILSA) that aims to comparably assess 

student achievement of 15-year-olds all around the world and over time in 

mathematics, science and reading. It has long become an important tool of 

soft governance and influences the discussions about education, policy 

decisions and daily school life. As a consequence, the PISA scores and results 

as well as the underlying methodology must be valid and sound. Yet, criticism 

surfaces time and again. While some raise ethical concerns and doubts about 

the interpretation of the results in general, several methodological aspects 

have also been questioned. This thesis adds to this literature, providing new 

insights into different statistical and psychometric properties of PISA.  

Chapter 2 ‘Conditioning: How background variables can influence PISA 

scores’ closely scrutinises the process of achievement score estimation in 

PISA. This is a multi-step procedure, called ‘conditioning’, and is a 

combination of an item response theory model and latent regression. I focus 

on investigating the impact that background variables can have on PISA 

scores via the conditioning model. As a starting point, I try to replicate the 

PISA 2012 plausible values as closely as possible using the official 

documentation and the published data. Afterwards, I systematically vary the 

background variables included in the conditioning model to gauge the impact 

they have upon PISA scores. My key findings are:  

• The official technical documentation is not detailed enough to allow 

exact replication of the scores. This lack of open science does not help 

facilitate independent attempts to scrutinise the conditioning model 

and its properties.    

• Close replication of PISA country average scores was successful in 

the major domain, but only to a lesser degree in the minor domains, 

especially reading.  

• The exact specification of the conditioning model matters:  
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- Country averages are robust for mathematics and science, but 

background variables have more impact on reading.  

- The 90th–10th percentile gap, a common measure of inequality, 

is substantially impacted by the conditioning model 

specification in all three domains.  

- Gender gaps are robust, with very few exceptions, to the exact 

specification of the conditioning model – as long as gender is 

included.  

- The impact varies across countries and domains. 

• As no official robustness checks and justifications of the specification 

of the conditioning model are published, certain PISA results should 

be considered and used carefully, especially in the minor domains.  

Chapter 3 ‘The effect of background variables and design choices on student 

achievement scores: A simulation study based on PISA 2012’ further 

investigates the conditioning model, though focusing on different properties 

of the data used in the process. More specifically, I am interested in the way 

that the background variables are prepared for conditioning, whether it 

matters if all students are administered questions in all domains (something 

which is not done in PISA) and the impact if all students were to answer all 

background questions instead of a subset. To approach these research 

questions, a simulation study based on the PISA 2012 test design and data is 

conducted. This allows me to investigate questions that would not be 

otherwise possible. My key results are: 

• The simulation study confirms that the conditioning model matters:  

- In general, bias decreases when conditioning is applied.  

- Yet, depending on the exact conditioning model specification, 

bias can remain present in distinct ways, especially in the 

minor domains.  

- Bias tends to be larger on average in the minor domains.  

- In this setting, one variable – booklet ID – introduces 

substantial bias, especially in reading. 



138 

 

• It is not important how the variables are prepared, i.e. whether or not 

a principal component analysis is conducted prior to conditioning in 

order to reduce the dimensionality of the background variables.  

• Bias is much smaller for students who answer questions in all test 

domains.  

• The impact of the background questionnaire design (whether or not 

all students were administered all questions) is negligible.  

Chapter 4 ‘Group comparisons in PISA: What can go wrong along the way? 

A case study of differences in achievement by parental education in Germany 

aims to show a more comprehensive picture of potential sources of bias that 

can impact student achievement scores through different pathways. The 

following six statistical properties that can potentially influence PISA scores 

and group comparisons are identified and investigated:  

1. Target population and sampling rates, 

2. Survey non-response, i.e. school and student non-response rates as 

well as questionnaire return rates,  

3. Item non-response, 

4. Construction and coding of valid international scales,  

5. Validity of students acting as proxy respondents for their parent(s),  

6. Usage of background variables in the conditioning model.  

In order to facilitate in-depth investigations of the six aspects, a case study of 

the impact on group comparisons is conducted: Highest parental education in 

Germany in PISA 2012. The official published PISA 2012 data, the more 

detailed German national version (available upon request) and the German 

Socio-Economic Panel (SOEP) data are used in this study. The key findings 

are:  

• While not all of the areas investigated introduce substantial bias, some 

did.  

• In Germany, the target population equals the complete population of 

15-year-olds. The non-coverage rate of 2.6% is small and has little 

potential impact. 
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• While school and student response are comparatively high in 

Germany, questionnaire return rates are low. Overall, only 80% of the 

students and just above half of the parents returned their 

questionnaire. 

- Comparisons of PISA and SOEP data showed substantial 

differences between the distributions of highest parental 

education in the samples.  

• While survey non-response was more frequent than item non-

response for highest education, both occurred in the data.  

- Non-response is related to both highest parental education and 

student achievement and thus introduces bias into 

comparisons.  

• Errors in coding the national qualifications onto the international scale 

for highest parental education are found. As a result, half of the low-

educated parents in the published PISA dataset were incorrectly 

classified as such. 

- Achievement gaps between students with high- and low-

educated parents were attenuated by 30 PISA points.  

• Just above 50% of students and parents agreed on highest parental 

education. 

- Group comparisons differ by more than 25 points depending 

on whose response it is based on.  

• Bias is introduced into group comparisons through the conditioning 

model when the background variables are measured with error. 

However, the magnitude of the bias is relatively small.  

5.2 Overarching contribution 

The three main chapters provide multiple important findings for different 

psychometric and statistical methods and properties using different 

approaches. However, they all have a common goal: to shed new light on the 

methodology and properties behind PISA, and how this then influences the 

PISA scores. Each individual study provides new detail from alternative – yet 

complementary – perspectives. Three common contributions emerge: 
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1. Adding to the literature 

All three studies deal with parts of the PISA methodology that have received 

comparatively little attention so far. As a result, each chapter already adds to 

the literature on its own, but they also make a valuable contribution when 

taken together. As they highlight, it is important to investigate issues both 

from a detailed and a comprehensive perspective. In-depth investigations 

foster a deeper understanding of the workings behind a specific aspect of 

PISA. Analyses from a broader view can examine the cumulative impacts of 

different issues on the outcomes. This thesis therefore adds new knowledge 

to the literature about the conditioning model specification, different 

properties surrounding the conditioning model and more general statistical 

properties which affect the validity and comparability of PISA scores. This 

can be used to show a complete picture, highlighting how these different 

aspects are intertwined, and – in some situations – need to be considered 

simultaneously. Together, they demonstrate how PISA is complex, with 

issues arising across several different areas which may potentially introduce 

bias into student scores.  

Revisiting the key literature of Chapters 2-4, I want to highlight how this 

thesis adds and relates to the existing literature in detail. Thereby, Chapter 2 

and 3 both address the conditioning model in PISA and therefore mostly have 

joint key literature and contributions. While the fourth chapter also deals with 

methodological aspects in PISA, it adds to the literature in a different way. 

The key background literature to Chapter 2 and 3 is the PISA 2012 technical 

report, which describes the technical details, i.e. how the PISA scores are 

computed among others. This thesis, thereby, adds to the literature by 

challenging some of the decision and characteristics, while also describing 

the procedure used to derive achievement scores in a clear and (hopefully) 

digestible way. The same cannot be said for the official documentation which 

spreads information across chapters, buries them/the details in text, 

appendices and technical language, if they are available at all. Furthermore, 

no justification or reasoning behind decisions are given which I highlight and 

question in those two chapters.  
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Other studies have also looked at the estimation of student achievement in 

PISA but with a different focus and aim. For those two chapters, the papers 

from Kreiner & Christensen (2014) and Rutkowski (2014) are the key 

previous studies. Kreiner & Christensen (2014) investigate the fit and validity 

of the PISA model as a whole. Thereby, they focus on one domain and the fit 

of the IRT model (but including conditioning to some degree). They found 

misfit and DIF which challenges the validity of the PISA results. The topic of 

appropriate IRT model choice model choice has also received attention from 

other researchers and points of views (e.g. Jerrim et al., 2018; Wuttke, 2007). 

While I also investigate the validity of the PISA scores, my focus is distinctly 

different – namely on the impact of the conditioning model, which they do 

not investigate. Rutkowski (2014) also focuses on the conditioning model 

using a simulation study and thereby showed how sensitive it is. But in 

comparison to my studies, while she motivates her study with the example of 

PISA, she uses a more general, constructed approach to highlight specific 

points. The joint contribution of the two chapters is to show that the selection 

of background variables in the conditioning model has an impact on the PISA 

scores and can bias results.  

Chapter 3 has some additional interesting results regarding the (test) design 

of the cognitive assessment and the background questionnaire. One is the 

finding that asking students questions in all domains can help to reduce bias, 

especially in the minor domains. While it is a rather evident result, it adds an 

important point to the literature, as it can have a major impact on results and 

minor domains is a controverse unique feature of PISA. This finding is 

especially interesting in combination with the observation that it does not 

matter as much if the background questionnaire has a complete design or not. 

Thereby, there is no clear consensus in the literature: Adams et al. (2013) 

reach similar conclusions, whereas von Davier (2013) argues against 

(theoretically) against its use.  

Revisiting the literature regarding the fourth chapter, this thesis also makes a 

valuable additional contribution to the literature. While it is common in other 

areas of surveys to regard potential source of bias in the light of the Total 

Survey Error framework, it is the exception in ILSAs. The only other study 
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which comprehensively discusses different statistical and psychometric 

sources of error in PISA is Schnepf (2018). She thereby holistically describes 

different aspects which can potentially bias PISA results, but often in a more 

theoretical way without any analysis. Chapter 4 is in line with Schnepf (2018) 

by acknowledging and agreeing with the different sources of error and the 

importance of investigating them. But it differs in its approach; one of the 

main contributions of Chapter 4 is the use of real-life data to highlight and 

quantify the impact by using a case study consistently. Indeed, the case study 

shows that PISA 2012 data should not be used for comparisons of highest 

parental education in Germany, because multiple aspects cause bias. Those 

aspects have been covered in the literature before but only as isolated issues. 

(e.g. Jerrim & Macmillan, 2015; L. Rutkowski, 2014; see Chapter 1.3 and 4.2 

for more). The contribution is to show both that these issues persist in the data 

and how multiple aspects exist at once and how they are connected. 

2. Raising awareness for potential impact 

With this thesis, I do not only want to contribute to the highly specialised 

academic debate surrounding the estimation of PISA scores and results, but 

also to reach non-expert audiences. Thereby, I intend to foster an 

understanding of the way achievement scores are estimated and how and why 

they can be affected. While I state formulae and try to be formally correct, I 

also aim to use language and examples that make my findings easy to 

communicate. The analysis strategies (real-life data, simulation and case 

study) are chosen in order to give different perspectives on the workings and 

potential impact in clear ways. Food for thought and recommendations for 

different audiences consequently emerge (e.g. input for study makers about 

the implications of different study designs). Overall, an appeal for carefulness 

about the implications and limitations of PISA are raised for all consumers of 

this data – academic and non-academic.  

3. Calling for transparency and scrutiny  

Throughout the thesis, issues of transparency and replicability have surfaced. 

The lack of sufficiently detailed documentation – and published code – makes 

it hard for independent researchers to scrutinise certain aspects of the PISA 
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methodology. While the official technical documentation describes the basics 

and ideas behind PISA, many properties, computational details and decisions 

are just described as given without explanation, or simply not stated at all. In 

a first step towards more transparency and reproducibility, I have published 

my code to allow researchers to judge my research on their own and reuse it 

if they want (Zieger, 2021), yet the OECD does not currently do the same. 

Many properties, which can potentially influence the PISA scores and results, 

are presented without justification or robustness checks, which hinders the 

examination of data quality and validity, especially for non-specialists. Such 

investigations and robustness checks require large amounts of technical 

knowledge, computational effort and time. It is absolutely vital that threats to 

the validity and comparability of PISA scores and results, which are used 

worldwide, are transparently and comprehensibly communicated to 

researchers, policy-makers, stakeholders and the media. This thesis shows 

how those threats come into existence. 

 

While those three overarching contributions are all valid and important, their 

relevance and application vary for different audiences. Looking at the whole 

picture, different recommendations emerge for different audiences – 

academia, test makers and the general public.  

The key point for academia is the relevance and potential impact of different 

psychometric and statistical properties in PISA. While other aspects also 

influence and bias the scores, those topics should be overlooked or ignored. I 

showed that those aspects can have an important impact on PISA results. 

Some much-needed further research is described in the next subchapter. I also 

urge researchers to be more outspoken about and involved in the open science 

movement, especially when dealing with such complex situations.  

Test makers can benefit from food for thought from this thesis. Some results 

show interesting leverage points (e.g. free up space by using incomplete 

background questionnaire designs for additional items) which should be 

considered carefully and kept in mind, if not implemented. Furthermore, this 

thesis clearly highlights the need for better communication on multiple levels 
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– better technical documentations for ‘expert audiences’ and more transparent 

and prominent descriptions what the data can and cannot do as well as an 

explanation of potential drawbacks and impact for ‘general audiences’.  

My recommendation for the general public is to take everything with a pinch 

of salt and thinking critically before taking all the (media) reports at face 

value. Challenge the inferences drawn from PISA and whether this is the best 

data available. While it might not be perfect, it is the most comprehensive and 

best data in various situations. Yet, it should always be treated care and a 

healthy dose of doubt instead of as the pure truth.  

5.3 Limitations 

While I believe that this thesis makes valuable contributions to both the 

academic literature and general debates about PISA and its use, this research 

is also not without its limitations.  

First, all studies are applied in a specific setting that either uses real-life data 

or is closely based on real-life data and design. This is not necessarily 

negative, as it allows for more detailed investigations into the setting and 

situations, but it does come with limitations. Most notably, the 

generalisability of findings outside of the specific setting investigation may 

be limited. In this thesis, all chapters have been based on PISA 2012 due to 

its interesting design and particularly rich data available. Yet, ILSAs differ in 

certain specific characteristics and change over time. As a result, findings 

may not be directly transferable to other settings (e.g. other ILSAs). They can 

nevertheless raise awareness of key aspects surrounding the methodology, 

potential biases and the associated implications for cross-national 

comparability. 

Second, while I spent great time, effort and care to align the methodology in 

this thesis as closely as possible to the procedures used in PISA 2012, I cannot 

rule out some differences remaining. In Chapter 2, I tried to replicate the 

official PISA scores and found that the official technical documentation does 

not contain all computational details and relevant information. Although my 

replication of the PISA 2012 scores was very close to the reported values, the 

correlation was not perfect. As Chapter 3 is based on the same methods as 
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Chapter 2, the problems due to the lack of documentation also apply there. 

Additionally, I found in Chapter 4 that details (numbers and descriptions) in 

the technical reports do not always match between the national and 

international documentation. Overall, the lack of complete documentation 

and publicly accessible replication materials is an important – and 

underappreciated – limitation of PISA (and, indeed, potentially for other 

ILSAs as well). 

Third, it was not always feasible to conduct the whole student achievement 

score process as implemented in PISA. In all three chapters, I did not compute 

some of the many steps myself – but rather used information published by the 

OECD in their technical reports (e.g. published estimates or formulae) as my 

starting point. For instance, I have not recomputed the scale transformation 

(a linear transformation) to allow my scores to be placed upon the PISA scale 

over time (as I have not undertaken cross-cycle comparisons). While this 

might have impacted absolute differences between official and self-computed 

scores, relative analyses, such as correlations and rankings, are not affected 

by such issues. Relatedly, one caveat in Chapter 3 is that it was not feasible 

to simulate the organisational structure of the PISA data (i.e. students nested 

within schools).  

5.4 Future research 

This thesis has generated new knowledge and insights into the process behind 

PISA scores and results. Yet while it started to shine new light on some 

aspects, much further work is needed. Indeed, this research did not only lead 

to new insights, but also to new research questions and ideas. 

The need for future research into the achievement score computation clearly 

comes through. Chapter 2 and Chapter 3 showed the importance of the 

conditioning model and the properties surrounding it. However, little research 

is conducted on that matter. It would be interesting to compare this research 

based on PISA 2012 to similar new research based on other situations, such 

as other cycles or other ILSAs which come with a different set of 

specifications and properties. Since the establishment of PISA, the test 

designs and methodologies are constantly developing. It is therefore of great 
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importance that research keeps up to date, especially as new technologies – 

such as computer adaptive testing – are becoming increasingly used. Different 

ILSAs integrate these advancements into their methodologies in different 

ways. This thus adds new dimensions to student achievement estimation and 

conditioning which should be closely scrutinised. 

The findings from Chapter 3 illustrate how bias could be substantially 

reduced if all students are administered questions in all domains. In contrast, 

the impact of the background questionnaire design was negligible. Yet most 

ILSAs currently use a complete background questionnaire design. As a result, 

it would be interesting to further examine different scenarios derived from 

these findings. For instance, the background questionnaire design from PISA 

2012 could be adapted in other cycles and studies in order to include new 

topics in the student background questionnaire. If simulations and pilot 

studies confirm this, it could add additional value to the data. 

Chapter 4 concerns itself with different properties and aspects in the broader 

picture of PISA which can potentially introduce bias into the scores and 

results. This draws on the total survey error framework. While I do not claim 

to capture the (complete) total survey error of PISA, I investigate multiple 

sources of bias, with little other research done on this topic for ILSAs. Further 

research on this matter would be hugely beneficial to gauge the quality and 

validity of ILSA data. Potential future research approaches could involve 

more detailed, currently not-published data from the OECD, such as 

information about non-participating schools and students. Another way to 

examine bias in the scores and results related to different statistical and 

methodological properties is to link the PISA data to national administrative 

(school and student) data. 
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A Appendices Chapter 2 

A.1 Which countries participated to what extent in PISA 

2012? 

As explained in the main body of the chapter, countries only had to administer 

the core domains as well as the student and school questionnaire. 

Furthermore, countries could opt to administer various additional domains 

and/or questionnaires. Table A.1 shows the extent of the countries’ 

participation and their sample size. In PISA 2012, 44 countries also 

administered collaborative problem solving (PS) and 32 countries digital 

reading and mathematics (DRM). In terms of questionnaires, 23 administered 

the educational career (EC), 42 the information communication technology 

(ICT) and only 11 the parental questionnaire (Par). The PISA scaling model 

uses all available information for a country. 

  



148 

 

Table A.1 Overview of countries participating in PISA 2012 in the different 

domains and questionnaires as well as their sample size in the core domains 

   Domain Questionnaire  

Country Abbr. n PS DRM Par ICT EC EB 

Albania ALB 4743       

United Arab 

Emirates ARE 11500 X X    X 

Argentina ARG 5908      X 

Australia AUS 14481 X X  X X  

Austria AUT 4755 X X  X X  

Belgium BEL 8597 X X X X X  

Bulgaria BGR 5282 X     X 

Brazil BRA 19204 (X) (X)    X 

Canada CAN 21544 X X  X   

Switzerland CHE 11229     X  

Chile CHL 6856 X X X  X X 

Colombia COL 9073 X X    X 

Costa Rica CRI 4602     X X 

Czech Republic CZE 5327 X    X  

Germany DEU 5001 X X X X X  

Denmark DNK 7481 X X  X X  

Spain ESP 25313 (X) (X)   X  

Estonia EST 4779 X X   X  

Finland FIN 8829 X   X X  

France FRA 4613 X X     

United Kingdom GBR 12659 (X)      

Greece GRC 5125     X  

Hong Kong 

(China) HKG 4670 X X X X X  

Croatia HRV 5008 X  X X X  

Hungary HUN 4810 X X  X X  

Indonesia IDN 5622       

Ireland IRL 5016 X X  X X  

Iceland ISL 3508     X  

Israel ISR 5055 X X   X  

Italy ITA 31073 (X) (X) X X X  

Jordan JOR 7038     X X 

Japan JPN 6351 X X   X  

Kazakhstan KAZ 5808      X 

South Korea KOR 5033 X X X X X  

Liechtenstein LIE 293     X  

Lithuania LTU 4618       

Luxembourg LUX 5258    X   

Latvia LVA 4306    X X  

Macao (China) MAC 5335 X X X X X  

Mexico MEX 33806   X  X X 

Montenegro MNE 4744 X      

Malaysia MYS 5197 X      

Netherlands NLD 4460 X    X  
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   Domain Questionnaire  

Country Abbr. n PS DRM Par ICT EC EB 

Norway NOR 4686 X X   X  

New Zealand NZL 4291     X  

Peru PER 6035      X 

Poland POL 4607 X X   X  

Portugal PRT 5722 X X X X X  

Qatar QAT 10966       

Shanghai 

(China) QCN 5177 X X  X X  

Romania ROU 5074      X 

Russian 

Federation RUS 5231 X X   X  

Singapore SGP 5546 X X  X X  

Serbia SRB 4684 X   X X X 

Slovak Republic SVK 4678 X X  X X  

Slovenia SVN 5911 X X  X X  

Sweden SWE 4736 X X   X  

Chinese Taipei TAP 6046 X X   X  

Thailand THA 6606       

Tunisia TUN 4407      X 

Turkey TUR 4848 X    X  

Uruguay URY 5315 X    X X 

United States of 

America USA 4978 X X     

Vietnam VNM 4959      X 

Note: Abbreviations: Abbr. = Abbreviation, n = sample size, PS = Problem 

Solving, DRM = Digital reading and mathematics, Par = Parental, ICT = 

Information and communication technology, EC = Educational career, EB = 

Easier booklets. Countries in parentheses participated in the additional 

domains only with a fraction of their sample size, e.g. only one state in the 

country. In this chapter, I do not consider them as administrating this domain. 

 

A.2 How does the PISA scaling model take into account 

different domains and questionnaires being used in 

different countries?  

Not all countries administer all the PISA test domains and questionnaires (e.g. 

in only a small number of countries is the parental questionnaire collected). 

As a result, the precise specification of the PISA conditioning model differs 

between countries (depending upon the extent of their participation; OECD, 

2014b). I try to illustrate the subtle differences using Figures A.1 and A.2. 

This illustrates the following steps: 
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• Step 1. Item difficulty computation. This step is always the same, 

regardless of the number of PISA questionnaires and cognitive 

domains that a country has chosen to conduct. This step is always 

conducted separately for each domain and based upon a common 

dataset encompassing all countries.46  

However, after this initial step, computations are then conducted separately 

by country.  

• Step 2. Preparation of conditioning variables. This is based on all 

available background questionnaires for a country and independent of 

any domain. See the description provided in the section entitled ‘How 

are student background data incorporated into the plausible values?’ 

for further details.   

• Step 3. Estimation of student scores. What happens in the third step 

depends upon the domains of PISA a country participates in (with the 

exception of financial literacy). If only the core domains are tested, a 

joint IRT and latent regression model is used for the three domains, 

where the item difficulties are fixed at the value from Step 147 (see 

Figure A.1). Figure A.2 stresses how this step is split into two sub-

steps if either (a) problem solving and/or (b) digital reading and 

mathematics were administered as well. In countries that tested 

students in these additional subjects, the regression coefficients of the 

conditioning variables for the core domains are fixed, based upon a 

joint model consisting of only the paper-based core domain reading, 

science, and mathematics items. This is because ‘CBA [computer-

based assessment] reporting scale cannot influence the PISA paper-

based assessment’ (OECD, 2014b, p. 157). For those countries, the 

first joint model is only used to retrieve the regression coefficients for 

the core domains, but a second joint model is used for the final student 

achievement estimation. In this second model, all available domains 

are used (e.g. problem solving can influence science), but additionally 

 
46 The common sample exists of 500 students from each country, except for Liechtenstein, 

which were randomly selected.(OECD, 2014b, p. 233) 
47 The published item difficulties are used in my analyses. 
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the regression coefficients for the core domains are fixed at the values 

from first joint model.  

• Step 4. Plausible values are drawn from the individual conditional 

achievement distribution, which is based on the final model within 

each country. It involves all available cognitive domains, whether this 

is just the three core domains (reading, mathematics and science), four 

domains (the three score domains plus problem solving) or all six 

domains (reading, mathematics, science, problem solving, digital 

reading and digital mathematics). 

Figure A.1 Computation process of the plausible values, if the country only 

administered the three core domains 
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Figure A.2 Computation process of the plausible values, if the country 

administered additional domains (problem solving and/or digital reading and 

mathematics) to the three core domains 

  

 

A.3 Computational details of the conducted analysis 

This appendix attempts to make the computational procedures I have used as 

transparent as possible. All code used within my analysis is available from 

Zieger (2021). My empirical approach used the following steps: 

0. Test data preparation. The already scored cognitive dataset was 

downloaded from the OECD homepage 

(http://www.oecd.org/pisa/data/pisa2012database-

downloadabledata.htm). Subsequent checks were conducted if the 

data of deleted items was removed (OECD, 2014b, pp. 231, 232) and 

if missing data was coded correctly (omitted and invalid treated as 

incorrect and not reached treated as missing; OECD, 2014b, pp. 233, 

399). 

1. Item difficulty estimation. As this is not the focus of this chapter and 

I do not want the conditioning model to be influenced by estimation 

http://www.oecd.org/pisa/data/pisa2012database-downloadabledata.htm
http://www.oecd.org/pisa/data/pisa2012database-downloadabledata.htm
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of own item difficulties. I therefore chose to use the published item 

difficulties within this analysis (Annex A; OECD, 2014b)48.  

2. Preparation of conditioning variables. The conditioning variables 

were computed from all available questionnaires, for each country and 

each assessment booklet. I used a two-stage process: recoding (stage 

1) and pre-processing (stage 2). For the recoding and first pre-

processing, I adhere to the recoding procedures as described in Annex 

B in the PISA 2012 technical report (OECD, 2014b, pp. 421–431). 

The recoding is done for each country separately. The recoded 

versions of the following variables were used as direct regressors in 

the later latent regression: booklet ID, gender, school, grade as well 

as mother’s and father’s International Socio-Economic Index  

(OECD, 2014b, p. 157). The remaining variables were then used 

within a principal component analysis (PCA) using a singular value 

decomposition and the correlation matrix. As the technical report does 

not mention any special adaption of the PCA to account for the 

categorical nature of some variables, I do not use polychoric 

correlations or other adaptions. In other words, I try to stay as close to 

the PISA technical report as possible (OECD, 2014b, p. 157). From 

this PCA, within each country I retained enough principal components 

to explain 95% of the variance in the data. This resulted in up to 153 

principal components being extracted (and a minimum of 55) within 

each country, see Appendix A.8 for further details on the number of 

principal components. The conditioning variables are composed of the 

direct regressors and principal components. 

3. Student score estimation. At this point, countries with large samples 

(over 10,000 students) were split into smaller groups, usually based 

upon the stratification variables (OECD, 2014b, p. 157). As a 

consequence, I split the data of those countries into subsamples by 

alternatingly assigning strata to the new datasets starting with the 

largest strata.  

 
48 It is worth noticing that I believe that the step difficulty of item PM155Q03D is a typing 

error. I substituted the value with the average value across all cycles before where it was used 

(τ1 = 0.184, τ2=-0.184). 
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4. The conditioning models are then computed, using a ‘divide-and-

conquer’ approach (Patz & Junker, 1999; van Rijn, 2018). This means 

that I first estimate the IRT model and then estimate the latent 

regression. This is the default approach used in most large-scale 

assessments as it is comparatively efficient in terms of computational 

effort (van Rijn, 2018)49.  I still experience computational difficulties 

in five countries (South Korea, Liechtenstein, Columbia, Shanghai 

(China), and Serbia) leading to missing data for those countries in 

some of the variations of the conditioning model. The functions 

tam.mml() and tam.latreg()from ‘TAM’ are used to estimate 

the IRT model and the latent regression. Quasi-Monte Carlo 

integration (Pan & Thompson, 2007) with 2000 nodes and 

convergence criterions of .001 for deviance and .0001 for the 

coefficients is used within the computations.  

5. Drawing of plausible values. I draw five plausible values for each 

domain for each student. It is assumed that individual achievement 

distribution follows a multivariate normal distribution. The 

distributions are estimated by Monte Carlo estimation with 2000 

ability nodes (OECD, 2014b, p. 146). 

6. Transformation of plausible values to scale. Again, the transformation 

of the plausible values to the common PISA scale is not in the focus 

of this chapter. Therefore, I use the formulas from the technical report 

(OECD, 2014b, pp. 253, 254). For the sake of convenience, I also use 

the placement on the PISA scales.  

The computations are not deterministic and are therefore influenced by a 

certain amount of random error (e.g. in randomly drawing plausible values). 

To make the computations reproducible, I set seeds for the computation. I 

reran the analysis with different seeds but ended up with similar conclusions.  

 
49 This approach does have some limitations, however. For instance, it ignores the uncertainty 

in parameter estimates within the latent regression. 
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A.4 Mathematics: Domain specific analyses 

A.4.1 Average scores 

Figure A.3 highlights that the country average scores in mathematics are not 

sensitive to the specification of the conditioning model. The markers for no 

conditioning (triangle) and full conditioning (circle) sit on top of each other 

with only few exceptions (e.g. United Arab Emirates and Chile), but even in 

those cases the difference between the two scores is comparatively small. 

Hence, the ranking of countries also remains roughly the same in mathematics 

independent of the conditioning model specification. 

Figure A.3 Country average mathematics scores with and without 

conditioning 

 

Note: Triangles provide estimates without conditioning and circles with 

conditioning. Solid markers are OECD countries and hollow markers non-

OECD countries.  

 

Table A.2 shows the average mathematics scores when using conditioning 

models M0–M7 and should be read vertically. The colours depict the scores 

relative to the other countries’ scores with a green (red) value corresponding 

to a higher (lower) relative score. The colour scheme across the different 

conditioning model specifications is similar, which means that there is not 
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much change between the specifications. This is confirmed by correlations 

between 0.99 and 1 between the different specifications. In contrast to 

reading, the OECD average score also maintains a similar level dropping only 

3 points from no conditioning (492 points) to full conditioning (489 points).   
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Table A.2 Variation in estimated average PISA mathematics scores by 

conditioning model specification in the OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 

South Korea 548 557 555 - 554 561 554 553 

Japan 533 532 530 530 533 531 530 533 

Switzerland 526 527 528 527 527 527 527 527 

Netherlands 518 518 518 519 518 518 518 518 

Estonia 517 518 520 516 519 521 519 517 

Canada 515 509 509 514 508 514 506 508 

Finland 515 515 516 516 515 516 516 516 

Belgium 513 513 515 509 511 510 509 509 

Poland 513 508 512 510 511 510 510 511 

Germany 509 510 514 509 512 509 510 509 

Austria 503 503 505 501 501 500 501 501 

Australia 499 500 500 500 499 498 498 498 

Czech Republic 497 494 496 495 495 494 495 494 

Ireland 497 501 499 495 497 495 491 495 

New Zealand 497 497 497 497 497 497 497 497 

Denmark 496 501 499 495 499 496 498 496 

Slovenia 496 492 494 495 494 495 494 494 

France 495 491 496 493 496 492 493 492 

Iceland 491 491 491 491 491 491 491 491 

United Kingdom 490 490 489 491 490 491 490 490 

Norway 489 490 492 492 492 486 488 485 

Luxembourg 487 487 487 487 487 487 487 487 

Portugal 487 484 483 482 484 482 481 482 

Spain 486 483 484 484 482 483 484 482 

Italy 485 483 483 483 483 483 483 483 

Sweden 479 476 479 482 477 480 476 475 

Slovak Republic 478 474 480 482 474 474 479 475 

USA 478 471 473 474 473 473 474 474 

Hungary 475 469 470 468 469 468 468 468 

Israel 469 467 463 464 464 467 462 465 

Greece 453 452 451 452 451 452 451 451 

Turkey 445 445 444 444 445 445 444 444 

Chile 426 399 402 403 400 408 408 407 

Mexico 419 416 416 416 416 416 416 415 

OECD average 492 490 491 488 490 490 490 489 

OECD median 496 492 495 493 495 493 492 493 

Cor with M0 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Cor with M7 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Note: Figures illustrate how average PISA mathematics scores vary 

depending upon the specification of the conditioning models. Green shading 

indicates higher scores relative to other countries and red cells lower scores. 

The average mathematics score for non-OECD countries can be found in 

Table A.3.  M0 = no conditioning; M1–M6 correspond to conditioning with 

different subsets of conditioning variables (1: school direct regressors, 2: 

individual direct regressors, 3: indirect regressors, 4: all direct regressors, 5: 
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school direct and indirect regressors, 6: individual direct and indirect 

regressors); M7 = full conditioning. South Korea is missing scores due to 

computational difficulties. 

 

Table A.3 Variation in estimated average PISA mathematics scores by 

conditioning model specification in the non-OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 

Albania 403 400 399 400 399 400 399 399 

United Arab Emirates 434 413 412 418 415 415 419 421 

Argentina 394 389 390 390 388 389 389 388 

Bulgaria 439 437 436 437 436 438 436 436 

Brazil 391 390 388 390 389 390 389 390 

Colombia 386 - 384 371 367 365 373 367 

Costa Rica 408 408 407 407 408 408 407 407 

Hong Kong (China) 558 563 565 564 563 562 563 561 

Croatia 467 467 466 467 467 467 467 467 

Indonesia 376 374 373 373 373 374 373 373 

Jordan 385 384 383 384 384 384 384 384 

Kazakhstan 431 431 429 430 430 431 429 430 

Liechtenstein 532 531 531 533 531 - 532 - 

Lithuania 475 474 474 474 474 475 474 474 

Latvia 488 488 487 487 487 487 487 487 

Macao (China) 536 540 540 540 540 540 540 539 

Montenegro 409 408 406 407 407 408 406 407 

Malaysia 419 418 417 418 417 418 418 418 

Peru 378 375 374 375 374 375 374 374 

Qatar 382 380 379 380 379 380 380 379 

Shanghai (China) 606 605 - 618 - 613 619 617 

Romania 441 439 439 440 438 440 438 438 

Russian Federation 482 477 476 476 477 477 476 477 

Singapore 567 576 577 576 576 575 576 575 

Serbia 447 447 447 - 447 - - - 

Chinese Taipei 554 563 564 560 563 560 562 561 

Thailand 428 425 424 425 424 425 424 424 

Tunisia 393 392 390 392 390 392 390 390 

Uruguay 418 416 415 416 414 415 415 414 

Vietnam 506 506 506 506 506 507 506 506 

Note: Figures illustrate how average PISA mathematic scores vary depending 

upon the specification of the conditioning models. M0 = no conditioning; 

M1–M6 correspond to conditioning with different subsets of conditioning 

variables (1: school direct regressors, 2: individual direct regressors, 3: 

indirect regressors, 4: all direct regressors, 5: school direct and indirect 

regressors, 6: individual direct and indirect regressors); M7 = full 

conditioning. Columbia, Liechtenstein, Shanghai (China) and Serbia are 

missing the scores due to computational difficulties. 

 



159 

 

A.4.2 Inequality in PISA scores 

I am not only interested in the country average scores, but also in inequality 

measures. The difference between the 90th and 10th percentile is an inequality 

measure for spread and displayed in Table A.4. The table vertically depicts 

the percentile differences according to the different specification. The colours 

denote lower (higher) inequality in green (red) in relation to the other 

countries per specification.  

While the average mathematics scores are not sensitive to the specification, 

the percentile gaps are. This becomes obvious through the changes in colours 

between the columns. The greatest difference exists between no conditioning 

and conditioning (M1–M7), which is also reflected through rather low 

correlations roughly between 0.69 and 0.8. Furthermore, the average OECD 

percentile difference experiences a sharp rise from 215 to somewhere 

between 247 and 253 as soon as any form of conditioning is applied.  

Even though the major differences are between no conditioning and any form 

of conditioning, there are also relative changes between the different 

specifications (see differing colour patterns). The correlations between the 

conditioning specifications with full conditioning range between 0.78 and 

0.97 with especially high correlations (𝑟 > 0.9) for all specifications except 

for school direct regressors only.  
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Table A.4 Estimates of inequality (90th–10th percentile difference) in PISA 

mathematics scores across countries by specification of the conditioning 

model in the OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 

Mexico 158 183 186 183 185 183 185 185 

Estonia 190 247 235 244 241 230 242 244 

Chile 194 190 197 194 192 229 224 211 

Denmark 196 216 253 253 226 251 224 245 

Ireland 196 254 243 253 252 252 210 248 

Finland 197 216 213 217 215 217 217 217 

Spain 201 223 227 225 228 227 227 229 

Greece 204 229 227 226 228 227 227 228 

Canada 205 242 240 240 244 233 249 248 

Norway 210 269 271 272 271 269 272 265 

Slovenia 211 279 232 268 258 273 238 256 

Sweden 212 172 265 218 268 232 259 257 

Iceland 213 235 235 234 237 235 236 237 

USA 215 263 268 271 270 270 271 270 

Austria 216 272 278 269 271 266 270 266 

United Kingdom 216 239 240 238 240 239 241 240 

Italy 216 241 241 240 242 241 241 242 

Switzerland 218 244 243 242 245 244 243 245 

Poland 218 237 275 276 275 275 277 275 

Japan 220 234 233 232 241 237 236 235 

Netherlands 220 241 242 241 243 243 242 244 

Turkey 220 238 237 240 237 238 240 238 

Hungary 221 274 275 274 273 273 274 269 

Portugal 221 248 282 282 273 280 281 276 

Luxembourg 224 245 249 245 249 245 248 248 

Australia 226 280 279 279 276 256 275 253 

Czech Republic 227 247 249 247 248 246 250 249 

Germany 228 291 291 291 293 287 290 285 

France 228 283 293 293 288 278 293 270 

New Zealand 233 256 257 256 258 257 258 258 

Belgium 241 304 304 303 303 298 302 299 

Slovak Republic 242 270 309 283 284 281 305 282 

Israel 244 298 291 305 300 296 290 291 

OECD average 215 247 253 253 253 252 253 252 

OECD median 216 245 249 247 249 246 248 248 

Cor with M0 1.00 0.69 0.79 0.75 0.80 0.77 0.82 0.79 

Cor with M7 0.79 0.78 0.95 0.94 0.97 0.95 0.92 1.00 

Note: Figures illustrate how the difference between the 90th and 10th 

percentile of PISA mathematics scores changes depending upon the 

specification of the conditioning model. The mathematics percentile 

differences for non-OECD countries can be found in Table A.5. Green 

shading indicates less inequality in reading scores relative to other countries 

and red cells greater inequality. M0 = no conditioning; M1–M6 correspond 

to conditioning with different subsets of conditioning variables (1: school 
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direct regressors, 2: individual direct regressors, 3: indirect regressors, 4: all 

direct regressors, 5: school direct and indirect regressors, 6: individual direct 

and indirect regressors); M7 = full conditioning. 

 

Table A.5 Estimates of inequality (90th–10th percentile difference) in PISA 

mathematics scores across countries by specification of the conditioning 

model in the non-OECD countries. 

Country M0 M1 M2 M3 M4 M5 M6 M7 

Albania 184 212 212 212 213 212 213 213 

United Arab Emirates 209 254 236 259 254 258 257 255 

Argentina 166 190 193 191 192 190 194 193 

Bulgaria 222 244 244 243 244 244 244 245 

Brazil 174 197 200 198 198 196 199 198 

Costa Rice 143 168 172 168 172 168 170 170 

Hong Kong (China) 217 284 276 282 282 284 280 282 

Croatia 207 228 222 230 227 231 230 231 

Indonesia 150 176 179 178 178 177 179 178 

Jordan 169 195 198 195 197 194 197 197 

Kazakhstan 156 180 183 181 182 180 182 181 

Lithuania 209 232 233 232 232 232 233 232 

Latvia 188 211 214 212 213 210 214 215 

Macao (China) 214 256 259 263 261 264 265 265 

Montenegro 187 210 207 210 210 211 208 211 

Malaysia 185 207 210 209 209 208 209 209 

Peru 180 207 208 206 209 207 208 208 

Qatar 228 251 253 249 253 249 251 252 

Romania 188 210 214 212 211 210 213 212 

Russian Federation 201 217 214 221 223 223 219 226 

Singapore 249 315 314 316 314 318 317 316 

Chinese Taipei 276 347 356 347 346 348 359 354 

Thailand 194 208 215 209 211 207 212 208 

Tunisia 176 197 204 200 200 197 203 199 

Uruguay 199 224 224 223 224 223 223 224 

Vietnam 196 221 220 222 222 222 222 222 

Note: Figures illustrate how the difference between the 90th and 10th 

percentile of PISA mathematic scores changes depending upon the 

specification of the conditioning model. M0 = no conditioning; M1–M6 

correspond to conditioning with different subsets of conditioning variables 

(1: school direct regressors, 2: individual direct regressors, 3: indirect 

regressors, 4: all direct regressors, 5: school direct and indirect regressors, 6: 

individual direct and indirect regressors); M7 = full conditioning. 
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A.4.3 The association between PISA scores and background 

characteristics 

One of the key motivations for using a conditioning model is to counteract 

attenuation in group estimates. In this chapter, I examine if conditioning has 

an influence on the gaps in gender and migrant status. Gender is a direct 

regressor while migrant status is processed into indirect regressors (by using 

principal component analysis). 

Figure A.4 highlights how the country gender gaps (regression of 

mathematics performance upon an indicator of whether the student is female) 

are influenced by the specification of the conditioning model. Almost all 

countries experience a negative shift as soon as conditioning is used. Without 

conditioning, no gender differences can be found (0 points on average), while 

boys perform 6 to 7 points better than girls when conditioning with the 

individual direct regressors included (M2, M4, M6 and M7) is used. It is 

interesting that nearly all countries experience a negative shift, even when the 

gender gap from M0 is positive. This means that, despite conditioning, 

attenuation is still present in some cases, e.g. Finland has a gender difference 

of 9 points without conditioning, but only a gender gap of 1 point with full 

conditioning. Overall, the diamonds (individual direct regressors only: M2) 

and triangles (full conditioning: M7) mostly sit on top of each other and are 

distinct from the circles (no conditioning: M0) meaning that the gender gap 

in most countries is not sensitive to exact specification of the model as long 

as direct regressors are included.  
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Figure A.4 Country mathematics gender gap without conditioning (M0), just 

with individual direct regressor including gender (M2) and with full 

conditioning (M7) 

  

Note: Circles provide estimates without conditioning, diamonds for 

conditioning only with individual direct regressors and triangles for full 

conditioning. Solid markers denote OECD countries and hollow markers non-

OECD countries. The two boxes highlight the examples given in the main 

text for substantial differences between the gender gap for M2 and M7. 

 

The achievement difference between migrant and native students in 

mathematics can be seen in Figure A.5. Overall, the three symbols – circle 

(no conditioning: M0), diamond (indirect regressors only: M3) and triangle 

(full conditioning: M7) – sit roughly on top of each other for smaller gaps 

(around zero) with a slight increase in magnitude for M3 and M7 if a gap is 

present (i.e. gap is not around zero). The average migrant-native gap drops 

from -20 points (M0) to -24 (M3) and -24 points (M7), but the gaps in the 

countries themselves cover a rather big range from -133 points (M7 in 

Shanghai) to +87 points (M7 in Qatar). One could assume that the migrant-

native gap in the mathematics is also not sensitive to the specification of the 

conditioning model as long as migrant status is included in the conditioning 

model. 
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Figure A.5 Country mathematics gap between migrant and native students 

without conditioning (M0), with indirect regressors (migration status was 

pre-processed) in conditioning (M3) and with full conditioning (M7) 

  

Note: Circles provide estimates without conditioning, diamonds for 

conditioning only with individual indirect regressors and triangles for full 

conditioning. Solid markers denote OECD countries and hollow markers non-

OECD countries. 

 

A.5 Science: Domain specific analyses 

A.5.1 Average scores 

Figure A.6 depicts the country science average scores without conditioning 

(triangle) and with full conditioning (circle) as well as its difference (line in 

between). While the conditioning model has more impact on the average 

scores in science than in mathematics, differences are fairly minor. On 

average, the scores rise by 2 points when full conditioning is applied, but there 

is no common direction. At the extremes, Russia experiences an increase of 

8 points, while Greece experiences a decrease of -8 points. Yet the ranking of 

countries remains roughly the same.  
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Figure A.6 Country average science scores with and without conditioning 

  

Note: Triangles provide estimates without conditioning and circles with 

conditioning. Solid markers are OECD countries and hollow markers non-

OECD countries.  

 

This is stressed by Table A.6, which shows a rather consistent colour scheme 

and only minor variation in relative scores of the OECD countries. The table 

should be read vertically inside the conditioning model specification with 

green (red) scores belonging to higher (lower) relative country average 

scores. The correlations between all specifications (including no 

conditioning) are 0.99 or higher. While there is some change, the scores stay 

reasonably similar across all specifications. The OECD average rises by 2 

points from no conditioning (505 points) to full conditioning (507 points). 
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Table A.6 Variation in estimated average PISA science scores by 

conditioning model specification in the OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 

Japan 549 550 547 552 546 551 549 555 

Finland 543 548 546 547 550 548 548 550 

Estonia 541 541 545 535 544 537 543 542 

South Korea 537 535 541 - 541 532 539 539 

Canada 527 530 534 520 533 525 529 533 

Germany 525 524 528 523 525 524 526 527 

Poland 525 533 531 528 531 528 531 530 

Australia 524 527 528 525 529 531 530 531 

Ireland 524 523 525 523 522 523 532 526 

Netherlands 522 522 527 522 527 522 529 528 

New Zealand 519 519 522 519 523 519 523 523 

United Kingdom 516 517 518 516 519 516 518 519 

Switzerland 513 517 517 515 519 517 517 518 

Czech Republic 513 510 513 512 512 510 513 512 

Slovenia 512 510 523 510 519 508 522 519 

Belgium 511 510 512 512 510 513 512 513 

Austria 509 510 513 509 510 508 510 510 

France 507 504 510 513 503 506 515 511 

Norway 502 501 501 502 502 502 501 503 

Spain 501 501 501 500 500 500 501 501 

USA 501 508 504 502 504 500 503 503 

Denmark 500 499 492 491 500 498 499 501 

Hungary 499 494 500 496 494 494 496 497 

Italy 499 497 502 497 502 497 500 500 

Luxembourg 495 494 495 494 495 494 494 494 

Portugal 495 495 490 488 498 488 489 490 

Sweden 493 511 498 499 498 498 497 494 

Iceland 483 482 483 481 483 481 483 483 

Israel 481 473 489 475 483 474 489 482 

Slovak Republic 476 479 478 468 478 476 476 480 

Greece 473 472 464 472 466 472 465 465 

Turkey 465 464 469 465 469 464 469 469 

Chile 456 448 452 452 449 447 449 449 

Mexico 428 426 427 425 427 425 427 427 

OECD average 505 505 507 503 506 504 507 507 

OECD median 508 510 511 509 507 507 511 511 

Cor with M0 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Cor with M7 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 

Note: Figures illustrate how average PISA science scores vary depending 

upon the specification of the conditioning models. The average science score 

for non-OECD countries can be found in Table A.7. Green shading indicates 

higher scores relative to other countries and red cells lower scores. M0 = no 

conditioning; M1–M6 correspond to conditioning with different subsets of 

conditioning variables (1: school direct regressors, 2: individual direct 

regressors, 3: indirect regressors, 4: all direct regressors, 5: school direct and 
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indirect regressors, 6: individual direct and indirect regressors); M7 = full 

conditioning. South Korea is missing scores due to computational difficulties. 

 

Table A.7 Variation in estimated average PISA science scores by 

conditioning model specification in the non-OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 

Albania 415 413 417 412 417 413 417 417 

United Arab Emirates 454 459 460 457 459 457 457 456 

Argentina 417 414 416 413 416 414 416 416 

Bulgaria 452 449 452 450 452 450 451 450 

Brazil 413 413 415 412 416 413 414 415 

Colombia 420 - 426 420 417 414 421 417 

Costa Rica 440 439 440 438 440 438 440 440 

Hong Kong (China) 557 559 560 559 560 557 559 559 

Croatia 492 491 496 491 495 491 494 494 

Indonesia 389 386 388 387 389 386 389 389 

Jordan 414 413 415 411 416 412 415 416 

Kazakhstan 431 428 430 429 420 428 430 423 

Liechtenstein 528 529 530 532 531 - 530 - 

Lithuania 497 496 503 496 503 496 502 503 

Latvia 503 502 503 502 503 502 504 504 

Macao (China) 523 523 524 523 523 522 523 522 

Montenegro 415 413 415 412 414 412 413 413 

Malaysia 425 423 421 423 422 423 419 422 

Peru 394 390 394 390 393 389 392 391 

Qatar 396 393 401 393 401 393 402 402 

Shanghai (China) 580 582 - 577 - 575 583 581 

Romania 440 439 442 439 441 439 441 441 

Russian Federation 491 502 507 508 500 501 506 499 

Singapore 551 557 555 555 557 559 555 558 

Serbia 449 448 451 - 450 - - - 

Chinese Taipei 524 530 530 520 528 524 528 529 

Thailand 451 448 451 448 451 448 451 449 

Tunisia 412 409 408 409 408 409 409 408 

Uruguay 434 433 436 431 436 431 435 435 

Vietnam 529 529 529 529 528 529 528 528 

Note: Figures illustrate how average PISA science scores vary depending 

upon the specification of the conditioning models. M0 = no conditioning; 

M1–M6 correspond to conditioning with different subsets of conditioning 

variables (1: school direct regressors, 2: individual direct regressors, 3: 

indirect regressors, 4: all direct regressors, 5: school direct and indirect 

regressors, 6: individual direct and indirect regressors); M7 = full 

conditioning. Columbia, Liechtenstein, Shanghai (China) and Serbia are 

missing the scores due to computational difficulties. 
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A.5.2 Inequality in PISA scores 

In contrast to the country average scores, the percentile gap (P90–P10) 

experiences substantial changes depending on the specification of the 

conditioning model. This becomes clear when assessing Table A.8, which 

again depicts relative scores with green (red) scores relating to lower (higher) 

inequality. The mixed colouring and big changes between the columns make 

it apparent that the scores’ and the countries’ relative positions change 

substantially depending on the used specification. Countries, such as Sweden, 

which was in the middle-to-bottom category (high inequality) for some 

specifications (M0, M1, M3 and M5) end up in the top category for others 

(M2, M4 and M6). Percentile differences in science depend on the exact 

specification of the conditioning model. This is reflected in the correlations, 

which were especially low between no conditioning and the other 

specifications (0.36 ≤ 𝑟 ≤ 0.66), but also not consistently high across the 

other specifications with values below 0.9 in some cases. 
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Table A.8 Estimates of inequality (90th–10th percentile difference) in PISA 

science scores across countries by specification of the conditioning model in 

the OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 

Mexico 139 164 164 164 164 165 165 165 

Estonia 179 101 94 124 103 121 101 110 

Chile  183 139 144 142 144 162 164 158 

Turkey 183 207 202 205 206 207 206 209 

Spain 187 212 211 213 213 214 212 214 

Greece 196 223 224 224 226 225 225 228 

Poland 197 176 173 174 179 180 178 186 

Canada 201 150 126 142 153 161 157 177 

Czech Republic 204 223 220 221 219 225 220 221 

Switzerland 205 229 230 228 230 230 229 230 

Hungary 205 183 186 187 184 185 188 194 

Portugal 205 197 171 187 200 198 177 203 

Ireland 207 145 138 163 151 168 171 182 

Denmark 208 116 145 161 132 172 128 176 

Italy 208 234 234 234 235 236 234 236 

Austria 211 161 135 197 191 206 194 205 

Slovenia 211 196 193 179 210 198 200 211 

USA 213 186 173 170 179 183 176 184 

Finland 214 235 234 232 232 232 229 230 

Japan 214 227 227 226 239 231 227 273 

France 219 185 147 169 174 205 177 219 

Sweden 220 309 135 239 154 236 185 218 

Germany 221 168 143 172 169 201 179 203 

Netherlands 221 241 240 241 237 243 240 240 

Norway 221 162 162 164 163 184 171 209 

Iceland 222 246 243 250 244 251 248 248 

Belgium 225 177 174 189 181 196 190 200 

United Kingdom 226 251 250 249 251 251 249 251 

Australia 231 206 197 204 215 223 212 224 

Slovak Republic 235 223 166 202 222 235 170 235 

Luxembourg 237 260 259 261 259 262 261 262 

New Zealand 238 260 258 260 257 260 260 260 

Israel 239 230 230 226 240 233 237 249 

OECD average 210 201 189 200 199 208 199 212 

OECD median 211 206 186 202 206 207 194 214 

Cor with M0 1.00 0.48 0.36 0.50 0.48 0.63 0.46 0.66 

Cor with M7 0.66 0.83 0.82 0.89 0.91 0.95 0.89 1.00 

Note: Figures illustrate how the difference between the 90th and 10th 

percentile of PISA science scores changes depending upon the specification 

of the conditioning model. The science percentile gaps for non-OECD 

countries can be found in Table A.9. Green shading indicates less inequality 

in reading scores relative to other countries and red cells greater inequality. 

M0 = no conditioning; M1–M6 correspond to conditioning with different 
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subsets of conditioning variables (1: school direct regressors, 2: individual 

direct regressors, 3: indirect regressors, 4: all direct regressors, 5: school 

direct and indirect regressors, 6: individual direct and indirect regressors); M7 

= full conditioning. 

 

Table A.9 Estimates of inequality (90th–10th percentile difference) in PISA 

science scores across countries by specification of the conditioning model in 

the non-OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 

Albania 187 220 222 219 223 220 222 223 

United Arab Emirates 209 175 166 196 178 182 201 201 

Argentina 176 207 208 207 210 208 210 211 

Bulgaria 235 260 262 263 263 261 263 263 

Brazil 162 186 187 185 187 187 187 187 

Costa Rice 135 162 163 161 165 164 163 165 

Hong Kong (China) 181 103 95 96 110 113 107 123 

Croatia 196 220 216 219 218 221 218 220 

Indonesia 136 162 164 163 164 164 164 166 

Jordan 174 200 204 206 203 204 206 204 

Kazakhstan 155 185 185 185 188 185 187 185 

Lithuania 197 221 223 220 223 221 223 223 

Latvia 176 201 198 199 199 204 199 202 

Macao (China) 177 102 99 110 107 117 112 123 

Montenegro 189 214 216 213 215 213 214 214 

Malaysia 173 195 198 197 199 199 200 201 

Peru 151 178 177 178 180 180 179 181 

Qatar 238 263 261 263 262 263 261 262 

Romania 177 202 203 203 205 203 204 205 

Russian Federation 188 177 166 170 186 186 174 188 

Singapore 239 170 165 168 169 178 168 175 

Chinese Taipei 195 138 131 155 135 156 133 136 

Thailand 170 186 190 189 187 188 190 188 

Tunisia 168 197 199 198 200 197 200 200 

Uruguay 198 225 228 230 237 231 230 231 

Vietnam 168 190 184 191 188 191 188 189 

Note: Figures illustrate how the difference between the 90th and 10th 

percentile of PISA science scores changes depending upon the specification 

of the conditioning model. M0 = no conditioning; M1–M6 correspond to 

conditioning with different subsets of conditioning variables (1: school direct 

regressors, 2: individual direct regressors, 3: indirect regressors, 4: all direct 

regressors, 5: school direct and indirect regressors, 6: individual direct and 

indirect regressors); M7 = full conditioning. 
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A.5.3 The association between PISA scores and background 

characteristics 

One of the key motivations for using a conditioning model is to counteract 

attenuation in group estimates. In this chapter, I examine if conditioning has 

an influence on the gaps in gender and migrant status. Gender is a direct 

regressor while migrant status is processed into indirect regressors (by using 

principal component analysis). 

Figure A.7 shows that the conditioning model specifications have rather little 

influence on the gender gap in science in comparison to the gender gaps in 

mathematics and reading. In most countries, the two models including gender 

(M2 – diamond and M7 – triangle) sit close to each other, which means that 

the gender gap is robust as long as gender is included in the model. For some 

of the remaining countries, (substantial) change can be seen depending on the 

specification, but there is no common direction or magnitude of the science 

gender gap (e.g. absolute value always increases when conditioning is 

applied). For other, where the gender gap is located around 0, no difference 

between all three symbols can be seen. If there is no gender in the sample to 

begin with, it cannot be attenuated. As a result, the average gender gap stays 

the same on average between no conditioning (3 points) and full conditioning 

(3 points), even though single countries experience changes. Yet, some rank 

changes still occur, because not all countries are sensitive to the specification 

of the conditioning model and the direction of the impact varies.  
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Figure A.7 Country science gender gap without conditioning (M0), just with 

individual direct regressor (incl. gender) in conditioning (M2) and with full 

conditioning (M7) 

 
Note: Circles provide estimates without conditioning, diamonds for 

conditioning only with individual direct regressors and triangles for full 

conditioning. Solid markers denote OECD countries and hollow markers non-

OECD countries. 

 

Figure A.8 displays the gaps in science achievement for another grouping 

variable – migrant status (native versus migrant students). Similar to 

mathematics, the three symbols mostly are roughly in the same area if the gap 

is small or they increase in magnitude as soon as conditioning is applied. 

Thereby, the M3 and M7 are situated next to each other. While there are some 

exceptions, it seems like the migrant-native gaps are robust to the 

specification as soon as migrant status is included in the model. 
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Figure A.8 Country science gap between migrant and native students without 

conditioning (M0), with indirect regressors (migration status was pre-

processed) in conditioning (M3) and with full conditioning (M7) 

 
Note: Circles provide estimates without conditioning, diamonds for 

conditioning only with individual indirect regressors and triangles for full 

conditioning. Solid markers denote OECD countries and hollow markers non-

OECD countries. 
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A.6 Reading: Non-OECD specific tables 

Table A.10 Variation in estimated average PISA reading scores by 

conditioning model specification in the non-OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 

Albania 409 406 409 407 407 406 409 406 

United Arab Emirates 444 477 484 469 473 474 467 462 

Argentina 406 401 402 402 401 401 402 402 

Bulgaria 441 438 436 437 437 437 436 436 

Brazil 414 414 411 413 413 414 413 414 

Colombia 421 - 461 452 448 448 453 447 

Costa Rica 448 446 447 445 446 445 447 447 

Hong Kong (China) 542 533 528 531 526 536 526 529 

Croatia 483 482 462 482 467 482 468 468 

Indonesia 399 396 397 397 396 396 396 396 

Jordan 405 402 398 402 398 401 399 399 

Kazakhstan 395 392 386 392 381 392 386 385 

Liechtenstein 513 514 504 504 503 - 501 - 

Lithuania 475 474 468 474 468 474 468 467 

Latvia 490 488 478 488 477 487 478 477 

Macao (China) 509 493 490 491 490 493 490 491 

Montenegro 425 424 426 423 426 423 424 425 

Malaysia 403 401 404 400 402 400 402 400 

Peru 401 398 401 398 400 397 401 400 

Qatar 398 394 391 395 391 394 392 392 

Shanghai (China) 565 587 - 581 - 575 560 558 

Romania 434 433 435 433 435 432 435 435 

Russian Federation 477 478 472 475 470 479 471 476 

Singapore 538 532 524 530 525 534 522 526 

Serbia 449 448 447 - 447 - - - 

Chinese Taipei 520 514 511 528 509 524 507 508 

Thailand 444 441 436 442 436 441 436 434 

Tunisia 414 412 416 412 416 412 416 416 

Uruguay 426 423 423 422 419 421 423 423 

Vietnam 505 504 491 504 492 504 492 493 

Note: Figures illustrate how average PISA reading scores vary depending 

upon the specification of the conditioning models. M0 = no conditioning; 

M1–M6 correspond to conditioning with different subsets of conditioning 

variables (1: school direct regressors, 2: individual direct regressors, 3: 

indirect regressors, 4: all direct regressors, 5: school direct and indirect 

regressors, 6: individual direct and indirect regressors); M7 = full 

conditioning. Columbia, Liechtenstein, Shanghai (China) and Serbia are 

missing the scores due to computational difficulties. 
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Table A.11 Estimates of inequality (90th–10th percentile difference) in PISA 

reading scores across countries by specification of the conditioning model in 

the non-OECD countries 

Country M0 M1 M2 M3 M4 M5 M6 M7 

Albania 217 258 264 257 266 259 264 268 

United Arab Emirates 214 168 164 185 171 172 192 202 

Argentina 200 233 237 236 237 236 239 240 

Bulgaria 273 309 310 310 311 311 310 310 

Brazil 184 216 224 216 224 217 223 223 

Costa Rice 149 182 188 181 192 180 190 190 

Hong Kong (China) 192 201 202 202 206 201 210 211 

Croatia 193 219 240 216 228 215 224 223 

Indonesia 155 188 198 188 198 189 198 198 

Jordan 195 230 234 228 235 230 234 234 

Kazakhstan 156 184 195 185 193 186 195 192 

Lithuania 197 222 228 223 228 222 229 230 

Latvia 182 210 214 208 217 210 217 218 

Macao (China) 181 208 208 210 211 210 212 212 

Montenegro 203 237 236 237 237 238 239 239 

Malaysia 184 213 215 217 215 216 217 217 

Peru 194 226 227 229 229 229 231 232 

Qatar 251 286 284 284 286 285 285 286 

Romania 202 234 237 232 238 234 237 239 

Russian Federation 201 271 275 280 274 272 279 273 

Singapore 232 220 206 213 218 240 215 230 

Chinese Taipei 212 182 177 139 180 176 182 186 

Thailand 173 196 203 201 204 199 207 201 

Tunisia 190 227 229 226 232 227 229 232 

Uruguay 204 239 238 238 248 240 240 243 

Vietnam 161 183 189 183 187 180 188 186 

Note: Figures illustrate how the difference between the 90th and 10th 

percentile of PISA reading scores changes depending upon the specification 

of the conditioning model. M0 = no conditioning; M1–M6 correspond to 

conditioning with different subsets of conditioning variables (1: school direct 

regressors, 2: individual direct regressors, 3: indirect regressors, 4: all direct 

regressors, 5: school direct and indirect regressors, 6: individual direct and 

indirect regressors); M7 = full conditioning. 

 

A.7 How does the migrant-native gap in reading scores 

change when migrant status is used as a direct (rather 

than indirect) regressor? 

Figure A.9 highlights the differences in the migrant-native gap in reading 

scores between three separate models: 
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(i) No conditioning (M0). 

(ii) Full conditioning with migrant status as an indirect regressor 

(M7). 

(iii) Full conditioning with migrant status as a direct regressor (M7a). 

In most countries the estimated migrant-native gap does not change 

substantially whether migrant status is used as a direct or indirect regressor 

(triangle and square on top of each other). Again, however, there are some 

important individual exceptions. In a few countries, such as Bulgaria (M7 = -

112; M7a = -97) and Colombia (M7 = -42; M7a = -89), there is an appreciable 

change in at least the magnitude of the immigrant-native gap. These are, 

however, the exceptions rather than the rule and generally connected to very 

small percentages of migrants in the country. Overall, it seems that the 

decision of whether to include immigrant status as a direct or indirect 

regressor has a trivial impact upon the substantive results.  

Figure A.9 Country reading gap between migrant and native students without 

conditioning (M0), with original model M7 and altered model M7a (migrant 

status included as direct regressor). 

 
Note: Circles provide estimates without conditioning, triangles for full 

conditioning and squares for the altered full conditioning model with IMMIG 

included in the direct regressors. Solid markers denote OECD countries and 

hollow markers non-OECD countries. 
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A.8 Number of principal components dependent on the 

student questionnaire booklets 

In PISA 2012, the rotated design is not only used for the cognitive items but 

also for the student background questionnaire. Overall, three different 

versions of the student background questionnaire (Booklets A, B and C) were 

administered (questionnaire booklets can be downloaded from 

http://www.oecd.org/pisa/data/pisa2012database-downloadabledata.htm). 

All three included the common parts about the student (Section A) and the 

student’s family and home (Section B). Furthermore, all three booklets 

included questions about learning mathematics (Section C), but the booklets 

differed in extent. Booklet A administered all 21 items about learning 

mathematics, while Booklet B (9 items) and Booklet C (14 items) contained 

different subsets. Booklet A also asked questions about the student’s 

problem-solving experience (Section F). Booklet B additionally contained 

items about the student’s mathematics experience (Section D), the school 

(Section E) and also problem-solving experience (Section F). Booklet C also 

covered the student’s mathematics experience (Section D) and school 

(Section E). Roughly a third of each country takes each booklet. 

Due to the rotated design, the student background questionnaire experiences 

a substantial amount of missing data while being the foundation for the 

indirect regressors in the conditioning model. I am therefore interested in how 

many principal components are retained with the design used in PISA 2012 

and how the number of indirect regressors changes if I look at the separate 

booklet questionnaires only without missing by design and not complete 

rotated design with missing by design (see Table A.12). In the computations 

for this chapter, the principal components based on the design in PISA 2012 

are used, see column ‘All’. The maximum of retained principal components 

is 153 in Italy and the minimum is 55 in Liechtenstein. Overall, the number 

of principal components vary between countries and booklets, but while the 

single booklets have considerably fewer missing data, the number of retained 

principal components stays roughly the same in each country. The maximal 

number of principal components was 157 in Italy for booklet B and the 

minimal was 51 in Liechtenstein for Booklet A. The number of principal 

http://www.oecd.org/pisa/data/pisa2012database-downloadabledata.htm
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components varies between the sample with all booklets and the different 

subsamples for each booklet, but the numbers lie in a plausible range with no 

surprising outliers anywhere.   

Table A.12 Number of principal components used for conditioning, when 

using the complete background questionnaire as base or the student 

questionnaire booklet separately (reduced sample size) 

Country All Booklet A Booklet B Booklet C 

Australia 103 91 105 102 

Austria 115 104 122 116 

Belgium 145 137 148 144 

Canada 102 92 103 100 

Switzerland 109 100 110 103 

Chile 130 117 132 131 

Czech Republic 95 85 100 91 

Germany 110 102 112 124 

Denmark 120 111 122 120 

Spain 106 94 108 101 

Estonia 94 82 95 93 

Finland 113 106 118 114 

France 82 73 86 85 

United Kingdom 84 76 85 81 

Greece 102 93 110 103 

Hungary 133 124 139 137 

Ireland 115 103 118 113 

Iceland 78 80 87 89 

Israel 85 73 87 91 

Italy 153 146 157 149 

Japan 80 69 82 85 

South Korea 142 131 146 144 

Luxembourg 116 109 117 114 

Mexico 136 130 140 133 

The Netherlands 90 83 93 92 

Norway 90 82 90 92 

New Zealand 97 94 101 100 

Poland 91 84 100 90 

Portugal 150 142 152 155 

Slovak Republic 120 113 129 123 

Slovenia 116 108 119 118 

Sweden 94 88 97 97 

Turkey 100 92 104 100 

United States of America 77 69 82 78 

Non-OECD countries: 

Albania 69 60 78 81 

United Arab Emirates 86 78 90 87 

Argentina 95 88 100 99 

Bulgaria 84 76 85 85 
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Country All Booklet A Booklet B Booklet C 

Brazil 89 78 90 89 

Colombia 89 76 91 94 

Costa Rica 102 94 106 102 

Hong Kong (China) 135 122 136 143 

Croatia 137 129 139 134 

Indonesia 90 84 92 88 

Jordan 102 97 108 104 

Kazakhstan  84 77 88 80 

Liechtenstein 55 51 53 82 

Lithuania 81 73 86 79 

Latvia 121 106 120 119 

Macao (China) 139 132 146 142 

Montenegro 83 76 87 85 

Malaysia 82 72 84 82 

Peru 88 79 91 92 

Qatar 83 72 85 88 

Shanghai (China) 95 84 98 97 

Romania 86 78 91 84 

Russian Federation 102 90 104 99 

Singapore 110 100 116 112 

Serbia 118 110 118 120 

Chinese Taipei 96 88 102 95 

Thailand 86 77 88 80 

Tunisia 83 76 87 88 

Uruguay 109 99 110 111 

Vietnam 81 76 89 83 

Note: Column ‘All’: The principal components are computed based on the 

background questionnaire data of the whole sample. Columns ‘Booklet A’, 

‘Booklet B’, and ‘Booklet C’: The principal components are computed based 

on a subset of background questionnaire data with only the students who were 

administered booklet A, B or C respectively. In all situations, enough 

principal components were retained to explain 95% of the variance.  
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B Appendices Chapter 3 

B.1 Does a single component of the direct regressors 

introduce bias to the results? 

In the main body of Chapter 3, I found that bias increased in average reading 

scores as soon as direct regressors were added to the conditioning model 

specification. As a result, it is of interest to see if a single component of the 

direct regressors triggered this or whether it is an interplay of multiple factors. 

The direct regressors consist of four main components – booklet IDs, gender, 

parental socio-economic status (ISEI) and grade – which were prepared as in 

PISA 2012. In order to disentangle the impact that these variables have, I 

analysed the following six models of which four models included only one of 

the components of the individual regressors in the conditioning model:  

V0.    No conditioning variables (i.e. no conditioning model at all) 

V1.     Individual direct regressors only  

V1.a   Only one component of the individual direct regressor: booklet IDs 

V1.b   Only one component of the individual direct regressor: gender 

V1.c   Only one component of the individual direct regressor: ISEI 

V1.d   Only one component of the individual direct regressor: grade  

Figure B.1 shows the bias of the mean (difference between the estimated and 

‘true’ achievement) in standard deviations for the six different conditioning 

model specifications mentioned above. Thereby, the horizontal line 

highlights the optimal case where no bias is present. In all three domains, the 

bias when no conditioning is used (square) is roughly the same size and 

distinct from the magnitude of bias as soon as conditioning is used. For 

mathematics, the symbols for all conditioning specification are on top of each 

other meaning that there is no difference in bias between them.  

This story changes dramatically when looking at reading. While most of the 

symbols are also close to each other and the horizontal line, the two model 

specifications including booklet IDs (circle: all direct regressors, triangle: 
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booklet IDs only) stand out. The bias increased to more than 0.1 of standard 

deviation and therefore, the results are more biased than no conditioning. The 

component of the direct regressors which introduces bias to the results is 

booklet IDs. Similar results, but only in a fraction of the magnitude, can be 

found for science. 

Figure B.1 Average bias of country averages in standard deviation for no 

conditioning, direct regressors only and the single components of the direct 

regressors 

Note: V0: No conditioning (square), V1: Direct regressors only (circle), V1.a: 

Booklet ID only (triangle), V1.b: Gender only (cross), V1.c: ISEI only (x), 

V1.d: Grade only (diamond). 

 

The key aspect of conditioning is counteracting the attenuation of group 

differences. In line with theory, I found in the main body that bias in group 

differences was reduced significantly as soon as the group indicator (in this 

case gender) was used in the model specification. This is confirmed by Figure 

B.2 showing the impact of the single components on the gender gaps. It 

becomes clear that bias is basically non-existent if only gender (cross: V1.b) 

is used. Direct regressors only (circle: V1) also includes gender and leads to 

similarly low levels of bias; only in reading is there slightly more. The other 

single components, which are unrelated to gender, have little to no impact on 

the gender gaps and stay in the range of no conditioning at all (square). 
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Figure B.2 Average bias of gender gaps in standard deviation for no 

conditioning, direct regressors only and the single components of the direct 

regressors 

Note: V0: No conditioning (square), V1: Direct regressors only (circle), V1.a: 

Booklet ID only (triangle), V1.b: Gender only (cross), V1.c: ISEI only (x), 

V1.d: Grade only (diamond). 

 

Figure B.3 displays the average amount of bias in the percentile differences 

across the six model specifications. At first glance, it seems like there is large 

variation in bias between the different conditioning models, but the scale 

needs to be taken into account. Both plots of country averages and gender 

gaps contain values substantially above |0.1| standard deviation, whereas the 

values for the percentile differences are less than |0.025| even in the extremes. 

In general, bias is reduced as soon as conditioning is applied. For the minor 

domains, reading and science, the model specifications including booklet IDs 

(circle: V1, triangle: V1.a) show the highest amount of bias apart from no 

conditioning (square), with very few exceptions.  
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Figure B.3 Average bias of the 90th–10th percentile differences in standard 

deviation for no conditioning, direct regressors only and the single 

components of the direct regressors 

Note: V0: No conditioning (square), V1: Direct regressors only (circle), V1.a: 

Booklet ID only (triangle), V1.b: Gender only (cross), V1.c: ISEI only (x), 

V1.d: Grade only (diamond). 

 

B.2 How would the results look if booklet IDs were excluded 

from the latent regression completely? 

The first part of Appendix B (‘B.1 Does a single component of the direct 

regressors introduce bias into the results?’) showed that booklet IDs can 

introduce bias to the results in the minor domains, especially the country 

averages in reading. This leads to the question of whether it would be better 

to remove the corresponding conditioning variables altogether. In PISA 2012, 

the booklet IDs were deviation contrast coded and the coefficients of booklets 

which only contained two domains were set to zero in the latent regression 

for the third domain. In order to investigate whether booklet IDs should be 

included in the conditioning model specification and in what form, I 

conducted two additional models with all direct and indirect regressors (a) 

including booklet IDs but without restraints in the latent regression 

coefficients and (b) excluding booklet IDs completely.  
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V0. No conditioning variables (i.e. no conditioning model at all) 

V3. Individual direct regressors and indirect regressors (all regressors)  

V8. Individual direct regressors and indirect regressors (all regressors) 

with booklet IDs but without constraints for booklet IDs in latent 

regression 

V9. Individual direct regressors and indirect regressors (all regressors) 

without booklet IDs 

Figure B.4 displays the mean of the country average PISA scores when using 

model specifications (with different treatments of booklet IDs). This 

highlights how one variable can introduce severe bias into the achievement 

scores through conditioning. This affects the major domain only marginally, 

but the impact on the minor domains is substantial. When using booklet IDs 

without any restriction (triangle: V8), bias increases in comparison to most or 

all other specifications. In the case of reading, bias more than tripled in 

comparison to no conditioning. When booklet ID is excluded altogether 

(cross: V9), bias reaches its lowest level close to zero for the minor domains. 

The version closest to PISA 2012 is V3 which uses booklet IDs but enforces 

restrictions in the latent regression and can be classified in the middle ground 

between the two model specifications. While it does not perform as well as 

the model specification excluding booklet IDs, it most outperforms the model 

specification with booklet IDs and without latent regression coefficient 

restrictions, in reading even substantially. 
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Figure B.4 Average bias of country averages in standard deviation for 

variations of in-/excluding booklet IDs 

 
Note: V0: No conditioning at all (square), V3: Direct and indirect regressors 

as in PISA with booklet IDs and with constraints for booklet ID regression 

coefficients (circle), V8:  Direct and indirect regressors with booklet IDs and 

without constraints for booklet ID regression coefficients (triangle), V9: 

Direct and indirect regressors without booklet ID (cross). 

 

So far, the noticeable impact of booklet IDs was found for the minor domains 

reading and science, Figure B.5, which displays the average bias in gender 

gaps for the different treatments of booklet IDs, and shows that single 

variables can introduce bias in all domains, even the major domain. In 

general, bias in gender gaps decreases when conditioning. But there remain 

visible differences between the different model specifications. Both V3 

(circle: direct and indirect regressors with booklet IDs and latent regression 

coefficient restrictions) and V9 (cross: direct and indirect regressors 

excluding booklet IDs) sit close to each other and the horizontal line denoting 

no bias. Thereby, V3 (circle) tends to be slightly more biased than V9 (cross) 

but the differences are comparably small. V8 (triangle: direct and indirect 

regressors with booklet IDs and without latent regression coefficient 

restrictions) on the other hand shows visibly more bias than V3 (circle) and 

V9 (cross). This highlights two points: (a) variables can introduce bias in all 

domains and (b) group comparisons can be biased even though the group 
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indicator is included in the conditioning model. In the extreme case of 

reading, the gender gap was biased by 0.1 standard deviation (or roughly 10 

PISA points) even though gender was in the conditioning model. 

Figure B.5 Average bias of gender gaps in standard deviation for variations 

of in-/excluding booklet IDs 

 
Note: V0: No conditioning at all, V3: Direct and indirect regressors as in 

PISA with booklet IDs and with constraints for booklet ID regression 

coefficients, V8:  Direct and indirect regressors with booklet IDs and without 

constraints for booklet ID regression coefficients, V9: Direct and indirect 

regressors without booklet ID. 

 

Figure B.6 displays the average bias in the percentile differences for the four 

conditioning model specifications. Thereby, it confirms the implications of 

the previous graph. While the magnitude of the bias is smaller for the 

percentile differences, booklet IDs also have an impact on all three domains. 

Bias is always largest – even larger than no conditioning (square: V0) – for 

the conditioning model specification with booklet IDs and without restriction 

(triangle: V8). While the difference between excluding booklet IDs 

completely (cross: V9) and using booklet IDs with latent regression 

coefficient restrictions (circle: V3) is minor for mathematics, V9 outperforms 

V3 visibly for reading and science. But again, the impact on the percentile 

differences is small in comparison to the other two measures. 
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Figure B.6 Average bias of the 90th–10th percentile differences in standard 

deviation for variations of in-/excluding booklet IDs 

 
Note: V0: No conditioning at all, V3: Direct and indirect regressors as in 

PISA with booklet IDs and with constraints for booklet ID regression 

coefficients, V8:  Direct and indirect regressors with booklet IDs and without 

constraints for booklet ID regression coefficients, V9: Direct and indirect 

regressors without booklet ID. 
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C Appendix Chapter 4 

C.1 Highest parental education 

Table C.1 shows all information about parental education that can be found 

in the official downloadable PISA 2012 data (datasets, questionnaires and 

codebooks downloadable from 

https://www.oecd.org/pisa/data/pisa2012database-downloadabledata.htm). 

Thereby, the national versions of the questionnaires usually contain (slightly) 

altered versions (e.g. national qualifications are inserted instead of ISCED 

levels) about parental education and are already recoded to fit into the ISCED 

categories in the official dataset. While there are questions about parental 

schooling and professional education in the student background questionnaire 

of the official dataset, the parental questionnaire only includes questions 

about their professional education. As a result, more information is available 

from the students’ responses and the corresponding composite measure is 

more detailed than the equivalent based on the parental responses.   

  

https://www.oecd.org/pisa/data/pisa2012database-downloadabledata.htm
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Table C.1 Parental education: Questions and their response options 

available in the publicly available PISA database  

Question-

naire 

Topic Question Response categories 

Student Schooling What is the <highest 

level of schooling> 

completed by your 

mother/father?* 

1 – <ISCED level 

3A>, 

2 – <ISCED level 3B, 

3C>, 

3 – <ISCED level 2 >, 

4 – <ISCED level 1>, 

5 – She/he did not 

complete 

       <ISCED level 1> 

Student Professional 

education 

Does your 

mother/father have 

any of the following 

qualifications?* 

 

 <ISCED level 6> 1 – Yes, 2 – No  

 <ISCED level 5A> 1 – Yes, 2 – No 

 <ISCED level 5B> 1 – Yes, 2 – No 

 <ISCED level 4> 1 – Yes, 2 – No 

Parent  Professional 

education 

Does the child’s 

mother/father have 

any of the following 

qualifications? 

 

  <ISCED 5A, 6> 1 – Yes, 2 – No  

  <ISCED 5B> 1 – Yes, 2 – No 

  <ISCED 4> 1 – Yes, 2 – No 

  <ISCED 3A> 1 – Yes, 2 – No 

Student Composite 

measure 

Highest educational 

level of parents 

0 – None,  

1 – ISCED 1, 

2 – ISCED 2,  

3 – ISCED 3B, 3C, 

4 – ISCED 3A, 4, 

5 – ISCED 5B,  

6 – ISCED 5A, 6 

Parent Composite 

measure 

Highest educational 

level of parents 

0 – None, 

1 – ISCED 3A, 

2 – ISCED 4,  

3 – ISCED 5B,  

4 – ISCED 5A, 6 

Note: All questions included the instruction to only tick one box. Questions 

with an asterisk also included the note to ask the <test administrator> for help 

if unsure how to answer it. The angle <brackets> denote words that needed to 

be inserted according to the country’s equivalent (e.g. primary school for 

<ISCED 1> in most countries). ISCED levels correspond to: 1 – Primary 

education, 2 – Lower secondary education, 3 – Upper secondary education, 4 

– Post-secondary non-tertiary education, 5 – First stage of tertiary education, 
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6 – Second stage of tertiary education. The letter after the number depends on 

to which further level of education it grants you access. The questions and 

response categories are taken from the PISA 2012 student background 

questionnaire codebook (OECD, n.d.-a). 

 

The questions and response categories in the more detailed German version 

of the data, which is available upon request/application, are shown in Table 

C.2. Thereby, I translated the questions into English, but kept the response 

categories in German, as the German educational system is quite complex and 

mostly there are no equivalent well-established terms in English. I added a 

column ‘ISCED 97 assignment’ which contains the appropriate ISCED 

assignment for the German qualification – explanations about the German 

system, the terms and assignments can be found in Schneider (2008). The last 

column contains the coding instruction of the German qualifications onto the 

used categories in the official PISA 2012 dataset according to the German 

scaling manual/codebook (Mang et al., 2018, pp. 173–176). As can be seen 

in the table, the German student background and parental questionnaire 

contain the same questions about parental education. 
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Table C.2 Parental education: Question and response categories in German data as well as their mapping to ISCED 1997 scale and the PISA 

2012 categories. 

Student background and parental questionnaire: Schooling 

 Response categories ISCED 97 assignment 

(Schneider, 2008) 

PISA 

assignment 

(Mang et al., 

2018) 

What is the 

highest school-

leaving 

qualification 

completed by 

your 

mother/father?

* 

1 Hochschulreife/ Fachhochschulreife/ Abitur ISCED 3A ISCED 3A, 4 

2 Berufsgrundbildungsjahr/ Berufsschule/ Berufsfachschule Depends: ISCED 3A, 3B, 4 ISCED 3A, 4 

3 Mittlere Reife/ Realschulabschluss/ Abschluss der 

polytechnischen Oberschule nach der 10. Klasse (Mittlerer 

Abschluss) 

ISCED 2 ISCED 2 

4 Hauptschulabschluss/ Volksschulabschluss ISCED 2 ISCED 2 

5 Abschluss der Polytechnischen Oberschule nach der 8. Klasse ISCED 2 ISCED 2 

6 Abschluss einer Sonderschule/ Förderschule Depends – special needs school ISCED 1 

7 Sonstiger Schulabschluss (z. B. im Ausland) Other (e.g. abroad) -  

8 Sie/er ist ohne Abschluss von der Schule abgegangen. Left school without graduation ISCED 0 

9 Sie/er hat keine Schule besucht Did not go to school ISCED 0 
     

Student background and parental questionnaire: Professional education 

 Response categories ISCED 97 assignment PISA 

assignment 

y/n Promotion (Doktorprüfung) ISCED 6 ISCED 6, 5A 
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Does your 

mother/father 

have one or 

multiple of the 

following 

qualifications? 

* 

y/n Hochschulabschluss (Magister/ Diplom/ Staatsexamen/ Bachelor/ 

Master) 

ISCED 5A ISCED 6, 5A 

y/n Fachhochschulabschluss/Diplom (FH) ISCED 5A ISCED 6, 5A 

y/n Abschluss an einer Fachschule/ Meister- oder Technikerschule/ 

einer Schule des Gesundheitswesens/ Abschluss an einer 

Berufsakademie/ Fachakademie (oder ein vergleichbarer 

Abschluss im Ausland) 

ISCED 5B ISCED 5B 

y/n Abschluss an einer Fachoberschule/ Berufsschule/ 

Berufsfachschule/ Berufsoberschule/ Technische Oberschule 

(oder ein vergleichbarer Abschluss im Ausland) 

ISCED 4 ISCED 3A, 4 

y/n Abgeschlossene Lehre (Abschluss an einer Handelsschule oder 

ein vergleichbarer Abschluss im Ausland) 

Depends – ISCED 3B, C ISCED 3B, 3C 

y/n Sonstiger beruflicher Abschluss (z.B. im Ausland) Other (e.g. abroad) - 

Note: Response categories are kept in German, as some of them have no equivalent in English, see Schneider (2008) for an overview of the German 

educational system and explanations of their equivalent/educational levels and intents. Question with an asterisk also included the note to ask the 

<test administrator> for help if unsure how to answer it. For the first question, the highest qualification should be ticked. The second question has 

y/n (yes/no) options and every obtained qualification should be indicated. ISCED levels correspond to: 1 – Primary education, 2 – Lower secondary 

education, 3 – Upper secondary education, 4 – Post-secondary non-tertiary education, 5 – First stage of tertiary education, 6 – Second stage of 

tertiary education. The letter after the number depends on to which further level of education it grants you access. The questions (in German – I 

translated them into English) are taken from the German scale manual/codebook (Mang et al., 2018).
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C.2 Technical details of the plausible value computation in 

Chapter 4  

The plausible value computation is implemented in Chapter 4 as follows:  

• The scored cognitive item response data from PISA 2012, 

downloadable from 

https://www.oecd.org/pisa/data/pisa2012database-

downloadabledata.htm, and the national student background 

questionnaire data for Germany is used (Prenzel et al., 2015; available 

after application) are used in the plausible value computation.  

• Only one factor variable is used in two of the three conditioning 

models: highest parental education. The third does not use any 

conditioning at all.  Highest parental education is computed based on 

the national student background questionnaire data according to the 

planned assignment (Mang et al., 2018; also see Subchapter 4.4.3). 

Two versions of highest parental education are computed: one based 

on the students’ responses and one based on the parental responses. 

• The item response theory model uses the official reported item 

difficulties as fixed item difficulties in the computation (OECD, 

2014b, pp. 406–413) with one exception. I believe that the difficulty 

of PM155Q03D is a typo. As a result, I used the average value from 

all previous cycles (τ1 = 0.184, 𝜏2 = −0.184). 

• The conditioning model is conducted using a ‘divide-and-conquer’ 

approach (Patz & Junker, 1999; van Rijn, 2018). This means that the 

IRT model is computed first and the latent regression subsequently.  

• The IRT model is estimated using tam.mml() and latent regression 

using tam.latreg() from the R package ‘TAM’ (Robitzsch et 

al., 2018). Further computational details are: quasi-Monte Carlo 

integration, 2000 nodes, convergence criterium for deviance=0.001, 

convergence criteria for coefficients=0.0001. 

• Three version are computed:  

1. No conditioning at all (only the IRT model) 

https://www.oecd.org/pisa/data/pisa2012database-downloadabledata.htm
https://www.oecd.org/pisa/data/pisa2012database-downloadabledata.htm
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2. Conditioning: only using highest parental education based on 

the students’ responses 

3. Conditioning: only using highest parental education based on 

the parental responses  

• Five plausible values are drawn from the resulting multivariate normal 

distributions, each with the help of tam.pv() (Robitzsch et al., 

2018). Further computational details are: Monte Carlo estimation, 

2000 nodes.  
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