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Abstract

Statistical analyses in many physical sciences require running simulations

of the system that is being examined. Such simulations provide comple-

mentary information to the theoretical analytic models, and represent an

invaluable tool to investigate the dynamics of complex systems. However,

running simulations is often computationally expensive, and the high num-

ber of required mocks to obtain sufficient statistical precision often makes

the problem intractable. In recent years, machine learning has emerged

as a possible solution to speed up the generation of scientific simulations.

Machine learning generative models usually rely on iteratively feeding some

true simulations to the algorithm, until it learns the important common fea-

tures and is capable of producing accurate simulations in a fraction of the

time. In this thesis, advanced machine learning algorithms are explored

and applied to the challenge of accelerating physical simulations. Various

techniques are applied to problems in cosmology and seismology, showing

benefits and limitations of such an approach through a critical analysis. The

algorithms are applied to compelling problems in the fields, including sur-

rogate models for the seismic wave equation, the emulation of cosmologi-

cal summary statistics, and the fast generation of large simulations of the

Universe. These problems are formulated within a relevant statistical frame-

work, and tied to real data analysis pipelines. In the conclusions, a critical

overview of the results is provided, together with an outlook over possible

future expansions of the work presented in the thesis.
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Impact statement

Many physical sciences are living and thriving in the golden age of data.

Cosmology and seismology are amongst these sciences: more inexpensive

hardware, years of planning and larger collaborations are leading towards

the collection of an unprecedented amount of data. However, despite this

wealth of new observations, much progress still has to be made in order to

be able to store, analyse and draw precise conclusions from these data. As

an example, in order to infer narrower constraints on cosmological parame-

ters, thousands of large simulations of the Universe have to be run; however,

a single high-resolution simulation requires a century of computing hours to

be produced, and so far the total number of simulations is insufficient.

Machine learning and computer science can assist the physical sci-

ences for this purpose. The last decade has seen a steep surge in the

spread and applications of machine learning techniques to a plethora of

fields, fostering remarkable connections among various sciences. At the

same time, some of these bridges have been proven hard to travel across,

due to significant differences in the languages spoken by the different par-

ties involved, and sometimes promising projects ended up being delayed or

stranded due to these limitations.

The work underlying this thesis has been made possible thanks to

an ongoing interdisciplinary conversation between physicists, statisticians,
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computer scientists, machine learners, and data scientists. The techniques

developed throughout the thesis, which are (or soon will be) available online

to all, will significantly accelerate the inference of cosmological analyses

that investigate the origin and the evolution of the Universe, making calcu-

lations that would have taken centuries possible in less than a day, on com-

mercial laptops. Additionally, some of the techniques we developed have

already gained attention from large cosmological collaborations, and we will

be sharing such knowledge in multiple venues in upcoming years. Seismo-

logical analyses of (micro)earthquake location and characterisation will also

tremendously benefit in speed and accuracy, thus helping the community

understand the impact of human activity on seismic hazard, and improving

the workplace safety for thousands of people. Moreover, these fields are

increasingly interested in building stronger trust in machine learning mod-

els, and the extensive tests which our models underwent will help further

validate these techniques, discerning the advantages and the limitations of

each of them.

The impact of this work is even more far-reaching, since it establishes

a common dictionary which can serve both natural scientists and computer

scientists, both in academia and in industry. Understanding each other’s

language is key to fruitful conversations, where both parties can thrive and

exchange knowledge. We believe that through this work we made this inter-

disciplinary conversation more accessible.
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1
Introduction: the tools

adapted from xkcd: Frequentists vs. Bayesians ³

It is undeniable that the natural sciences need to be integrated with the

statistical sciences in order to make significant progress in the explanation

of natural phenomena. Quantitative predictions about our Universe need

to be compared with the data that are collected, and the results must be

interpreted within a sound statistical framework. In addition to this, in recent

years computational sciences have emerged as a powerful tool to support
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scientific investigations in a variety of ways, ranging from improved hardware

to more sophisticated algorithms.

In reality, natural, statistical and computational sciences are not three

separate individual entities; as a matter of fact, they are intimately inter-

twined. For instance, it can be confidently stated that a good physicist, be-

sides being well-versed in calculus, linear algebra, geometry and chemistry,

is required to possess a broad understanding of various statistical tools, to

grasp the essence of computational methods, and to learn the implementa-

tion of the algorithms employed to simulate natural phenomena. Recalling

what Galileo Galilei wrote in his 1623 essay The Assayer (Galilei, 1623), in

order to read the big book of the Universe which stands continually open to

our gaze, we definitely need to speak the language of mathematics; how-

ever, this is no longer sufficient. We must also learn the dialect of statistics,

in order to draw meaningful conclusions about the quality of our mathemat-

ical models and their validity; even better, we ought to become used to the

cadence of computational methods, in order to be capable of translating

complex mathematical entities into simple binary operations.

This could be briefly summarised by stating that we need to embrace

an interdisciplinary approach when investing our times into the analysis of

the natural world. This thesis in Data Intensive Science (DIS) is an at-

tempt to serve exactly this scope. We start with extensive introductions

to Bayesian techniques (Sect. 1.1), machine learning (ML, Sect. 1.2), seis-

mology (Sect. 2.1) and cosmology (Sect. 2.2); we then proceed by showing

two applications of ML techniques to accelerate Bayesian methods in seis-

mology through emulation (Chapter 3 and Chapter 4), a natural extension

of the same methodology to cosmological power spectra (Chapter 5), and

two investigations into the capabilities of generative ML models to cosmol-

ogy (Chapter 6 and Chapter 7). Throughout the thesis, we argue for the

necessity to integrate statistical and computational methods into the natural
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sciences we consider, and demonstrate that while more work is needed1,

it is both necessary and timely to enhance current techniques with a mul-

tidisciplinary methodology. We conclude in Chapter 8 with a summary of

our work, and an outlook over the avenues that we deem more promising to

extend what we presented in this thesis.

1.1 Bayesian techniques

1.1.1 A theory of probability

At the basis of the statistical framework we are going to consider in this

thesis is the theory of probability. While we all (probably) have an empirical

intuition of what probability is, whether we are assiduous casino guests or

not, it is useful to give an axiomatic mathematical definition of it, and derive

a formal theory from first principles. Our presentation is mainly based on

Finesso (2018).

We define the probability space as a set of three elements: a sample

space Ω, a family F of subsets of Ω with the structure of a σ -algebra (de-

scribed below), and a scalar function P that maps elements ofF to a number

between 0 and 1 — more formally, P : F → [0,1]. We call event any subset

of Ω; an event is elementary if it contains a single element, which we denote

as ω ∈Ω. The sample space contains all observable elementary events for

a given system, i.e. all possible outcomes of an experiment. In particular, it

always contains Ω itself, and the empty set /0, which are respectively called

the certain event and the impossible event.

As anticipated, we require that the family F is a σ -algebra. We briefly

recall here that F is a σ -algebra if (and only if) the following three properties

hold:
1 We warn the reader that the sentence more work is needed will occur frequently

through this thesis. We hope the reader will not consider it as negligence, but as a sign of
the exciting amount of work that can spring from our investigations.

29



(i) F is non-empty;

(ii) F is closed under complement2 (indicated with a superscript c);

(iii) F is closed under countable unions.

Let us give a trivial example of a sample space with a σ -algebra. Given a

subset E (i.e. an event) of a sample space Ω, the family F = { /0,E,Ec,Ω}

is a σ -algebra. In order to get a less abstract idea of the elements we

introduced, let us consider the classic coin toss example, and consider the

outcome of the toss, either heads (H) or tails (T ). The sample space in this

case is the set Ω = {H,T}, and we can further consider the event heads. A

possible σ -algebra for our sample space is then F = { /0,H,Hc = T,{H,T}}:

these are the subsets we are interested in, and whose probability we want

to measure; therefore, we call the elements of F the measurable events.

The last piece is the probability measure P, which maps any measur-

able event E ∈ F to a real number between 0 and 1, dubbed probability

(measure) of the event E. We require that this function satisfies three ax-

ioms:

(i) P(E)≥ 0 ∀E ∈ F (the probability is positive);

(ii) P(Ω) = 1 (the probability of the certain event is 1);

(iii) P (∪iEi) = ∑iP(Ei) for any finite or countable family of disjoint events

Ei (probability is additive for disjoint events).

Note that combining axiom (ii) and axiom (iii) we can easily conclude that

P( /0)= 0, thus formalising the idea that the empty set is the impossible event.

So far, we introduced the basic tools and notations that are at the core

of complex statistical analyses. In short, we have formalised the idea that

when we run an experiment, we have multiple possible outcomes, which

can or cannot happen with some level of randomness; in order to quantify

2 The complement of a set A⊆ X is X\A, i.e. all elements of X that are not in A.
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the amount of uncertainty over an event, we assign each outcome to a real

number between 0 and 1, where 0 indicates that the event will certainly not

happen, while 1 indicates that the event will certainly happen. However, we

still need to provide a recipe to build the probability measure: the choice

in this case is not unique. A natural choice is to assume that we can run

an experiment in the same conditions a certain number n of times3, and

that we can say something about the probability measure by counting the

number of successful experiments over the total number of experiments.

More formally, the map Pemp : F → [0,1] that associates to each event E the

number Pemp(E) = nE
n , where nE is the number of individual outcomes that

belong to E, is called measure of empirical probability. This measure of

probability is essentially the relative frequency of the event E in the n trials,

i.e. the number of favourable cases over the total number of trials.

1.1.2 Bayes’ theorem

The core of the modern scientific method is the comparison of observed

data with theoretical predictions. In a sense, we aim at fitting (or condition-

ing) the mathematical models that we use to describe the natural world to

the data that is provided by the experiments. In this process, we additionally

include any starting information that we have about the parameters of the

model in the form of prior constraints. These concepts, which we will explore

further later on in this thesis, suggest that there might exist a useful proba-

bility measure that can help in the calculation of the probability of a certain

event given some a priori information. Given a probability space (Ω,F ,P),

and a fixed event F such that P(F) > 0, the conditional probability of any

E ∈ F given F is defined as:

P(E|F)≡ P(E ∩F)

P(F)
, (1.1)

3 This is not always possible: as a counterexample, the reader can think of the Universe
as a non-repeatable experiment — arguably the reason why cosmology is an interesting
science. In that case, as we will see, the observer has to include this limitation in their
analysis, leading to the so-called cosmic variance.
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and it is easy to show that the function P(·|F) : F → [0,1] which assigns

E →P(E|F) is a probability measure, as it satisfies the three axioms given

in Sect. 1.1.1.

The introduction of conditional probabilities is extremely useful to calcu-

late the probability of any single event. Intuitively, it might be hard to directly

calculate P(E); however, we could use the information about a separate set

of events {Fi}n
i=1 to calculate the conditional probability of E given each Fi.

This leads to the law of total probability, and, eventually, to Bayes’ theorem, a

cornerstone of probability with invaluable applications to countless scientific

areas. The law of total probability states that, given a partition {Fi}n
i=1 of the

sample space Ω, with P(Fi) > 0 ∀i, it is possible to calculate the probability

of an event E as:

P(E) =
n

∑
i=1
P(E ∩Fi) =

n

∑
i=1
P(E|Fi)P(Fi) ; (1.2)

in this way, the calculation of the probability of E shifts to the knowledge of

what is the probability of E given each Fi, times the prior information about

the plausibility of each Fi. We provide in Fig. 1.1 a colourful intuition of why

this formula holds.

A direct consequence of the law of total probability is Bayes’ theorem4.

It is useful to interpret Eq. 1.2 as an event E happening in relation to some

causes Fi. Before running the experiment, we know the prior probability of

each Fi, and the likelihood of the event E given each Fi. Bayes’ theorem

provides an answer to the reversed question: what is the probability of a

4 We reserve a little space here to provide some historical information about Bayes’ the-
orem. It is named after British reverend Thomas Bayes, and was posthumously published
for the first time in 1763 by Bayes’ friend Richard Price, who actually corrected it and recog-
nised its importance. According to some historians, the first use of Bayes’ theorem was to
prove the existence of a deity, even though the actual events around this occurrence are a
debated subject, and lie clearly beyond the scope of this thesis. Nevertheless, we are in
strong support of actually referring to this theorem as the Bayes-Price theorem, and refrain
from doing so only not to disorient the reader. Moreover, we note that the French math-
ematician Pierre-Simon Laplace independently rediscovered Bayes’ results and published
them in 1774. We refer to e.g. Zeger (2012) and Stigler (2018) for a more complete analysis
of the history of the Bayes-Price theorem, including Laplace’s contributions.
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Figure 1.1: A schematic representation of the law of total probability (Eq. 1.2), for a
given sample space Ω and a partition {Fi}3

i=1. In order to calculate the
probability of an event E, we calculate the sum of the probability of the
intersections of E with each Fi. By using the definition of conditional
probability (Eq. 1.1), we obtain the law of total probability.

con-cause Fi, given that we actually observed E? This probability P(Fi|E) is

called posterior probability, and can be written as:

P(Fi|E) =
P(E ∩Fi)

P(E)
=

P(E|Fi)P(Fi)

∑
n
j=1P(E|Fj)P(Fj)

, (1.3)

where the first step is the definition of conditional probability (Eq. 1.1), and

in the second step we used Eq. 1.1 in the numerator, and Eq. 1.2 in the

denominator.

In the context of the natural sciences, the promise of Bayes’ theorem

is very appealing. Usually, in order to test a mathematical model, we are

interested in constraining its parameters (θ ) given a set of observations (D,

the data). What Bayes’ theorem states is that it is possible to calculate the
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probability of θ given D, and in particular:

P(θ |D) = P(D|θ)P(θ)
P(D)

, (1.4)

where P(θ |D) is called the posterior distribution, P(D|θ) is called the like-

lihood distribution, P(θ) is called the prior distribution, and P(D) is called

the evidence. While Bayes’ theorem provides this important link, it says

nothing about how to actually sample from these distributions, or how to

evaluate each of the pieces of the theorem. Furthermore, we have now in-

troduced continuous, multidimensional random variables like θ and D, and

while Bayes theorem remains simple in its form, its actual implementation

is not as straightforward. The next sections will detail two standard meth-

ods to sample the posterior distribution, as well as a particular application of

Bayes’ theorem for model selection; it should be made clear, however, that

the impact of Bayes’ theorem reaches well beyond what we present in this

thesis.

1.1.3 Sampling the posterior distribution

In going from Eq. 1.3 to Eq. 1.4, we ignored a few mathematical details:

for instance, we switched from generic events E and F to random variables

θ and D; a formal and complete introduction to random variables can be

found in Feller (1968). The random variables we consider in our work can be

easily thought of as vectors whose components are random, i.e. with some

aleatoric behaviour that is specified by a so-called probability distribution. A

very common choice for a continuous probability distribution is the Gaussian

(or normal) distribution5, which is entirely specified by two parameters µ and

σ in its 1-dimensional formulation. In particular, calling the random variable

X , and the values it can assume x, the Gaussian probability distribution takes

5 For good reasons: the central limit theorem states that, assuming some conditions are
satisfied, the average of many samples of a random variable with unknown distribution is a
random variable itself; the distribution of this average converges to a normal distribution as
the number of samples increases.
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the form6:

P(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 ; (1.5)

when µ = 0 and σ = 1, we will refer to this distribution as the standard nor-

mal distribution (even in higher-dimensions, where µ is a vector and σ be-

comes the covariance matrix). While it is relatively straightforward to sam-

ple from a unidimensional Gaussian distribution (Wiener and Paley, 1936;

Box and Muller, 1958), when the random variables of interest are highly-

correlated multidimensional variables with unknown asymmetrical distribu-

tions, we must resort to more advanced techniques. In particular, we recall

that, in order to infer the posterior distribution of the parameters of interest

θ , we usually aim at sampling from the left-hand side of Eq. 1.4, for which

we need the information on the right-hand side.

The first piece we consider is the prior distribution P(θ). This distribu-

tion must include all the information we have about the parameters of our

model before we run the experiment. For this reason, if there are no pre-

ferred values of θ , we wish to use uninformative priors, such that we do

not bias the posterior distribution with our choice. Selecting a uniform distri-

bution, i.e. a distribution that assigns the same probability to all values in a

given finite interval, sounds like a natural choice, and is de facto a very com-

mon assumption for the prior distribution in the natural sciences7. It should

be noted, however, that a uniform distribution is not necessarily uninforma-

tive — see e.g. Heavens and Sellentin (2018) and Mahony et al. (2020), and

references therein, for a discussion of possible priors and an application in

the context of neutrinos. In order to have uninformative priors, one could

require that the prior distribution is invariant under monotone transforma-

tions of the parameters. This leads to the concept of Jeffreys prior (Jeffreys,

6 With abuse of notation, we refer to the probability of an event P with the same symbol
as a probability distribution and its density, even though they are in principle different math-
ematical quantities; for our needs, it should always be clear what quantity we are referring
to.

7 In this case, the distribution is often called a top-hat distribution, given its resemblance
to the homonymous garment.
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1946), which, despite leading to improper priors (i.e. distributions that do not

integrate to unity) in some cases, is very appealing due to its invariance to

reparameterisations. Rather than imposing a uniform prior on a certain pa-

rameter, Jeffreys prior requires to impose a uniform prior on the logarithm of

the parameter, and thus is particularly useful in the case of positive-definite

quantities like mass or density.

The next element is the likelihood distribution P(D|θ), which usually

requires careful modelling. This distribution describes how we think our

parameters combine to yield observable data; moreover, it requires that we

specify a probabilistic distribution that compares the fixed, observed data

vector D to the model predicted from the parameters θ . Throughout this

thesis, we will explore and extensively discuss different choices about the

likelihood function, as well as demonstrate that it is possible to use cutting-

edge statistical techniques to accelerate the evaluation of such distributions

(see Chapters 3-5). Clearly, the choice of a likelihood distribution has a large

impact on the posterior distribution, and in recent years approaches which

minimise the assumptions about the likelihood form have gained popularity:

these are called likelihood-free approaches, and while they are not a core

part of this thesis, we will come back to them at the end of Chapter 4.

The last quantity of interest in Eq. 1.4 is the denominator P(D), usually

referred to as evidence or marginal likelihood. In the same spirit of the

denominator of Eq. 1.3, one can write P(D) =
∫

dθP(θ)P(D|θ), which is

often an intractable integral. As we will see in the next two sections, this

term can be neglected when sampling the posterior distribution (e.g. with

the Metropolis-Hastings algorithm), and estimating it can yield samples of

the posterior distribution as well (this is the case of nested sampling).
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P ϴ𝑐|D > P ϴ0|D

P ϴ|D

Figure 1.2: The general idea of the Metropolis-Hastings algorithm. Starting from
a point θ0 in parameter space, we use the proposal distribution Q to
sample a candidate point θc. The goal is to obtain samples of the
posterior distribution P(θ |D) by evaluating the transition probability in
Eq. 1.6; in this case, since the posterior evaluated at the candidate
point is higher than the posterior evaluated at the current point θ0, we
accept the new point and use it as the new starting point to continue
drawing samples from the posterior distribution.

1.1.3.1 Metropolis-Hastings

The Metropolis-Hastings algorithm8 is a well-established technique to sam-

ple the Bayesian posterior distribution (and other types of distributions) us-

ing only the information from the likelihood and the prior, as in general it

requires to know only a function proportional to the distribution of interest. It

is a type of Markov chain Monte Carlo (MCMC) algorithm, in the sense that

the samples are obtained sequentially, employing the information coming

from the previous step (Craiu and Rosenthal, 2014); a sketch is presented

in Fig. 1.2.

8 It is important to stress in this case as well that the name of the algorithm may not
reflect the actual contributions of the people that developed it. While the exact history is
still being clarified, we advocate referring to this algorithm as the MR2T2H algorithm, from
the names of the actual contributors — Nicholas Metropolis, Arianna Rosenbluth, Marshall
Rosenbluth, Augusta Teller, Edward Teller and Wilfred Hastings.
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Assuming that we want to obtain samples of P(θ |D), we need three

elements to run this algorithm. First, we need a starting point, usually ob-

tained by randomly sampling a set of parameters θ0 from the prior. Second,

we need a proposal distribution Q, which we use to obtain candidate points

θc; a common assumption is in the form of a Gaussian distribution (Eq. 1.5)

with some tunable width σ . Finally, we need to specify a likelihood P(D|θ)

and a prior P(θ) for the problem we are considering. The algorithm starts

from θ0, and evaluates:

α = min
(
P(θc|D)Q(θc,θ0)

P(θ0|D)Q(θ0,θc)
,1
)

, (1.6)

which is often referred to as acceptance probability. The new candidate is

accepted with probability α, which means that we sample a random number

u from a uniform distribution between 0 and 1, and if α > u we accept the

candidate point θc among the samples; in this case, we promote it and con-

sider it as the new starting point, repeating the procedure outlined above.

Otherwise, if α ≤ u, we reject the new candidate and keep the current point

as the starting point for the procedure.

Let us take a closer look at Eq. 1.6. We start by noting that, if the

proposal distribution Q is symmetric (as first proposed in Metropolis et al.

1953), it simplifies to:

α = min
(
P(θc|D)
P(θ0|D)

,1
)

, (1.7)

which we can rewrite as:

α = min
(
P(D|θ c)P(θc)

P(D|θ0)P(θ0)
,1
)

, (1.8)

using Bayes’ theorem. In this way, we clarified that the candidate point will

always be accepted if its posterior value is higher than the current point

(since α = 1 in this case); on the other hand, if the candidate point has

a lower posterior value, there is a probability of α that it will be accepted.

Moreover, we clarified that in order to calculate α we just need to evaluate
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the likelihood distribution and the prior distribution at the current and can-

didate points, while we do not need the evidence, as anticipated, since it

cancels out.

The Metropolis-Hastings algorithm can be run until a sufficient number

of points have been sampled, depending on the requirements. However, it is

important to stress that while these samples converge to the true posterior

distribution, they are correlated with each other, and require a certain num-

ber of initial points to be discarded (burn-in), to avoid spurious sampling of

low-density regions. It is also important to remark that many variations of the

algorithm exist, each overcoming some of the disadvantages of the method.

In particular, we will be using the emcee implementation (Foreman-Mackey

et al., 2013), based on the affine ensemble sampler proposed in Goodman

and Weare (2010); emcee includes many independent walkers9 exploring

the posterior space starting from different positions, is suitably parallelised

and publicly available.

1.1.3.2 Nested sampling

The Metropolis-Hastings algorithm is not the only method to sample the

posterior distribution, and many sophistications of it are available. On the

other hand, there are algorithms which were crafted to solve a different

task, but are also very efficient at sampling the posterior distribution as a

by-product. One such example is the nested sampling algorithm, first pro-

posed in Skilling (2006) and then popularised with the MultiNest (Feroz and

Hobson, 2008) and PolyChord (Feroz and Hobson, 2008) algorithms, whose

implementation is driven by the goal of estimating the evidence P(D), but

which we will use to sample the posterior distribution as well. We will pro-

vide more details about when to use each sampler at the end of this section,

as well as show their application in Chapters 3, 4 and 5.

Before giving an overview of nested sampling, it is useful to write a more

9 Technically, the walkers are not totally independent of each other, since the proposal
distribution for a single walker depends on the positions of all walkers.
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complete form of Bayes’ theorem which includes the models under scrutiny.

Given some observed data D and a proposed modelM describing the data,

the posterior distribution of the parameters of interest θ is given by:

P(θ |D,M) =
P(D,M|θ)P(θ)
P(D,M)

, (1.9)

where the denominator is still intractable:

P(D,M) =
∫
P(D,M|θ)P(θ)dθ ≡Z , (1.10)

since it depends on a high-dimensional function, the likelihood:

P(D,M|θ)≡ L(θ) . (1.11)

The core of nested sampling consists of recasting the integral that yields

the evidence Z (Eq. 1.10) to a one-dimensional integral, which is easier to

evaluate. If we define the following one-dimensional function:

X (λ ) =
∫
L(θ)>λ

P(θ)dθ , (1.12)

it is easy to see that the evidence can be evaluated by calculating:

Z =
∫ maxL

0
dλX (λ ) =

∫ 1

0
L(X )dX , (1.13)

where L(X ) is the inverse of Eq. 1.12. A typical shape of L(X ) is sketched

in Fig. 1.3; the area under the curve is the quantity we aim to estimate. In

order to evaluate the integral of Eq. 1.13, we first sample a set of values θ0

from the prior. These samples are sorted according to their corresponding

value of the likelihood L(θ): the point with the lowest value of the likelihood

corresponds to the highest value of X amongst the sampled points. This

point is used to calculate the evidence using the trapezoidal rule; then, it is

removed from the set (it becomes a dead point), and a new sample with a
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Figure 1.3: A typical shape of the inverse function of Eq. 1.12 L(X ) as a function of
X ; the area under the curve is the evidence, that we want to estimate.
The orange crosses are samples from the prior: the one with the lowest
likelihood value (L∗) is discarded and becomes a dead point; a new
point is sampled from the prior, with the condition that its likelihood
is greater than L∗. This procedure leaves us with an estimate of the
evidence, as well as samples of the posterior distribution.

higher value of the likelihood is searched. By iteratively ”killing” the lowest-

likelihood points and finding a new θ0, we keep on sampling parts of the

prior space with a higher likelihood value (hence the name, nested sam-

pling), and are left with two quantities: an estimate of the evidence Z (with

its error bar), and a set of samples of the posterior distribution (the dead

points). Sophistications of the described procedure exist, and often address

the computational bottleneck of the procedure, which is the sampling of live

points. In particular, MultiNest proposes a fast approach (especially with

a few tens of parameters) which can deal with multimodal distributions by

sampling live points through collections of ellipsoids; on the other hand,

PolyChord is slower but more reliable in its evidence estimation, and partic-

ularly suited for high-dimensional spaces (above 100 parameters) thanks to

slice sampling (Neal, 2003).
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One final remark about nested sampling (and evidence estimation in

general) is that it can be used for model selection, as we will show in a

geophysical example in Chapter 4. Rearranging Eq. 1.9, it is possible to

write the posterior distribution as:

P(θ |D,M) =
P(D|M,θ)P(θ |M)

P(D|M)
, (1.14)

where the quantity P (D|M) can be interpreted as the likelihood of a given

signal under a certain model, with the constraint that the models (namely,

the hypotheses) form a set of nhyp pairwise disjoint events whose union is the

entire possibility space — i.e. P
(
Mi∩M j

)
= 0 for i 6= j, ∀i, j = {1, . . . ,nhyp},

and ∑
nhyp
i=1 P (Mi) = 1. To compare two hypotheses, and thus perform model

selection, we define the Bayes factor BF as:

BF≡ P (D|Mi)

P
(
D|M j

) = P (Mi|D)P
(
M j
)

P
(
M j|D

)
P (Mi)

, (1.15)

where the second equality has been obtained using Bayes’ theorem, P (Mi)

is the prior distribution of the modelMi, and P (Mi|D) is the posterior dis-

tribution of hypothesisMi given D. If the models are equiprobable a priori,

we can write P (Mi) = P
(
M j
)
, which allows us to express the Bayes factor

as the ratio of the posterior distribution of one hypothesis over the other.

Hence, if the Bayes factor as defined in Eq. 1.15 is greater than 1, we can

interpret it as hypothesisMi being more favoured than hypothesisM j un-

der the observed data D (Knuth et al., 2015). By looking at the hypothesis

that maximises the evidence, we can select the model that best describes

the given observation: we will use this technique in Chapter 4 to identify the

type of geophysical source for a given observed seismogram recorded by

surface sensors.
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1.2 Machine learning

1.2.1 General overview

In recent years, several fields including the natural sciences have seen a

rise in the number of applications of machine learning (ML) techniques to

relevant problems in the respective areas. Such a trend can be observed

for instance by counting the number of papers that have been uploaded on

the popular open-access preprint system arXiv10 and which report ML tech-

niques applied to scientific problems11. In Fig. 1.4, we report this trend for

astrophysical papers in the last 25 years: while until about 2011 the frac-

tion of ML papers was approximately constant, the last decade has seen

a constant increase, with these papers reaching more than 4% of the to-

tal number of submitted preprints12. We additionally note that while in the

past ML techniques were applied mainly to object classification (see e.g.

Lahav et al., 1995), today the range of applications has widely broadened,

going from anomaly detection (Giles and Walkowicz, 2018), fast estimation

of gravitational wave parameters (Gabbard et al., 2019) and CMB dust fore-

ground removal (Jeffrey et al., 2021), to allocation of telescope resources

(Cranmer et al., 2021), characterisation of exoplanets (Yip et al., 2019), and

search for new planets (Henghes et al., 2020), just to name a few.

We argue that this trend is common among many natural sciences (and

beyond, in fields like finance, art and manufacturing), and believe that this

can be attributed to two main factors. First, the last three decades have

seen the conceptualisation of bigger and bigger experiments, led by large

10 arxiv.org
11 As well as noticing the increase of academic job advertisements that mention ML skills,

the spread of data science centres within universities and the rise of relevant interdisci-
plinary conferences and symposia.

12 It would be interesting to carefully assess how many of these papers have actually
been accepted on peer-reviewed journals; however, the purpose of this thesis is not to
raise controversial debates.
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Figure 1.4: Fraction of scientific publications uploaded on arxiv.org with the tag
astro.ph that report at least one type of machine learning technique
in the title or abstract — this can include words like ”neural network”,
”deep-learning” and ”random forest” — from January 1st 1995 up to Au-
gust 25th 2021. The vertical dashed line indicates the popularisation of
convolutional neural networks (CNNs, Cireşan et al., 2011; Krizhevsky
et al., 2017), based on the work of Hubel and Wiesel (1968) and in-
troduced in the 1980s (Fukushima and Miyake, 1982). Note that ML
papers in astrophysics were published even before 1995 — see e.g.
Storrie-Lombardi et al. (1992).

international collaborations, which are now collecting (or will soon collect)

unprecedented amounts of data. These data pose a challenge per se, since

the transfer and storage of petabytes of data collected from isolated facilities

(sometimes in space) requires careful handling. In addition to this, we want

to be able to analyse such data, and in most cases it is not possible to sim-

ply feed them through an algorithm: these data need to be preprocessed,

cleaned, and corrected for systematic effects before they can be fed through

an expensive analysis pipeline. The second reason is related to the mas-

sive improvement in bespoke hardware and software for statistical analyses:

recent years have seen the spread of graphics and tensor processing units

(GPUs and TPUs), as well as more efficient central processing units (CPUs)
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and field programmable gate arrays (FPGAs). In particular, GPUs mas-

sively accelerate the calculations that some ML algorithms require, offering

orders of magnitude speed-up factors over CPUs in most cases. TPUs fur-

ther boost such algorithms, and in particular convolutional neural networks

(CNNs, see Fig. 1.4 and Sect. 1.2.2), by employing a bespoke integrated

circuit optimised for TensorFlow (Abadi et al., 2015) operations (Wang et al.,

2019). At the same time, open-access software is made available more and

more often, to have a wider impact and fuel scientific discoveries.

Machine learning fits exactly in this ”data revolution”. While machine

learning techniques have been known for more than 50 years, their explo-

sion has been possible thanks to an increased availability of data, as well as

major hardware and software improvements. In this thesis, we will focus on

artificial neural networks, but it should be noted that many other techniques

are available in ML (random forests, support vector machines, k-means clus-

tering, just to name a few), as well as that ML is only a subset of artificial

intelligence (AI), which includes topics like symbolic logic, rule-based sys-

tems and robotics. A common feature shared among ML techniques is the

idea of ”trial and error”, where the algorithm mimics human experience by

processing a group of data points, learning something from them, and re-

peating these steps until convergence, progressively improving its perfor-

mance. With a trivial analogy, training an ML algorithm is like showing a

child many pictures of various animals, indicating what each animal is, for

multiple hours a day, sometimes for multiple days in a row13. We will make

these intuitive ideas less abstract in the next section, where we explore the

main features of artificial neural networks.

1.2.2 Artificial neural networks

At the core of (feedforward, fully-connected or dense) artificial neural net-

works (ANNS) is the neuron; multiple neurons form a layer, and stacking

13 No child or animal was harmed in writing this thesis.
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multiple layers yields a neural network. Each neuron is associated with a

set of real numbers called weights; let us refer to the j-th weight of the i-th

neuron as wi j. Given an input −→x , each neuron calculates a weighted sum

of the input:

zi = ∑
j

wi jx j , (1.16)

where it is common to include in the weights a bias term bi, which can shift

the output by a constant amount14. This operation is repeated for every neu-

ron, and the output of each layer becomes the input to the following one. In

order to include non-linearities in the neural network, the output of Eq. 1.16

is fed through a so-called activation function, which we further discuss be-

low. With minimal conditions on the activation function, a single-layer feed-

forward neural network with enough neurons can approximate any Borel-

measurable function from one finite dimensional space to another15 (Hornik

et al., 1989; Cybenko, 1989). Before diving into the details of the different

types of networks available, training procedures and optimisation schemes,

we shall provide a small glossary of all the relevant terms, together with a

short description, in alphabetical order. A sketch of a basic neural network

is shown in Fig. 1.5.

• Activation function, also transfer function: a function applied after the

weight multiplication to introduce non-linearities in the network. One

can choose between a wide range of activation functions; we list the

most used ones in Table 1.1. It is used in both feedforward and convo-

lutional layers, and takes inspiration from the activation of brain neu-

rons, which are either on or off. It is desirable that this function is

continuous and differentiable (almost everywhere), to avoid numeri-

cal issues. In order to choose the best activation function, it is com-

mon to avoid those which lead to very small (”vanishing”) or very large

14 This is usually done by adding a node associated with unity value to the input; in this
thesis, we will ignore the bias term and assume it is included in the weights.

15 Note that, while the network can approximate any function, there is no prescription on
how to build the weights such that we find the right approximation.
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Figure 1.5: Sketch of a basic feedforward neural network, with 2 input units xi, 4
hidden units hi, and a single output unit yi. Each layer includes a node
associated with the value 1, which plays the role of the bias (or shift).
The activation function is indicated with f . The weights between the
input and hidden layer, as well as the activation function operation, are
omitted.

(”exploding”) gradients during training, like the hyperbolic tangent and

sigmoid function (Hochreiter et al., 2001); on the other hand, it is com-

mon to empirically try and choose the best one based on the overall

performance of the model on the validation set.

• Batch size: it is common to feed the training data in batches rather

than all at once at every epoch, in order to reduce the overall memory

usage and to train faster. This hyperparameter usually has to be tuned

depending on the network architecture, type of data, and memory lim-

itations.

• Convolutional layer : a layer in the neural network that convolves (ac-

tually cross-correlates) some filters (also known as kernels) with the

training data, usually employed when one has to deal with images or
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videos. The convolution operation consists of a matrix multiplication

between the weights of the filter and the input data, conveniently re-

shaped. A bias is then added, and an activation function applied, as

for the case of the fully-connected layer. One way to describe this

convolution is to slide a filter over an image, and calculate the sum of

all products between the filter parameters and the corresponding pix-

els. In this sense, it is possible to tune the stride parameter16, and to

pad the contour of the image (usally with zeros) to deal with the edge

pixels. The convolution operation usually outputs an image which is

smaller than the input one; however, it is possible to adapt the same

process to upsample the input image. This operation is called trans-

posed convolution, and it is named after the fact that it can be obtained

by simply transposing the matrix that describes the normal convolution

operation.

• Epoch: a step in the optimisation process. The whole training set is fed

to the network every epoch, while a batch of data is fed to the network

at every iteration. An epoch is composed of multiple iterations.

• Fully-connected layer, also dense layer : a layer in a neural network

which is made of neurons, or nodes, each of which is associated with

a set of weights w, namely the trainable parameters of each layer, as

described above in Eq. 1.16. Given an input layer I of nodes I j with

values x j, every value yi in the corresponding node Oi of the output

layer O will be calculated as:

yi = f

(
∑

j
wi jx j

)
, (1.17)

where f is the activation function.

• Optimisation: at each epoch of the training, the network is fed with the
16 The stride parameter controls the size of the step of the filter which is slided over e.g.

the image.
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input data, and processes them according to the current weights. At

the end of the network, a loss function L is calculated, and the goal of

the network is to update its parameters in order to minimise the loss

function. The optimisation is done through an update rule for each

parameter, namely:

φt = φt−1−U(∇L,u) , (1.18)

where φt indicates the network parameters at step t, and U(∇L,u) is

a function of the gradient of the loss function with respect to the net-

work’s parameters ∇L, and of a set of hyperparameters u. The gra-

dient is usually calculated through backpropagation (Rumelhart et al.,

1988), which basically consists of calculating the derivative of the loss

function with respect to the parameters using the chain rule. In this

thesis, we will always use the Adam optimizer (from adaptive moment

estimation, Kingma and Ba, 2015), whose update rule works as follows

(← indicates replacement):

m← β1m+(1−β1)∇L

s← β2s+(1−β2)(∇L)2

m← m
1−β t

1

s← s
1−β t

2

φ ← φ − lr m√
s+ε

. (1.19)

Let us break down the algorithm in 1.19: in the first (second) step, we

calculate a biased estimate of the first (second) moment of the gra-

dient of the loss function with respect to each network’s parameter,

namely its mean (uncentered variance); as more and more iterations

are completed, this returns a moving average of the first (second) mo-

ment. This estimate is biased towards zero, especially during the initial

timesteps since m and s are initialised to 0: in the third and fourth steps

we correct for this bias. Finally, we update the parameters of the net-
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work φ in the last step. In algorithm 1.19, t is the iteration number,

(∇L)2 = ∇L⊗∇L indicates the element-wise square of the gradient

∇L, and we have to specify four hyperparameters: the learning rate lr,

the exponential decay for the first moment estimates β1, the exponen-

tial decay for the second moment estimates β2, and a small constant

ε which should guarantee numerical stability. When we use this opti-

miser throughout the thesis, we will specify the hyperparameter values

that we employ, often obtained with some careful validation over part

of the dataset.

• Regularisation: when training any neural network, it is possible that

the optimisation procedure leads to a high-capacity model which over-

fits the training data, while showing poor performance on the test data.

In this regime, the generalisation error of the model is high, thus mak-

ing it impractical (Goodfellow et al., 2016). Regularisation techniques

propose slight modifications to the loss function which limit the capac-

ity of the model, restricting the space in which the weights can take

value and promoting sparsity. Common regularisation techniques in-

clude adding a penalty term for the L1 or L2 norm of the parameters

of the network (these are commonly known as Lasso and Tikhonov

regularisation, respectively), as well as randomly omitting a fraction of

the neurons during training (dropout, Srivastava et al., 2014). Inter-

estingly, it is possible to associate different regularisation techniques

to different prior distributions imposed on the parameters of a neural

network, thus unlocking a Bayesian interpretation of such models (see

e.g. Charnock et al. 2020).

To train our neural networks, we split our datasets in three chunks, and

use most (typically 80%) of the data for training; we reserve the rest of the

data for validation (namely to find the best hyperparameters of the network)

and for testing (namely to test the performance of the model on unseen

data). The network architectures vary depending on the task, often com-
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bining dense layers and convolutional layers. We will specify the exact ar-

chitectures every time we employ them. We also record learning curves,

namely the behaviour of the loss function and other metrics of interest, as a

function of the number of epochs. We report them where appropriate in the

description of the experiments we run. In particular, we always look for signs

of overfitting, namely when the performance of the model on the training set

keeps improving, while the performance on the validation set does not; we

mainly use dropout to reduce overfitting.

1.2.3 Generative models

Neural networks (and machine learning in general) have been employed in

a variety of tasks, from sentiment analysis of large collections of text to ac-

curate detection of unsolicited inbox e-mails. In this thesis, we are going

to focus on ML models that are capable of generating data points with the

same statistical distribution as the training data: we refer to such models

as generative models. Two generative models stood out in recent years

for their performance: variational autoencoders (VAEs) and generative ad-

versarial networks (GANs). In the next two sections, we present the main

features, advantages and disadvantages of each of them, deriving their loss

function and explaining why they can greatly impact the scientific analysis in

the natural sciences. In our treatement of generative models we purpose-

fully leave out autoregressive models, where the output at each time step

depends on the outputs of the previous steps, in a recurrent fashion. While

these models are usually more suited for sequential data like time series, it is

possible to devise autoregressive models that generate e.g. images pixel by

pixel (van den Oord et al., 2016); moreover, autoregressive models are par-

ticularly attractive due to their clear explicit statistical formulation, and due to

recent advances that improved their efficiency and expressiveness — see

e.g. normalising flows (Dinh et al., 2015; Rezende and Mohamed, 2015, and

references therein), with a recent application to cosmological random fields
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Table 1.1: Non-comprehensive list of activation functions, with their analytical ex-
pression and plot. Notice that the identity function does not introduce
any non-linear features in the network, hence it is also called linear ac-
tivation function. For the plots, we set α = 0.2.

Function Expression Plot

Hyperbolic tangent f (x) = tanh(x)

Sigmoid f (x) = 1
1+e−x

Softplus f (x) = ln(1+ ex)

Rectified Linear
Unit (ReLU) f (x) =

{
x if x≥ 0
0 if x < 0

Leaky Rectified Linear
Unit (Leaky ReLU) f (α,x) =

{
x if x≥ 0
αx if x < 0

Exponential Linear
Unit (ELU) f (α,x) =

{
x if x≥ 0
α(ex−1) if x < 0

Identity f (x) = x
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presented in Rouhiainen et al. (2021). We leave an exploration of these

models to future work.

1.2.3.1 Variational autoencoders

Given some (high-dimensional) data, it is often useful to ask whether there

exists a lower-dimensional representation which includes the main factors

of variation of the data. The compact space where this representation lives

is often referred to as latent space, feature space or embedding space; the

operation that provides such representation is often called data compres-

sion or data encoding, and finding the optimal representation, either in a

supervised or unsupervised manner, is a very active area of research, often

dubbed representation learning. As an example, as we will see in greater

detail in Sect. 2.2, in cosmology a possible low-dimensional representation

of a collection of large simulations of the Universe with billions of particles

could be a set of six real numbers, called cosmological parameters; these

numbers provide all the information needed to describe the simulations —

and, indeed, to describe most of the Universe that we observe today.

An established ML algorithm that aims to provide such a representation

is the autoencoder. It is composed of two parts: the first piece (the encoder)

takes the data as input, and maps them to a lower-dimensional vector. The

second piece (the decoder), takes this vector and maps it back to the original

space. It is customary to parameterise the encoder and the decoder with two

neural networks, and train them in order to minimise some form of distance

between the input x and the reconstructed output x̃; the loss function is often

chosen to be the mean squared error (MSE) between x and x̃, namely:

MSE(x, x̃) =
1
n

n

∑
i=1

(xi− x̃i)
2 , (1.20)

where n is the dimensionality of the data vector x. While the whole autoen-

coder might seem to be given the trivial task of learning the identity function

(between x and x̃), what it actually provides is a useful, lower-dimensional
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representation z in latent space that is sufficient to reproduce the input data.

However, an autoencoder is not a generative model, and while some form of

discovery could be obtained by analysing the latent space, it is not capable

of providing samples with the same distribution as the training data. More-

over, the finite amount of training data often leads to autoencoders which

are uncapable to perform a lossless compression, and the simple structure

of the loss function (Eq. 1.20) does not allow for any regularised distribution

of the latent vectors in latent space (see e.g. Bank et al. 2020).

In order to obtain a generative model and overcome these limitations,

we must take a different path and consider the following problem. Let us

assume that we want to be able to sample from the data distribution Pϑ (x),

parameterised by some parameters ϑ ; let us further assume that we believe

these data have some underlying structure, namely that there exists a con-

ditional distribution Pϑ (x|z) that can be used to generate new samples, and

that z is sampled from a certain prior distribution P(z). The goal is then to

evaluate the marginal likelihood:

Pϑ (x) =
∫

dzP(z)Pϑ (x|z) , (1.21)

so that it would be possible in principle to maximise Pϑ (x) by tuning ϑ , and

then, given z, sample from Pϑ (x|z) to generate new data with the same

distribution as the training data17. However, the integral in Eq. 1.21 is usu-

ally intractable: in the high-dimensionality case, in particular, a simple es-

timate like Pϑ (x) ' 1
N ∑

N
i=1Pϑ (x|zi), with zi ∼ P(z)18 would still need a pro-

hibitive amount of samples N to be efficient (Doersch, 2016). In order to

17 It is useful to think of the following example in order to understand the setup. Consider
the problem of generating images of digits between 0 and 9. If we want to have control
over what digit is being drawn, intuitively, we could ask that the model first samples a digit
value (say, a 5), and then, given this choice, decodes this value to an image of a 5. We
additionally observe that the latent vector has to also include the correct information about
the stroke angle, thickness, orientation, and more, in order to provide full control over the
generation process; disentagling these factors in latent space is an active area of research
(Bengio et al., 2013).

18 The symbol ∼ indicates sampled from.
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restrict the sample space and consider only z vectors that are likely given

the data distribution, it is useful to consider an additional parametric model

Qϕ(z|x). A key idea behind the generative model we are building is that

we might be able to construct a model Pϑ (x|z) such that the expectation

value Ez∼Qϕ (z|x) [Pϑ (x|z)] is related to the target distribution Pϑ (x). In or-

der to derive this relationship, we must introduce the notion of “closeness”

between probabilistic distributions, which is well captured by the Kullback-

Leibler divergence (KL divergence, Kullback, 1959). Given two probability

distributions P and Q of a continuous random variable X , the KL divergence

is one possible way of measuring their distance, and is defined as:

DKL(P||Q)≡ Ex∼P(x)

[
log
P(x)
Q(x)

]
=
∫

X
P(x) log

P(x)
Q(x)

, (1.22)

where log indicates the natural logarithm19. It is easy to show that

DKL(P||Q)≥ 0 and that DKL(P||Q) = 0 ⇐⇒ P =Q almost everywhere: this

is in line with the idea of DKL(P||Q) being a way of measuring the distance

between P and Q20.

With these premises, the derivation proceeds as follows. Let us con-

sider the following quantity (we temporarily drop the parameters ϑ and ϕ):

DKL
(
Q(z|x) ||P (z|x)

)
, (1.23)

where Q(z|x) is the additional model we introduced above, and P(z|x) is the

true conditional distribution of a latent vector given a data point21. Using the

definition in Eq. 1.22 and Bayes’ theorem (Eq. 1.4), we can write (colours

19 The symbols log and ln refer to the natural logarithm, while log10 refers to the decimal
logarithm.

20 However, we also note that the KL divergence is not symmetric since DKL(P||Q) 6=
DKL(Q||P), that it does not satisfy the triangle inequality, and that it is part of a bigger class
of divergences called f -divergences (see e.g. Gibbs and Su 2002; Sason and Verdú 2015;
Arjovsky et al. 2017, and references therein).

21Q could actually be any arbitrary distribution of z, but we consider the conditional one
to simplify the derivation.
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are used to aid understanding):

DKL(Q(z|x)||P(z|x)) = Ez∼Q(z|x) [logQ(z|x)− logP(z|x)] =

= Ez∼Q(z|x)

[
logQ(z|x)− logP(x|z)− logP(z)

]
+ logP(x) =

= logP(x)−Ez∼Q(z|x) [logP(x|z)] +DKL (Q(z|x)||P(z)) ≥ 0 ,

where the last inequality is a consequence of the non-negativity of the KL

divergence. By considering the last row only, we can write the following

inequality (restoring ϑ and ϕ):

logPϑ (x)≥ Ez∼Qϕ (z|x) [logPϑ (x|z)]−DKL
(
Qϕ(z|x)||P(z)

)
, (1.24)

which is the core of variational autoencoders (VAEs), first introduced in

Kingma and Welling (2014)22. The term on the right-hand side, usually

called evidence lower bound (ELBO), is the quantity we are going to max-

imise; since it suggests there should be two models, a first part Qϕ(z|x)

mapping data to a latent distribution, and a second one Pϑ (x|z) transforming

samples of the latent space into reconstructed data points, VAEs borrow the

structure of autoencoders. While the first term of the ELBO can be assimi-

lated to the MSE (Eq. 1.20), though, the VAE loss function has an additional

term, which can be interpreted as a regularisation term for the distribution

of the latent space (which is unconstrained in the autoencoder case). A

common choice for the prior P(z) is a standard normal distribution, while

Qϕ(z|x) — the parametric approximation of the true posterior Pϑ (z|x) — is

often modelled as a normal distribution with mean and variance provided by

a neural network. In the same fashion, a neural network parameterises the

22 It should be noted that the main contribution of Kingma and Welling (2014) is arguably
the reparameterisation trick ; the math of Eq. 1.24 has been known since at least 1995
(Dayan et al., 1995). When using neural networks to model the variational autoencoder, it is
important that all operations are differentiable, in order to backpropagate the loss function
and update the weights. Since sampling from Q(z|x) is not differentiable, Kingma and
Welling (2014) proposed a sampling scheme that is differentiable, taking samples from a
standard normal distribution first; this made the actual implementation of VAEs possible.
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decoder model Pϑ (x|z). In order to evaluate the KL divergence, we employ

the fact that there exists a closed form when the two distributions are mul-

tivariate Gaussian distributions (Kullback, 1959; Rasmussen and Williams,

2005; Devroye et al., 2018); in that case, the calculation is reduced to the

following analytical expression:

DKL (N (µ1,Σ1)||N (µ2,Σ2)) =
1
2

log |Σ2Σ
−1
1 |+

+
1
2

trΣ−1
2
(
(µ1−µ2)(µ1−µ2)

T +Σ1−Σ2
)
, (1.25)

where N (µ,Σ) indicates the normal distribution with mean µ and covari-

ance matrix Σ. After training, it is possible to decode prior samples using

the trained decoder, thus obtaining new samples: this is why VAEs are

a generative model. We report a sketch of the architecture of a VAE in

Fig. 1.6. Throughout this thesis, we often want to condition the sample gen-

eration on some physical parameters23. For those occurrences, we employ

a slight variation of VAEs, named conditional VAEs (CVAEs, Sohn et al.,

2015), which maximise a slightly altered loss function:

Ez∼Q(z|x,c) [logP(x|z,c)]−DKL (Q(z|x,c)||P(z|c)) , (1.26)

where c refers to the conditional parameters of interest.

As a final remark, it should be noted that by maximising the right-hand

side of Eq. 1.24 (or Eq. 1.26), we are actually maximising a lower bound

on the marginal likelihood; this has been linked to limitations in the perfor-

mance of VAEs, and in particular to blurry images. Throughout this thesis,

we explored the performance of standard (C)VAEs; however, we are aware

that sophistications of it have been developed, and could improve the overall

sample quality — see e.g. vector-quantised VAEs (VQ-VAEs, van den Oord

et al., 2017; Razavi et al., 2019).

23 Using the digit generation analogy again, sometimes we want to select a single digit
that we wish to generate, despite the model having been trained on all digits at the same
time.
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Figure 1.6: Scheme of a variational autoencoder (VAE). The input data is assumed
to have an encoded description provided by the latent variables. It is
then possible to learn how to decode vectors sampled in latent space
back to new data points, which should preserve the statistical distribu-
tion of the input data points.

1.2.3.2 Generative adversarial networks

Another large class of generative models is based on adversarial tech-

niques, and in particular on Generative adversarial networks (GANs, Good-

fellow et al., 2014). In this framework, two different models (often param-

eterised with neural networks), called generator (G) and discriminator (D),

are trained simultaneously with two different goals. While G maps a random

vector to candidate fake samples which resemble the training data to fool

the discriminator, D is trained to distinguish between these fake samples

and the real data points; a sketch is reported in Fig. 1.7. More formally, we

can define a cost function as:

V (D,G) = Ex∼Pϑ (x) [logD(x)]+Ez∼P(z) [log(1−D(G(z)))] , (1.27)
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Figure 1.7: Scheme of generative adversarial networks (GANs). Two neural net-
works, the generator G and discriminator D, are trained together, until
an equilibrium is reached. The goal of the generator is to transform
some noise z into fake data points x̃; samples of x̃ and real data x are
then fed to the discriminator, which is trained to distinguish between
real and fake data. In our work, to avoid mode collapse and training
instabilities, we also explore the application of a GAN variation, namely
Wasserstein GAN with gradient penalty (WGAN-GP, Gulrajani et al.,
2017), where the discriminator is replaced by a critic, leading to the
loss function in Eq. 1.33.

where x refers to the training data sampled from the data distribution Pϑ (x),

z to a noise variable sampled from some prior P(z)24, G(z) to the output of

the generator, and D(·) to the output of the discriminator (i.e. usually a single

real number). The discriminator is thus trained to maximise V (D,G), while

the generator aims at minimising V (D,G): in formula, we aim at the following

optimisation problem:

min
α

max
β

V (Dβ ,Gα) , (1.28)

where we made the neural network parameters α and β explicit. The

two networks play a minimax game until a Nash equilibrium is (hopefully)

reached (Goodfellow et al., 2014; Che et al., 2016; Oliehoek et al., 2018): in

this situation, both players have a strategy, and neither player can improve

24 We use z to indicate the noise vector, which plays the same role as the latent vector in
variational autoencoders (see Sect. 1.2.3.1).
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its performance by individually changing its strategy. Upon convergence, we

wish to use G to generate data points with the same statistical features as

the target data, which cannot be differentiated from the real data by D. In

practice, though, despite generating incredibly sharp and realistic images,

GANs have proved to be quite unstable at training time. Moreover, it has

been shown how GANs are prone to mode collapse, where the generator

just focuses on a few modes of the data distribution and yields new samples

with low diversity (see e.g. Metz et al. 2016; Che et al. 2016).

Many alternatives to GANs as presented in Goodfellow et al. (2014)

have been proposed to address these issues. We focus here on Wasser-

stein GANs with gradient penalty (WGAN-GP; Arjovsky et al., 2017; Gulra-

jani et al., 2017). We still consider two networks, a generator G and a critic C,

which however are trained with a different objective. In order to understand

the reasoning behind this new loss function, it is useful to introduce another

metric that quantifies the distance between two probability distributions: the

earth mover distance, or Wasserstein-1 distance. The intuition behind this

new metric can be given by the following analogy. Let us consider a game of

snooker25 where the goal is to use a cue stick to strike some balls into some

holes. For the sake of the argument only, let us assume that the balls and

the holes have different sizes; as common during a game of snooker, let us

further assume that the balls are spread on the table. We know that in order

to strike the balls into the holes we must consider their distance from the

holes, as well as the strength it takes to push a particular ball, which might

be smaller or bigger than the others, based on the hole size; we refer to this

effort as the total work needed for each ball. We ask the following question:

what is the minimum amount of work required to strike all balls in the holes?

The answer to this question can be found in the context of transportation

theory, by solving the linear optimisation problem that describes the situa-

tion; the name of the solution (namely the minimum work) is called the earth

25 We are entirely illiterate about the world of billiards, so the reader will forgive us if our
description of the game is incorrect.
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mover distance26. More formally, considering two probability distributions P

and Q, their earth mover (or Wasserstein-1) distance is defined as:

W1(P,Q) = inf
γ∈Π(P,Q)

E(x,y)∼γ [||x− y||] , (1.29)

where Π(P,Q) is the set of the joint distributions γ(x,y) with marginals P and

Q. The goal of Wasserstein GANs is exactly to train two models in order to

minimise the Wasserstein distance between the data distribution and the

distribution of the generated data.

However, it is not possible to directly evaluate Eq. 1.29 (Arjovsky et al.,

2017); on the other hand, we can resort to the Kantorovich-Rubinstein du-

ality (Villani, 2008), which turns the minimisation problem into a constrained

maximisation problem. In this way, the Wasserstein-1 distance can be writ-

ten as:

W1(P,Q) = sup
|| f ||L≤1

Ex∼P [ f (x)]−Ex∼Q [ f (x)] , (1.30)

where || f ||L ≤ 1 indicates the set of 1-Lipschitz functions. We recall that a

real-valued function f is 1-Lipschitz if it holds that | f (x2)− f (x1)| ≤ |x2− x1|

for all x1, x2; an equivalent property is that the function is differentiable with

derivative bounded by 1. Eq. 1.30 suggests that in order to evaluate the

Wasserstein distance we can consider a model f (which we called the critic

C, parameterised as a neural network mapping data to a real number) and

optimise the following objective:

min
α

max
||Cβ ||L≤1

VW(Cβ ,Gα) , (1.31)

with

VW(C,G) = Ex∼Pϑ (x) [C(x)]−Ez∼P(z) [C(G(z))] , (1.32)

in order to minimise W1(Pϑ (x),Qα(x̃)), where Qα(x̃) is the generated data

26 Apparently, the name derives from some early examples, where some earth, or dirt,
had to be put into some bins (Rubner et al., 1998); we found the snooker metaphor less
dusty.
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distribution, implicitly defined by Gα(z), with z∼ P(z) (see also Stanczuk et

al. 2021 for a nice summary and critical review of Wasserstein GANs).

Now, the optimisation problem of Eq. 1.31 is actually tractable, with

the only caveat that the neural network C must be a 1-Lipschitz function. Ar-

jovsky et al. (2017) propose to enforce this constraint by clipping the weights

of the critic neural network, which they admit is a terrible choice since it limits

the expressiveness of the critic. We decide to follow Gulrajani et al. (2017),

which propose to constrain the gradient of the critic with respect to its input

for random samples; the objective to optimise thus becomes:

VW-GP(C,G) = Ex∼Pϑ (x) [C(x)]−Ez∼P(z) [C(G(z))]−λEx̂

[
(||∇x̂C(x̂)||2−1)2

]
,

(1.33)

where x̂ is a linear combination of the real and generated data27, λ ≥ 0 is

a penalty coefficient for the regularisation term, and ||∇x̂||2 refers to the L2

norm of the critic’s gradient with respect to x̂. It is worth stressing that when

optimising Eq. 1.33, it is customary to train the critic for multiple iterations

for a single update of the generator’s weight, since this has been found to

significantly improve the model’s performance. Throughout the thesis, we

will describe the particular neural networks we employ for the discriminator,

the critic and the generator, as well as the values of all the hyperparame-

ters we set. When we need to develop a conditional generative model (like

in Eq. 1.26), we simply condition both the discriminator (or critic) and the

generator on the physical parameters of interest. We employ some form

of GANs in Chapters 3, 6, and 7, referring the reader to those chapters for

more details.

27 In particular, x̂ = x+ u(x̃− x), with u ∼U(0,1), where U(0,1) indicates the uniform dis-
tribution between 0 and 1. This linear combination means that we are constraining the
gradient norm to be 1 only along lines connecting real and fake data, which should be
sufficient to guarantee good experimental results; otherwise, the problem would remain
intractable (Gulrajani et al., 2017).
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2
Introduction: the problems

adapted from xkcd: Math Work ³

Now that we described the main tools that we are going to employ to

perform our analyses, it is time to delve into the details of the problems we

are going to address using such techniques. The next two sections provide

a brief overview of the two fields we are going to consider (seismology and

cosmology); we leave a more focussed discussion on the actual improve-

ments that these fields can obtain from the techniques described in Chap-

ter 1 to the rest of the thesis. The reader is warned that our introductions are

by no means comprehensive, and only cover the parts that are relevant for

our thesis. For the seismology section, our presentation is based on Chap-

ters 1-3 of Shearer (2009), while for the cosmology section we drew from

Peebles (1980), Dodelson (2003), Ryden (2016), and the relevant sections

of the cited papers.
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2.1 Seismology

Earthquakes have shaken the Earth for millions of years, and it is estimated

that about 55 quakes hit the Earth every day. Still, the quantitative study of

these effects with mathematical techniques is a fairly recent science, with

the first accurate report going back to the work of Robert Mallet on a large

earthquake in Naples in 1857. The first instruments that recorded under-

ground seismic waves on the Earth’s surface — the seismographs — started

to be built at the end of the 19th century, and active scientific discussions

about the origin of earthquakes, as well as Earth’s internal structure, did not

start until the 20th century. From the 1960s, the study of quakes has been

extended to other celestial bodies as well, with seismometers being placed

on the Moon and Mars; it is also possible to investigate the internal structure

of stars (including the Sun) by analysing the spectra of the light they emit:

these studies have led to the establishment of the field of asteroseismology.

Today, the importance of the analysis of (earth)quakes is widely recognised,

not only for their interesting scientific aspects, but also for the huge impact

they have on many parts of our society, from the engineering measures that

have to be taken when planning the construction of a building, to the catas-

trophic impact earthquakes (and subsequent tsunamis) can have when they

hit a particular location.

At the core of seismology is the wave equation, which we are going

to derive and describe in Sect. 2.1.1. After that, we focus instead on low-

amplitude earthquakes, usually referred to as microseisms. These are often

associated to human activity, and their study is of great interest to under-

stand the anthropological impact on the environment: for these reasons, it

is important to study their nature, as well as their origin below the surface

(the hypocentre). In Sect. 2.1.2 we present the theoretical background of

microseismic activity, and touch on the reasons why machine learning tech-

niques could be crucial in order to progress in the study of such events.
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2.1.1 The wave equation

Earthquakes are mostly caused by the rupture of geological faults in the

underground. The energy released when these events happen is transferred

to the surface in the form of seismic waves: this is the reason why it is

important to have a complete theory of waves in solid media in order to

have a better understanding of earthquakes. The basic, one-dimensional

wave equation can be written in the form:

∂ 2u
∂ t2 = v2 ∂ 2u

∂x2 , (2.1)

where v is the velocity of the wave, which is described by the displacement

function u(x, t). Eq. 2.1 is a second-order linear partial differential equation,

member of the set of hyperbolic partial differential equations, which can de-

scribe many natural phenomena that involve the propagation of transverse

and longitudinal waves (like vibrating strings, sound waves and electromag-

netism). In order to derive the wave equation for seismology, we must intro-

duce a few additional elements that are needed to describe the propagation

of the wave in three dimensions, as well as the properties of the propagating

medium.

Let us consider an infinitesimal cube with sides dx, dy, dz. The force

acting on each surface is given by the pressure multiplied by the area: in this

context, it is useful to introduce the traction vector t(n̂) = (tx(n̂), ty(n̂), tz(n̂))T ,

which is defined as the force per unit area exerted on a surface with normal

vector n̂. Hence, the traction on the face perpendicular to the x̂ direction

is indicated as t(x̂) = (tx(x̂), ty(x̂), tz(x̂)). If we consider three perpendicular

directions forming a reference frame (x̂, ŷ, ẑ), then it is useful to consider a
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matrix with all traction vectors, named stress tensor :

τ =


tx(x̂) tx(ŷ) tx(ẑ)

ty(x̂) ty(ŷ) ty(ẑ)

tz(x̂) tz(ŷ) tz(ẑ)

=


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz ,

 , (2.2)

where it is possible to reduce the number of independent parameters from 9

to 6 assuming static equilibrium, which makes the stress tensor symmetric,

namely τ = τT . Using the stress tensor, we can express the force acting on

the side perpendicular to x̂ as:

dF(x̂) =


τxx

τyx

τzx

dydz . (2.3)

If the medium is homogeneous, i.e. the stress tensor elements do not de-

pend on the position, the net force on each face will be zero. On the other

hand, if we assume spatial variations of the stress tensor, we can write the

net force on the same face as1:

dF(x̂) =
∂

∂x


τxx

τyx

τzx

dxdydz . (2.4)

Repeating this expression for every direction, we can write that the total

force F acting on the cube is:

dF = dF(x̂)+dF(ŷ)+dF(ẑ) =

 ∂

∂x


τxx

τyx

τzx

+ ∂

∂y


τxy

τyy

τzy

+ ∂

∂ z


τxz

τyz

τzz


dxdydz ,

(2.5)

1 We are silently expanding in Taylor’s series, ignoring higher-order terms assuming they
are negligible.
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so that the total force along e.g. the x̂ direction will be:

dFx =

(
∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂ z

)
dxdydz , (2.6)

with analogous expressions for the ŷ and ẑ directions. In compact form,

these equations can be written as:

dFi = ∂ jτi j dxdydz, i ∈ {x,y,z} , (2.7)

where the summation convention on the repeated Latin index j from 1 to 3

(i.e. from x to z) is assumed. Now, considering that the mass of this infinites-

imal cube is dm = ρ dxdydz, where ρ is its density, and recalling that:

dF = dma = ρ dxdydz
∂ 2u
∂ t2 , (2.8)

equating Eq. 2.7 and Eq. 2.8 yields:

ρ
∂ 2ui

∂ t2 = ∂ jτi j, i ∈ {x,y,z} , (2.9)

which is known as the (homogeneous2) equation of motion for a continuum,

or the momentum equation, and has applications in many branches of geol-

ogy.

At this point, we need to link the right-hand side of Eq. 2.9 to the dis-

placement u. It is useful to introduce the strain tensor by first expanding the

displacement vector u in a Taylor series3:

u(x) = u(x0)+J [u(x)−u(x0)] , (2.10)

2 It is in principle possible to include other external forces, like gravity, which we will
however neglect in this thesis.

3 Again, ignoring higher-order terms.
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where J indicates:

J =


∂ux
∂x

∂ux
∂y

∂ux
∂ z

∂uy
∂x

∂uy
∂y

∂uy
∂ z

∂uz
∂x

∂uz
∂y

∂uz
∂ z

 . (2.11)

This Jacobian term can be written as the sum of a symmetric part and an

antisymmetric part, J = e+Ω, where the former is usually called the strain

tensor, and the latter the rotation tensor ; it is easy to show that e is associ-

ated to shear strain, and Ω is associated to rigid rotations. Let us focus on

the strain tensor:

e =


∂ux
∂x

1
2

(
∂ux
∂y +

∂uy
∂x

)
1
2

(
∂ux
∂ z + ∂uz

∂x

)
1
2

(
∂ux
∂y +

∂uy
∂x

)
∂uy
∂y

1
2

(
∂uy
∂ z + ∂uz

∂y

)
1
2

(
∂ux
∂ z + ∂uz

∂x

)
1
2

(
∂uy
∂ z + ∂uz

∂y

)
∂uz
∂ z

 , (2.12)

which is symmetric and contains six independent parameters (like the stress

tensor). It is also useful to write, in a more compact form:

ei j =
1
2
(
∂iu j +∂ jui

)
. (2.13)

With this in mind, it is possible to write the most general linear relationship

between stress and strain tensors as:

τi j = ci jklekl , (2.14)

where ci jkl is the elastic tensor, made of 81 components. With symmetry

and thermodynamical considerations, assuming an isotropic medium4 as

well, it is possible to show that there are only two independent parameters,

namely that we can write:

ci jkl = λδi jδkl +µ(δilδ jk +δikδ jl) , (2.15)

4 Namely one where the properties do not depend on the orientation.
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where δi j is the Kronecker delta (1 if i = j, 0 otherwise), and λ and µ

are called the Lamé parameters. These parameters represent fundamen-

tal properties of the solid, and fully describe the linear relationship between

stress and strain tensors; while λ does not have a specific name, µ is of-

ten referred to as shear modulus, since it measures the resistance of the

material to shearing. Plugging Eq. 2.15 into Eq. 2.14, we can write:

τi j = λδi jtr(e)+2µei j , (2.16)

where we used ei j = e ji, which follows from Eq. 2.13, and tr(e) is the trace

of e. Finally, using Eq. 2.13, we obtain:

τi j = λδi j∂kuk +µ
(
∂iu j +∂ jui

)
. (2.17)

If we consider Eq. 2.17 and Eq. 2.9, we already have the two equations

that describe the propagation of waves in an isotropic solid. It is a good

exercise to combine the two in order to obtain a more compact form, though:

ρ
∂ 2ui

∂ t2 = ∂ j
[
λδi j∂kuk +µ

(
∂iu j +∂ jui

)]
= ∂iλ∂kuk +λ∂i∂kuk +∂ jµ

(
∂iu j +∂ jui

)
+µ∂ j∂iu j +µ∂ j∂ jui

= (∂iλ )∂kuk +(λ +µ)∂i∂kuk +
(
∂ jµ
)(

∂iu j +∂ jui
)
+µ∂ j∂ jui , (2.18)

with i ∈ {x,y,z}, and where we used the product rule for the derivative. Writ-

ing Eq. 2.18 in vector notation, it is straightforward to show that it becomes:

ρü = ∇λ (∇ ·u)+(λ +µ)∇(∇ ·u)+∇µ ·
(

∇u+(∇u)T
)
+µ∇

2u , (2.19)

where ü = ∂ 2u
∂ t2 , ∇ represents the gradient operator, ∇· represents the di-

vergence operator, and ∇2 is the vector Laplace operator, which can be

expressed as:

∇
2u = ∇(∇ ·u)−∇×∇×u , (2.20)
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where ∇× is the curl operator. Plugging Eq. 2.20 in Eq. 2.19, we obtain the

most general form of the seismic wave equation5:

ρü = ∇λ (∇ ·u)+(λ +2µ)∇(∇ ·u)+∇µ ·
(

∇u+(∇u)T
)
−µ∇×∇×u .

(2.21)

This form of the wave equation assumes that the Lamé parameters might

change in space: this is often the case in real Earth models, which are

inhomogeneous. However, there are some practical assumptions that can

be made in order to work along series of homogeneous layers; in these

cases, it is possible to ignore the gradient terms, and Eq. 2.21 becomes the

homogeneous seismic wave equation:

ρü = (λ +2µ)∇(∇ ·u)−µ∇×∇×u , (2.22)

which is at the basis of most synthetic seismogram methods, despite being

an approximate expression for a linear and isotropic model of the Earth. It

is easy to show that this equation admits two types of solutions: a compres-

sional wave (P-wave), and a shear wave (S-wave). In particular, Eq. 2.22

can be written as:

ü = α
2
∇(∇ ·u)−β

2
∇×∇×u , (2.23)

with α2 = λ+2µ

ρ
and β 2 = µ

ρ
. While the propagation of S-waves is pure

shear and involves no changes in the volume of the solid, P-waves include

a change in both volume and shape of the material; in Chapter 3 and Chap-

ter 4 we will see that in general recorded seismic traces on the surface are a

combination of P- and S-waves, with different amplitudes depending on the

density and velocity models of the Earth, as well as the wave origin process,

which we will describe in Sect. 2.1.2. We additionally note that P-waves gen-

5 The most general form should actually include gravity and source terms, which we
ignore in this thesis for ease of understanding.
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Figure 2.1: Displacements due to a P-wave (top) and an S-wave (bottom) travelling
from left to right. The P-wave propagation causes a change in volume
and shape, while the S-wave causes shear only. Adapted from Shearer
(2009).

erally travel faster than S-waves: this can be understood by observing that

α > β 6, as well as by looking at Fig. 2.1, where we sketch the effects of a

P-wave and an S-wave on the same block of material. Since P-waves apply

a compression force in the direction of propagation (and the Earth is essen-

tially incompressible), they arrive faster to the surface than S-waves, which

apply a shear force and cause a perpendicular movement of the solid with

respect to the direction of propagation of the wave.

2.1.2 Microseismicity

Not all earthquakes have a natural origin. Since the nuclear experiments of

the Bikini Atoll in 1946, the interest in discriminating between explosions and

earthquakes has become a cornerstone of seismology. Nowadays, nuclear

experiments are run under controlled environments7, but human activity in

the underground has intensified, ranging from mines to archaeological exca-

vations, as well as fluid injection in rocks to preserve geothermal reservoirs.

6 While it is in general possible that λ < 0, for most materials λ is positive; µ is always
positive.

7 Or at least they should be.
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While the human species has started an expansion below the surface, it is

crucial to monitor and quantify what effects these activities induce, in or-

der to both increase their safety and reduce their environmental impact. In

particular, underground human activity has been linked to seismic waves

with a much lower amplitude than standard earthquakes, and this is usually

referred to as microseismic activity.

Microseismicity is usually tracked by placing geophones on land surface

or on the seabed: these devices are capable of converting ground move-

ment into voltage, which is then recorded at recording stations. Crucially, it

is customary to place multiple geophones, so as to achieve more powerful

constraints on the type of events and their location. In order to infer the

underground location of the recorded seismic waves, it is possible to simply

compare arrival times, i.e. measure the delay in the P-wave arrival time with

respect to a reference wave, using simulated sources. On the other hand, it

is also feasible to employ the full waveform information and run a complete

Bayesian analysis, where the goal is to constrain the parameters of interest

— e.g. the location (x,y,z) below the surface — given an observed seismo-

gram; this latter approach is the one we consider in our thesis. Moreover,

we show that with our techniques we can deal with any source mechanism:

so far, we have been ignoring the actual process that leads to the formation

of a quake, but it is important to characterise the source properties when

considering underground microseismic activity for the aforementioned rea-

sons.

The most simple formation process of earthquakes can be modelled

with a couple of forces with the same magnitude f , acting in opposite direc-

tions and separated by a distance d. If these two forces are aligned, then

no net torque is produced; however, the two forces could be applied at two

points separated by d in a perpendicular direction. In this case, since the

total momentum at equilibrium must be conserved, there must an additional

couple of forces that balances the momentum generated by a single pair
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of forces: for this reason, this mechanism is usually dubbed double couple

— see also Fig. 2.2. In general, it is possible to write the moment ten-

sor M whose components Mi j represent the magnitude of the momentum

in direction i separated along direction j, with i, j ∈ {1,2,3}: it represents

a useful approximation to describe the internally generated forces that can

act in any point in an elastic medium. We observe that the moment tensor

represents a similar concept to the stress tensor introduced in Eq. 2.2: while

the latter describes the stress at any given point in the propagating medium,

the former indicates the deformation at the source location that generates

seismic waves. Hence, while the stress tensor is introduced in a context

of static equilibrium, the moment tensor is more general, since it is used to

represent any disruptive event that leads to the formation of a quake. Earth-

quakes are usually generated by fractured rocks that move relative to each

other, and we can represent the possible fault movements that cause an

earthquake using M: for example, it is easy to show that shear fractures

are well represented by double-couple forces, with a very specific moment

tensor representation, with trace and determinant of M equal to 0. How-

ever, other non-double-couple sources can be represented by the moment

tensor: for instance, the moment tensor for an isotropic source, such as an

explosion, is diagonal, with all terms being identical.

In general, given any moment tensor M in the form:

M =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 , (2.24)

with Mi j = M ji due to conservation of angular momentum, it can be decom-

posed into its isotropic part plus a so-called deviatoric part:

M = MISO +M′ , (2.25)
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where MISO = 1
3 tr(M)I, with I representing the identity matrix:

MISO =


M11+M22+M33

3 0 0

0 M11+M22+M33
3 0

0 0 M11+M22+M33
3

 , (2.26)

and tr(M′) = 0, with M′ containing all the double-couple contributions, plus

possible other non-double-couple terms. The total decomposition thus be-

comes:

M = MISO +MDC +MCLVD , (2.27)

where DC stands for double-couple:

MDC =


1
2 (σ1−σ2) 0 0

0 −1
2 (σ1−σ2) 0

0 0 0

 , (2.28)

and CLVD stands for compensated linear vector dipole, namely events usu-

ally associated with a longitudinal compression paired with a transverse ex-

pansion:

MCLVD =


−1

2σ3 0 0

0 −1
2σ3 0

0 0 σ3

 , (2.29)

with σ1 ≥ σ2 ≥ σ3 being the eigenvalues of M′8, which is symmetric and

therefore diagonalisable9, and σ1 +σ2 +σ3 = 0 since tr(M′) = 0. It is possi-

ble to show that the decomposition of Eq. 2.27 is general and can be applied

to any earthquake (Knopoff and Randall, 1970; Shearer, 2009); in particu-

lar, it has been shown that most earthquakes have a negligible isotropic

component, and mainly originate from DC- and CLVD-like moment tensors

8 These eigenvalues are in general analytical functions of the Mi j terms.
9 In general, M, as well as M′, are non-diagonal matrices, since they also include shear

forces. However, they are real symmetric matrices, and therefore can be diagonalised using
the finite-dimensional spectral theorem (Axler, 1997).
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Figure 2.2: Force directions for each source mechanism: isotropic (ISO), double
couple (DC), and compensated linear vector dipole (CLVD). A combi-
nation of the 3 mechanisms can describe any earthquake generation,
since the general moment tensor M is symmetric and therefore there
are no off-diagonal terms. The moment tensors for each source can
be found in Eq. 2.26, Eq. 2.28 and Eq. 2.29.

(Kawakatsu, 1991; Julian et al., 1998; Miller et al., 1998). We report in

Fig. 2.2 a sketch of the force directions for each source mechanism.

In all cases, in conclusion, it is key to have a density model for the

volume of interest, as well as a model of the velocity of the propagating

medium; additionally, we need to specify the source mechanism. We require

to be able to produce synthetic samples given the parameters of interest,

like the source location and the type of seismic event, solving the seismic

wave equation multiple times throughout our analysis. A clear limitation is

that sampling seismic waves given these models can be irremediably slow,

even when running parallelised code on supercomputers. Specifically, if one

considers the full Bayesian analysis described above, methods like those

detailed in Sect. 1.1.3 require calling the likelihood function thousands of

times; even if the single call takes O(1 h), the overall inference is compu-

tationally prohibitive10. This is where the machine learning techniques de-

scribed in Sect. 1.2 start playing a significant role: if, in the single likelihood

10 Especially if we need to repeat the analysis for multiple sources for the same density
and velocity models.
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call, we replace the synthetic wave generation with a faster while accurate

surrogate model trained on thousands of seismic traces, then we can signif-

icantly accelerate the overall analysis. We explore this in detail in Chapter 3

and Chapter 4, with fixed density and velocity models, demonstrating how

our proposed techniques are orders of magnitude faster than the traditional

computations, while being sufficiently accurate.

2.2 Cosmology

While it could be argued that cosmology is simply a recent branch of astron-

omy, its roots lie well in the past, given its deep connections to philosophy

and the existential questions of humanity: in this sense, cosmology repre-

sents a unique window to peek into the history of everything that existed,

exists, and will ever exist. At the same time, its switch from a speculative

discipline to a quantitative science is fairly recent, with the first observations

of something beyond the Milky Way being no earlier than the 1920s (Hubble,

1926), the first space experiments to investigate the whole night sky taking

place from the 1960s (Rogerson, 1963; Neugebauer et al., 1984), and the-

oretical advances on the Universe’s first moments dating back to the 1980s

(Guth, 1981). Today, cosmology is an established science which has pro-

duced quantifiable predictions about the origin, the structure, the evolution

and the fate of the Universe. In particular, cosmologists have developed a

standard model (the ΛCDM model) which predicts the existence of ordinary

matter (baryons11), radiation (photons and neutrinos), matter that interacts

only gravitationally and is therefore dark (cold dark matter12, or CDM), and

a pressure component that is driving the accelerated expansion of the Uni-

verse (dark energy, associated to a constant Λ) — see Fig. 2.3 for a visual

11 We abuse the term baryon here to indicate every type of ordinary matter, including e.g.
electrons.

12 In the most commonly-accepted description of dark matter, it is made of collisionless
heavy particles with non-relativistic speed, i.e. with speed much lower than the speed of
light; hence the term cold.
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Figure 2.3: Not-to-scale representation of the content of the Universe, as illustrated
by a typical Italian cookie. The ΛCDM model describes our Universe
as made of baryons for less than 5% of the total. About 70% of the
Universe is made of dark energy, and about 25% of the total is made
of dark matter, i.e. matter interacting only through gravitational forces.
Radiation is present for less than 1% of the total, in the form of neutri-
nos and photons. Inspiration taken from Peter (2012).

representation. The ΛCDM model is capable of reproducing most obser-

vations using a handful of parameters and conditions, which we will see in

detail in the next sections. At the same time, many intriguing questions are

still open, in particular on the true nature of dark matter and dark energy,

as well as on the quantum fluctuations in the very early moments of the

Universe.

In the next sections, we review the commonly-accepted framework that

explains how the Universe developed from its early stages up to how we

observe it today. We present the scenarios that led to the formation of

large-scale structures, deriving the fundamental equations that describe the
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growth of cosmological structures. We stress the importance of compu-

tational and statistical methods in cosmology, and we conclude describing

how cosmologists employ computational techniques to simulate the evolu-

tion of the Universe.

2.2.1 A brief history of the Universe

About 13.8 billion years ago, the whole Universe was in a hot, dense state.

At this stage, the temperature and the density were so high that ”standard”

physics, including general relativity, probably did not apply, needing to be in-

tegrated with quantum effects13. Then, at some point, the Universe started

to quickly expand, increasing its size by 1026 (' e60, or 60-fold) times in a

tiny fraction of a second: this period is known as inflation. Despite being

a debated subject, various theories of inflation have been developed to ex-

plain some features of the current Universe, matching the observations to

a remarkable degree. This rapid increase in volume let the Universe cool

by many orders of magnitude; at the end of inflation, the temperature rose

again through a phase called reheating, such that massive and massless

particles could form and start interacting. Between 10 s and 1000 s since

the original singularity, the first light elements (hydrogen and helium) were

assembled. The expansion and cooling then continued, letting electrons

bind with heavy nuclei (recombination), and preventing photons from inter-

acting with matter: those decoupled photons could then travel freely starting

from about 370000 years after the singularity, and we observe them today

as the cosmic microwave background (CMB, Penzias and Wilson, 1965), a

small background signal that fills the Universe in all directions. Before re-

combination happened, 47000 years after the singularity, the energy density

of matter overcame the energy density of radiation.

After this, the Universe remained dark for hundreds of millions of years,

until the first stars formed; at the same time, though, hydrogen emitted elec-

13 As of today, though, a convincing theory of quantum gravity still has to be developed.
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tromagnetic radiation (with vacuum wavelength of 21 cm in free space),

whose intensity represents the most important probe of the dark ages, with

various ongoing or planned experiments aimed at studying it (see e.g. Car-

illi and Rawlings 2004; Bandura et al. 2014; Newburgh et al. 2014; Santos

et al. 2017). The dark ages came to an end when the first galaxies formed,

leading to the epoch of reionisation, during which the Universe (mainly hy-

drogen) reverted from being composed of neutral atoms to being an ionised

plasma. Reionisation ended about 12.8 billion of years ago; subsequently,

the Universe switched from being dominated by matter to being dominated

by dark energy (about 3 billion years ago): due to the constant pressure

providing an exponential scale increase, the Universe started expanding in

an accelerated way.

Today, besides the accelerated expansion of the Universe, we observe

billions of galaxies, kept together by the gravitational pull provided by dark

matter; this structure is usually called the cosmic web, composed of clumps

of galaxies, connected by filaments, and surrounded by voids. The large-

scale structure of the Universe offers unique features to investigate its origin

and evolution: as an example, it is possible to develop precise theoreti-

cal predictions for the correlation function (or its Fourier-counterpart, the

power spectrum) of the matter in the Universe, and then run large galaxy

surveys14 to collect data points and compare them to the theory. In or-

der to explain this picture, cosmologists have developed the ΛCDM model,

which requires to specify the normalised mass density of dark matter to-

day Ωcdm, the normalised mass density of baryons today Ωb, the optical

depth at reionisation τ, the rate of the expansion of the Universe today

H0 (the Hubble constant, often indicated through its dimensionless counter-

part h = H0/100 km−1 s Mpc), the primordial curvature perturbations power

As, and the scalar spectral index of the primordial power spectrum ns, with

a few additional assumptions (for instance, that the Universe is spatially

14 Galaxies are usually considered biased tracers of the matter content of the Universe.
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flat), in order to produce quantitative predictions. The most recent ob-

servations agree exquisitely well with the predictions of the ΛCDM model

(Planck Collaboration et al., 2020; Heymans et al., 2021; DES Collabora-

tion et al., 2021). In particular, measuring the CMB power spectrum allowed

us to constrain the ΛCDM parameters with unprecedented precision: the

most recent best-fit values from the Planck mission (Planck Collaboration,

2006) are Ωcdmh2 = 0.120±0.001, Ωbh2 = 0.0223±0.0002, τ = 0.054±0.007,

h = 0.673±0.005, ln
(
1010As

)
= 3.04±0.01, and ns = 0.965±0.004, all at 68%

confidence level (Planck Collaboration et al., 2020). At the same time, other

probes, like the Kilo-Degree Survey (KiDS, de Jong et al., 2013a,b) and

the Dark Energy Survey (DES, Dark Energy Survey Collaboration et al.,

2016), constrained the ΛCDM parameters through independent analyses of

the large-scale structure, and found an overall agreement with the Planck

results (Heymans et al., 2021; DES Collaboration et al., 2021). Luckily15,

though, little discrepancies (or tensions) provided by the increased mea-

surement precision have been observed. At least two widely-discussed

tensions have emerged in the last few years with the completion of large

surveys and experiments: these include a discrepancy in the value of the

Hubble constant as measured from early-Universe experiments and nearby

probes (see e.g. Shah et al. 2021 for a recent overview), and a tension in

the value of S8 = σ8

√
Ωm
0.3 , where σ8 is a cosmological parameter (defined as

the matter density root-mean-square fluctuations in a sphere of radius of 8

h−1 Mpc) controlling the amount of clustering of the Universe, as measured

by CMB experiments and large-scale structure probes (see e.g. Di Valentino

et al. 2021). This might open a window on new physics, or at least on the

limitations of the ΛCDM model (see e.g. Verde et al. 2019).

15 Otherwise cosmology might not appear as attractive as it is today.
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2.2.2 Cosmological probes

Before moving on with a description of structure formation, we give a brief

overview over the main cosmological probes that are employed to shed light

on the origin, the evolution and the structure of the Universe. The main

probe of the early Universe is certainly the CMB: a combination of theo-

retical predictions and experimental observations about its temperature and

polarization anisotropy have led to some of the strongest constraints about

the ΛCDM model to date, in particular about inflation and the current ex-

pansion rate of the Universe (Boggess et al., 1992; Smoot, 1999; Hinshaw

et al., 2013; Planck Collaboration et al., 2020).

On the other hand, weak and strong gravitational lensing are the main

probes to investigate the current distribution of matter in the Universe. The

lensing effect is the bending of light being emitted by distant objects due

to the presence of matter along the line of sight. In particular, strong lens-

ing typically happens when the source and a massive lens are close and

aligned, possibly leading to the observation of multiple images of the same

emitter. Weak lensing, on the other hand, is more common and has a more

subtle effect on the observed shapes of galaxies: the slight distortion in

the images of background galaxies due to foreground large-scale structures

is also known as cosmic shear, and can shed light on the current amount

of dark matter and the primordial clustering of structures in the Universe

(see e.g. Lynds and Petrosian 1986; Soucail et al. 1987; Tyson et al. 1990

for early measurements, and e.g. Refregier 2003; Bartelmann and Maturi

2017; Prat et al. 2021; Heymans et al. 2021 for recent reviews and results).

The interplay between the gravitational pull and the outward pressure

in the early Universe left an imprint on matter before the formation of large

structures: this signature patterns, often dubbed baryonic acoustic oscilla-

tions (BAOs), reveal the properties of the early Universe, and their changes

through cosmic time provide insight on the expansion of the Universe until

81



today. BAOs provide a complementary and independent probe of both the

early and late Universe, and have been thoroughly investigated in the last 20

years (see Collessy 1999; Peacock et al. 2001; Lahav et al. 2002; Dawson

et al. 2013; Zhao et al. 2016; du Mas des Bourboux et al. 2019; Gil-Marı́n

2020; de Mattia et al. 2021; Raichoor et al. 2021, amongst the others).

It should be noted that many other probes exist, including Big Bang nu-

cleosynthesis (Cyburt et al., 2016), time-delay cosmography (Wong et al.,

2019) and 21 cm intensity mapping (see Sect. 2.2.1). In particular, obser-

vations of the brightness of supernovae against their distance led to the

conclusion that the Universe is expanding with an accelerated rate (Riess

et al., 1998; Perlmutter et al., 1999), probably due to the effect of dark en-

ergy, while in more recent times the detection of gravitational waves opened

a new era of multi-messenger astronomy (Abbott et al., 2016, 2017), in par-

ticular in unveiling the dynamics of extreme astrophysical phenomena, like

black hole mergers, and further validating the theory of general relativity.

2.2.3 Structure formation

As we described in Sect. 2.2.1, the first galaxies started to form at the end

of the dark ages, and today we can observe a very elaborate structure of the

Universe. At the basis of our theoretical cosmological models, though, lies

the cosmological principle, which states that on sufficiently large scales16

the Universe looks the same for all observers, i.e. there is no privileged

observer and the Universe we can see from the Earth is a fair sample (Keel,

2007). Consequently, on sufficiently large scales, the Universe presents

itself as spatially homogeneous, i.e. its properties do not depend on the

position of the observations, and isotropic, i.e. its properties do not depend

on the direction of the observations.

Nevertheless, on smaller scales, the Universe is highly inhomogeneous

and anisotropic. In particular, due to gravitational instabilities, overdense re-

16 Usually above '260 Mpc, where 1 Mpc = 3.1 ·1022 m (Yadav et al., 2010).
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gions tend to accumulate more and more matter, in a scenario where smaller

objects form and then merge with each other, thus creating larger structures

in a ”bottom-up” fashion17. In the context of ΛCDM, the growth of structure

is driven by dark matter, and depends on the interplay between gravity and

pressure: with heuristic arguments comparing the gravitational energy and

the thermal energy of a mass of fluid18 with average density ρ̄, temperature

T , and pressure P, it is possible to show that the scale above which gravity

overcomes pressure and causes the collapse of the gas, usually called the

Jeans length, is:

λJ ∝
cs√
Gρ̄

, (2.30)

where G ' 6.674 · 10−11 m3 kg−1 s−2 is the gravitational constant, and cs ∝√
kT
m ∝

√
P
ρ̄

is the fluid sound speed, with m being the mass of a fluid particle,

and k' 1.381 ·10−23 J K−1 is the Boltzmann constant. On shorter scales than

λJ, matter oscillates as a sound wave.

In order to derive the complete equations that describe the growth of

structure, though, we need to introduce the basic elements of general rel-

ativity (Einstein, 1917). In a nutshell, general relativity (GR) indicates that

there is a close link between the geometry of the Universe and its energy

(and matter) content. The former can be described using a metric tensor

gµν , with µ and ν being indices going from 1 to 4, and describes how dis-

tances are calculated in space and time. For instance, for an infinitesimal

vector dx19, the square of its length can be written as:

ds2 = gµν dxµ dxν , (2.31)

where, just like in Eq. 2.7, we are assuming that the sum of repeated indices

17 The opposite trend, while still viable, is disproved by observations of e.g. the different
ages of different parts of galaxies.

18 It is common to approximate matter in a homogeneous and isotropic Universe as an
ideal fluid.

19 We are silently introducing four-dimensional vectors, which have 4 components — one
indicates the time component times the speed of light c, and the other 3 indicate the spatial
components.
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must be computed, in this case with µ,ν ∈ {1,2,3,4}. Now, using the tools

of differential geometry to formalise the idea of the equivalence between the

geometry of the space-time and the energy content of the Universe, it is

possible to obtain the Einstein field equations:

Gµν =
8πG
c4 Tµν , (2.32)

where c ' 3.0 · 108 m s−1 is the speed of light in vacuum, the Einstein ten-

sor Gµν = Rµν − 1
2Rgµν , with Rµν being the Ricci curvature tensor and R its

trace20, and Tµν is the stress-energy tensor, namely a four-dimensional gen-

eralisation of Eq. 2.2 describing the energy and its flux in every part of the

space-time. We absorb in the stress-energy tensor also the cosmological

constant Λ, Einstein’s biggest blunder21 (O’Raifeartaigh and Mitton, 2018):

this is usually associated with a vacuum state with stress-energy tensor

T vacuum
µν = −Λ

c4

8πGgµν , which, if Λ > 0, corresponds to a negative-pressure

field driving the accelerated expansion of the Universe today. Given that the

indices µ and ν are free, Eq. 2.32 actually includes multiple relationships

between the geometry (left-hand side) and the energy content (right-hand

side) of the Universe.

Now, let us consider small perturbations of the metric tensor, namely:

ds2 = (ḡµν +δgµν)dxµ dxν , (2.33)

with ḡµν solving Eq. 2.32 in a homogeneous and isotropic Universe, and

|δgµν | � 1, with | · | indicating the tensor norm in this case. It is possible

to show that the solution to Eq. 2.32 for ḡµν can be written in the following

20 Rµν is defined as a function of (the derivatives of) gµν , and R is usually called the Ricci
scalar — see e.g. Dodelson (2003).

21 According to Einstein, however, this constant was needed to describe a static universe
and therefore had to be a property of the geometry of the space-time: consequently, he
assigned it to the left-hand side of Eq. 2.32. Nevertheless, a static universe has been
disproved by observations since at least Hubble (1929).
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form, using polar coordinates (r,θ ,φ):

ds2 =−c2 dt2 +a2(t)
[

dr2

1−κr2 + r2 (d2
θ + sin2

θ d2
φ
)]

, (2.34)

and Einstein equations become the Friedmann equations (Friedmann,

1922): 
( ȧ

a

)2
= 8πG

3 ρ− κc2

a2

ä
a = −4πG

3

(
ρ + 3P

c2

) (2.35)

where κ is a constant determining the geometry of space (either +1, 0 or

−1 for a closed, flat, or open space, respectively), a(t) is the scale factor

(namely a dimensionless parameter measuring the expansion of the Uni-

verse, with conventionally a = 1 today), ȧ represents the derivative of a with

respect to cosmic time, and the pressure P and density ρ are often linked

by a so-called equation of state, P = wc2ρ22. The scale factor is also useful

to calculate the cosmological redshift z, which is defined in terms of the ob-

served and emitted wavelengths (λo and λe) of a photon travelling through

the Universe:
a(to)
a(te)

=
λo

λe
≡ 1+ z ; (2.36)

when the physical process of the photon’s emission is known, the redshift

can be used as an indicator of cosmological distances.

In the perturbed case (Eq. 2.33), Eq. 2.34 becomes23:

ds2 = a2(η)
[
(1+2Φ)d2

η− (1−2Ψ)δi j dxi dx j] , (2.37)

where η =
∫ t

0
dt ′

a(t ′) is called conformal time, and the two degrees of free-

dom Φ and Ψ are scalar potentials. Assuming again matter is a perfect

22 Different species correspond to different values of w: for radiation, w = 1
3 ; for non-

relativistic matter, w = 0; for dark energy, w =−1 (Dodelson, 2003).
23 This choice is actually called the Newtonian gauge, and in its basic form only describes

the scalar perturbations (Ma and Bertschinger, 1995): these perturbations represent the
density and the matter gravitational potential, hence they constitute the seeds that form
cosmological structures when growing.
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fluid with equation of state P = wρc2, Einstein field equations yield Φ = Ψ,

namely there is one single Newtonian-like gravitational potential. The lin-

earised equations describing the growth of structure in Fourier space then

become:

Φ
′′+3(1+w)HΦ

′+wk2
Φ = 0 , (2.38)

where ′ indicates the derivative with respect to conformal time, H ≡ a′/a, k

is the absolute value of the Fourier vector k (see also Eq. 2.41), and:

δ
′′+Hδ

′ =−k2
Φ+3HΦ

′+3Φ
′′ , (2.39)

where the matter density contrast:

δ ≡ ρ− ρ̄

ρ̄
, (2.40)

with ρ̄ being the mean matter density of the Universe. It is straightforward to

find solutions to Eq. 2.39 when one component of the Universe dominates

over the others. For instance, in the matter-dominated era, w = 0, and one

finds a constant Φ and δ ∝ a, namely there exists a growing mode for the

matter density contrast that grows linearly with the scale factor.

In our description of linear structure formation, we assumed that we

could perturb the metric tensor since the density contrast was small. In such

an approximated case, most of the information of the matter density contrast

can be summarised with the power spectrum P(k), which can defined as the

Fourier counterpart of the matter correlation function ξ (r), with r = |r| and

k = |k|; in other words:

P(k) =
∫

ξ (r)e−ik·rd3r , (2.41)

where ξ (r) is defined as

ξ (r) = 〈δ (x)δ (x+ r)〉 , (2.42)
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with δ (x) defined as in Eq. 2.40, and 〈·〉 representing the average over all

locations x in space24. However, in reality the growth of structures is a

non-linear process, and δ is not necessarily small: in such cases, it is not

possible to solve Einstein field equations analytically, and one must resort

to approximate numerical methods, as we will see in the next section.

2.2.4 N-body simulations

The most common approach to analyse the non-linear growth of structures

and understand how the tiny initial density fluctuations turned into the galax-

ies we observe today are N-body simulations. In their most basic formula-

tion, these computational methods prescribe to consider a high number of

very massive particles that trace the actual content of dark matter in the

Universe. These particles interact only through gravitational forces25 inside

cubic boxes of fixed comoving side26, and evolve from some initial density

field up to today. At each iteration, the forces that are exerted on each parti-

cle based on its current position are calculated, and the position and velocity

of each particle are updated. While it could be expected that the effects of

GR on large scales must be taken into account, it has been shown that New-

tonian gravity provides a good description of the dynamics of the Universe

in our chosen gauge (Chisari and Zaldarriaga, 2011). In particular, the grav-

itational force acting on particle i due to all other particles can be calculated

using the Newtonian formula as:

−→
Fi = ∑

j 6=i

Gm2(−→r j −−→ri )(
|ri− r j|2 + ε2

)3/2 , (2.43)

24 We will explore in Chapter 5 more precise definitions of the observed power spectra,
which are also the quantities we want to emulate using the techniques introduced in Chap-
ter 1.

25 Since dark matter is modelled as a collisionless fluid, all other effects are neglected.
26 As the simulation progresses, one must take into account the effect of an expanding

Universe as well: proper physical distances d are related to comoving distance dc by d(t) =
a(t)dc(t), and the comoving side of the simulation box is fixed, such that its physical length
increases in time only due to the expansion of the Universe.
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where m is the mass of each single particle, −→r its position, and ε is the

softening length, i.e. a small constant introduced to avoid singularities that

would affect the system dynamics (due to strong particle-particle collisions)

and that modifies the interaction at small scales; ε is usually set to be the

mean separation between two particles in the box (Aarseth, 1963; Dehnen,

2001). Given that modern N-body simulations follow millions of particles, it

should be evident that a brute force approach that calculates all forces at

each step is computationally prohibitive: an algorithm based on Eq. 2.43

scales as the square of the number of particles in the simulation, and is

therefore not viable.

Alternatives that reduce the computational complexity (at the expense

of accuracy) exist: the most common ones are the particle mesh (PM)

method (Hockney and Eastwood, 1988) and the Barnes-Hut (BH) tree

method (Barnes and Hut, 1986). The former discretises the space, including

the matter density, and solves the Poisson equation27 in Fourier space:

− k2
Φ = 4πGa2

δ ρ̄ , (2.44)

in order to evaluate the gravitational potential and then its gradient, namely

the gravitational force. The latter groups together nearby particles into tree

nodes, such that the interaction with close particles is treated with the direct

summation of Eq. 2.43, while interaction with distant particles is treated as

a single interaction with the whole node, thus greatly simplifying the long-

range interactions. The PM method is limited by the resolution of the chosen

mesh; on the other hand, the BH method is slow but reliable on small scales.

For these reasons, recent approaches developed a hybrid approach and

combined the PM method on large scales with the BH method on small

scales (see e.g. GADGET, Springel, 2005).

As we will see in Chapters 6 and 7, it is crucial to accelerate the gen-

eration of high-resolution N-body simulations, not only to test different cos-

27 The Poisson equation in GR can also be derived from Eq. 2.32.
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mological scenarios, but also because N-body simulations are essential to

associate a covariance matrix to real measurements; thousands of simula-

tions are usually needed to obtain accurate estimates of such matrices, as

well as to perform simulation-based inference with likelihood-free methods

(Alsing et al., 2019). In recent years, many approximate alternatives have

been proposed, and we summarise them in Chapter 7. We focus here only

on a common approximation for many cosmological quantities, and for the

matter density contrast in particular: lognormal random fields.

2.2.4.1 The lognormal approximation: FLASK

Random fields are a common concept to describe many features of the

large-scale structure of the Universe, including the matter overdensity, the

matter velocity, the CMB temperature fluctuations, and more (Xavier et al.,

2016); this is because the observed Universe itself is a random field realisa-

tion, since our theoretical models can only ever predict expectation values

due to the inherent randomness generated by inflation. A random field is de-

fined as a field in space whose value in each position is a random variable,

and is fully specified when the joint probability density function (pdf) for all

positions in space is given (Peebles, 1993). As an example, according to the

simplest inflationary models the initial conditions of a cosmological N-body

simulation are well described by a Gaussian random field, where the joint

pdf is a multivariate Gaussian distribution, entirely specified by its mean and

its covariance matrix (which corresponds to the correlation function ξG(r) in

this case, for a homogeneous and isotropic Universe). A Gaussian random

field, however, is not a good choice to describe skewed asymmetrical distri-

butions, like the matter density contrast, which ranges from δ =−1 in empty

regions to very large values such as δ ' 107 in clumps of dense galaxies.

Given a Gaussian random field, it is possible to obtain a long-tailed

distribution by exponentiating it: the new random field is called a lognormal
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Figure 2.4: Example of a Gaussian random field on the sphere generated using the
Full-sky Lognormal Astro-fields Simulation Kit (FLASK, Xavier et al.,
2016). The red colours indicate the highest values, and the blue ones
the lowest values. The field mean is 0, and the input power spectrum
is obtained using the Cosmic Linear Anisotropy Solving System code
(CLASS, Blas et al., 2011) with the ΛCDM best fit parameters from
Planck Collaboration et al. (2020). The full rotating GIF is better viewed
at this link �.

random field28, which is formally defined as:

X = eZ−λ , (2.45)

where Z indicates a Gaussian random variable, and λ acts as a location pa-

rameter, allowing to set the minimum of the lognormal field — for instance,

in the case of the matter density contrast, λ = 1 so that we can cover its

range including its minimum value −1 (cf. Eq. 2.40). A lognormal field is a

28 Here we reserve some space to provide some historical background about lognormal
random fields. The first astronomical observation that the logarithm of observed galaxy
densities roughly follows a Gaussian distribution goes back to Hubble (1934), who noticed
this trend observing nebulae outside the Milky Way. After that, the lognormal distribution
was found to provide a good fit to the three-dimensional distribution of matter density in
the Universe (Hamilton, 1985; Coles and Jones, 1991), and was confirmed by a number of
studies in the following years (Bouchet et al. 1993; Kofman et al. 1994; Kayo et al. 2001;
Taruya et al. 2002, to name a few). However, it should be noted that a principled theo-
retical derivation of the reason why the distribution of galaxies or matter roughly follows a
lognormal distribution has not been found yet, while the pervasive occurrence of lognormal
distributions in many natural sciences is still a matter of debate. We refer the reader to e.g.
Limpert et al. (2001) for a comprehensive review and a link to the central limit theorem in
explaining the lognormal distribution of many natural phenomena.
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very fast and cheap approximation to running an entire N-body simulation

(Coles and Jones, 1991; Peebles, 1993; Hilbert et al., 2011; Xavier et al.,

2016), given that it requires only the sampling of a Gaussian random field29

and its exponentiation: in particular, if one wishes to generate a lognormal

random field with a given power spectrum PLN(k), one can simply trans-

late this power spectrum to the correlation function ξLN(r), then calculate

its Gaussian counterpart ξG(r) = log(1+ξLN(r)), transform it to the corre-

sponding power spectrum PG(k), then sample a Gaussian random field with

this power spectrum30, and exponentiate it (Percival et al., 2004); we will

describe this in more detail in Chapter 7. Nevertheless, in this thesis we

will investigate also spherical random fields, i.e. fields that are defined on a

spherical domain, since they are of great interest in cosmology given the ge-

ometry of the observations we can make from the Earth. In this case, while

the procedure remains essentially unaltered, further issues arise, including

fundamental problems when different correlated fields on concentric shells

are separately modelled as individual lognormal fields; these problems are

addressed by the Full-sky Lognormal Astro-fields Simulation Kit (FLASK,

Xavier et al., 2016), which offers a fast and accurate sampler of lognormal

random fields on the sphere. We use FLASK to generate the training set in

Chapter 6, and show an example of a Gaussian random field on the sphere

in Fig. 2.4.

29 This can be done in various ways: for instance, one can generate a white noise real-
isation with unitary variance, i.e. a realisation with constant power of 1 in Fourier space,
then scale it according to the required power spectrum, and transform the field back to real
space through the inverse Fourier transform (Hand et al., 2018).

30 Using e.g. the Python package nbodykit (Hand et al., 2018).
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3
Accelerating Bayesian microseismic event loca-

tion with machine learning

As a first application of the techniques described in Chapter 1 to the natu-

ral sciences, we present the development of machine learning models that

are integrated in the likelihood call of seismological Bayesian analyses. The

goal of our analysis is to be capable of locating the hypocentre of micro-

seismic events with confidence in a fraction of the time that traditional ap-

proaches usually require. In this chapter we only consider isotropic sources

(as described by the moment tensor in Eq. 2.26), while in Chapter 4 we ex-

tend our approach to any source mechanism. The work presented in this

chapter is based on the paper Accelerating Bayesian microseismic event

location with deep learning, published as Alessio Spurio Mancini, Davide

Piras, Ana Margarida Godinho Ferreira, Michael Paul Hobson, and Ben-

jamin Joachimi, Solid Earth, 12, 1683–1705, 2021, and was carried out in

collaboration with the named co-authors1. In particular, I co-wrote Sect. 3.3,

and helped with the development and the validation of the experiments pre-

sented in Sect. 3.4, which is reported in a succinct form in this chapter. We

also slightly adapted Sections 3.1, 3.2, and 3.5 from the publication.

1 The careful reader will have noticed that the original title says deep learning instead of
machine learning. Since the definition of deep learning is somewhat vague in our opinion,
and since it is a subset of machine learning anyway, we prefer to use the latter expression,
and will use the terms deep learning and neural networks interchangeably.
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3.1 Abstract

We present a series of new open source machine learning algorithms to

accelerate Bayesian full waveform point source inversion of microseismic

events. Inferring the joint posterior probability distribution of moment tensor

components and source location is key for rigorous uncertainty quantifica-

tion. However, the inference process requires forward modelling of micro-

seismic traces for each set of parameters explored by the sampling algo-

rithm, which makes the inference very computationally intensive. In this

chapter we focus on accelerating this process by training machine learning

models to learn the mapping between source location and seismic traces,

for a given 3-D heterogeneous velocity model, and a fixed isotropic moment

tensor for the sources. These trained emulators replace the expensive so-

lution of the seismic wave equation in the inference process. We compare

our results with a previous study that used emulators based on Gaussian

processes to invert microseismic events. For fairness of comparison, we

train our emulators on the same microseismic traces and using the same

geophysical setting. We show that all of our models provide more accurate

predictions and ∼ 100 times faster predictions than the method based on

Gaussian processes, and a O(105) speed-up factor over a pseudo-spectral

method for waveform generation. For example, a 2-s long synthetic trace

can be generated in ∼ 10 ms on a common laptop processor, instead of ∼

1 h using a pseudo-spectral method on a high-profile Graphics Processing

Units card. We also show that our inference results are in excellent agree-

ment with those obtained from traditional location methods based on travel

time estimates. The speed, accuracy and scalability of our open source

machine learning models pave the way for extensions of these emulators to

generic source mechanisms and application to joint Bayesian inversion of

moment tensor components and source location using full waveforms.
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3.2 Introduction

As anticipated in Sect. 2.1.2, the monitoring of microseismic events is cru-

cial to understand induced seismicity and to help quantify seismic hazard

caused by human activity (Mukuhira et al., 2016). Accurate event locations

are key to map fracture zones and failure planes, ultimately enhancing our

understanding of rupture dynamics (see e.g. Baig and Urbancic 2010).

Seismic inversion for earthquake location has traditionally been based

on the minimisation of a misfit function between theoretical and observed

travel times (see e.g. Wuestefeld et al. 2018 for a review of different meth-

ods applied to microseismic events). These optimisation-based methods

are essentially refinements of the original iterative linearised algorithm pro-

posed by Geiger (1912), focusing on improving the misfit function or the op-

timisation technique (see e.g. Li et al. 2020b for a comprehensive review).

Since the 1990s, non-linear earthquake location techniques have been de-

veloped using e.g. the genetic algorithm (Kennett and Sambridge, 1992;

Šı́lený, 1998), Monte Carlo algorithms (Sambridge and Mosegaard, 2002;

Lomax et al., 2009) and grid searches (Nelson and Vidale, 1990; Lomax

et al., 2009; Vasco et al., 2019). The majority of these methods uses ar-

rival times and require phase picking. Recently, waveform-based methods

have emerged, such as waveform stacking (Pesicek et al., 2014) or time re-

verse imaging (Gajewski and Tessmer, 2005), which consider arrival times,

as well as use other information from the waveforms. Full waveform inver-

sion methods, which are based on the comparison between simulated full

synthetic waveforms and observations, are also being increasingly used to

enhance the determination of event locations (Kaderli et al., 2015; Behura,

2015; Cesca and Grigoli, 2015; Wang, 2016; Shekar and Sethi, 2019).

Bayesian inference has been successfully used to locate earthquakes

and to estimate moment tensors (see e.g. Tarantola 2005; Wéber 2006; Lo-

max et al. 2009; Mustać and Tkalčić 2016). Within the Bayesian framework,
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the ultimate goal is to provide estimates of the posterior distribution of the

model parameters (see e.g. Sect. 1.1.3, as well as Xuan and Sava 2010

for an application to microseismic activity). Bayesian source inversions use

techniques such as Markov Chain Monte Carlo (MCMC) to sample the pa-

rameters’ posterior distribution (see e.g. Craiu and Rosenthal 2014 for a

review of different sampling algorithms). They allow the rigorous inclusion

and propagation of different uncertainties, such as those arising from the

assumed velocity model for the seismic domain that is being studied (see

e.g. Pugh et al. 2016a). So far, Bayesian source inversions for locations

and moment tensors have been typically performed using travel time mea-

surements (Lomax et al., 2009) or amplitude and polarity data (Pugh et al.,

2016a,b; Pugh and White, 2018). Here, we carry out Bayesian source loca-

tion inversions of microseismic events using the full waveform information.

Ideally, the inversion could be carried out jointly for the moment tensor

components and the location of the microseismic event (Rodriguez et al.,

2012; O’Toole, 2013; Käufl et al., 2013; Stähler and Sigloch, 2014; Li et

al., 2016; Pugh et al., 2016a; Pugh and White, 2018; Willacy et al., 2019).

However, when using full waveforms, this is extremely computationally in-

tensive. While performing MCMC sampling, the forward model needs to be

simulated at each point in parameter space where the likelihood function is

evaluated. The number of such evaluations scales exponentially with the

number of parameters (an example of the curse of dimensionality, see e.g.

MacKay 2003). Since the solution of the seismic (or elastic) wave equation

(Eq. 2.21) for forward modelling microseismic traces in complex media is

computationally very expensive, this means that, even for small parameter

spaces, sampling the posterior distribution becomes extremely challenging

or even unattainable. For example, given the geophysical model with micro-

seismic activity considered in Das et al. (2017), i.e. a 3-D heterogeneous

velocity model on a 1 km × 1 km × 3 km grid, the generation of a single

seismic trace with a pseudo-spectral method (Treeby et al., 2014) for a given
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source requires O(1) hour of Graphics Processing Unit (GPU) time with an

Nvidia P100 GPU. Using typical MCMC methods, this operation may need

to be repeated for tens or hundreds of thousands of points in parameter

space, to ensure convergence of the sampling algorithm.

To overcome this issue, Das et al. (2018) (referred to as D18 hereafter;

see also Appendix A of Spurio Mancini et al. 2021a) developed a machine

learning framework (also referred to as metamodel, surrogate model or em-

ulator) for fast generation of synthetic seismic traces, given their locations

in a marine domain and a specified 3-D heterogeneous velocity model, and

a fixed isotropic moment tensor for all the sources. Gaussian processes

(GPs, Rasmussen and Williams, 2005) were trained as surrogate models

that could be employed for Bayesian inference of microseismic event loca-

tion (with fixed isotropic moment tensor) to replace the expensive solution

of the seismic wave equation for each set of source coordinates explored in

parameter space. Other recent studies have also used machine learning

approaches for fast approximate computations of synthetic seismograms

(Moseley et al., 2018, 2020b) and for earthquake detection and location

(Perol et al., 2018). The very nature of all of these supervised learning

methods, including the one presented in this chapter, represents a purely

data-driven approach to the use of machine learning in seismology. While

very powerful, these methods are all potentially prone to lack of general-

isation beyond the training data considered. In contrast to this approach,

physics-informed machine learning (Arridge et al., 2019; Karpatne et al.,

2017; Raissi et al., 2019) aims to train algorithms to solve the physical equa-

tions underlying the model, as recently applied to seismology in Song et al.

(2021), Moseley et al. (2020a), and Waheed et al. (2020, 2021). These

machine learning methods represent a very promising avenue as an appli-

cation of machine learning that is not purely data-driven and therefore blind

to the underlying physics of the system. Physics-informed and supervised

learning approaches may indeed provide complementary information and
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be used as independent cross-checks on the same problem, complement-

ing each method’s strengths and weaknesses.

In this chapter, we build on the method developed in D18 by training

multiple generative models, based on machine learning algorithms, to learn

to predict the seismic traces corresponding to a given source location, for

fixed moment tensor components. Similar to D18, we consider an isotropic

moment tensor for our sources; in Chapter 4 we extend the methodologies

proposed here to different source mechanisms (compensated linear vector

dipole and double couple, see Sect. 2.1.2 for a discussion). Once trained,

our generative models can replace the forward modelling of the seismo-

grams at each likelihood evaluation in the posterior inference analysis. We

show that the newly proposed generative models are more accurate than

the results of D18. In addition, the emulators we develop are faster by a fac-

tor of O(102), less computationally demanding and easier to store than the

D18 surrogate model. We also demonstrate how our new emulators make it

possible in practice to perform Bayesian inference of a microseismic source

location. We validate our results by carrying out a comparison of our results

with a common nonlinear location method based on travel time estimates

(Lomax et al., 2000).

In Sect. 3.3 we present our generative models and the general emula-

tion framework. We first describe the preprocessing steps operated on the

seismograms to facilitate the training of our new generative models, which

are subsequently outlined in detail together with general notes on their train-

ing, validation and testing. In Sect. 3.4 we apply the emulation framework to

the same test case studied by D18, and we compare the results achieved

by the different methodologies. We also use our best performing model to

show that we can accelerate accurate Bayesian inference of a simulated

microseismic event, and compare the estimated source location with that

retrieved by a standard nonlinear location method. Finally, we conclude in

Sect. 3.5 with a discussion of our main findings and their future applications.
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3.3 Generative models

In this section we describe the machine learning generative models that we

train as emulators of the seismic traces given their source location; most

of our presentation assumes the background presented in Sect. 1.2.1. Our

final goal is to develop fast algorithms that can learn the mapping between

source location and seismic traces recorded by receivers in a geophysical

domain.

We start in Sect. 3.3.1 describing the preprocessing operated on the

seismic traces for feature selection and dimensionality reduction. We then

describe the algorithms for emulation of the preprocessed seismic traces in

Sect. 3.3.2. These methods are machine learning algorithms that can, in

principle, be applied to seismograms recorded in any geophysical scenario;

in fact, these algorithms have been applied to areas beyond seismology

(see e.g. Auld et al. 2007, 2008 for applications to cosmology). While we

initially present our emulators without referring to any particular geophys-

ical scenario, for concreteness we also present a choice of the methods’

hyperparameters (e.g. the number of layers and nodes of the neural net-

works employed) based on their application to the test case later described

in Sect. 3.4. We report these specific hyperparameter choices to provide

an example of a practical successful implementation of the machine learn-

ing algorithms, but we stress again that the generative models presented

in Sect. 3.3.2 are applicable to any geophysical scenario, provided enough

representative training samples and a velocity model are available. They

may, however, require different hyperparameter choices, depending on the

specific domain considered. As discussed in more detail in Sect. 3.4.2, this

hyperparameter tuning is not computationally expensive because our mod-

els are very easy to train.

Training, validation and testing procedures for our generative models

are described in Sect. 3.3.3, with emphasis on the metrics used to com-
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pare the accuracies of the different algorithms. We note that the number

of training, validation and testing samples required for each method may

vary according to the specific geophysical domain considered; for example,

larger geophysical domains may require a larger number of training sam-

ples, reflecting the increased variability in the seismic traces. Once again,

in Sect. 3.3.3 we discuss a training procedure that has produced successful

results on the test case considered in Sect. 3.4. Applications to different

geophysical scenarios may need slightly different tuning of the hyperparam-

eters involved in the training procedure, but the general technique shown in

Sect. 3.3.3 can be easily adapted to incorporate these changes.

3.3.1 Preprocessing

In order to train fast emulators to replace the simulation of microseismic

traces for a given source location we need to generate representative ex-

amples of the seismograms to be learnt, given a fixed velocity model for

the geophysical scenario considered. The complexity of the forward mod-

elling of seismic traces by means of e.g. pseudo-spectral methods (Faccioli

et al., 1997) implies that only a relatively small number of training samples

can realistically be generated. In turn, this means that the emulation of

seismic traces by means of even just a simple neural network (described

in Sect. 1.2.2) will only lead to overfitting the training set. This issue can

be relieved by applying some form of preprocessing to the data, in order to

reduce the number of relevant features that have to be learnt by the emu-

lators. In addition, some compression method can be employed to reduce

even further the dimensionality of the mapping, on condition that the per-

formed compression is efficient in preserving the information carried by the

original signal.

To preprocess our seismograms we first identify the maximum positive

amplitude Ai and the corresponding time index ti in each seismogram, la-

belled by index i = 1, ...,Ntrain, in our training set of Ntrain = 2000 samples
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(the same used by D18). We then isolate one random seismic event in our

training set and store the value of its maximum positive amplitude A∗ and its

corresponding time index t∗. We normalise all of our training seismograms

to the amplitude of this reference peak, and shift them so that their peak

location corresponds to the reference peak location (see Fig. 3.1), replac-

ing the missing time components with zeros. Operating this preprocessing

leaves us with two additional parameters for each seismic trace: a normal-

ising factor Āi ≡ Ai/A∗ and a time shift t̄i ≡ ti− t∗. This preprocessing is

encouraged by the structure of the signal, which is localised in the form of

spikes preceded by absence of signal, corresponding to the sudden arrival

of the P-wave at the sensor location. The amplitudes Ai and time indices ti

depend mainly on the distance of the seismic source from the sensor. By

rescaling all training seismograms to the reference amplitude A∗ and time

index t∗ we allow the machine learning algorithm to ‘concentrate’ on learn-

ing the rest of the signal, which instead depends on the properties of the

heterogeneous medium encountered by the wave while propagating to the

sensor. We verified that all numerical conclusions of our analysis do not

depend significantly on the specific choice of the reference seismogram. In

particular, parameter contours (cf. Sect. 3.4.2.2) obtained with emulators

trained on seismic traces preprocessed using different random reference

seismograms, show deviations much smaller than 5% of the contour width.

Therefore, in our analysis we choose the reference seismogram completely

at random, as this choice does not have any effect on the final algorithm

performance.

A consequence of this type of preprocessing is that, in order to recover

the original seismograms, one also needs to learn the coefficients Āi and

t̄i. We model each of them with a Gaussian process (GP, Rasmussen and

Williams, 2005) that maps the input source coordinates (xi,yi,zi,di) to the

output amplitude (Āi and time shift t̄i). We include the distances di from the

receiver in the set of coordinates, as we performed several tests with and
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Figure 3.1: Example of preprocessing applied to the seismograms. We consider
one random reference seismogram, shown in black in both upper and
lower panels. Given another generic seismogram (red line in the upper
panel), we rescale it to have its positive maximum peak amplitude and
time location matching those of the reference seismogram. The result
is a seismogram, like the one shown in red in the bottom panel, whose
main difference with the reference seismogram is given by the addi-
tional fluctuations surrounding the main peak. The generative methods
we develop learn to predict these fluctuations given the source location
as well as the main peak, whereas two Gaussian processes learn the
amplitude and time shift coefficients to rescale the predicted seismo-
grams back to their natural amplitude and peak location. Throughout
the chapter, the seismograms’ amplitude is measured in arbitrary units
of pressure. Figure taken from Spurio Mancini et al. (2021a).
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without including the distances and found that including them helps the GP

learn the mapping between inputs and outputs.

When performing GP regression given a generic function f (θ) of pa-

rameters θ , we assume

f (θ)∼N
(
0,K(θ ,θ ′;ψ)

)
, (3.1)

where the kernel K(θ ,θ ′;ψ) represents the covariance between two points

in parameter space and may depend on additional hyperparameters, collec-

tively denoted as ψ. In our case, Ā and t̄ are modelled as functions of the

coordinates (x,y,z,d) using a GP each. For the geophysical domain stud-

ied in Sect. 3.4, a Matérn kernel K in its automatic relevance determination

(ARD) version (Neal, 1996; Rasmussen and Williams, 2005), defined as

KARD−Matérn−3/2
(
θ ,θ ′;ψ

)
= σ

2
f

(
1+
√

3r̃
)

exp
(
−
√

3r̃
)
, (3.2)

where

r̃ =

√
n

∑
m=1

(θm−θ ′m)
2

σ2
m

, (3.3)

outperforms other common kernels such as radial basis functions (Ras-

mussen and Williams, 2005), producing correlation coefficients between

target and predicted (Ā, t̄) in the testing set greater than 0.99. The hyper-

parameters of the Matérn ARD kernel are a signal standard deviation σ f

and a characteristic length scale σm for each input feature m = 1, . . . ,n (the

source location, in our case). We optimise these parameters while training

our GPs, which we implement using the software GPy (GPy, 2012). Fig. 3.2

presents the general emulation framework, showing in particular how the

t̄ and Ā produced by the trained GPs described above combine with the

emulated preprocessed seismogram to produce the final emulation output.
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Figure 3.2: Schematic of the generic framework for seismograms emulation de-
veloped in this chapter. Two Gaussian processes (GP) are trained to
learn the preprocessing parameters t̄ and Ā, described in Sect. 3.3.1.
One out of seven algorithms (described schematically in Fig. 3.3 and
in detail in Sect. 3.3.2) is chosen to generate a preprocessed seismo-
gram. Finally, the combination of this learnt preprocessed seismogram
and the learnt t̄ and Ā gives the output seismogram corresponding to
the coordinates (x,y,z,d) (we augment the spatial coordinates (x,y,z)
with the distance d from the receiver, since we noticed that it improves
the accuracy of the trained models). Figure taken from Spurio Mancini
et al. (2021a).

3.3.2 Machine learning algorithms

Here we present in detail the algorithms we developed for emulation of the

seismic traces. Given a set of coordinates (x,y,z,d), each method outputs a

seismogram preprocessed following the procedure described in Sect. 3.3.1.

This means that for each method, we also need to train two GPs to learn the

mapping between source location and the coefficients (Ā, t̄). In Fig. 3.3 we

provide a schematic summarising the mapping between source coordinates

and seismograms for each emulation framework described below. The spe-

cific architectures and hyperparameters represented in Fig. 3.3 are those

optimised for the application described in Sect. 3.4.
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Figure 3.3: Schematic of the seven proposed algorithms to learn the mapping be-
tween coordinates (x,y,z,d) and preprocessed seismograms. A neural
network (NN) is used in method (A), connecting directly source loca-
tion to preprocessed seismograms. In methods (B) and (C) the pre-
processed seismograms of the training set are compressed in Princi-
pal Component Analysis (PCA) coefficients, which are then learnt by
a NN and Gaussian processes (GPs), respectively. In method (D) and
(E) the seismograms are compressed in central features of an autoen-
coder (AE), which are then learnt by a NN and a GP, respectively. Fi-
nally, a conditional variational autoencoder (CVAE) and Wasserstein
generative adversarial networks with gradient penalty (WGAN-GP) are
used in method (F) and (G), respectively, to learn the mapping be-
tween source location and preprocessed seismograms. Figure taken
from Spurio Mancini et al. (2021a).
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3.3.2.1 Direct neural network mapping between source

location and seismograms (‘NN direct’)

The first method we propose is a simple direct mapping between source lo-

cation and preprocessed seismograms, without any intermediate data com-

pression. The mapping is learnt by a fully connected neural network (NN),

which consists of a stack of layers, each made of a certain number of neu-

rons, as we described in Sect. 1.2.2.

For the specific application considered in Sect. 3.4, after experimenting

with different architectures and activation functions, we find our best results

are achieved with a neural network made of three hidden layers, with 64,

128 and 256 hidden units each, and a Leaky ReLU (Maas et al., 2013) acti-

vation function for each hidden layer, except the last one where we maintain

a linear activation. This architecture leads to 2-D correlation coefficients

R2D (cf. Eq. 3.7) on the testing set ∼ 5% higher than all other architectures

we tried. The Leaky ReLU definition can be found in Table 1.1: we set the

hyperparameter α = 0.2, and we use a learning rate of 10−3. The Leaky

ReLU activation function is a variant of the Rectified Linear Unit activation

function (ReLU), which improves on a limitation of the ReLU activation func-

tion, sometimes referred to as “dying ReLU”, whereby large weight updates

mean that the summed input to the activation function is always negative,

regardless of the input to the network (Xu et al., 2015). This means that a

node with this problem will forever output an activation value of 0. We ver-

ified experimentally that Leaky ReLU performs better than ReLU and other

common activation functions, leading to 2-D correlation coefficients R2D (cf.

Eq. 3.7) on the test seismic traces typically ∼ 10% higher than those ob-

tained with other activation functions. As our loss function, we choose the

mean squared error (MSE, defined in Eq. 1.20) between predicted and orig-

inal seismograms S̃ and S. Image (A) in Fig. 3.3 summarises the emulation

framework with direct NN between source coordinates and preprocessed

seismograms.
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3.3.2.2 Principal Component Analysis compression + neural

network (‘PCA+NN’)

The second method proposed makes use of a signal compression stage

prior to the emulation step. We first perform Principal Component Analy-

sis (PCA) of the preprocessed seismograms in the training set. PCA is a

technique for dimensionality reduction performed by eigenvalue decompo-

sition of the data covariance matrix. This identifies the principal vectors,

maximising the variance of the data when projected onto those vectors.

The projections of each data point onto the principal axes are the ‘princi-

pal components’ of the signal. By retaining only a limited number of these

components, discarding the ones that carry less variance, one achieves di-

mensionality reduction. For example, in our application to the test case

described in Sect. 3.4, we retain only the first NPCA = 20 principal compo-

nents, as we find that in this case the 2-D correlation coefficient between

original and reconstructed seismograms is R2D ∼ 0.95. We can then model

the seismograms as linear combinations of the PCA basis functions f i,

S(x,y,z,d) =
NPCA

∑
i=1

ci(x,y,z,d) f i , (3.4)

where the coefficients ci(x,y,z,d) are unknown non-linear functions of the

source coordinates. We train a NN to learn this mapping. In other words,

contrary to the direct mapping between coordinates and seismogram com-

ponents, we train a NN to learn to predict the PCA basis coefficients ci

given a set of coordinates. Image (B) in Fig. 3.3 summarises the emulation

framework in this case. We find that a neural network architecture similar

to the one employed in the direct mapping approach, with three layers and

LeakyReLU activation function, performs well also for this task, leading to

R2D coefficients greater than 0.9. The number of nodes in each hidden layer

is reduced to 50, and we still minimise the MSE between predicted and

original PCA coefficients.
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Figure 3.4: Typical architecture of an autoencoder. A bottleneck architecture al-
lows for the compression of the input signal into a central layer through
the ‘encoder’ part of the network (in red). The central layer is charac-
terised by fewer nodes than the input one, thus leading to dimensional-
ity reduction on condition that the ‘decoder’ part (in blue) can efficiently
reconstruct the input signal (to a good degree of accuracy) starting
from the central encoded features. In this schematic, we highlight that
training of the autoencoder is performed by feeding a seismogram to
the encoder, and then comparing the output of the decoder with the
same input seismogram. Once the autoencoder has been trained, the
encoder can be removed and the decoder can be used as a generative
model for the seismograms, inputting some encoded features. Figure
taken from Spurio Mancini et al. (2021a).

3.3.2.3 Principal Component Analysis compression +

Gaussian process regression (‘PCA+GP’)

Once PCA has been performed on the training set, as an alternative to a

neural network one can train multiple GPs to learn the mapping between the

source coordinates and the PCA coefficients. We train one GP for each PCA

component. Image (C) in Fig. 3.3 summarises the emulation framework for

this approach.
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3.3.2.4 Autoencoder compression + neural network

(‘AE+NN’)

We introduced autoencoders (AEs) in Sect. 1.2.3.1; a schematic is pre-

sented in Fig. 3.4. In seismology, autoencoders have been studied by e.g.

Valentine and Trampert (2012), who used them to compress seismic traces,

and they are generally used as a non-linear alternative to PCA. We pro-

pose to use an autoencoder to compress the preprocessed seismograms.

Once the AE has been trained, the new input signals can be compressed

into the central features of the AE. Our aim is to learn the mapping be-

tween the source coordinates and these features. For example, this can be

achieved with an additional neural network: once this NN is trained, it can

be used to generate new encoded features of the AE from new coordinates,

decoding new features into preprocessed seismograms. This procedure is

summarised in Image (D) in Fig. 3.3.

In our test case of Sect. 3.4, we find that a fully-connected architecture

with 501, 256, 128, 64, 5 nodes for each layer in the encoder (from the input

to the latent space, and symmetric decoder) with Leaky ReLU activation

function produces the best results in compressing the seismograms (leading

to higher 2-D correlation coefficients on the testing set, cf. Eq. 3.7). Hence,

we encode our seismograms in zdim = 5 central features; using a higher

number of central features does not lead to significant improvements in the

reconstruction performance, as discussed in Sect. 3.4.2. We experimented

also with a convolutional architecture, but noticed that it did not yield better

accuracy, while also slowing down the training considerably.

3.3.2.5 Autoencoder compression + Gaussian process

regression (‘AE+GP’)

Similarly to what we did with the PCA+GP method described in

Sect. 3.3.2.3, one can train GPs to predict the encoded features given

source coordinates. The predicted encoded features are then decoded
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Figure 3.5: Schematic of the architecture of the conditional variational autoencoder
(CVAE) used in this chapter. A ‘funnel-like’ structure analogous to the
simple autoencoder described in Fig. 3.4 is used, with the central fea-
tures being sampled from multivariate Gaussian distributions N (µ,Σ)
with mean µ and covariance Σ, as described in Sect. 3.3.2.6, after
concatenating the coordinates (x,y,z,d) to the last layer of the encoder
(circled in red). The concatenation is repeated in the latent space rep-
resented by the multivariate Gaussian distributed encoded features.
In a similar fashion to the simple autoencoder case, the decoder part
(in blue) of the conditional variational autoencoder can be used as a
generative model, after training the full network to reproduce the in-
put seismograms in output. Figure taken from Spurio Mancini et al.
(2021a).

by the trained decoder to generate new preprocessed seismograms. The

scheme is summarised in Image (E) in Fig. 3.3.

3.3.2.6 Conditional variational autoencoder (‘CVAE’)

In general, the encoded features in the latent space of an autoencoder have

no specific structure, as the only requirement is for the reconstructed data

points to be similar to the input points. However, it is possible to enforce a

desired distribution over the latent space, which is driven by our preliminary

knowledge of the problem and can therefore be suitably described by a prior

distribution. This is one of the advantages of variational autoencoders, intro-

duced in Sect. 1.2.3.1. In this case, the model becomes fully probabilistic,
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and the loss function to maximise consists of the ELBO (Evidence Lower

BOund), defined in Eq. 1.24. VAEs can be used both as a compression

algorithm and a generative method. Since we want to map source coordi-

nates to seismograms, we choose to employ a supervised version of VAEs,

namely conditional variational autoencoders, as introduced in Sect. 1.2.3.1

with Eq. 1.26, where c refers to the coordinates associated to the seismo-

grams.

In our analysis, we set a latent space size of zdim = 5. Moreover, we

choose the encoding Qϕ(z|x,c) to be a multivariate normal distribution with

mean given by the encoder and covariance matrix Σ = σ2Izdim = 0.0012Izdim.

We choose a multivariate normal distribution with zero mean and the same

covariance matrix Σ as our prior P(z|c), and we employ a deterministic

Pϑ (x|z,c) as our decoding distribution. We estimate the expectation value in

Eq. 1.26 using a Monte Carlo approximation. Furthermore, we calculate the

KL divergence in closed form as both Qϕ(z|x,c) and P(z|c) are multivariate

normal distributions; starting from Eq. 1.25, since Σ1 = Σ2 = Σ and µ2 = 0,

we can write:

DKL
(
Qϕ(z|x,c)||P(z|c)

)
=

1
2

trΣ−1 [
µ(x,c)µT (x,c)

]
=

1
2σ2

zdim

∑
i=0

µ
2
i (x,c) . (3.5)

The choice of Σ is made in order to limit the spread of points in latent space,

such that we can approximate the desired deterministic mapping with the

probabilistic model offered by the CVAE. Once trained, we can feed a set

of coordinates c and a vector z ∼ P(z|c) to the decoder to obtain a seis-

mogram; with our setup, we verified that using a sample z ∼ P(z|c) or the

mean value z = 0 has no significant impact on the final performance of the

model. Image (F) in Fig. 3.3 summarises the emulation framework making

use of the CVAE trained decoder, while the architecture of the full CVAE,

with hyperparameters optimised for application to the test case of Sect. 3.4,

is shown in detail in Fig. 3.5.
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Figure 3.6: Schematic of the Wasserstein generative adversarial network with gra-
dient penalty described in Sect. 3.3.2.7. The network is composed of
a generator part (in blue) and a critic part (in red). Once the full net-
work has been trained, the generator can be removed to be used as a
generative model. Figure taken from Spurio Mancini et al. (2021a).

3.3.2.7 Wasserstein generative adversarial networks with

gradient penalty (‘WGAN-GP’)

As anticipated in Sect. 1.2.3.2, one of the main lines of research in genera-

tive models is based on generative adversarial networks (GANs, Goodfellow

et al., 2014), which we also employ amongst our generative models. In this

instance, due to GANs being quite unstable at training time, we focus on

Wasserstein GANs with gradient penalty (WGAN-GP; Arjovsky et al., 2017;

Gulrajani et al., 2017), introduced in 1.2.3.2 with Eq. 1.33. To avoid confu-

sion, we stress that the acronym ‘GP’ is used to indicate a Gaussian process

throughout this chapter, while it refers to the ‘gradient penalty’ variant of the

WGAN algorithm only when quoted as ‘WGAN-GP’. Given that we wish to

obtain a supervised generative model, we optimise this slight variation of
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Eq. 1.33:

E(x,c)∼Pϑ (x,c) [C(x,c)]−E(z,c)∼P(z,c) [C(G(z,c),c)]−λEx̂,c

[
(||∇x̂C(x̂,c)||2−1)2

]
,

(3.6)

where c refers to the source coordinates, and everything else is as in

Eq. 1.33. Image (G) in Fig. 3.3 summarises the emulation framework mak-

ing use of the generator of the WGAN-GP, whose full architecture is de-

scribed in detail in Fig. 3.6.

In our experiments, we choose λ = 10, and train the critic ncrit = 100

times for every generator weight update. Both our generator and discrim-

inator are made of fully-connected layers with various numbers of hidden

neurons. We set the dimension of the latent zdim = 64, and P(z)∼U(−1,1).

Note that the choice of how to include the conditional information in the ar-

chitecture is not unique, and we experimented with different combinations

without significant differences. Once the algorithm has been trained, a new

seismogram is obtained by feeding the generator with a latent vector and

a set of coordinates. Finally, note that, in this case only, we standardised

the data x after the rescaling described in Sect. 3.3.1. We calculated the

mean µ and the standard deviation σ over all seismograms x, and trained

our model on x′ = x−µ

σ
.

3.3.3 Training, validation and testing procedure

We describe here the methodology followed to train our models and test

their accuracy. For concreteness, we present here the details of training

and testing our models for application to the test case in Sect. 3.4. All our

models are trained on the same 2000 simulated events used in D18. For

optimisation and testing purposes, we divide the remaining 2000 samples

(from the pool of 4000 events generated in total by D18) into a validation set

and a testing set of 1000 events each. Differently from D18, in this chap-

ter we use the validation set to tune the hyperparameters of our machine
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learning models. To provide an unbiased estimate of the performance of the

final tuned models, we quote our definitive results evaluating the accuracy

of each model on the testing set, which is never ‘seen’ by the model at any

point in the training or optimisation procedures.

Similar to D18, our accuracy performance is quantified in terms of the

R2D coefficient, a standard statistics commonly used in time series analysis

to quantify the correlation between two signals. Given a batch of the true

seismograms G and the corresponding emulated ones P, the R2D coefficient

is defined as

R2D =
∑i ∑ j

(
Gi j− Ḡ

)(
Pi j− P̄

)√(
∑i ∑ j

(
Gi j− Ḡ

)2
)(

∑i ∑ j
(
Pi j− P̄

)2
) , (3.7)

Ḡ =
1
Ns

1
Nt

∑
i

∑
j

Gi j , P̄ =
1
Ns

1
Nt

∑
i

∑
j

Pi j ,

where Ḡ and P̄ are the mean over all i = 1, . . . ,Ns samples and j = 1, . . . ,Nt

time components of the ground truth Gi j and predicted seismograms Pi j.

Given its normalisation, the R2D coefficient ranges between values of −1,

denoting perfect anti-correlation, to +1, indicating perfect correlation; a van-

ishing correlation coefficient denotes absence of correlation.

When training our NNs, all implemented in TensorFlow (Abadi et al.,

2015), we monitor the value of the validation loss to choose the total num-

ber of epochs, waiting 100 epochs after the loss stopped decreasing and

restoring the model with the lowest validation loss value. In other words, we

early-stop (Yao et al., 2007) based on the validation loss with a patience of

100 epochs. Moreover, we optimise our algorithms calculating the final R2D

coefficient, as defined in Eq. 3.7, over different combinations of the hyperpa-

rameters, choosing the values that yield the highest R2D. The optimisation

procedure is performed using the optimisation method Adam, described in

detail in Sect. 1.2.2, with default parameters. The optimisation of the net-

work hyperparameters is entirely performed on the validation set; the testing
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set is left unseen by the networks until the very last stage of the analysis,

when it is used to calculate the results quoted in Table 3.1.

3.4 Application

Since one of our goals is to compare our new emulation methods with the

one previously developed in D18, we train and test them on the same geo-

physical scenario considered there. To train and test our algorithms we use

the same microseismic traces that were forward modelled in D18 for training

and testing purposes.

3.4.1 Simulation setup

We briefly recap here the characteristics of the simulated geophysical do-

main and microseismic traces, referring to D18 for further details. We con-

sider a geophysical framework where we record seismic traces in a marine

environment. Sensors are placed at the seabed to record both pressure

and three-component particle velocity of the propagating medium. As was

the case in D18, we assume that our recorded seismic traces are generated

by explosive isotropic sources. For isotropic sources, considering only the

pressure wave and ignoring the particle velocity is sufficient to determine

the location of the event in the studied domain, as shown in D18. We con-

sider the seismic traces to be noiseless when building the emulator, while

some noise is added to the simulated recorded seismogram when inferring

the coordinates’ posterior distribution, as we will show in Sect. 3.4.2.

Forward simulations of seismic traces are obtained by solving the seis-

mic wave equation given a 3-D heterogenous velocity and density model

for the propagating medium, shown in Fig. 3.7. The model specifies val-

ues of the propagation velocities for P- and S-waves (Vp,Vs) as well as the

density ρ of the propagating medium, discretised on a 3-D grid of voxels.

The solution of the seismic wave equation is a computationally challenging
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Figure 3.7: P-wave velocity (Vp), S-wave velocity (Vs) and density (ρ) models of the
simulated domain we consider in this chapter and Chapter 4. The mod-
els are specified as 3-D grids of voxels, with size 81 × 81 × 301 points,
corresponding to a real geological model of size 1 km × 1 km × 3 km.
We observe that our model has a layered structure, with variation along
the vertical dimension more marked than along horizontal planes. The
plots were adapted from figure 1 in Spurio Mancini et al. (2021a).

task, which can be accelerated using GPUs (Das et al., 2017). This is im-

plemented in the software k-Wave (Treeby et al., 2014), a pseudospectral

method employed by D18 to generate their training and testing samples,

which we also use in our analysis. The GPU software allows for the com-

putation of the acoustic pressure measured at specified receiver locations.

4000 microseismic traces are generated in total with an NVIDIA P100 GPU,

given their random locations within a predefined domain and a specified

form for their moment tensor. The value of the diagonal components of
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the moment tensor is set equal to 1 MPa2, following Collettini and Barchi

(2002). The coordinates (x,y,z) of the simulated sources are sampled using

Latin Hypercube Sampling on a 3-D grid of 81 × 81 × 301 gridpoints, corre-

sponding to a real geological model (the same used in D18) of dimensions

1 km × 1 km × 3 km. The temporal sampling interval for the solution of the

seismic wave equation is 0.8 ms, which ensures stability of the numerical

solver. The synthetic traces have a total duration of 2 s each. After gener-

ation, all seismograms are downsampled to a sampling interval of 4 ms to

reduce computational storage. This way, each seismic trace is ultimately a

time series composed of Nt = 501 time components. Note that, as explained

previously, similarly to D18, we augment each of our (x,y,z) coordinate set

with their distance from the receiver d =
√

x2 + y2 + z2, as we noted that this

helps the training of the generative models, in particular of the Gaussian

processes defined in Sect. 3.3.1. This is due to the fact that the amplitude

Āi and time shift t̄i coefficients for each seismic trace are strongly dependent

on the distance of the source from the receiver.

3.4.2 Comparison with Das et al. (2018)

In this section we summarise our main findings. We start in Sect. 3.4.2.1 by

describing the accuracy performance of all our new methods, and compare

them with that achieved by D18. In Sect. 3.4.2.2 we then move to our in-

ference results, describing how we simulated a microseismic measurement

and used our generative models to accelerate Bayesian inference of the

event coordinates, again comparing against the results obtained applying

the method described in D18.

3.4.2.1 Performance of the generative models

In Table 3.1 we report summary statistics for the performance of our gen-

erative models. Our goal is to critically compare the different methods,

2 While technically the units of the moment tensor are N·m, the software k-Wave requires
the source force per unit area in every direction to be specified.
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Model R2D
Training
time (s)

Evaluation
time (ms) Size (MB)

NN direct (A) 0.9500±0.0006 270±12 9.9±0.6 2.32
PCA + NN (B) 0.9443±0.0006 180±1 8.6±0.2 0.71
PCA + GP (C) 0.9433±0.0006 1463±27 97.9±2.6 1.52
AE + NN (D) 0.9496±0.0021 228±12 9.3±1.0 4.46
AE + GP (E) 0.9472±0.0029 488±23 25.4±1.4 4.59

CVAE (F) 0.9477±0.0005 302±7 9.3±0.5 4.37
WGAN-GP (G) 0.9214±0.0048 1069±59 9.9±0.3 4.07

D18 ∼ 0.89 29232 621.0±8.8 5.12

Table 3.1: 2-D correlation coefficient R2D (as defined in Eq. 3.7), training time, sin-
gle likelihood evaluation time and total size of the model for all our mod-
els and the model of Das et al. (2018, p. D18). The capital letter in round
brackets refers to the schematic in Fig. 3.3. Note that training time refers
to the total time to preprocess, train and postprocess data. All of our ex-
periments were run on an Intel® CoreTM i7-8750H CPU @ 2.20GHz,
which can be found on an average-performing laptop. Results for D18
are taken from Table 2 and Fig. 14 in D18, and have been run in parallel
on an HPC cluster, with the only exception of the likelihood evaluation
time, which we performed on our machine. The reported values of R2D

and times are the mean and standard deviation of 3 runs. All of our
proposed models perform better than the one shown in D18, while tak-
ing considerably less time and requiring less disk space and hardware
performance.

highlighting their strengths and weaknesses, so that the interested reader

can decide to adopt the one that fits best their primary interests and avail-

able resources. To perform this comparison, similarly to D18, we consider

an experimental setup with only one central receiver at planar coordinates

(x = 0.5 km,y = 0.5 km) in the detection plane z = 2.43 km (see Fig. 3.9). In

the following paragraphs we will then consider a more complicated geomet-

rical setup for the detection of microseismic events.

Considerations of accuracy in terms of reconstructed seismograms are

important for applications to posterior inference analysis, to avoid biases

and/or misestimates of the uncertainty associated to the inferred parame-

ters. In our case achieving higher accuracy is crucial to guarantee unbiased

and accurate estimation of the microseismic source location. For this rea-

son, in Table 3.1 we cite the R2D statistic defined in Eq. 3.7 as a mean to
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Figure 3.8: Comparison of the reconstruction accuracy of different emulation meth-
ods on three random seismograms from the testing set (the dashed
black line), whose coordinates are reported on top of each panel. The
seismograms record the vertical component of motion at the receiver
placed on the point with coordinates (0.5 km,0.5 km,2.43 km). The hor-
izontal axis is zoomed around the location of the P-wave peak. In addi-
tion to the D18 method (in blue), we show the performance of the meth-
ods achieving lowest and highest accuracy as reported in Table 3.1: the
‘WGAN-GP’ model (pink) and the ‘NN direct’ model (red), respectively.
Figure taken from Spurio Mancini et al. (2021a).

quantify the accuracy of our methods, similarly to what was done in D18.

The R2D coefficient is evaluated on the testing set, after training and valida-

tion of each method, according to the procedure described in Sect. 3.3.3.

All of our new methods provide a R2D statistic higher than the one re-

ported by D18 on their testing set. We note that in D18 the testing set was

composed of 2000 events, whereas here we split those 2000 events in a

validation and testing set of 1000 samples each. However, we checked that

all of our numerical conclusions are unchanged considering a larger testing

set composed of the same 2000 events used by D18. We also checked
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that training the D18 emulator (augmented with the two GPs for the (Ā, t̄)

coefficients) on the seismograms preprocessed following Sect. 3.3.1 leads

to values of R2D worse than that obtained applying the D18 method with-

out preprocessing. Hence, for our comparison we decided to leave the D18

method unchanged from its original version, i.e. without performing the pre-

processing of Sect. 3.3.1 prior to training.

The ‘NN direct’ model, described in Sect. 3.3.2.1, provides the highest

R2D value among our proposed methods. This is due to the combination

of two factors: the relatively simple structure of the seismograms, given the

isotropic nature of their moment tensor, and the preprocessing operated on

the training seismograms. On the one hand, isotropic sources are charac-

terised by strong and very localised P-wave peaks, which clearly dominate

over the rest of the signal. This simplifies the form of the signal with respect

to e.g. pure compensated linear vector dipole (CLVD) and double couple

(DC) events, characterised by more complicated signal structure (Vavryčuk,

2015; Das et al., 2017). On the other hand, even with the relatively simple

structure of the isotropic seismograms, the training of a NN to map coordi-

nates to seismic traces is extremely challenging due to the reduced number

of training samples available. It is for this reason that we operated the pre-

processing on the training seismograms described in Sect. 3.3.1. This has

the advantage of extracting information regarding the source-sensor dis-

tance, encoded mainly in the location and amplitude of the P-wave peak of

each seismic trace. By isolating these features into the parameters (Ā, t̄), we

simplify the task for our NN or any other method learning the mapping be-

tween source coordinates and seismograms. This approach relies on being

able to train methods that learn efficiently the mapping between coordinates

and (Ā, t̄) coefficients. Fortunately, this mapping is not too complicated, de-

pending mainly on the distance of the source from the sensor, and this is

quite simple to learn for the GPs described in Sect. 3.3.1 which, as we ver-

ified experimentally, show higher accuracy than NNs in learning the (Ā, t̄)
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coefficients.

Fig. 3.8 shows the reconstruction accuracy of three models among the

ones considered in Table 3.1, namely the D18 method and the two models

proposed in this chapter which yield lowest and highest R2D coefficient (the

‘WGAN-GP’ and ‘NN direct’ methods, respectively). We evaluate the pre-

dictions of these three models for three random coordinates among those

of the testing set, and check how the predictions compare with the original

seismograms. We notice how in some cases the D18 method fails to pro-

duce accurate predictions (as in the case of the seismogram shown in the

second and third column in Fig. 3.8). The ‘WGAN-GP’ and ‘NN direct’ meth-

ods, instead, manage to yield more accurate predictions in these cases, in

particular regarding the location and amplitude of the P-wave peak, crucial

for localisation purposes. From the figure we can appreciate how even the

‘WGAN-GP’ method, whose accuracy is the worst among the methods pro-

posed in this chapter (cf. Table 3.1), reconstructs the seismograms in the

second and third column better than the D18 method.

Speed considerations are also important when evaluating the perfor-

mance of the models. In general, applications of machine learning to

Bayesian analysis may often be possible only making use of High Perfor-

mance Computing (HPC) infrastructures. If these are not available, applica-

tions to real parameter estimation frameworks may be fatally compromised.

Therefore, it is important to notice that all our proposed models can be ef-

ficiently run on a simple laptop, without the need of any HPC platform. If

HPC infrastructures are available, they would speed up our models even

further. In particular, running all generative models on GPUs would lead to

a speed-up of at least an order of magnitude (Wang et al., 2019).

Importantly, however, even without this HPC acceleration we find that

all our models are ∼ 1-2 orders of magnitude faster to train and to evalu-

ate than the method described in D18. We stress here that the advantage

of our models in terms of speed relies not only on requiring considerably
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less time to train, but also, and arguably more importantly, in predicting a

seismogram much faster than with the D18 method. This point is essen-

tial for applications to parameter inference, e.g. through MCMC techniques,

where a forward model needs to be computed at each likelihood evalua-

tion. A single-evaluation time for our models is reduced of up to 2 orders of

magnitude with respect to that of D18, which in turns means that Bayesian

inference of microseismic sources will be similarly faster (see Sect. 3.4.2.2).

Our emulators, run on a common laptop CPU, provide a O(105) speed-up

compared to direct simulation of the seismic trace with a pseudo-spectral

method run on a GPU. The training time required by each method is also

significantly lower than in D18. We note that this last property makes the

training of our models much less demanding in terms of computational re-

sources. We also note that the creation of a training dataset, with a few

thousands seismograms generated by solution of the seismic wave equa-

tion, is a computational overhead cost that we share with the analysis of

D18, and therefore its generation time is not reported here for any of the

methods in Table 3.1, including D18 (see Sect. 3.5 for a discussion on how

to reduce this overhead simulation time in future work).

Among our proposed methods, the fastest to evaluate is the ‘PCA+NN’

method described in Sect. 3.3.2.2. This was expected, as this model is com-

posed of a relatively small NN and a reconstruction through the predicted

PCA coefficients. Both operations essentially boil down to matrix multipli-

cations, which can be executed with highly optimised software libraries.

We also notice that the methods requiring GP predictions (‘PCA+GP’ and

‘AE+GP’ in Table 3.1) are the ones that perform worse in terms of evalua-

tion and training speed. Again, this was expected as it is due to the nature

of GP regression itself. Contrary to NNs, GPs are non-parametric meth-

ods that need to take into account the entire training dataset each time they

make a prediction. At inference time they need to keep in memory the whole

training set and the computational cost of predictions scales (cubically) with
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Figure 3.9: Left panel: simulated noisy seismic traces recorded by the sensors
at the seabed, with configuration shown in the right panel. These
recorded seismograms represent the data vector for our simulated
posterior distribution inference. Right panel: simulated receiver ge-
ometry in the detection plane z = 2.43 km. The dots indicate the
sensor locations, with colours matching those of the recorded seis-
mic traces in the left panel. The central receiver with coordinates
(0.5 km,0.5 km,2.43 km) is the one that we consider (similarly to D18)
when we quantify the performance of our trained generative models
in Table 3.1. We then include the other receivers when we demon-
strate the effectiveness of our models in carrying out Bayesian infer-
ence of the coordinates of a simulated seismic event with coordinates
(0.375 km,0.3 km, 1.57km), whose projection on the detection plane is
marked with an orange cross. Figure taken from Spurio Mancini et al.
(2021a).

the number of training samples (Liu et al., 2018). This affects also the D18

method, in an even more exacerbated form since the number of GPs in-

volved in that method is higher.

Related to the difference between GP and NN regression are the stor-

age size requirements of the different methods. Models employing NNs are

less demanding than GPs in terms of memory requirements, mainly be-

cause they do not need to keep memory of the training data. Within NN ar-

chitectures, the simpler ones are, intuitively, the lightest to store. ‘PCA+NN’

is again, the best performing method in this regard, winning in particular

over ‘AE+NN’ since the latter requires the storage of weights and biases for

two NNs.
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3.4.2.2 Inference results

Now that we have quantified the performance of our generative models, we

want to apply them to the Bayesian inference of a microseismic event lo-

cation. To this purpose, we simulate the detection of a microseismic event

and wish to infer the posterior distribution of its coordinates. The posterior

distribution of a set of parameters θ for a given hypothesis or model M

and a data set D is given by Bayes’ theorem as presented in Eq. 1.14. In

this chapter we employ the algorithm MultiNest (Feroz and Hobson, 2008)

for multi-modal nested sampling (Sect. 1.1.3.2 and Skilling 2006), as imple-

mented in the software PyMultiNest (Buchner et al., 2014), to sample the

posterior distribution of our model parameters (i.e. the source coordinates).

We simulate the observation of a microseismic isotropic event

by generating a noiseless trace given specified coordinates (x,y,z) =

(0.375 km,0.3 km,1.57 km). Our goal is to derive posterior distribution con-

tours on the coordinates (x,y,z), which represent our parameters. Following

D18, we add random Gaussian noise to each component of the noiseless

trace, with standard deviation σ = 250 in the same arbitrary units as the

seismograms’ amplitude. The resulting seismic trace, measured at multiple

receivers, is shown in the left panel of Fig. 3.9. Similarly to D18, we assume

a Gaussian likelihood. We stress here that the particular shape considered

for the noise modelling and the likelihood function are not restrictive: our

methodologies are easily applicable to more complicated noise models or

likelihood forms, while we chose to use the same investigated by D18 for a

direct and fair comparison.

Instead of repeating the analysis for each proposed generative model,

we decide to use the one that has been shown in Table 3.1 to achieve

greater accuracy, i.e. the direct neural network mapping between coordi-

nates and seismograms, described in Sect. 3.3.2.1. We simulate an ex-

perimental setup with multiple receivers on the detection plane z = 2.43 km,

shown in the right panel of Fig. 3.9. D18 reported a maximum likelihood
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Coordinate Prior
range [km]

Ground
truth [km] D18 [km] NN direct [km]

x [0,1] 0.3750 0.2175+0.5325
−0.12375 0.3770+0.0025

−0.0025
y [0,1] 0.3 0.2+0.525

−0.125 0.305+0.0026
−0.0026

z [0,2.43] 1.57 0.33+0.64
−0.28 1.57+0.0012

−0.0012

Table 3.2: Prior range, mean and marginalised 68 percent credibility intervals on
the coordinates (x,y,z), for the D18 method and our proposed ‘NN direct’
model described in Sect. 3.3.2.1.

calculation for up to 23 receivers placed on the same plane. Here, our aim

is to test the performance of our models at inference time, while we do not

wish to carry out a detailed analysis for optimisation of the receivers geom-

etry. In particular, we wish to compare the D18 emulator with ours at infer-

ence time. Thus, we do not consider all 23 receivers considered by D18.

While we find that considering only one receiver is obviously not enough to

achieve significant constraints on the coordinates, after experimenting with

different configurations and number of receivers we find that considering

four receivers, placed in the upper diagonal part of the detection plane as

shown in Fig. 3.9, already leads to significant constraints on the event co-

ordinates, with 1σ marginalised errors of order 0.001 km. This is true if we

consider our ‘NN direct’ method, whose accuracy is higher than the one of

D18. Indeed, repeating the inference analysis with the D18 emulator, given

the same receiver configuration, leads to constraints ∼ 3 times less tight on

the coordinates and at a considerable increase in computation time: 66 h

of computation using 24 Central Processing Units (CPUs), compared to the

1.7 h required by the ‘NN direct’ on a single CPU. The fact that such tighter

constraints can be achieved with our emulator, even if making use of the in-

formation coming from only four receivers, is due to the increased accuracy

of our method, evident from the R2D values reported in Table 3.1.

Fig. 3.10 shows the posterior contour images for the four receiver con-

figuration described above, obtained with our ‘NN direct’ generative model

and the emulator of D18. The numerical results are summarised in Ta-
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Figure 3.10: Comparison of the marginalised 68 and 95 per cent credibility con-
tours obtained with the D18 method (in blue) and our proposed ‘NN
direct’ generative model (in red) described in Sect. 3.3.2.1, consider-
ing a seismic trace measured by the four receivers shown in Fig. 3.9.
The black dashed lines indicate the source’s true coordinates at
(x,y,z) = (0.375 km,0.3 km,1.57 km). Figure taken from Spurio Mancini
et al. (2021a).

ble 3.2, reporting the prior ranges and mean and marginalised 68 percent

credibility interval on the coordinates. We notice that the x and y coordi-

nates are less constrained than the z coordinate. This is due to the lay-

ered structure of the density and velocity model (cf. Fig. 3.7), with much

more variability along z than along the horizontal directions. A full compar-

ison between the D18 and ‘NN direct’ methods would require to perform

the inference process using data from all 23 receivers. However, we found

that implementing the D18 method with all 23 receivers involves significant
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computational complication, even when making use of highly parallelised

HPC implementations. We remark that the D18 method fails with few de-

tectors and is computationally expensive with many, while the ‘NN direct’

method proposed in this chapter works well with just 4 detectors and can

be expected to work very well, and at lower cost, with many. In section 3.3

of Spurio Mancini et al. (2021a) we further compare our approach with an

arrival-time-based method, as implemented by (Lomax et al., 2000), show-

ing good agreement.

3.5 Discussion and conclusions

In this chapter, we developed generative models to accelerate Bayesian in-

ference of microseismic event locations. Our geophysical setup was similar

to the one used in Das et al. 2018 (D18) to train an emulator with the aim of

speeding up the source location inference process. This was achieved by re-

placing the computationally expensive solution of the seismic wave equation

at each point in the parameter space with machine-learning-based emula-

tors, which were trained to learn the mapping between source coordinates

and seismic traces recorded by the sensors.

All models developed in this chapter were trained on the same 2000

forward simulated seismograms used by D18 when training their emulator.

However, our models are based on neural networks and make minimal use

of Gaussian process (GP) regression, which is instead performed multiple

times in the method proposed by D18. This makes all of our models faster to

train and evaluate compared to the previous emulator, achieving a speed-up

factor of up to O(102), as well as reducing the storage requirements of the

models. Our trained emulators are capable of producing synthetic seismic

trace for a given velocity model with a speed-up factor over pseudo-spectral

methods ofO(105). For example, it takes∼ 10 ms to compute a 2-s synthetic

trace for a given source model on a common laptop CPU, compared to ∼

127



1 h using the pseudo-spectral method implemented in the software k-Wave,

run on a GPU. Crucially, this acceleration does not happen at the expense

of accuracy; on the contrary, our models provide improved constraints on

the source coordinates.

We showed this first by calculating the 2-D correlation coefficient for the

seismograms of the test set. The values obtained with all our models were

higher than those obtained by D18, indicating the higher accuracy achieved.

Secondly, we repeated the simulated experiment devised by D18, with sen-

sors placed at the seabed of a 3-D marine environment where our simulated

sources were randomly located. We showed that using information coming

from only four receivers situated on the detection plane we were able to pro-

vide accurate and tight constraints on the source coordinates, whereas the

D18 method struggled to provide any significant constraint given the same

setup and would likely need additional information from more sensors to

achieve comparable constraints. As a result of the speed-up obtained at

evaluation time, we were able to perform the inference process on a single

CPU in ∼ 1.7 h, compared to ∼ 66 h of calculation over 24 CPUs required

by the D18 method.

A complete Bayesian hierarchical model for source location has been

developed in the software Bayesloc (Myers et al., 2007, 2009). We believe

that the implementation of our emulators in this framework could benefit

greatly the speed of execution of the Bayesloc software, with potential ap-

plication to e.g. the study of nuclear explosions as in Myers et al. (2007,

2009). We also notice that an arguably faster method for source location

exists, which makes use of the time travel information derived from simu-

lated waveforms (Vasco et al., 2019). This method is a variation of the grid

search method of Nelson and Vidale (1990), with travel time calculations ob-

tained from full waveform simulations instead of the solution of the eikonal

equation. We remark that this method may be preferable to ours in terms of

speed, since it scales with the number of receivers in the recording network,
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thanks to the reciprocity relation (Chapman, 2004) used in the calculation of

the travel time fields, by placing a source in the receivers location and solv-

ing the elastodynamic equation. However, we also notice that the method

of Vasco et al. (2019) ultimately makes use only of arrival time estimates,

hence it is possible that our full waveform inversion may lead to tighter con-

straints (see also Spurio Mancini et al. 2021a for a more complete discus-

sion). We further notice that the method proposed in Vasco et al. (2019) is

not presented within a Bayesian framework, whereas all our emulators are.

This is a key characteristic of the methods developed in our chapter, in view

of integration of our generative models within Bayesian frameworks for joint

inversion of moment tensor components and location.

In conclusion, we developed a collection of deep generative mod-

els that can accelerate very efficiently Bayesian inference of microseismic

sources. The ultimate goal would be to integrate our emulators within exist-

ing methodologies and software for joint location and moment tensor com-

ponents inversion, as e.g. implemented in MTfit (Pugh and White, 2018).

We believe that the results obtained in this chapter sufficiently prove the ac-

curacy of the emulators developed, making them ready for integration within

MTfit. We additionally note that, for a different velocity model, our emu-

lators would need to be retrained on a new set of seismic traces: this is

a limitation shared by other forward modelling approaches (Moseley et al.,

2020a), and inherent to the fact that in these data-driven approaches one

emulates seismic traces assuming a physical model. Even if a re-training

of the emulators is needed, the modularity of our framework implies that

the only major change would be in replacing the old velocity model with

a new one. For models with mildly stronger heterogeneity, we anticipate

our models to achieve a similar performance to that shown in this chap-

ter. With stronger heterogeneity, we anticipate more training samples might

be required, in order to achieve an optimal performance of the emulators.

Nevertheless, given the speed-up of our approach, such new optimisations

129



should be computationally feasible. We also note that the dependence of

our framework on a specific velocity model may be greatly alleviated by em-

ploying transfer learning techniques (see e.g. Weiss et al. 2016 for a review,

and Waheed et al. 2020 for a recent application to seismology). In transfer

learning, the training of a machine learning algorithm in a specific domain is

used to efficiently train the algorithm on a different, while related, problem.

This may be particularly successful in the microseismic context considered

in this chapter, where velocity models for a given geophysical domain are

expected to vary relatively slowly over time.

The performances of our emulators in terms of accuracy are all compa-

rable between them, and improved with respect to the D18 method. Speed

considerations may therefore be invoked in the decision process for a partic-

ular method. However, we notice that our framework is valid only for micro-

seismic events characterised by isotropic moment tensor. Considering more

complicated forms of the moment tensor will likely require additional compli-

cations, first of all considering seismic traces recorded for longer time, since

the signal structure will be in general more complicated. Extensions of this

work to non-isotropic sources, possibly in combination with other source in-

version techniques (Minson et al., 2013; Weston et al., 2014; Frietsch et al.,

2019; Vasyura-Bathke et al., 2020) would then allow for an extension of the

parameter space to be explored, including for example the moment tensor

components for characterisation of the source mechanism. Additionally, ap-

plications to real analyses will need to implement more realistic models for

the noise than the one we considered when performing Bayesian inference.

These will be the topics of the next chapter.
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4
Towards fast machine-learning-assisted Bayesian

posterior inference of realistic microseismic

events

In this chapter, we extend the methodology developed in Chapter 3 for

Bayesian location of isotropic microseismic events to any source mecha-

nism, i.e. including the double couple (Eq. 2.28) and compensated linear

vector dipole (Eq. 2.29) modes. In this instance, we focus on a single

generative model, namely a combination of principal component analysis

and neural networks, and devise a preprocessing procedure of the seismic

traces that translates our data to Fourier space, thus taking advantage of

their properties in the frequency domain. The work presented in this chap-

ter is based on the paper Towards fast machine-learning-assisted Bayesian

posterior inference of realistic microseismic events by Davide Piras, Alessio

Spurio Mancini, Benjamin Joachimi and Michael Paul Hobson, under review

at Geophysics Journal International, and was carried out in collaboration

with the named co-authors; the version presented here contains minor mod-

ifications to suit the thesis format.
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4.1 Abstract

Bayesian inference applied to microseismic activity monitoring allows

for principled estimation of the coordinates of microseismic events from

recorded seismograms, and their associated uncertainties. However,

forward modelling of these microseismic events, necessary to perform

Bayesian source inversion, can be prohibitively expensive in terms of com-

putational resources. A viable solution is to train a surrogate model based

on machine learning techniques, to emulate the forward model and thus ac-

celerate Bayesian inference. In this chapter, we improve on previous work,

which considered only sources with isotropic moment tensor. We train a

machine learning algorithm on the power spectrum of the recorded pres-

sure wave and show that the trained emulator allows for the complete and

fast retrieval of the event coordinates for any source mechanism. Moreover,

we show that our approach is computationally inexpensive, as it can be run

in less than 1 hour on a commercial laptop, while yielding accurate results

using less than 104 training seismograms. We additionally demonstrate

how the trained emulators can be used to identify the source mechanism

through the estimation of the Bayesian evidence. This work lays the foun-

dations for the efficient localisation and characterisation of any recorded

seismogram, thus helping to quantify human impact on seismic activity and

mitigate seismic hazard.

4.2 Introduction

Underground human activity, including fluid injection in rocks and mining op-

erations, can cause seismic events with much smaller amplitude than large-

scale earthquakes (Majer et al., 2007; Ellsworth, 2013). These induced

seismic signals are usually referred to as microseismic events, and their
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monitoring is critical in understanding the impact of human activity on seis-

mic hazard (Brueckl et al. 2008; Shapiro et al. 2010; Mukuhira et al. 2016;

Das et al. 2017, and references therein). Microseismic events are usually

tracked by placing geophones on the land surface or at the seabed (Panahi

et al., 2005; Fertitta et al., 2010). Besides measuring the amplitude of the

seismograms, these sensors allow for a spatial and temporal localisation of

the event. In particular, once a seismogram has been recorded, we wish to

infer its source location in the subsurface, in order to mitigate the seismic

hazard and forecast seismic risk.

Various methods for microseismic event — and, more generally, earth-

quake — location are available in the literature, dating back to the work of

Geiger (1910), and up to today (see e.g. Vasco et al. 2019, and references

therein, for a recent review). One of the most common approaches relies on

estimating the first arrival time by means of the eikonal equation (see e.g.

Noack and Clark 2017; Smith et al. 2020), which allows for the direct com-

parison of travel times through a direct grid search or more sophisticated

techniques (Wuestefeld et al., 2018). More accurate predictions can be

obtained exploiting methods that take into consideration the full waveform,

even though they generally require more computational resources (Song

and Nafi Toksöz, 2011; Li, 2013; Angus et al., 2014; Li et al., 2016; Willacy

et al., 2019; Vasco et al., 2019; see also Li et al. 2020a for a recent review

of waveform-based inversion methods).

A Bayesian approach can be adopted to solve the inverse problem as

well (Lomax et al., 2000; Tarantola, 2005; Stähler and Sigloch, 2014, 2016;

Pugh et al., 2016a). We assume a model where each microseismic event is

uniquely identified by a set of coordinates, which are the model parameters.

Then, given a seismogram, we wish to obtain the parameters’ posterior dis-

tribution, which is used to provide an estimate of the model parameters and

their associated uncertainty. Markov Chain Monte Carlo (MCMC; see e.g.

Craiu and Rosenthal 2014 for a review) and nested sampling (Sect. 1.1.3.2
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and Skilling 2006) techniques are among those employed to sample the pos-

terior distribution. However, this approach becomes prohibitive when deal-

ing with a high number of parameters, or when the forward model is com-

putationally expensive to simulate (see e.g. Rajaratnam and Sparks 2015;

Conrad et al. 2016; Alsing et al. 2018). For these reasons, being able to

cheaply and accurately simulate a microseismic event given its coordinates

has become paramount in recent years. In order to obtain forward simula-

tions of microseismic events, one must solve the elastic wave equation given

a 3-D heterogenous density and velocity model for the propagating medium

(Das et al., 2017), which can be prohibitively expensive unless sophisticated

techniques are implemented.

Machine-learning generative models have gained considerable atten-

tion in recent years, with applications to many fields ranging from computer

vision (Goodfellow et al., 2014; Gulrajani et al., 2017) to astrophysics (Auld

et al., 2007, 2008; Spurio Mancini et al., 2021b), as well as climate sci-

ence, nuclear physics and drug selection (see e.g. Kasim et al. 2020; Chen-

thamarakshan et al. 2020). These advances have been enabled by both

an increased accessibility to specific computational resources, as well as a

significant growth in the amount of available data.

In geophysics, Das et al. (2017) developed an optimised approach to

microseismic events generation that, for each set of coordinates and given

a physical model for the propagating medium, produces the corresponding

seismogram in O(1 h) using a Tesla graphics processing unit (GPU) and

the software k-Wave (Treeby et al., 2014). Subsequently, Das et al. (2018)

and Spurio Mancini et al. (2021a) (D18 and SM21 hereafter, respectively)

showed the limitations of this direct approach, and presented an alterna-

tive where the mapping is learnt using machine learning techniques. In

particular, D18 showed how Gaussian processes (GPs, Rasmussen and

Williams, 2005) can be used to learn an accurate surrogate model, while

SM21 demonstrated the effectiveness of a variety of machine learning al-
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gorithms as emulators, and showed how their surrogate model yields an

accurate estimate of the posterior distribution of an event’s coordinates in a

fraction of the time required by the D18 method.

D18 and SM21 only applied their methodologies to isotropic microseis-

mic events. However, in Sect. 2.1.2, we detailed that any source mechanism

can be mathematically decomposed into three components: isotropic (ISO),

double couple (DC), and compensated linear vector dipole (CLVD) (Knopoff

and Randall, 1970; Vavryčuk, 2001, 2005, 2015). We recall that the pure

ISO source is associated with implosive or explosive force, while the pure

DC source is caused by shear faulting. The CLVD source is coupled to the

ISO source, but compressive stress is exerted along one direction, while

tensile stress is exerted along the other two (Li et al., 2015).

In this chapter, we present an approach that aims at learning the di-

rect mapping between coordinates and seismograms for any microseismic

source type (ISO, DC and CLVD). We show that it is sufficient to consider

the power spectrum of the recorded pressure waves in order to distinguish

different seismograms (as already investigated e.g. in Pratt 1999; Pratt and

Shipp 1999; Tao and Sen 2013; Jakobsen and Ursin 2015), and we train a

simple machine learning algorithm to learn this mapping efficiently. More-

over, we demonstrate how our method allows for the accurate inference of

the posterior distribution of the coordinates of a single source in O(0.1 h)

on a commercial laptop, thus paving the way for the fast and inexpensive

localisation of any microseismic event. Finally, we show how we can use

the trained emulators to identify the source mechanism through Bayesian

evidence estimation, thus demonstrating the versatility of our Bayesian ap-

proach.

We structure the chapter as follows. In Sect. 4.3 we describe the data

we consider in this work. In Sect. 4.4 we explain our inversion approach,

describe what preprocessing steps we perform and recall the details of the

generative method we employ. We show its performance at both training
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and inference time in Sect. 4.5. Finally, in Sect. 4.6 we discuss our results

and provide an outlook on possible extensions of this work.

4.3 Data

In this work, we consider the same data framework as D18 and SM21, start-

ing from 3-D heterogenous density and velocity models for the propagating

medium, which we show in Fig. 3.7. The model, which is discretised on

a 3-D grid of voxels, specifies the values of the density ρ of the propa-

gating medium, as well as the propagation velocities for P- and S-waves

(Vp, Vs). We assume that sensors are placed at the seabed, and that they

record both pressure and three-component particle velocity of the propagat-

ing medium (even though we will use only the former, as we explain later

on). As anticipated, our aim is to apply our method to any source mecha-

nism, so we will consider a more general generation procedure than previ-

ous work. Unlike D18 and SM21, who only considered isotropic sources,

we take the microseismic moment tensor to be one of three types, which

we denote as MISO, MDC and MCLVD, defined in Eq. 2.26, 2.28, and 2.29

respectively (see also Vavryčuk 2005; Li et al. 2015). We additionally as-

sume M11 = M22 = M33 = M12 = M21 = 1 MPa, which is a realistic assumption

following Collettini and Barchi (2002). In practice, isotropic (ISO) events are

characterised by a single (explosive or implosive) P-wave, while double cou-

ple (DC) events are linked to shear stress and are characterised by both a

P- and S-wave, with comparable amplitudes. Similarly to isotropic events,

compensated linear vector dipole (CLVD) events display an often dominant

principal wave, whose amplitude is however much smaller than the isotropic

one, and a non-negligible S-wave.

We generate forward simulations using the GPU implementation of Das

et al. (2017), employing different types of GPUs with memory size ranging

from 5 GB to 11 GB. The precise GPU cards used to generate the data
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Figure 4.1: Projection of the positions of the 23 receivers on the x-y plane; z = 2.43
km corresponds to the seabed, where all sensors lie. Each receiver
records the acoustic pressure wave and particle velocity generated by
a microseismic event below the seabed. The red crosses indicate all 23
receivers, while green circles and blue squares (9 and 5 receivers, re-
spectively) refer to subsets of receivers we used to test the robustness
of our method, as shown in Sect. 4.5.2. We remark that any optimisa-
tion of the position of the receivers is beyond the scope of our thesis,
and that we maintain the same setup as in previous work (Das et al.
2018 and Chapter 3).
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are Tesla K20, Tesla C2075, GeForce RTX 2080 Ti and GeForce GTX 1080

Ti, which carry a different number of CUDA cores each, ranging from 500

to 5000. We observe that the speed of the generation scales linearly with

the number of cores available; however, given that we produce the data on

a shared cluster, we cannot always choose which card to employ. Note

that the software with which we work is optimised for GPUs, and therefore

cannot be expected to scale similarly when running on Central Processing

Units (CPUs) or Tensor Processing Units (TPUs).

For each source type, we produce 10000 events corresponding to dif-

ferent source locations, which are randomly sampled using Latin Hypercube

Sampling on a 3-D grid of 81 × 81 × 301 points, corresponding to a real

geological model of size 1 km × 1 km × 3 km. The total time to gener-

ate these data using the hardware specified above is about 150 h for each

source type. We consider 23 receivers in total, whose position is depicted

in Fig. 4.1, even though we stress that we will not focus on finding the opti-

mal geometry of the sensors in this work. In Sect. 4.5.2 we will present the

results of a full analysis of the dependence of the posterior distribution on

the number of training points, the number of receivers and the noise level, in

order to demonstrate the robustness of our approach. The temporal resolu-

tion for the solution of the elastic wave equation is 0.5 ms (2 kHz), and the

total length of each seismic event is 5 s. After generation, all seismograms

are downsampled to a time resolution of 2.5 ms (400 Hz) to reduce com-

putational storage; this is done by keeping only the first of each group of 5

components. In this way, each seismic trace is ultimately a time series com-

posed of Nt = 2001 time components: we show an example for each source

mechanism in the left column of Fig. 4.2. Finally, note that we consider the

seismograms to be noiseless at training time, while some noise is added

to the simulated recorded event when performing inference on the coordi-

nates’ posterior distribution, as we are working in a Bayesian framework,

detailed in Sect. 4.4.1. We will discuss and show the effect of the noise level
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Figure 4.2: Left column: Example acoustic pressure wave for each different type
of moment tensor: isotropic (ISO), double couple (DC) and compen-
sated linear vector dipole (CLVD). These seismograms correspond to
a source location of (x,y,z) = (0.55 km,0.73 km,1.8 km) as recorded by
a receiver in (x,y,z) = (0.13 km,0.38 km,2.43 km). The seismograms’
amplitude is measured in arbitrary units of pressure. Note the different
scales for each source mechanism. The vertical dashed black line in
the top panel indicates a cut we perform for the isotropic sources only,
based on the left panel of Fig. 4.5. Right column: The correspond-
ing power spectra, calculated as described in Sect. 4.4.2. No noise
is added when training the emulator, while some noise is introduced
when doing inference, as described in Sec. 4.4.1. The vertical dashed
lines indicate a frequency cut we perform to further reduce the num-
ber of features and to be robust to noise, based on the right panel of
Fig. 4.5.

in Sect. 4.4.2 and Sect. 4.5.2, respectively.

4.4 Inversion approach

Our goal is to perform Bayesian inference on the source location of a mi-

croseismic event. In order to do so, we will employ a neural network (NN)

as the forward model to parametrise the mapping between the coordinates

and the principal components of the power spectra of the seismograms. Our

inversion approach is summarised in Fig. 4.3.
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Preprocessing ≡ 𝑫
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Figure 4.3: Workflow of our inversion approach. The observed event, indicated in
coral in the top left corner, is preprocessed according to the steps de-
scribed in Sect. 4.4.2 in order to obtain a logarithmic power spectrum.
Our goal is to obtain the posterior distribution of the coordinates θ of the
event’s location beneath the surface, as detailed in Sect. 4.4.1. In order
to sample from the posterior distribution, we specify a data likelihood,
and use a generative model g(θ) to accelerate the evaluation of the
likelihood. As our generative model, which we describe in Sect. 4.4.3,
we employ a feedforward neural network that maps coordinates to the
principal components of the logarithmic power spectra. The neural net-
work sketch has been drawn using NN-SVG (LeNail, 2019).

4.4.1 Inference

The basic assumptions of our Bayesian analysis are the same as in Chap-

ter 3. In addition to that, in Sect. 4.4.4 we show how the evidence (in-

troduced in Sect. 1.1.3.2) can be used to perform model selection, which is

another advantage of working within a Bayesian framework. In order to sam-

ple the posterior distribution of the source coordinates, we employ nested

sampling (Skilling, 2006), as implemented in PyMultiNest1 (Buchner et al.,

1 https://github.com/JohannesBuchner/PyMultiNest
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2014), the Python interface to MultiNest (Feroz and Hobson, 2008). We

choose nested sampling over Metropolis-Hastings sampling or other MCMC

techniques as it generally converges faster (Allison and Dunkley, 2014) and

provides an estimate of the evidence. For the prior, we assume a uniform

distribution in the range of the physical model ([0,1]× [0,1]× [0,2.43], with

units in kilometres).

To perform Bayesian inference on a given seismogram, we first ran-

domly choose an event’s coordinates from the test set. For this set of coordi-

nates, we simulate the observation of a microseismic event for each source

mechanism, and generate the noiseless trace as it would be recorded by

each of the 23 receivers. We add random Gaussian noise to each compo-

nent of the noiseless trace. We define the signal-to-noise ratio (SNR) as (Li

et al., 2018; Zhang et al., 2020):

SNR = 10log10
∑

N
i ∑

Nkeep
j s2

i j

∑
N
i ∑

Nkeep
j (si j− s̃i j)2

, (4.1)

where si j refers to the j-th component of the i-th trace and s̃i j to the

corresponding noisy trace, N = 8000 is the number of training data and

Nkeep = 2001 (1000 in the ISO case) is the number of time components.

Following Li et al. (2018), we set SNR= 33 dB, which corresponds to a stan-

dard deviation of the Gaussian noise of σ = 10.0, 0.3 and 3.5 for ISO, DC

and CLVD, respectively, in the same arbitrary units as the seismograms’

amplitude. We show examples of noiseless and noisy signals in Fig. 4.4.

We note that the choice of Gaussian noise has a quantifiable conse-

quence on the power spectra of the signals, as it is known that additive white

noise has an expected constant power in Fourier space (Haykin, 2001; Pa-

poulis et al., 2002). This is reflected on the right-hand side of Fig. 4.5, where

the mean noisy signal is shifted up due to the noise injection. We argue that

in general any information about the noise power (even if more complicated
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Figure 4.4: Comparison of the signal without (solid blue) and with (dashed coral)
noise for each source mechanism: isotropic (ISO), double couple
(DC) and compensated linear vector dipole (CLVD). As explained in
Sect. 4.4.1, after training the emulator on the noiseless traces, we add
Gaussian noise to the observed signal to infer its coordinates. In this
case, the seismogram corresponds to event 3 in Table 4.1 as recorded
by a receiver in (x,y,z) = (0.13 km,0.38 km,2.43 km), and the signal-to-
noise ratio (SNR) is 33 dB; we explore higher and lower SNR values in
Sect. 4.5.2 and Fig. 4.9. The vertical dashed black line in the top panel
indicates a cut we perform for the isotropic sources only, based on the
left panel of Fig. 4.5.
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than Gaussian noise) can be easily accounted for when preprocessing the

data: for this reason, we decide to translate our data in Fourier space, as we

describe in Sect. 4.4.2. We will show in Sect. 4.5.2 that this choice makes

our proposed approach robust to noise; moreover, our approach lends itself

to the extension to coloured noise, which is most likely in realistic seismic

data, especially for events with a low SNR (Liu et al., 2017).

The noisy seismogram is further preprocessed as described in

Sect. 4.4.2. At each likelihood evaluation of PyMultiNest, the proposed

coordinates are mapped to the predicted preprocessed seismograms by

means of the generative model g(θ) described in Sect. 4.4.3: by evaluating

the likelihood in multiple points of the prior space, PyMultiNest can sample

from the posterior distribution of the coordinates, thus yielding the required

credibility regions in parameter space. Note that, similarly to D18 and SM21,

we assume a Gaussian likelihood, i.e. we write:

P (D|θ ,M) ∝ exp
(
−1

2
(D−g(θ))T C−1 (D−g(θ))

)
, (4.2)

where C indicates the covariance matrix of the preprocessed seismograms,

estimated from the training data. We note that our choice of a Gaussian

likelihood comes without loss of generality, as our method can be easily

extended to more complicated likelihood models. It is worth stressing that

adding Gaussian noise to the seismograms does not necessarily imply that

the distribution of the preprocessed seismograms will also be Gaussian;

however, we verified experimentally that the distribution of each prepro-

cessed seismogram component is unimodal and symmetric, thus supporting

our assumption of a Gaussian likelihood as per Eq. 4.2.

4.4.2 Preprocessing

Learning a mapping between coordinates and seismograms directly would

be hard for at least two reasons. First, each signal has features with differ-

ent amplitudes: this means that e.g. a neural network would likely just focus
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on the main peak and ignore the other components, thus losing useful in-

formation for the localisation purpose. Secondly, given the complexity of the

seismograms and the high number of features, the amount of data required

to train an accurate emulator without overfitting would be at least an order of

magnitude higher than what we consider in this work (see e.g. Bishop 2006;

Zhu et al. 2015, and references therein).

In this sense, we have to preprocess the seismograms in order to ex-

tract only the relevant information that is needed to localise an event, while

discarding all the noisy or redundant features of the signal. Both D18 and

SM21 showed the importance of preprocessing, employing GPs in order to

select only the components of each seismogram that are essential for in-

ference. However, their methods fail on more complicated sources like the

ones we consider in this work. While it could be argued that employing more

training data could improve the results, it is also well-known that GPs do not

scale well with the number of training points (Liu et al., 2018), thus it is

likely that the D18 method would struggle to generalise to more complicated

source mechanisms. Additionally, the method proposed in SM21 is applied

directly to the complicated seismic traces like the ones in the left panel of

Fig. 4.2, thus making it more difficult for any algorithm to capture the most

useful features for localisation. Therefore, we follow a different preprocess-

ing procedure, based on translating the data to the Fourier domain, and we

outline the steps in the next paragraphs.

The left panel of Fig. 4.5 shows the mean and standard deviation of

all seismograms in the training set (8000 seismic traces): based on these

distributions, we keep all components of the DC and CLVD signals, and

only keep the first half of the ISO traces. In other words, we keep only

Nkeep = 1000 time components for the ISO traces, and Nkeep = Nt = 2001

time components for the other mechanisms. The next preprocessing step

we implement is applying the one-dimensional discrete Fourier Transform
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(Cooley and Tukey, 1965) to each seismogram, using the version of NumPy2.

Since the amplitudes at each time component are real numbers, the Fourier

Transform returns (bNkeep/2c+ 1) frequency components: this means that

for DC and CLVD sources we are left with 1001 components (501 in the ISO

case) in the Fourier domain. We then take the square of the absolute value

of these complex numbers: this is usually referred to as a power spectrum.

In the right column of Fig. 4.2 we report the power spectra corresponding to

the seismograms in the left column of the same figure. We further take the

decimal logarithm of the power spectra at each frequency value, and refer

to it as logarithmic power spectra in the rest of the chapter.

As anticipated in Sect. 4.4.1, we shall add some noise to the observed

seismogram whose coordinates will be inferred. In the right panel of Fig. 4.5

we show the mean power spectra for each source mechanism with and with-

out noise. We calculate the ratio between the noiseless and the noisy sig-

nals, and filter out the frequencies for which this ratio is less than 0.99. We

experimented with different thresholds, and chose 0.99 as a good balance

between retaining enough features to locate a seismogram and being insen-

sitive to noise. In other words, we additionally cut each power spectrum in

the ranges [1 Hz, 62.4 Hz], [0 Hz, 52.2 Hz] and [0 Hz, 45.8 Hz] for ISO, DC and

CLVD, respectively, to keep the parts of each signal that are less affected by

noise. We observe that translating the seismograms to the Fourier domain

has allowed us to obtain smoother signals, as well as to reduce the number

of features by a factor of 10. Moreover, this allows our proposed method

to be robust to noise: any effect due to noise can be translated into some

information of the noise power, and hence accounted for in the analysis, as

we discussed in Sect. 4.4.1.

To further reduce the number of features, we apply principal component

analysis (PCA, also described in Sect. 3.3.2.2). PCA is a standard linear

compression technique where the data is projected along the eigenvectors

2 https://numpy.org/doc/stable/reference/routines.fft.html
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Figure 4.5: Left column: Mean (blue line) and standard deviation (grey area) of
all the seismic traces in the training set, for each source mechanism:
isotropic (ISO), double couple (DC) and compensated linear vector
dipole (CLVD). The seismograms’ amplitude is measured in arbitrary
units of pressure. The training set is made of 8000 traces for each
source mechanism. We cut the isotropic sources at 2.5 s, as indicated
by the vertical dashed black line. Right column: Noiseless (solid blue)
and noisy (dashed coral) mean of the corresponding power spectra,
calculated as described in Sect. 4.4.2. We consider a signal-to-noise
ratio of 33 dB, as described in Sect. 4.4.1. We filter the power spectra
between the vertical dashed lines selecting only the frequencies where
the ratio between the noiseless and noisy signals is more than 99%.

of the data covariance matrix. Considering only the components that carry

more variance (the so-called ‘principal components’, corresponding to the

largest eigenvalues), it is possible to reduce the number of features while

maintaining the relevant information for inference. We fit PCA to the training

data, and use it to compress the whole dataset. After applying PCA to

the logarithmic power spectra, we retain 10 principal components for each

signal when training the generative model; note that inference is done at the

level of the logarithmic power spectra instead. We verified experimentally

that varying the number of retained PCA components does not impact the

final results significantly.
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4.4.3 Generative model

As our generative model g(θ), we choose to employ a feedforward neural

network (NN), introduced in Sect. 1.2.2. We employ a neural network made

of three layers with 256 neurons each, to provide enough flexibility to the

parametrisation without consuming too much memory. We set Leaky ReLU

(Maas et al., 2013) with α = 0.3 as the activation function for all layers ex-

cept the last one, where we keep a linear activation function; Leaky ReLU is

usually preferred over the standard ReLU (Rectified Linear Unit) because of

non-vanishing gradients (Kolen and Kremer, 2001). We also experimented

with the ELU (Exponential Linear Unit, Clevert et al., 2015) activation func-

tion, and found no significant improvements in the overall results with re-

spect to using Leaky ReLU. We choose the Mean Squared Error (MSE)

between the network output and the principal components of the training

data as our loss function to minimise.

For each source mechanism and each receiver, we train the emulator

using 8000 traces; we reserve 1000 seismograms for validation purposes

and 1000 seismograms for testing purposes. To train the neural network,

we use the Adam optimiser (see Sect. 1.2.2) with default parameters; more-

over, we choose a learning rate of 0.001 and a batch size of 256: the former

controls the step size of the parameters’ update, while the latter indicates

the number of training points that are fed through the network at each iter-

ation. We additionally set a patience of 50 to early-stop (Yao et al., 2007)

based on the validation loss: this means that if the loss calculated on the

validation set has not decreased in the last 50 epochs, we stop training and

take the model corresponding to the minimum validation loss as the best

model, as we interpret the model to have achieved its minimum error on un-

seen data3. The test set is used to randomly sample events on which we

3 We also tested a dynamic learning rate decreasing by a factor ten every time the val-
idation loss did not decrease for 50 epochs, but found no significant improvement over a
constant learning rate of 0.001, which we therefore chose for our analysis.
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perform our Bayesian inversion analysis, as described in Sect. 4.4.1. We

also explore the behaviour of the posterior distribution as a function of the

number of training events, number of receivers and noise scale, which we

show in Sect. 4.5.2. However, we do not perform a full grid search amongst

the hyperparameters (e.g. number of layers, number of neurons, activation

function and learning rate), as we observe the results are not significantly

affected by them; we defer a more complete grid search to future work.

4.4.4 Model selection

As detailed in Sect. 1.1.3.2, we can use the evidence P (D|M) to per-

form model selection, thus showing another advantage of our proposed

Bayesian approach (Knuth et al., 2015). Using the definition of the Bayes

factor in Eq. 1.15, we can perform model selection in the following way:

after training the emulators, given an observed signal D as described in

Sect. 4.4.1, we can compare the three following equiprobable hypotheses:

the source mechanism is isotropic (MISO), the source mechanism is dou-

ble couple (MDC), or the source mechanism is compensated linear vector

dipole (MCLVD). The advantage of using nested sampling is that the evi-

dence is calculated while sampling the posterior distribution. Consequently,

by feeding the observation D to each emulator it is straightforward to obtain

the evidences P (D|MISO), P (D|MDC) and P (D|MCLVD). By looking at the

hypothesis that maximises the evidence, we can select the model that best

describes the given observation, thus identifying the source type for a given

observation. We show the results in Sect. 4.5.3 and Table 4.2.
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4.5 Results

4.5.1 Speed performance

We first report on the speed performance of our method. We recall here

that if we were to solve the elastic wave equation at each likelihood evalua-

tion, inference would be severely compromised, as a single event’s source

inversion would take thousands of hours on a High Performance Computing

(HPC) cluster, if at all possible. In contrast, our method requires only ∼ 104

simulations to be produced once, and the emulator to be trained once — an

overhead of O(100 h) and O(1 h), respectively — and then it allows for the

complete source inversion of any event in O(0.1 h) on a commercial laptop.

In other words, most of the time taken by our approach is spent training the

emulator, which needs to be done only once, provided the density and ve-

locity models remain unchanged4; after the training is complete, performing

inference on a given recorded seismogram takes less than 10 minutes on

a commercial laptop. As a reference, conventional full-waveform inversion

techniques can take several hours on CPUs, and a comparable amount of

time to our method when running on GPUs (see e.g. Abreo-Carrillo et al.

2015).

4.5.2 Inference results

We then turn our attention to the accuracy of the inferred posterior distribu-

tion of the coordinates. For each source mechanism, we report the inference

results for 3 different coordinates in Figs. 4.6, 4.7 and 4.8: each shows the

posterior contour plots obtained with our methodology, considering all 23 re-

ceivers, SNR=33 dB and using 8000 seismograms as the training set for the

emulator. The numerical results are summarised in Table 4.1, reporting the

4 In general, the stability of a given velocity model is not well known — see e.g. Thornton
(2013), Usher et al. (2013), Gesret et al. (2013, 2014), and Das et al. (2018) for a discussion
on the uncertainties of velocity models and their consequences on location errors.

149



ISO

0.0

0.4

0.8

y
[k

m
]

0.0 0.4 0.8

x [km]

0.8

1.6

z
[k

m
]

0.0 0.4 0.8

y [km]
0.8 1.6

z [km]

DC

0.0

0.4

0.8

y
[k

m
]

0.0 0.4 0.8

x [km]

1.2

1.8

z
[k

m
]

0.0 0.4 0.8

y [km]
1.2 1.8

z [km]

CLVD

0.0

0.4

0.8

y
[k

m
]

0.0 0.4 0.8

x [km]

0.8

1.6

z
[k

m
]

0.0 0.4 0.8

y [km]
0.8 1.6

z [km]

Figure 4.6: Marginalised 68 and 95 per cent credibility contours obtained with our
method for a source located at (x,y,z) = (0.71 km,0.25 km,2.10 km), in-
dicated by the dashed black lines. We compare 3 source mechanisms:
isotropic (ISO), double couple (DC), and compensated linear vector
dipole (CLVD). The event corresponds to event 1 in Table 4.1. Note
that we are considering 23 receivers, the signal-to-noise ratio is 33 dB
and the emulator was trained on 8000 training points.
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Table 4.1: Prior range and marginalised mean and 68 percent credibility in-
tervals on the coordinates (x,y,z), for each source mechanism —
isotropic (ISO), double couple (DC) and compensated linear vector
dipole (CLVD). The first column refers to the event number; the three
events are randomly sampled from the test set. These results are ob-
tained by considering all 23 receivers, and training on 8000 simulated
events. The noise level is set to 10.0, 0.3 and 3.5 respectively, which
corresponds to a signal-to-noise ratio of 33 dB.

Coord. Prior
range [km]

Ground
truth [km]

ISO
[km]

DC
[km]

CLVD
[km]

1
x [0,1] 0.71 0.63+0.13

−0.12 0.72+0.13
−0.11 0.71+0.11

−0.10
y [0,1] 0.25 0.28+0.13

−0.14 0.25+0.10
−0.11 0.24+0.11

−0.11
z [0,2.43] 2.10 2.04+0.21

−0.47 2.09+0.11
−0.13 2.10+0.22

−0.25

2
x [0,1] 0.46 0.48+0.19

−0.19 0.43+0.12
−0.13 0.46+0.15

−0.12
y [0,1] 0.34 0.32+0.16

−0.19 0.33+0.09
−0.08 0.33+0.15

−0.14
z [0,2.43] 1.48 1.60+0.23

−0.30 1.54+0.18
−0.15 1.44+0.22

−0.24

3
x [0,1] 0.20 0.28+0.20

−0.15 0.20+0.10
−0.10 0.22+0.25

−0.13
y [0,1] 0.43 0.46+0.18

−0.16 0.41+0.10
−0.13 0.54+0.17

−0.21
z [0,2.43] 0.99 0.93+0.17

−0.19 1.09+0.28
−0.17 0.98+0.21

−0.20

prior ranges and marginalised mean and 68 percent credibility interval on

the coordinates. We note that with our method we can accurately retrieve

the correct value of the coordinates across the prior parameter space, as

our results always match the events’ coordinates within error bars.

Additionally, we observe that the x and y coordinates are usually less

constrained than the z coordinate for ISO and CLVD, while this behaviour is

less prominent in the DC case, for which all coordinates are always tightly

constrained. We attribute this effect to two possible causes. On one hand,

it can be related to the specific density model we are considering in this

work, which has a layered structure, as also noted in Chapter 3. On the

other hand, we note that when translating the seismic traces to the Fourier

domain we ignored the phase signal (since we only considered the power

spectra), thus possibly losing useful information for the localisation purpose

(Ferreira and Woodhouse, 2007); we argue that this also results in larger un-

certainties in the retrieved posterior contours with respect to a full-waveform

approach, which however would be too computationally expensive to run.
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Figure 4.7: Same as Fig. 4.6 for a source located at (x,y,z) =
(0.46 km,0.34 km,1.48 km). The event corresponds to event 2 in
Table 4.1.

We additionally note that retaining the phase information would yield a gen-

erative model, as by combining the power spectra with the phase one could

in principle reconstruct a full seismogram from the coordinates (after training

the emulator). We defer the study of phase information to future work, as

we anticipate that given the oscillatory behaviour of the phase signals it will

be harder to train an emulator on them.

We then study the dependence of the posterior contours on the SNR,

the number of training data and the number of receivers used. In Fig. 4.9,

we first show the effect of different noise levels; in particular, for each source
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Figure 4.8: Same as Fig. 4.6 for a source located at (x,y,z) =
(0.20 km,0.43 km,0.99 km). The event corresponds to event 3 in
Table 4.1.

mechanism we vary the SNR from 13 dB to 54 dB. We note that, in order to

increase the robustness to noise, we cut different frequency windows based

on the noise levels: given the Gaussian noise model we assume in this work,

a smaller SNR corresponds to a higher noise power, and hence to a smaller

number of retained power spectrum components. We observe that while

higher noise levels can lead to small biases in some of the 1-D marginalised

coordinates’ distributions, in general no significant variations in the shape of

the 2-D posterior contours are present. In Fig. 4.10 we show the posterior

contours when training the emulator with 2000, 5000 and 8000 data points.
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Table 4.2: Natural logarithm of the evidence for a source located at (x,y,z) =
(0.71 km,0.25 km,2.10 km) and source mechanism isotropic (ISO), dou-
ble couple (DC) and compensated linear vector dipole (CLVD), as de-
scribed in Sect. 4.4.4 and Sect. 4.5.3. The hypotheses correspond to an
ISO (MISO), DC (MDC) and CLVD (MCLVD) source mechanism, respec-
tively. We highlighted in bold the highest evidence in each line, which
correctly corresponds to the known source mechanism. Note that the
natural logarithm of the evidence is returned by PyMultiNest, and in
this instance we ignored its associated error (which is very small).

Event type lnP (D|MISO) lnP (D|MDC) lnP (D|MCLVD)

ISO 2601 −608 −79
DC −17688 −1165 −2232

CLVD −6620 −1052 −394

Again, we observe no significant differences for the ISO and CLVD sources,

while very small deviations appear when using fewer training data in the

DC case. In general, O(103) training data are enough to obtain accurate

posterior contours for all source mechanisms. Finally, in Fig. 4.11 we vary

the geometry of the receivers used for recording the microseismic traces.

While we are not interested in a full study of the optimal geometry of the

receivers, we observe that using fewer receivers leads to broader posterior

contours, while still allowing for the accurate localisation of the event for all

source mechanisms.

In summary, our results are very robust to the noise injected into the ob-

served seismogram. Additionally, very few receivers —O(10) — are needed

to obtain accurate results, and a number of training points of order O(103) is

sufficient to localise any event.

4.5.3 Model selection results

In general, a real event can be described as a linear combination of the three

source mechanisms, as described in Sect. 2.1.2. While we considered the

three sources separately in this work, we show how the proposed Bayesian

approach additionally allows for the identification of a source type given an

observed seismogram. We consider event 1 as reported in Table 4.1, and

produce an observation for each source mechanism (ISO, DC and CLVD).
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ISO DC CLVD

Figure 4.9: Marginalised 68 per cent credibility contours obtained with our method
for a source located at (x,y,z) = (0.71 km,0.25 km,2.10 km), indicated
by the dashed black lines, comparing different levels of noise. In par-
ticular, in each panel we show signal-to-noise ratios of 13 dB, 33 dB
and 54 dB for the 3 source mechanisms: isotropic (ISO), double cou-
ple (DC), and compensated linear vector dipole (CLVD). Note that we
are considering 8000 training data for the emulator and 23 receivers.
This figure is best viewed in colour.

ISO DC CLVD

Figure 4.10: Marginalised 68 per cent credibility contours obtained with our method
for a source located at (x,y,z) = (0.20 km,0.43 km,0.99 km), indicated
by the dashed black lines, comparing different numbers of training
data for the emulator (2000, 5000 and 8000). We show these results
for 3 source mechanisms: isotropic (ISO), double couple (DC), and
compensated linear vector dipole (CLVD). Note that we are consid-
ering 23 receivers and a signal-to-noise ratio of 33 dB. This figure is
best viewed in colour.
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ISO DC CLVD

Figure 4.11: Marginalised 68 per cent credibility contours obtained with our method
for a source located at (x,y,z) = (0.46 km,0.34 km,1.48 km), indicated
by the dashed black lines, comparing different dispositions of the re-
ceivers. In particular, 5 receivers refer to the blue squares in Fig. 4.1,
and 9 receivers refer to the green circles in Fig. 4.1. We show these
results for 3 source mechanisms: isotropic (ISO), double couple (DC),
and compensated linear vector dipole (CLVD). Note that we are con-
sidering 8000 training data for the emulator and a signal-to-noise ratio
of 33 dB. This figure is best viewed in colour.

As described in Sect. 4.4.4, we can run nested sampling for each event

and for every trained emulator, and obtain 9 evidence values in total, whose

logarithm we report in Table 4.2. As expected, the evidence is maximal in

correspondence of the source type that generated the given event, which

indicates that we are capable of correctly identifying the source type for a

given observation. What is more, this selection is also very fast, as after

training the emulators each evidence calculation takes less than 10 minutes

on a commercial laptop.

4.6 Conclusions

In this chapter, we proposed a method that allows for the fast and accu-

rate retrieval of the coordinates for any microseismic source mechanism:

isotropic (ISO), double couple (DC), and compensated linear vector dipole

(CLVD). This offers an efficient technique to both localise an event and iden-

tify its source type, exploiting the power of machine learning and Bayesian

tools to extract the information contained in the seismic waveforms.

156



Our proposed method is based on a physically motivated preprocessing

of the raw signals, using Fourier analysis and principal component compres-

sion, followed by the use of a neural network to learn the mapping between

coordinates and principal components. Using the learnt forward model in

combination with Bayesian techniques, we showed that we can retrieve an

accurate estimate of any microseismic event coordinates, for any source

mechanism, in less than 10 minutes on a commercial laptop. Therefore, we

demonstrated for the first time that machine learning techniques allow for a

fast and accurate Bayesian analysis on microseismic traces, yielding com-

petitive results on ISO sources and state-of-the-art results on DC and CLVD

sources.

We showed that O(103) events for each source mechanism are enough

to train a representative emulator, when using the data coming from O(10)

receivers placed at the seabed as indicated in Fig. 4.1. We also explored

the effect of the noise level, and how the number of receivers and the num-

ber of training data for the emulator impact the accuracy of the coordinates’

posterior distribution, demonstrating the robustness of our approach. Fi-

nally, we demonstrated the utility of our Bayesian approach by calculating

the Bayesian evidence for a given observation and three hypotheses, and

showed that this correctly identifies the source type of any given event.

In conclusion, our work lays the foundations for the fast and reliable

localisation of any microseismic event, given a minimal amount of computing

resources. We also foresee that recent improvements in solving the forward

model even outside the boundary of the training data, like physics-informed

neural networks (PINNs, Raissi et al., 2019; Xu et al., 2019; Costa Nogueira

Junior et al., 2019; Moseley et al., 2020a), could be combined with our

proposed approach to make it even more robust, especially when different

velocity models have to be employed.

Some straightforward extensions of our method include the following

three points. First, we note that in order for this method to be deployed
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in a realistic scenario, the noise associated with the recorded seismograms

should be modelled more carefully: a lower SNR may have to be considered,

a more complicated likelihood distribution might have to be implemented, or

a “likelihood-free” approach should be investigated (Sunnåker et al., 2013).

Second, the errors in the 3-D density and velocity models should be incor-

porated into the analysis, in order to account for all sources of uncertainty

(Gesret et al., 2013, 2014). Last, a real microseismic event is in general

described by a linear mixture of components of the moment tensor, which

we considered separately in this work. This increases the total number of

parameters to infer, which we anticipate will require a larger dataset to train

the emulator. However, we note that our proposed method scales well with

the number of training data, and therefore we speculate that performing a

Bayesian analysis with a larger parameter space is an attainable goal using

our approach; this will be addressed in future work. In the next chapter, on

the other hand, we transfer the techniques presented in Chapter 3 and 4 to

the field of cosmology.
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5
CosmoPower: emulating cosmological power spec-

tra for accelerated Bayesian inference

In this chapter, we turn our attention to cosmology, and apply the techniques

presented so far to the emulation of cosmological summary statistics, i.e. to

cosmological power spectra. We will show that it is possible to integrate

machine-learning-based surrogate models within Bayesian analyses of the

CMB and the large-scale structure of the Universe, thus reducing by many

orders of magnitude the computational time needed to perform Bayesian in-

ference of cosmological parameters. The machinery we develop represents

a promising tool for next-generation surveys, which include hundreds of nui-

sance parameters and for which a full Bayesian analysis would be otherwise

computationally impossible. This chapter is based on the paper CosmoPower:

emulating cosmological power spectra for accelerated Bayesian inference

from next-generation surveys by Alessio Spurio Mancini, Davide Piras,

Justin Alsing, Benjamin Joachimi and Michael Paul Hobson, under review at

Monthly Notices of the Royal Astronomical Society, and was carried out in

collaboration with the named co-authors. In particular, I co-wrote Sect. 5.2,

5.3, 5.5 and 5.7, and helped with the validation of the experiments presented

Sect. 5.4, which is presented in a succinct form in this chapter. Sect. 5.6 is

presented in a slightly adapted form, and Sect. 5.1 is reported as in the

paper.
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5.1 Abstract

We present CosmoPower, a suite of neural cosmological power spectrum em-

ulators providing orders-of-magnitude acceleration for parameter estimation

from two-point statistics analyses of large-scale structure (LSS) and cosmic

microwave background (CMB) surveys. The emulators replace the compu-

tation of matter and CMB power spectra from Boltzmann codes; thus, they

do not need to be re-trained for different choices of astrophysical nuisance

parameters or redshift distributions. The matter power spectrum emulation

error is less than 0.4% in the wavenumber range k ∈ [10−5,10]Mpc−1, for

redshift z ∈ [0,5]. CosmoPower emulates CMB temperature, polarisation and

lensing potential power spectra in the 5σ region of parameter space around

the Planck best fit values with an error . 20% of the expected shot noise for

the forthcoming Simons Observatory. CosmoPower is showcased on a joint

cosmic shear and galaxy clustering analysis from the Kilo-Degree Survey,

as well as on a Stage IV Euclid-like simulated cosmic shear analysis. For

the CMB case, CosmoPower is tested on a Planck 2018 CMB temperature

and polarisation analysis. The emulators always recover the fiducial cosmo-

logical constraints with differences in the posteriors smaller than sampling

noise, while providing a speed-up factor up to O(104) to the complete infer-

ence pipeline. This acceleration allows posterior distributions to be recov-

ered in just a few seconds, as we demonstrate in the Planck likelihood case.

CosmoPower is written entirely in Python, can be interfaced with all commonly

used cosmological samplers, and is publicly available �.

5.2 Introduction

Analysis of the two-point statistics of cosmological fields is one of the cor-

nerstones of modern observational cosmology. For parameter inference
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pipelines involving two-point statistics (i.e. power spectra, or their derived

real-space counterparts, correlation functions), the computational bottle-

neck is running Boltzmann solvers like CAMB (Lewis et al., 2000) or CLASS

(Lesgourgues, 2011; Blas et al., 2011) to compute theoretical power spec-

tra for a given cosmology. However, cosmological power spectra are gen-

erally smooth functions of their input cosmological parameters, and hence

lend themselves well to emulation: finding compact, accurate, and fast-to-

evaluate surrogate functions that map cosmological parameters to the cor-

responding predicted power spectra. Emulation offers the promise of reduc-

ing the computational overhead of evaluating cosmological power spectra

by many orders of magnitude, with negligible loss of accuracy in the final

parameter inference. This surrogate modelling approach has recently seen

numerous applications to the Bayesian solution of the inverse problem in dif-

ferent scientific fields, ranging from geophysical seismic waves (Das et al.,

2018; Spurio Mancini et al., 2021b; Piras et al., 2021) to stellar and galaxy

spectra (Czekala et al., 2015; Alsing et al., 2020), from chemical mecha-

nisms (de Mijolla et al., 2019; Kasim et al., 2020) to applied engineering

(Thiagarajan et al., 2020; Buffington et al., 2020).

Emulation of cosmological power spectra is not a new idea either. Early

examples of emulators include CMBWARP (Jimenez et al., 2004) and PICO

(Fendt and Wandelt, 2007), both performing polynomial regression of power

spectra (represented in some compact basis). The matter power spec-

trum emulators built from the Coyote Universe simulations (Heitmann et al.,

2009, 2010, 2013; Lawrence et al., 2010a,b, 2017) are based on Gaussian

process (GP) regression (Rasmussen and Williams, 2005), and were ex-

tended by Ramachandra et al. (2020) to f (R) cosmologies. Recently, the

EuclidEmulator was proposed as a surrogate model for the non-linear mat-

ter power spectrum (Knabenhans et al., 2019; Euclid Collaboration et al.,

2021), Mootoovaloo et al. (2020) developed a Gaussian process emulator

of cosmic shear band powers, while Mootoovaloo et al. (2021) and Ho et al.
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(2021) used Gaussian processes to emulate the matter power spectrum.

Bird et al. (2019) and Rogers et al. (2019) developed Gaussian process

emulators for the Lyman-α forest flux power spectrum.

CosmoNet (Auld et al., 2007, 2008) is the first application of neural net-

works to cosmological power spectra emulation, followed by Agarwal et al.

(2012, 2014). More recently, Manrique-Yus and Sellentin (2019) devel-

oped neural network interpolators for angular power spectra of LSS observ-

ables, while Albers et al. (2019) used neural networks to accelerate parts

of power spectra computations within the Boltzmann code CLASS; moreover,

the BACCO project (Angulo et al., 2020) recently included a neural network in-

terpolator for the linear matter power spectrum (Aricò et al., 2021). Kern et

al. (2017), Schmit and Pritchard (2017) and Bevins et al. (2021) developed

neural network emulators for the 21-cm global signal or power spectrum.

In this chapter, we introduce a suite of neural cosmological power spec-

trum emulators covering both CMB (temperature, polarisation and lensing)

and (linear and non-linear) matter power spectra. These emulators provide

orders-of-magnitude speed-up over direct Boltzmann solvers, whilst being

comfortably accurate for upcoming surveys such as the Simons Observatory

(Ade et al., 2019)1, Euclid (Laureijs et al., 2011)2, the Vera Rubin Observa-

tory (Ivezić et al., 2019)3 and the Nancy Grace Roman Space Telescope

(Spergel et al., 2015)4. For LSS observables, we demonstrate the accuracy

and acceleration provided by our emulators on a simulated cosmic shear

analysis of a Euclid-like survey. For the CMB, we validate CosmoPower on a

Planck 2018 CMB temperature and polarisation analysis. Our emulators are

trained to provide accurate emulation of cosmological power spectra with re-

spect to standard Boltzmann solvers on a very wide range of cosmological

parameters, and they easily allow for different configurations of input and

derived cosmological parameters. In addition, they are fully differentiable,

1 https://simonsobservatory.org/
2 https://www.euclid-ec.org/
3 https://www.lsst.org/
4 https://roman.gsfc.nasa.gov/
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which makes them amenable to gradient-based inference, and can be run

on Graphics Processing Units to gain further acceleration.

The structure of this chapter is as follows. In Sect. 5.3 we introduce

the neural network emulation framework tailored to power spectrum emu-

lation. Application to the matter power spectrum emulation is presented in

Sect. 5.4, including validation on a Euclid-like analysis. Application to the

CMB case is presented in Sect. 5.5, including validation on the Planck anal-

ysis. We summarise the properties of CosmoPower and conclude in Sect. 5.6.

5.3 Emulating cosmological power spectra

We consider two methods for power spectra emulation.

• The first one is a direct mapping between cosmological parameters

and power spectra by means of a neural network (NN), schematically

represented in the top panel of Fig. 5.1. The non-linear function pa-

rameterised by the neural network maps the input cosmological pa-

rameters θ to the (log-)power spectra Pλ = Pλ (θ ;w), where w are the

weights of the neural network, and λ is either the wavenumber k for

the matter power spectrum, or the multipole ` in the CMB case (see

Sect. 5.4 and Sect. 5.5 for more details, and in particular Sect. 5.4.2 for

details about the binning of the matter power spectrum). The spectra

used for training the deep learning emulators are preprocessed by cal-

culating their logarithm, followed by standardisation of the logarithmic

features, i.e. dividing each logarithmic feature by its standard deviation

after subtracting its mean. Taking the logarithm of the spectra reduces

the dynamic range in the training data, and ensures that minimising the

mean-square-error loss optimises for fractional (rather than absolute)

accuracy on the emulated power spectrum. Standardisation ensures

more rapid training convergence (Wan, 2019).
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Figure 5.1: Schematic of the neural network emulation implemented in
CosmoPower. A neural network is trained to learn the mapping be-
tween cosmological parameters and a) power spectra, b) coefficients
in a principal component analysis of the power spectra. Figure taken
from Spurio Mancini et al. (2021b).

• In the second method we train a NN to learn the mapping between cos-

mological parameters and principal components of the power spectra,

as shown in the bottom panel of Fig. 5.1. Principal component analysis

(PCA) is a linear dimensionality reduction technique which performs a

singular value decomposition of the input signal and retains the NPCA

components with the highest variance. We perform a PCA decompo-

sition of the spectra in our training dataset, which produces a set of

basis functions qλ ,i, with i ∈ 1, . . . ,NPCA. In other words, we assume we
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can decompose the spectra as:

Pλ (θ ;w) =
NPCA

∑
i=1

αi(θ ;w)qλ ,i , (5.1)

where the coefficients αi in the new basis qλ ,i are the principal com-

ponents. We train a NN to output estimates α̂i of the principal compo-

nents αi, given cosmological parameters θ as input. Similarly to the

power spectra components in the direct NN case, the PCA compo-

nents are also standardised.

We report the implementation details of the neural networks and PCA in

Section 5.7, including details on the training procedure. We tested both em-

ulation approaches on the cosmological power spectra of interest and found

the former to be in general more accurate. Thus, we decided to use it for

all power spectra with the exception of the cross temperature-polarisation(
CTE
`

)
and lensing potential

(
Cφφ

`

)
CMB power spectrum, which were em-

ulated using the second method. The use of the PCA decomposition is

indeed particularly convenient when, as in the CMB TE spectrum case, it is

not possible to take the logarithm of the training power spectra, due to some

negative values. We also observed a better performance of the emulator for

the φφ spectrum when applying the PCA compression first; we argue this is

due to the smaller values of the logarithmic spectra, which range from −6 to

−20 and might therefore cause numerical issues if fed directly into the NN.

One of the key advantages of CosmoPower is that the emulators are

trained on very broad parameter ranges, which we report in Table 5.1. The

choice of such large parameter ranges is motivated by the desire to provide

a tool that is as general as possible (see Sect. 5.6 for further comments on

this point). A common problem in existing emulators is that they are trained

to provide good performance on a fixed choice of cosmological parame-

terisation, while Boltzmann solvers maintain the flexibility to choose among

different input parameterisations. In addition, Boltzmann solvers allow for
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derived parameters to be computed a posteriori, so that one can explore

degeneracies between different parameters without restrictions. For exam-

ple, one cannot directly sample in both ln
(
1010As

)
and σ8, as these two

parameters are related; choosing to sample one or the other may in fact

even have some effect on the posterior distribution (see e.g. Joachimi et al.

2021). The common strategy when performing cosmological inference is to

choose one of these parameters for sampling, and let the Boltzmann solver

compute the corresponding other one at each point in the posterior chain. In

CosmoPower this is also possible without re-training emulators from scratch.

As we show in Sect. 5.4 and Sect. 5.7.3 for the case of ln1010As and σ8, one

can choose to sample the former or the latter, and obtain the other one with

a GP. We refer the reader to Sect. 5.7.3 for details on the implementation

of such a GP (see also Mootoovaloo et al. 2020 for a similar application of

GPs to obtain derived values of σ8).

Before progressing to the next section, we observe that in general,

when performing Bayesian inference using Boltzmann solvers like CAMB or

CLASS, the uncertainty on the theoretical model is often ignored. However, it

has been shown that properly accounting for and propagating the theoreti-

cal uncertainty can lead to significant changes in the final inference results,

and is therefore of utmost importance (see e.g. Baldauf et al. 2016, and

references therein). Our approach relies on neural emulators, for which ap-

propriate ways to take uncertainty into consideration exist: one of them is

considering the neural network as a Bayesian model. In Bayesian neural

networks, the posterior distribution of the weights given the training data

is analysed, and the goal becomes to marginalise over all weights and all

possible network choices to get the posterior distribution of the network’s

output given the input data (Charnock et al., 2020). We further discuss this

in Sect. 5.6.2; however, we anticipate here that the full derivation of the em-

ulator error is beyond the scope of this thesis, since we aim at replacing the

traditional approach which does not typically include the uncertainty on the
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forward model.

5.4 Large-scale structure

5.4.1 Theory

Here we briefly summarise the theory underlying two-point statistics anal-

yses of LSS surveys, following a notation similar to that of Asgari et al.

(2021), Heymans et al. (2021), and Joachimi et al. (2021). A flat ΛCDM

model is assumed throughout the chapter. Extensions of our emulators to

beyond-ΛCDM cosmologies will be explored in future work (see Sect. 5.6

for details).

LSS analyses target the shear and clustering signal of the observed

galaxies, including the shear-clustering cross-correlation, in what is typically

referred to as ‘3x2pt’ analysis (Joachimi and Bridle, 2010). Angular power

spectra of shear and clustering statistics can be expressed as integrals of

the matter power spectrum Pδδ (k,z) along the line of sight, weighted by ker-

nel functions:

Cab
i j (`) =

∫
χH

0
dχ

W a
i (χ)W b

j (χ)

χ2 Pδδ

(
`+1/2

χ
,z
)

, (5.2)

where the indices {a,b} can be assigned the labels {γ, I,n}, denoting con-

tributions from cosmic shear, galaxy intrinsic alignment and galaxy posi-

tions, respectively. The integral in Eq. (5.2) is performed along the line of

sight up to the Hubble radius χH = c/H0, with c the speed of light and H0

the Hubble constant. χ denotes the comoving distance (also introduced in

Sect. 2), which is a function of the redshift z (a dependence implicitly as-

sumed in Eq. 5.2 for ease of notation). The Limber projection (Peebles,

1980; Kaiser, 1992; LoVerde and Afshordi, 2008) connects the wavenum-

ber k and redshift z at which the matter power spectrum Pδδ (k,z) is evaluated
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in that integral, so that given a multipole ` and a redshift z (correspond-

ing to a comoving distance χ) the matter power spectrum is evaluated at

wavenumber k = (`+1/2)/χ(z). We note that, while we will restrict ourselves

to Limber-approximated spectra in this chapter, the emulation framework in

CosmoPower can be equally applied to accelerate the computation of non-

Limber projected spectra, which we plan to investigate in future work (see

Sect. 5.6 for a discussion).

The weighting functions W can be written as

W γ

i (χ) =
3H2

0 Ωm

2c2
χ

a

∫
χH

χ

dχ
′ ni(χ

′)
χ ′−χ

χ ′
, (5.3)

W I
i (χ) =−AIA

(
1+ z

1+ zpivot

)ηIA C1 ρcr Ωm

D(χ)
ni(χ) , (5.4)

W n
i (χ) = bi ni(χ) , (5.5)

where Ωm is the total matter density parameter, a is the scale factor, ni(χ)

denotes the redshift distribution for redshift bin i, D(χ) is the linear growth

factor, ρcr is the critical density, C1 is a constant, zpivot is an arbitrary redshift

set to 0.3, while AIA and ηIA are two free parameters, allowing for a scaling

in amplitude and redshift, respectively, of the intrinsic alignment contribu-

tion. The linear galaxy bias coefficients bi, defined as the ratio of the galaxy

and dark matter density contrasts, are also left free to vary in the inference

pipeline.

The observed angular two-point statistics of galaxy ellipticities ε for to-

mographic redshift bins i and j, as a function of the angular multipole `, can

be written as:

Cεε
i j (`) =Cγγ

i j (`)+CγI
i j (`)+CIγ

i j (`)+CII
i j(`) , (5.6)

i.e. as a sum of a pure cosmic shear contribution and contaminants resulting

from the intrinsic alignment of galaxies, which also affects the angular power

spectrum of the cross-correlation between galaxy ellipticities ε and positions
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Parameter LSS emulator range CMB emulator range
h2Ωb [0.01875, 0.02625] [0.005, 0.04]

h2Ωcdm [0.05, 0.255] [0.001, 0.99]
h [0.64, 0.82] [0.2, 1.0]

τreio fixed [0.01, 0.8]
ns [0.84, 1.1] [0.7, 1.3]

ln1010As [1.61, 3.91] [1.61, 5]
cmin [2, 4] fixed
η0 [0.5, 1] fixed

Table 5.1: Ranges of validity of our emulators. The uniform prior distributions that
we use at inference time to test our emulators share the same ranges.
The large-scale structure (LSS) range is taken from the prior range as-
sumed by the KiDS-1000 analysis (Heymans et al., 2021), while the
CMB range is taken from the prior range assumed by the Planck 2018
analysis (Planck Collaboration et al., 2020). Parameters denoted as
fixed in the LSS or CMB column are not considered as inputs to the neu-
ral networks that emulate the relevant power spectra, since the power
spectra dependence on those parameters is negligible.

n (usually referred to as ‘galaxy-galaxy lensing’):

Cnε
i j (`) =Cnγ

i j (`)+CnI
i j (`) , (5.7)

while the galaxy clustering power spectrum Cnn
i j (`) is not affected by intrin-

sic alignments and, assuming no magnification bias (Duncan et al., 2013;

Wietersheim-Kramsta et al., 2021), can be explicitly written as:

Cnn
i j (`) = bib j

∫
χH

0
dχ

ni(χ)n j(χ)

χ2 Pδδ

(
`+1/2

χ
,z
)
. (5.8)

Two-point statistics measured by LSS surveys are typically linear transfor-

mations of the theoretical power spectra given by Eqs. 5.6, 5.7, 5.8, such as

band-power estimates (Schneider et al., 2002; Uitert et al., 2018). We refer

the reader to Asgari et al. (2021) for a review of different measured two-point

statistics.
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Figure 5.2: Matter power spectrum emulation accuracy for a) the linear power
spectrum and b) the non-linear correction, as measured on the ∼ 2 ·104

spectra of the testing set for our emulators. Dark red, red and salmon
areas enclose the 68, 95 and 99 percentiles of the fractional absolute
emulator error, respectively, as a function of wavenumber k. By con-
struction, the redshift z is an input parameter for the emulators. There-
fore, these percentile curves are computed with spectra evaluated at
redshifts z ∈ [0,5], i.e. spanning the whole range of validity of our emu-
lators. Figure taken from Spurio Mancini et al. (2021b).

5.4.2 Emulating the matter power spectrum

Eq. (5.2) clearly indicates that the prediction of the matter power spec-

trum P(k,z) is central in the computation of the two-point statistics of cos-

mic shear, galaxy-galaxy lensing and galaxy clustering. Boltzmann codes

can perform practically exact computations (up to numerical accuracy) of

the matter power spectrum predicted by the linear theory of gravitational

instability, which we denote as PL
δδ
(k,z). As non-linearities become more

important, linear theory breaks down. We will write the full, non-linear spec-

trum as the product of the linear one PL
δδ
(k,z) and a non-linear correction,

which we label PNL-CORR
δδ

(k,z):

Pδδ (k,z) = PL
δδ
(k,z)PNL-CORR

δδ
(k,z) . (5.9)

Non-linear corrections become important at small scales, correspond-

ing to large wavenumbers k. Their modelling as a function of cosmological

parameters is uncertain and further complicated by baryonic effects, whose
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impact on the non-linear matter power spectrum induces important, yet not

fully understood modifications to the non-linear power on small scales (see

e.g. Chisari et al. 2019 for a review). In recent years, the HMcode software

developed by Mead et al. (2015, 2016, 2021) has found widespread use

in LSS analyses, as a way to predict the non-linear power spectrum while

taking into account baryonic effects. HMcode is a modified halo model which

includes baryonic contributions as opposed to, for example, the fitting func-

tion HaloFit (Smith et al., 2003; Takahashi et al., 2012; Bird et al., 2012). In

this work, we consider the latest version of the HMcode software (Mead et al.,

2021). We focus on two of its free parameters, cmin and η0, denoting the min-

imum halo concentration and the halo bloating, respectively. We train one

emulator for the linear power spectrum PL
δδ
(k,z) and one for the non-linear

correction PNL−CORR
δδ

(k,z). We also experimented emulating directly the full

power spectrum, but noticed increased performance when separating the

linear contribution from the non-linear correction. We observe this split helps

the emulator isolate and learn more efficiently the effect of the non-linear

parameters cmin and η0. For both linear and non-linear contribution, we em-

ulate the power spectrum at 420 k values in the range [10−5,10]Mpc−1. The

redshift z is varied over the range [0,5] and treated as an additional input

parameter for the emulator. We use ∼ 1.8 · 105 spectra for our training set

and leave ∼ 2 ·104 spectra for our testing set.

The left- and right-hand panels of Fig. 5.2 report the emulation accu-

racy on the testing set for the linear power spectrum and non-linear correc-

tion, respectively. We use percentile plots to show the statistical behaviour

of the emulator accuracy throughout the testing set, as a function of the

wavenumber k. For the linear power, 99% of the testing power spectra are

emulated with differences smaller than 0.1% of their real value across the

entire wavenumber range considered. For the non-linear correction, 99%

of the spectra are emulated with less than 0.4% error. As expected, the

percentage difference in the non-linear correction is typically about an order
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of magnitude larger than the linear one, thus dominating the total error. We

can see how the error on the non-linear correction increases for k & 1Mpc−1,

i.e. on highly non-linear scales. This was expected, as numerical computa-

tions performed by Boltzmann codes at these scales are more uncertain in

the first place. One way to ensure increased numerical stability in these

computations is to ask for a maximum k value kmax at which non-linearities

are computed that is well above the actual maximum k at which the power

spectrum is required. In our analysis we set kmax = 100Mpc−1, while we only

use the matter power spectrum up to k = 10Mpc−1.

These accuracy plots already show excellent performance of the em-

ulators in obtaining high-fidelity predictions for the matter power spectrum.

However, a full inference analysis is required to thoroughly test our emula-

tors. As further discussed in Sect. 5.6, we remark here that this is the only

way to completely test the validity of an emulation approach such as the

one developed in CosmoPower. Crucially, different accuracy emulation levels

are required for different types of analyses for which the emulators are be-

ing developed. CosmoPower is a tool designed to be adequate for Stage IV

surveys: as such, we need to test the performance of CosmoPower on a sim-

ulated Stage IV inference pipeline. This is what we show in Sect. 5.4.3 with

the simulated analysis of a Euclid-like survey. Note that in Spurio Mancini et

al. (2021b) we present analogous analyses for the KiDS-450 and KiDS-1000

surveys.

5.4.3 Validation on the Euclid-like cosmic shear likelihood

We first employ our emulator to perform a full inference analysis of a sim-

ulated cosmic shear survey for a typical Stage IV Euclid-like configuration.

The prior ranges are reported in Table 5.2. For the cosmological and bary-

onic feedback parameters they correspond to the validity ranges of our em-

ulators, reported in Table 5.1. The fiducial values of the parameters used

to calculate the mock data vector are also reported in Table 5.2. 10 tomo-
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Parameter Prior range Fiducial value
ωb [0.01875, 0.02625] 0.02242

ωcdm [0.05, 0.255] 0.11933
h [0.64, 0.82] 0.6766
ns [0.84, 1.1] 0.9665

ln1010As [1.61, 3.91] 3.047
cmin [2, 4] 2.6
η0 [0.5, 1] 0.7
AIA [-6, 6] 0.8
ηIA [-6, 6] 0

Dzi, i = 1 . . .10 N (0,10−4) 0

Table 5.2: Prior ranges and fiducial values of the cosmological parameters for the
simulated Euclid-like cosmic shear analysis. Prior distributions are all
taken to be uniform across these ranges, except for the redshift mean
shifts Dzi which have a Gaussian prior with mean 0 and standard devia-
tion 10−4. For the cosmological parameters and the baryonic feedback
parameters cmin,η0 the prior range corresponds to the range of validity
of our emulators (cf. Table 5.1).

Symbol Parameter Range
A ωcdm [0.105, 0.135]
B ln1010As [2.96, 3.12]
C ωb [0.018, 0.026]
D ns [0.94, 0.985]
E h [0.64, 0.715]
F cmin [2.55, 2.65]
G η0 [0.693, 0.705]
H AIA [0.79, 0.81]
I ηIA [-0.04, 0.04]
J Dz1 [−2.2 ·10−4,2.2 ·10−4]
K Dz2 [−2.2 ·10−4,2.2 ·10−4]
L Dz3 [−2.2 ·10−4,2.2 ·10−4]
M Dz4 [−2.2 ·10−4,2.2 ·10−4]
N Dz5 [−2.2 ·10−4,2.2 ·10−4]
O Dz6 [−2.2 ·10−4,2.2 ·10−4]
P Dz7 [−2.2 ·10−4,2.2 ·10−4]
Q Dz8 [−2.2 ·10−4,2.2 ·10−4]
R Dz9 [−2.2 ·10−4,2.2 ·10−4]
S Dz10 [−2.5 ·10−4,2.5 ·10−4]
T Ωm [0.308, 0.311]
U σ8 [0.820, 0.824]
V S8 [0.834, 0.836]

Meaning and range of the parameters in Fig. 5.3.
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Figure 5.3: Contours for a simulated cosmic shear analysis of a Euclid-like Stage
IV survey. In red contours obtained with CLASS, in blue those obtained
with CosmoPower. PolyChord was used as a sampler, and these results
were obtained on 48 cores. The meaning and the range of each pa-
rameter in this plot are reported in the table accompanying this figure
in the next page. Figure adapted from Spurio Mancini et al. (2021b).
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graphic bins are equipopolated with galaxies following a distribution (Smail

et al., 1995; Joachimi and Bridle, 2010; Laureijs et al., 2011):

n(z) ∝ z2 exp{−(z/z0)
3/2} (5.10)

with z0 = 0.64. For the covariance matrix, we use a simple analytical Gaus-

sian computation following Tutusaus et al. (2020), with a sky coverage

fsky = 0.3, a galaxy number density n = 30 arcmin−2 and an ellipticity dis-

persion σε = 0.3.

We implement the likelihood in the cosmological sampler Cobaya (Tor-

rado and Lewis, 2019, 2021) and use the PolyChord algorithm (Handley

et al., 2015a,b) to sample the posterior distribution. We run the pipelines

with parallelisation across 48 Intel Xeon E5640 cores and obtain a speed-

up of approximately 50. Fig. 5.3 shows the excellent agreement between

contours obtained with CLASS and CosmoPower. The log-evidence logZ =

−45.92± 0.33 computed for the run with spectra sourced from CLASS also

compares favourably with that of the emulator run, logZ =−45.99±0.34.

5.5 Cosmic microwave background

5.5.1 Emulating CMB temperature, polarisation and lens-

ing power spectra

The three main probes in the analysis of the CMB are the temperature

power spectrum (CTT
` ), the polarisation power spectrum (CEE

` ), and the

temperature-polarisation cross power spectrum (CTE
` ). We use CLASS to pro-

duce the training set, which consists of ∼ 5 · 105 power spectra for each

probe, with their associated parameters. The parameters are sampled from

the range indicated in Table 5.1 using Latin Hypercube Sampling.

To emulate these spectra, we consider both methods described in
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Sect. 5.3. We use the direct NN mapping for CTT
` and CEE

` , while we found

that the CTE
` emulation is better performed by the second method, i.e. PCA

compression followed by a NN, due to its zero-crossing values. To show

the flexibility of our approach, we also train a PCA plus NN emulator on the

lensing potential power spectrum Cφφ

` ; note, however, that this probe is not

included in the likelihood analysis performed in the next section.

The accuracy of the emulators over the ` range is measured with re-

spect to the instrumental noise given by the upcoming Simons Observatory

(Ade et al., 2019) combined with cosmic variance. In particular, we calculate

the emulation error as:

|C{TT,EE,TE,φφ}
`,emulated −C{TT,EE,TE,φφ}

`,true |

σ
{TT,EE,TE,φφ}
`,CMB

, (5.11)

where

σ
{TT,EE,φφ}
`,CMB =

√
2

fsky(2`+1)

(
C{TT,EE,φφ}
`,true +N{TT,EE,φφ}

`

)
, (5.12)

σ
TE
`,CMB =

√
1

fsky(2`+1)

×
√

CTE
`,trueC

TE
`,true +

(
CTT
`,true +NTT

`

)(
CEE
`,true +NEE

`

)
, (5.13)

fsky = 0.4, and N{TT,EE,TE,φφ}
` refers to the Simons Observatory goal noise

curves due to instrumental and atmospheric effects (Ade et al., 2019)5.

We validate our emulators using two sets containing ∼ 2 · 104 spectra

each. The first one corresponds to cosmological parameters sampled from

a restricted range, corresponding to 5σ intervals around the best fit values

from Planck (Aghanim et al., 2020); the results are reported in Fig. 5.4 for

all probes. As one can see, the distribution of the quantiles is very tight,

5 https://github.com/simonsobs/so_noise_models
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Figure 5.4: CMB power spectra emulation accuracy on the 5σ range test set for a)
the temperature power spectrum, b) the polarisation power spectrum,
c) the temperature-polarisation cross power spectrum, d) the lensing
potential power spectrum. The emulation error is defined with respect
to both instrumental and statistical noise, and is defined in Eq. 5.11-
5.13. Dark red, red and salmon areas enclose the 68, 95 and 99 per-
centiles of the test set. Details of the neural models are reported in
Sect. 5.7.1. Figure taken from Spurio Mancini et al. (2021b).
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Parameter Prior range
ωb [0.005, 0.04]

ωcdm [0.001, 0.99]
h [0.2, 1.0]

τreio [0.01, 0.8]
ns [0.7, 1.3]

ln1010As [1.61, 5]
APlanck N (1,0.0025)

Table 5.3: Prior ranges for the Planck analysis. Prior distributions are all taken
to be uniform across these ranges, except for the nuisance parameter
APlanck which has a Gaussian prior with mean 1 and standard deviation
0.0025. The ranges on the cosmological parameters correspond to the
ranges of validity of our emulators (cf. Table 5.1).

and almost always 99% of the spectra are within less than 0.1σCMB at all

` values. The second set of spectra corresponds to the same range the

emulators were trained on, i.e. the intervals in Table 5.1; the results are

reported in Appendix C of Spurio Mancini et al. (2021b). Unsurprisingly,

the errors are slightly larger, reaching 0.5σCMB; however, in the next section

we show that this level of accuracy for spectra emulation is sufficient to

provide accurate and unbiased inference of cosmological parameters in a

CMB analysis.

5.5.2 Validation on the Planck 2018 likelihood

After assessing the accuracy of our emulators by looking at the residuals

of their predictions on the testing set, we performed the final validation

check by using the emulators to speed up parameter estimation in a Planck

CMB inference pipeline (Aghanim et al., 2020). We considered the pure

Python implementation of the Planck 2018 plik-lite likelihood available

from Prince and Dunkley (2019)6, which is pre-marginalised over a series of

nuisance parameters. The only remaining calibration parameter is a multi-

plicative correction factor APlanck. The prior ranges for all of the parameters
6 https://github.com/heatherprince/planck-lite-py. Note that a simi-

lar pure Python implementation is available in the cosmological sampler Cobaya,
https://github.com/CobayaSampler/cobaya/blob/master/cobaya/likelihoods/

base_classes/planck_pliklite.py
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Figure 5.5: Planck 2018 3x2pt analysis considering CTT
` , CEE

` and CTE
` . The red

contours are obtained in ∼ 1.2 · 105 seconds on 80 CPU cores using
CLASS, while the blue contours take roughly 10 seconds on a single
GPU using our neural emulators. Note that the constraints on 100θS
are derived from the rest of the samples using a Gaussian process.
The percentage error difference in terms of the maximum posterior dis-
tribution between CLASS and our emulators is of order O(0.1%). Figure
taken from Spurio Mancini et al. (2021b).
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varied in the analysis are reported in Table 5.3.

To further showcase the strength of CosmoPower, to draw from the poste-

rior distribution we use a parallelised affine-invariant MCMC sampler7, that

is a parallel, GPU-compatible TensorFlow implementation of a variant of

the algorithm underlying the emcee sampler (Foreman-Mackey et al., 2013),

based on Goodman and Weare (2010). This sampler fully exploits the neu-

ral emulators by allowing large batches of likelihood calls to be performed

in parallel. Using a single GeForce GTX 1080 GPU, we can obtain the full

contours in ∼ 10 seconds, while the contours using CLASS and emcee take

a total wall-clock time of ∼ 1.2 · 105 seconds using 80 CPU cores, for a fi-

nal speedup of O(104). Moreover, we train a single GP, as described in

Sect. 5.3, to derive constraints on 100θS
8 as well, in the same fashion of

the σ8 contours obtained in Sect. 5.4. We show the posterior contours in

Fig. 5.5.

To obtain log-evidence estimates we re-run both likelihoods with

MultiNest and find logZ = −313.72 ± 0.15 and logZ = −313.79 ± 0.15 for

the run with CLASS and CosmoPower, respectively.

5.6 Conclusions

We presented CosmoPower, a suite of cosmological power spectra emulators

developed to accelerate by orders of magnitude parameter estimation from

large-scale structure (LSS) and cosmic microwave background (CMB) sur-

veys. CosmoPower emulates matter and CMB power spectra computed by

Boltzmann codes such as CAMB and CLASS. Sourcing power spectra from

Boltzmann codes is the computational bottleneck for two-point statistics

analyses of cosmological fields; CosmoPower bypasses this step, providing

orders-of-magnitude acceleration to the inference pipeline. Power spectra

7 https://github.com/justinalsing/affine
8 θS is the observed angular size of the sound horizon at recombination.
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emulation is performed using a neural network (NN) to parameterise the

mapping between cosmological parameters and power spectra or their prin-

cipal component analysis (PCA) coefficients.

In this chapter, we presented emulators for the linear and non-linear

matter power spectrum, as well as for the CMB temperature, polarisa-

tion and lensing power spectrum. We showcased the performance of

CosmoPower with applications to simulated Stage IV surveys, including a

mock Euclid-like cosmic shear analysis and a Planck 2018 joint temper-

ature and polarisation analysis. In all of these cases, the power spectra

emulators provided unbiased cosmological inference, at a fraction of the

time required by the same pipelines run with power spectra sourced from

Boltzmann solvers. In the following, we summarise the main properties of

CosmoPower, compare its performance with that of other emulators, and dis-

cuss some of its planned future extensions.

5.6.1 Key properties of CosmoPower

The following key properties of CosmoPower make it an invaluable tool for

application to future Stage IV analyses.

• Speed-up. First and foremost, the use of CosmoPower to replace Boltz-

mann codes in likelihood evaluations provides an impressive speed-up

factor. In the applications considered in this chapter, CosmoPower pro-

vided an acceleration factor up to O(104) with respect to standard anal-

yses with Boltzmann codes. These numbers refer to the full inference

pipeline; if we restrict to timing a single power spectrum evaluation, the

speedup increases even further up to O(105). These numbers are ex-

pected to increase as we extend CosmoPower to cosmologies beyond

the flat ΛCDM model which was assumed throughout this chapter. In

this sense, the acceleration quoted in this analysis is to be regarded

as a lower bound for the speed-up achievable with CosmoPower.

• GPU acceleration. Our emulators are based on neural networks im-
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plemented in TensorFlow. As such, they benefit from an additional

speed-up when run on Graphics Processing Units (GPU) or Tensor

Processing Units (TPU).

The speed-up calculated for the full inference pipeline differs from the

one computed for a single power spectrum evaluation because a sin-

gle likelihood evaluation is slower than a power spectrum evaluation:

computing the projected angular spectra of the LSS probes, or binning

the CMB spectra as performed in the Planck likelihood, requires a se-

ries of numerical operations. These parts of the likelihood evaluation

are computationally intensive regardless of the method employed to

source power spectra. This is particularly true for Stage IV LSS sur-

veys, which will have a high number of redshift bins and hence will

require the computation of a high number of bin cross-correlations (cf.

Eq. 5.2). These expensive loops in the likelihood evaluation can be

massively accelerated by implementing the likelihood in TensorFlow or

JAX (Frostig et al., 2018) and running the inference pipeline on GPUs.

In this chapter we showed how running CosmoPower in a pure

TensorFlow-based version of the Planck likelihood, embedded

within a framework for cosmological inference also implemented in

TensorFlow, provided contours in∼ 10 seconds. Running an inference

pipeline with the Planck likelihood is a notoriously computationally in-

tensive task: this example of speed-up achieved with a Tensorflow-

based likelihood and power spectra clearly shows how beneficial the

combination of highly optimised software for power spectra emula-

tion and Bayesian posterior sampling can be. We advocate for mov-

ing towards implementations of cosmological inference software in

TensorFlow or JAX, to fully exploit the power of highly optimised soft-

ware that can be run on GPU and is auto-differentiable. The reason

for this is the high number of nuisance parameters that is expected

to be required to model the observables, in addition to the large size
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of the data vector. Particularly, if one desires to make use of the

unprecedented amount of data provided by these surveys to investi-

gate beyond-ΛCDM cosmologies, the implementation of cosmological

inference frameworks leveraging GPU acceleration is of the utmost

importance. CosmoPower aims at providing such a framework, incorpo-

rating not only trained emulators but also template TensorFlow-based

likelihoods for LSS and CMB surveys that can be easily adapted for

application to different surveys.

• Full differentiability. CosmoPower provides emulators for the power

spectra that are based on neural networks and implemented in

TensorFlow (Abadi et al., 2015). Thus, these emulators are by con-

struction fully differentiable, a feature which makes them ideal for

gradient-based inference, such as Hamiltonian Monte Carlo (Hajian,

2007). If desired, they can also be used for instantaneous Fisher ma-

trix computation and linear data compression with e.g. the MOPED al-

gorithm (Heavens et al., 2000), leveraging the possibility of calculating

derivatives with respect to the input parameters by auto-differentiation.

• Accuracy. The procedure followed to validate the accuracy of our

emulators guarantees that they can be safely used for analyses of

Stage IV surveys. Crucially, we verified this statement not only by

checking the residuals between emulated and real power spectra in

the testing set, but also by validating our emulators with full posterior

inference analyses from state-of-the-art surveys, as well as from simu-

lated Stage IV surveys. In carrying out this comparison at the contours

level, we performed an additional validity check between CosmoPower

and the Boltzmann codes CAMB and CLASS. To train our models we

used power spectra generated with CAMB; instead, when comparing

the CosmoPower contours against those obtained from a traditional in-

ference pipeline sourcing power spectra from a Boltzmann code, we
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used CLASS for the latter. As shown in Figs. 5.3 and 5.5, contours ob-

tained with the emulators (trained on CAMB) were always found in excel-

lent agreement with the contours obtained from the inference pipelines

sourcing power spectra from CLASS, including in the simulated Stage

IV Euclid-like configuration. We also verified that replacing CLASS with

CAMB in the inference pipelines provides contours with a similar level of

agreement: this means that the difference between CosmoPower pre-

dictions and Boltzmann-computed power spectra are not bigger than

the differences between power spectra computed with different Boltz-

mann codes.

• Parameter range. The parameter range over which our models are

trained is very large, covering the full Planck prior range in the CMB

case and the full KiDS-1000 (Heymans et al., 2021) prior range in the

LSS case. The combination of high accuracy and wide validity range

allows the user of CosmoPower to safely replace Boltzmann codes with

our emulators when computing power spectra, even for those practi-

cal applications where high accuracy over broad prior ranges is cru-

cial, such as posterior predictive cross-validation. The accuracy of

our emulators even in extreme regions of the parameter space con-

sidered for their training is confirmed by the good agreement between

log-evidence values obtained in the likelihood runs with power spectra

sourced from CLASS and CosmoPower.

• Flexibility. By construction, CosmoPower emulates cosmological

power spectra taking as input only those cosmological parameters that

are part of the mapping between input cosmologies and output power

spectra. This means that, for example, in the LSS case, the key emu-

lated quantity is the matter power spectrum and not the cosmic shear,

galaxy-galaxy lensing or galaxy clustering projected power spectra.

The rationale behind this choice is that the angular spectra of cosmo-
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logical probes are quantities derived from the matter power spectrum,

by integrating it over a kernel which depends on the redshift distribu-

tions. In addition, contaminant terms due to e.g. intrinsic alignments

are also obtained by integration of the matter power spectrum, and

modulated by nuisance parameters which are not part of the cosmo-

logical model. By avoiding including those additional parameters in the

target mapping for the emulator, CosmoPower acquires a unique flexi-

bility that makes it completely independent of astrophysical nuisance

parameters, such as intrinsic alignment and galaxy bias parameters,

that do not modify the matter power spectrum prediction. This means

that our emulators do not need to be trained for different choices of

these astrophysical parameters. In particular, no re-training is required

if one wishes to implement different prescriptions for the modelling of

contaminants such as intrinsic alignments, e.g. by inserting additional

nuisance parameters, as long as those parameters do not modify the

prediction for the matter power spectrum. A similar argument is ap-

plicable to the modelling of redshift distributions, which will likely re-

quire even more nuisance parameters than the mean shifts used in

our simulated Euclid-like analysis (Hasan et al., 2021). As an addi-

tional bonus, emulating the 3D matter power spectrum will allow us to

investigate in future work the use of CosmoPower for emulating cosmo-

logical power spectra beyond the Limber approximation (see below).

• Linear and non-linear power spectra. CosmoPower provides emu-

lators for both linear power spectra and non-linear correction factor.

For the latter, the HMcode prescription is currently implemented in the

emulator. The HaloFit model (which HMcode is based on) is also avail-

able to the user. The separation between linear power spectrum and

non-linear correction factor is particularly useful as it allows us to in-

tegrate in CosmoPower additional models for non-linearities as they be-

come available. On the linear level, modified Boltzmann codes for

185



beyond-ΛCDM models exist (for example hi class for Horndeski mod-

els; Zumalacárregui et al., 2017) that provide linear predictions for the

matter power spectrum in these extended cosmologies. As we ex-

tend CosmoPower to these models, we can add new emulators for linear

power spectra trained on these modified Boltzmann codes.

• “Train-once-use-repeatedly” approach and interface with cosmo-

logical samplers. While we provide all the tools necessary to repeat

the training if desired, we stress that this operation has already been

performed and does not need to be repeated, as long as the emu-

lators are employed assuming the cosmological model and range in-

dicated in Table 5.1. In addition, CosmoPower can be called from all

commonly used cosmological samplers. In this chapter, for example,

we used CosmoPower within the cosmological samplers MontePython

and Cobaya. The user of CosmoPower simply needs to write a likeli-

hood for the LSS or CMB survey considered, and replace the call to

the Boltzmann code, necessary to obtain the matter or CMB power

spectra, with a call to CosmoPower.

• Derived parameters. Emulators developed in the literature usually

provide a fixed parameterisation to emulate from. For example, if an

emulator is trained using ln1010As it is not possible to get a predic-

tion for a corresponding value of σ8 or S8. CosmoPower provides em-

ulators trained on different combinations of parameters. Additionally,

CosmoPower allows the user to post-process a sampled chain to obtain

very efficiently derived parameters that were not originally sampled.

Moreover, we provide Gaussian processes (GPs) to obtain derived pa-

rameters that were not used as input to the emulators. The accuracy

of these GPs was tested not only on a test set, but also against the

actual contours obtained with the Boltzmann codes.
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5.6.2 Comparison with previous work

Here we compare our emulators to other existing approaches to power spec-

tra emulation. We start by noticing that CosmoPower provides an emulation

framework for both LSS and CMB. To our knowledge, this is a unique fea-

ture, only partially shared by PICO and CosmoNet (both, however, emulating

matter transfer functions rather than power spectra). These two packages

are not actively maintained nor trained with the same accuracy or across the

same parameter ranges, which limits their applicability to Stage IV analyses.

As far as the matter power spectrum is concerned, the methods closest to

ours in terms of emulation are the one implemented in Aricò et al. (2021),

even though limited to the linear power spectrum, and Agarwal et al. (2012),

limited to HaloFit non-linearities.

We note that applying the emulator to a complete inference analysis

from a simulated Stage IV survey, as done in our chapter, is a necessary

step to ensure that the newly developed tool can be safely applied in practi-

cal analyses. On the contrary, checking residuals in the testing set between

predicted and real spectra is not a sufficient accuracy test. While an emula-

tor may be performing with e.g. sub-percent accuracy at the level of residu-

als, this may still not be enough to retrieve unbiased cosmological contours,

as we verified first-hand while testing CosmoPower. This is due to the fact that

the accuracy threshold for the emulation can only be defined by the specific

application for which these emulators are designed. In other words, it is

the inference pipeline that dictates the accuracy threshold to be met by the

emulator. In general, parameter estimation in Bayesian inference pipelines

requires a certain level of accuracy in the observables computed, which in

the specific case of cosmological two-point statistics analyses reflects into

certain accuracy requirements in the power spectra computed by Boltzmann

codes. Hence, we argue that the principled approach to validate an emula-

tor accuracy is to compare its performance within an inference pipeline for
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a target experiment, which in our case is a Stage IV survey configuration.

Note that, while testing CosmoPower, we experienced first-hand that emula-

tors performing greatly on Stage III experiments failed in producing equally

correct contours on a simulated Stage IV survey.

GP-based emulators such as the ones used in Mootoovaloo et al.

(2020, 2021), Ramachandra et al. (2020), and Ho et al. (2021) require fewer

training samples than a NN emulation framework like CosmoPower; however,

GPs also provide reduced speed-ups compared to NNs. On the other hand,

GPs also provide a way to propagate the uncertainty in their prediction to the

final posterior distribution, whereas simple NNs like those implemented in

this version of CosmoPower lack this feature. In future versions of CosmoPower

we will investigate the use of Bayesian neural networks or ensemble NN pre-

dictions for this purpose.

Mootoovaloo et al. (2020) developed GP emulators of cosmic shear

band powers for the KiDS-450 survey, with the option of compressing the

band powers into MOPED coefficients and learning those coefficients with

the GP instead of the band powers themselves. Similarly, Manrique-Yus

and Sellentin (2019) developed NN emulators of the 3x2pt angular power

spectra. Both of these approaches are constrained by the choice of the

redshift distributions specific to the survey, which enters the expression of

the angular power spectra. In addition, the method of Mootoovaloo et al.

(2020) also relies heavily on the choice of nuisance parameters used to

model the power spectra; these parameters need to be ‘learnt’ by their GP.

CosmoPower is free from any of these restrictions: targeting emulation of

the matter power spectra, our emulators are completely flexible to be used

for any redshift distribution and choice of nuisance parameters. While the

speed-up obtained by emulating the matter power spectrum may be smaller

than that obtained from emulating the angular power spectra of the different

probes, we believe this computational overhead can be avoided by rewriting

the likelihood of interest in TensorFlow and running it on a GPU together
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with the emulators.

Finally, Albers et al. (2019) implemented an interesting NN-based ac-

celeration of certain steps in the calculation of CMB power spectra within

the Boltzmann code CLASS. The emulation of full power spectra performed

in CosmoPower provides higher speed-ups and is better suited for implemen-

tation of full inference pipelines on GPUs.

5.6.3 Future work

CosmoPower is an open-source package provided to the cosmological com-

munity as a tool to accelerate intensive computations within Bayesian in-

ference pipelines of LSS and CMB surveys. In this chapter we considered

the emulation of power spectra, which represents the bottleneck for two-

point statistics analyses of cosmological fields. However, this chapter also

marks the starting point of a longer-term project, with the goal of extending

the CosmoPower framework to accelerate the forward-modelling of multiple

cosmological observables with machine learning.

• Higher-order statistics, systematics and beyond-Limber spectra.

We plan to train emulators for higher-order statistics such as the bis-

pectrum. Not only does the bispectrum contain complementary cos-

mological information to the power spectrum (see e.g. Liguori et al.

2010), but it is also required to calculate (computationally expensive)

corrections to the power spectrum as those arising from dropping the

reduced shear approximation (Deshpande et al., 2020). In addition,

multiple observational systematics in cosmic shear analyses (see e.g.

Euclid Collaboration et al. 2020) can be modelled with machine learn-

ing techniques and their effect on cosmological parameter estimation

can thus be properly accounted for. Finally, for LSS a key advantage

within our emulator is given by targeting the matter power spectrum,

as opposed to the angular power spectra of the cosmological probes.

This choice will allow us to investigate efficient computation of non-
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Limber projected quantities in future work.

• Beyond-ΛCDM cosmologies. As already mentioned above, we plan

to extend CosmoPower to models beyond the flat ΛCDM one consid-

ered in this chapter. For example, emulation of power spectra in non-

flat cosmologies is of the utmost importance, since their calculation

by Boltzmann codes are computationally intensive (see e.g. Handley

2021). More generally, power spectra computed in alternative cos-

mologies are considerably more demanding to compute for Boltzmann

codes than in ΛCDM. Instead, we expect NN architectures similar to

the ones considered in this chapter to be equally accurate for emu-

lating beyond-ΛCDM spectra (while possibly requiring larger training

sets). Consequently, the evaluation time of these beyond-ΛCDM emu-

lators will remain essentially the same as those reported in this chap-

ter. This will produce an even greater speed-up factor over Boltzmann

codes. An initial demonstration of the flexibility of CosmoPower can be

found in Spurio Mancini and Pourtsidou (2021), where the same neu-

ral network as presented here was re-trained on spectra produced as-

suming an extension of the ΛCDM model with interacting dark energy,

obtaining a speed-up factor of about 400. We stress that in that par-

ticular instance the emulators had to be re-trained, but it is in principle

possible to reuse the same emulators as presented here, as shown in

Spurio Mancini et al. (2021b) where the same emulator used for the

Euclid-like analysis presented in this chapter is applied to the KiDS

analysis without re-training.

• A fully differentiable cosmology library. In the longer term,

CosmoPower will be extended to provide a completely differentiable li-

brary for cosmological computations. This will also include much sim-

pler functions to emulate, such as cosmological distances. As we

move towards the era of Stage IV surveys, the statistical challenges
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in analysing those datasets will certainly require increased sophisti-

cations in the Bayesian inference engines available. Differentiability

is key in unlocking the possibility of efficient gradient-based inference,

a promising avenue to tackle the challenge represented by the high-

dimensional parameter spaces characterising the analyses of Stage

IV surveys. Therefore, endowing the cosmological community with a

fully differentiable forward model of multiple observables is a task of

paramount importance, which we aim to accomplish with CosmoPower.

• Interpretable machine learning. Alternative methods for compres-

sion and emulation of cosmological quantities, such as autoencoders

and symbolic regression (Udrescu et al., 2020), will be explored within

CosmoPower, with the goal of maximising the computational efficiency

and interpretability of the machine learning framework developed.

CosmoPower is a tool that allows for principled, non-invasive application

of machine learning within a rigorous Bayesian framework for uncertainty

quantification. We are confident that emulation techniques like those pre-

sented here will greatly enhance the scientific return from Bayesian infer-

ence analyses of upcoming Stage IV surveys.

5.7 Emulation details

5.7.1 Neural network

Neural networks (NNs) are described in detail in Sect. 1.2.2; in this chap-

ter, NNs are trained to map cosmological parameters to power spectra (or

their principal components). Following Alsing et al. (2020), we choose the

following activation function for all hidden layers in our neural networks:

f (x) =
(

γ +
(

1+ e−β�x
)−1
� (1− γ)

)
� x , (5.14)
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where β and γ are optimised together with the rest of the network parame-

ters, and � indicates the element-wise product. Our neural networks always

use 4 layers of 512 neurons each, for both CMB and LSS. The networks’

parameters are optimised using Adam (see Sect. 1.2.2) with default param-

eters, and the loss function to minimise is chosen to be the MSE between

the emulated and the true power spectra. We keep apart 20% of the training

set for validation purposes. The learning rate is initially set to 1 · 10−2, and

then decreased by a factor of 10 each time the validation loss does not de-

crease for 20 epochs, where each epoch corresponds to feeding the whole

training set into the network; the final learning rate is 1 ·10−6. The batch size

is changed accordingly, starting from 1 ·103, then 1 ·104, up to 5 ·104.

5.7.2 Principal component analysis

We compared the performance of the direct NN mapping with an alternative

emulation method where the spectra are first compressed to their principal

components, following Speculator (Alsing et al., 2020), which we refer to

for the full details. Note that this is necessary for the CTE
` case, as due to the

dynamic range of these spectra it is not possible to consider its logarithmic

features; moreover, we found the performance of this second emulator su-

perior over the direct NN mapping when emulating Cφφ

` . We keep 512 and

64 principal components for CTE
` and Cφφ

` , respectively; the neural network is

then trained in the same way as described in Sect. 5.7.1. To obtain a power

spectrum, we map the cosmological parameters to the predicted principal

components, and then use the learnt change of base to map the principal

components into the predicted power spectrum.

5.7.3 Gaussian process

We use a Gaussian process (GP) to obtain derived cosmological parameter

constraints from given samples of the posterior distribution of the other pa-

rameters. When obtaining a derived parameter θder, we assume that there
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exists a mapping θder = f (θ), where θ indicates the parameters the emulator

was trained on, and model f (θ) as a GP. Following Sect. 3.3.1, we assume

that the function f (θ) follows a normal distribution with zero mean and a

parametric covariance matrix, usually referred to as kernel K (θ ,θ ′;ψ), with

θ and θ ′ indicating two points in parameter space, and ψ representing the

trainable hyperparameters. We choose the automatic relevance determina-

tion (ARD) 3/2 Matérn kernel (Neal, 1996; Rasmussen and Williams, 2005),

which is defined in Eq. 3.2 and Eq. 3.3. We use the software GPy9 to train

the GP, i.e. to optimise the hyperparameters of the kernel, using the tuples

(θ ,θder) from the Boltzmann solver CAMB as training data.

9 http://github.com/SheffieldML/GPy

193

http://github.com/SheffieldML/GPy




6
A critical investigation of generative models of

cosmological structures

In this chapter, we tackle a slightly different problem. As we explained in

Chapter 5, cosmologists often rely on summary statistics, like the power

spectrum, to run Bayesian inference analyses. At the same time, though,

the summary statistics do no carry all the information that was contained in

the large simulations, and fast generative models of the entire large-scale

structure of the Universe are attractive since they allow for the estimation of

covariance matrices, as well as simulation-based inference with likelihood-

free methods, as explained in Sect. 2.2.4, respectively. Here, we investigate

the application of the generative models introduced in Sect 1.2.3 to random

fields on the sphere, which are used as fast alternatives to expensive N-

body simulations to model many cosmological signals, as we will see. While

the results might appear unsatisfactory to the reader, we will show in Chap-

ter 7 that it is possible to actually train a generative model of the large-scale

structure, by feeding the model with extra information about the physics of

the problem. We are thankful to Kira Kempinska, Ilya Feige (also my super-

visor during my 6-month placement at Faculty1) and Michaël Defferrard for

providing guidance and help for the work behind this chapter.

1 faculty.ai
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6.1 Abstract

A challenging task in modern cosmology is running thousands of simula-

tions of the large-scale structure of the Universe, in order to analyse the

impact of different astrophysical effects and estimate covariance matrices

for upcoming surveys (see also Sect. 2.2.4). These simulations, however,

are often computationally expensive to run, and the need for faster accu-

rate generative methods is imperative today. Generative machine learning

(ML) algorithms have shown promising results when applied to cosmolog-

ical data, demonstrating impressive performance in generating new data

sets with the same statistical distribution as the training data in a fraction

of the time. At the same time, cosmological data allow for the validation of

ML algorithms since, unlike natural images as the ones that are part of the

most used datasets in computer science, it is possible to quantitatively mea-

sure the statistical information carried by the generated and target images

beyond simple visual comparison. In this work, we explore the application

of state-of-the-art ML models to accelerate the generation of accurate ran-

dom field maps on the sphere, which represent a cornerstone of cosmology

due to their wide application in describing many cosmological quantities of

interest. We perform a suite of statistical tests on the generated maps, and

detail the capabilities and limitations of the models we employ. Finally, we

conclude with a summary of the lessons that we learnt from this critical anal-

ysis, and describe what improvements are still needed in order to be able to

reliably apply ML generative models in cosmology.

6.2 Introduction

The use of simulations in astrophysics and cosmology has become com-

monplace, especially in recent years, and nowadays being able to generate
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mocks of our Universe has primary importance in many aspects. Even the

most simple type of simulations, i.e. cosmological N-body simulations, which

assume that the Universe is made of heavy point-like dark matter particles

moving according to the laws of Newtonian gravity, are able to shed a light

on many aspects of its large-scale structure and improve our understanding

about its formation and evolution (see e.g. Bertschinger and Gelb 1991).

These simulations are useful in many ways. First, they are used to

study the dynamical evolution of the large-scale structures of our Universe

from its early beginning up to today (Holmberg, 1941; von Hoerner, 1960;

Aarseth, 1963; more recently Baumgardt and Makino, 2003; Springel et al.,

2005; Boylan-Kolchin et al., 2009; Angulo et al., 2012). Moreover, N-body

simulations pose an interesting computational challenge, which has led to

many novel versatile algorithms to be developed (Barnes and Hut, 1986;

Hockney and Eastwood, 1988; Aarseth, 2003). Finally, a high number of N-

body simulations is needed to estimate the covariance matrix of cosmolog-

ical measurements, and they are therefore crucial for precision cosmology

with current and forthcoming surveys like the Dark Energy Survey (Dark En-

ergy Survey Collaboration et al., 2016)2, the Kilo-Degree Survey (de Jong

et al., 2013a,b)3, Euclid (Laureijs et al., 2011)4, the Vera Rubin Observatory

(Ivezić et al., 2019)5, the Nancy Grace Roman Space Telescope (Spergel

et al., 2015)6, the Simons Observatory (Ade et al., 2019)7, and the Dark

Energy Spectroscopic Instrument (Levi et al., 2019)8.

However, despite being arguably simple, N-body simulations with the

high level of precision required today are very expensive to produce, and the

need for faster generation methods is growing. While great improvements

in the computing performance have been reached, the required amount of

2 https://www.darkenergysurvey.org/
3 https://kids.strw.leidenuniv.nl/
4 https://www.euclid-ec.org/
5 https://www.lsst.org/
6 https://roman.gsfc.nasa.gov/
7 https://simonsobservatory.org/
8 https://www.desi.lbl.gov//
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simulations Nsim to improve our current constraints on cosmological param-

eters, which is of order Nsim = 104 (Taylor et al., 2013; Taylor and Joachimi,

2014; Percival et al., 2014), is still out of reach.

Many efforts have been made in recent years to solve this computa-

tional bottleneck: while alternatives to N-body simulations to estimate co-

variance matrices have been proposed (Monaco et al., 2002, 2013; White

et al., 2013; Kitaura et al., 2013; Chuang et al., 2014; Tassev et al., 2013,

2015; Howlett et al., 2015; Rizzo et al., 2017), machine learning (ML) al-

gorithms are drawing more and more attention. Generative methods in ML

have shown to be surprisingly promising in learning from cosmological im-

ages and 3-D simulations. For example, Ravanbakhsh et al. (2016) showed

that it is possible to emulate galaxy images by deploying modified versions

of popular generative algorithms, such as variational autoencoders (VAEs,

Kingma and Welling, 2014) and generative adversarial networks (GANs,

Goodfellow et al., 2014) — see Sect. 1.2.3 for more details. Moreover,

Mustafa et al. (2019) trained a deep convolutional generative adversarial

network (DCGAN, Radford et al., 2015) to generate accurate weak lensing

convergence maps, while Rodrı́guez et al. (2018) proved that the same al-

gorithm is able to accurately and rapidly reproduce 2-D slices of full N-body

simulations. More recently, Perraudin et al. (2019b) and Feder et al. (2020)

applied GANs to 3-D boxes, proving that GANs can capture both small-

and large-scale features, despite needing further improvements, while be-

ing limited in the amount of memory required for training and in the num-

ber of training data available. Other works include the application of super-

resolution techniques to N-body simulations (Kodi Ramanah et al., 2020; Li

et al., 2021), developed combinations of traditional and ML techniques to

improve the performance of fast N-body solvers (Dai et al., 2018, 2020; Dai

and Seljak, 2021; Böhm et al., 2021), or trained a U-net (Ronneberger et al.,

2015) to map linear initial conditions to the corresponding evolved density

fields (He et al., 2019; Alves de Oliveira et al., 2020).
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In this chapter, we follow this track and investigate the application of

ML generative techniques to random fields. We consider three different al-

gorithms (VAEs, GANs and Wasserstein GANs with gradient penalty — cf.

Sect. 1.2.3), and apply them directly to spherical maps. Moreover, we pro-

pose a novel harmonic-space approach and show its advantages and limi-

tations in generating both Gaussian and non-Gaussian random field maps.

At the same time, we thoroughly test the statistical features of the fields at

many statistical orders, and compare them to the ground truth given by the

input maps. The chapter is structured as follows: in Sect. 6.3 we describe

our datasets and all the preprocessing steps that we apply to them. Then,

in Sect. 6.4 we describe the algorithms we are deploying, and explain how

we run our analysis. After this, in Sect. 6.5 we show our results, and present

our conclusions and a critical analysis of our work in Sect. 6.6.

6.3 Dataset

6.3.1 Random field maps

Our goal is to generate a training set of random field maps on the sphere.

In order to do so, we first produce a weak lensing angular power spec-

trum using CLASS (Blas et al., 2011), with the parameters indicated in Ta-

ble 6.1. We recall here that CLASS is a fast solver for Einstein equations

(Eq. 2.32) combined with the Boltzmann equation for the transport of fluids

(Ma and Bertschinger, 1995), and is capable of mapping cosmological pa-

rameters to the non-linear matter and angular power spectra (analogously to

Eq. 5.2); more details about how the angular power spectrum is estimated

from sky maps can be found in Sect. 6.3.2. Then, we make use of the pub-

lic code Full-sky Lognormal Astro-fields Simulation Kit (FLASK, introduced

in Sect. 2.2.4.1), which can sample realisations of lognormal or Gaussian

random fields in tomographic spherical shells, to generate Ng = 3000 Gaus-
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sian and Nln = 10000 lognormal full-sky random field maps on the sphere.

We consider realisations of the convergence field, which is a weighted aver-

age of the matter overdensity field along the line-of-sight (Bartelmann and

Schneider, 2001; Joachimi et al., 2011). However, we remark that the choice

of random fields is a mere convenience due to their computational speed

and their controlled statistical information; we argue that our methodology

can in principle be applied to more complicated high-resolution simulations,

as we discuss in Sect. 6.6. We initialise each different map with a differ-

ent seed. The field has mean µ = 0, two-point correlation function whose

expectation exactly matches the input power spectrum by design (Xavier

et al., 2016), spatial resolution of approximately 7 arcmin (corresponding

to Nside = 512), and is considered in a redshift bin between z = 0.05 and

z = 0.159. For the lognormal case, we set the shift parameter in Eq. 2.45 to

λ = 0.005, following Hilbert et al. (2011); we refer the reader to Sect. 2.2.4.1

for all details.

6.3.2 Spherical harmonics expansion

When dealing with full-sky maps, it is often useful to express the field in

terms of spherical harmonics (e.g. Peebles, 1973; Scharf et al., 1992; Fisher

et al., 1994; Heavens and Taylor, 1995, and more recently Contaldi and

Magueijo, 2001; Bartolo et al., 2004; Baldi and Marinucci, 2007). Given a

position on the sphere, n̂ = (θ ,φ), we can write:

f (n̂) =
`max

∑
`=0

`

∑
m=−`

a`mY`m(n̂) , (6.1)

for some unique coefficients a`m, where Y`m(n̂) = Y`m(θ ,φ) ∝ P̀ m(cosθ) are

Laplace’s spherical harmonics, with P̀ m(cosθ) being the associated Legen-

dre polynomials, and f could represent any smooth square-integrable func-

9 While it is true that hardly any lensing can happen between the sources and the ob-
server given such a low redshift value, this choice represents a worst-case scenario of
maps with particularly smooth features.
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-0.0007 0.0008Field value -0.0003 0.0018Field value
(a) Gaussian (left) and lognormal (right) full-sky convergence random field maps,

viewed in Mollweide projection with side Nside = 512, generated using FLASK. Field
values indicate the values of the convergence field throughout the chapter. Both
fields have mean µ = 0, covariance matrix obtained from the input power spectrum,
maximum multipole `max = 30, and cover one single redshift bin between z = 0.05
and z = 0.15; the lognormal map additionally has the shift parameter λ = 0.005.
Our dataset comprises Ng = 3000 and Nln = 10000 maps for the Gaussian and
lognormal case, respectively.
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(b) Square images obtained from applying the process described in Sect. 6.3.3 to the
spherical maps in (a). The size of these images is set by the value of `max, which is
`max = 30 in this case. Since every image is uniquely obtained from one map, we have
Ng = 3000 and Nln = 10000 images for the Gaussian and lognormal case, respectively.

Figure 6.1: The datasets we consider are composed of the spherical Gaussian
and lognormal random field maps shown in (a). We also apply the
transformation described in Sect. 6.3.3 to obtain the square images in
(b), where the a`m coefficients are distributed according to the scheme
in Fig. 6.2. In this work, we investigate the application of machine
learning generative models to both spherical maps in real space (a)
and square images of the spherical harmonics coefficients (b).
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Table 6.1: Cosmological parameters of the weak lensing angular power spectrum
generated with CLASS, in agreement with the best-fit Planck values from
2015 (Ade et al., 2016). Note that ΩΛ is found by imposing that Ωc+Ωb+
ΩΛ = 1+Ωk. In this chapter, we work with training data sampled from
a single cosmology, but in Sect. 6.6 we discuss possible approaches to
extend our method to different cosmological parameterisations.

Parameter Name Value

h
Hubble

parameter 0.676

Ωc
Dark matter

density 0.264

Ωb Baryon density 0.048
Ωk Curvature 0

ΩΛ

Dark energy
density 0.688

σ8

Density
variance in
spheres of

radius 8 Mpc/h

0.848

tion on the sphere — in our case, the Gaussian or lognormal random field.

The index ` is usually called the multipole, and `max indicates the maximum

value in the multipole expansion.

We can write an explicit formula for the a`m coefficients:

a`m =
∫

Ω

dΩ f (n̂)Y ∗`m(n̂) , (6.2)

where Y ∗`m indicates the complex conjugate of Y`m, the integral is performed

over the whole solid angle Ω = 4π, and dΩ = sin(θ)dθ dφ . These coefficients

can be calculated from the random field maps using the healpy module

map2alm, and are complex numbers. Moreover, we note that the property

Y ∗`m = (−1)mY`−m reflects onto:

a∗`m = (−1)ma`−m , (6.3)

assuming a real field, as in our case. We observe that a random field f is

entirely specified by its a`m coefficients (if it is band-limited to `max), given the
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bijective relationship specified by Eq. 6.1 and Eq. 6.2.

The a`m coefficients are involved in the definition of the angular power

spectrum C(`), namely:

〈a`ma∗`′m′〉=C(`)δ``′δmm′ , (6.4)

where the brackets 〈〉 indicate the expectation value. This in turn yields the

estimator:

Ĉ(`) =
1

2`+1

`

∑
m=−`

|a`m|2 , (6.5)

which is the quantity we refer to when mentioning the angular power spec-

trum throughout the chapter. In Sect. 6.5.2.4, we also calculate the angular

cross power spectrum between pairs of maps; given one set of a`m coeffi-

cients from one map and one set of a′`m coefficients from a second map, we

define their cross power spectrum as:

ĈX(`) =
1

2`+1

`

∑
m=−`

1
2
(
a`ma′∗`m +a∗`ma′`m

)
. (6.6)

We give a model of the expected angular power spectrum as an input

to FLASK, and we are able to retrieve it from the generated maps using the

healpy module anafast. We finally define the rescaled angular power spec-

trum, which is usually considered in Cosmic Microwave Background (CMB)

studies (Planck Collaboration et al., 2014):

D` ≡
`(`+1)

2π
C` , (6.7)

which is one of the metrics we use to evaluate the performance of our mod-

els; more details can be found in Sect. 6.5. Note that in our experiments

we consider both random field maps in real space, as well as the a`m co-

efficients of the spherical harmonics expansion, as we describe in the next

section. In the latter case, we set the maximum value in the multipole ex-

pansion to `max = 30 to begin with, and then describe a working approach to
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Figure 6.2: Disposition of the a`m coefficients in the images that we use as our
dataset, as explained in Sect. 6.3.3 and Fig. 6.1b. We use the short
notation Re(a`m) = Re(`,m) and Im(a`m) = Im(`,m). The size of these
images is constrained by the chosen `max value, which sets the spatial
resolution of the maps. We can discard all Im(a`0) values, which are
null due to Eq. 6.3, since we are dealing with a real field.

deal with maps with up to `max = 2000. An example Gaussian and lognormal

maps from the dataset with `max = 30 are reported in Fig. 6.1(a).

6.3.3 From spherical maps to square images

There has been a wide effort in building ML learning algorithms which can

be applied to spherical domains, like the random fields we consider in this

work (see e.g. Perraudin et al., 2019a; Cohen et al., 2018; Defferrard et al.,
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2019, 2020; Krachmalnicoff and Tomasi, 2019; Krachmalnicoff and Puglisi,

2021, and references therein). Standard ML techniques are built to work in

a Euclidean domain, and in order to deal with spherical data specific tech-

niques have to be developed, like spherical convolutional neural networks

to replace standard convolutional neural networks (CNNs); as a matter of

fact, applying standard CNNs to 2-D projected patches of a spherical sur-

face severely compromises the performance of the model, and breaks the

rotational equivariance of the problem (see Schmelzle et al. 2017; Fluri et al.

2018; Defferrard et al. 2019 for a complete analysis of the problem).

In our work, we both consider the application of spherical CNNs to the

random fields, and develop a novel approach to translate the maps into a

Euclidean domain, in order to be able to apply standard, well-established

ML techniques. We transform every spherical map in our dataset into a

square image by using the spherical harmonics coefficients introduced in

Eq. 6.1 and Eq. 6.2. In particular, we use the scheme shown in Fig. 6.2: we

create an empty square image with side (`max +1), and we fill every pixel of

it with either the real or imaginary parts of the a`m coefficients. We discard

Im(a`0) ∀`, which are null due to Eq. 6.3, and fill the diagonal with Re(a`0).

Then, we fill the off-diagonal positions with the remaining values, keeping

the real parts on one side of the diagonal, and the imaginary parts on the

other. All values are multiplied by a factor of A = 103, so that the overall

distribution of the coefficient across all maps is roughly a truncated nor-

mal distribution in [−0.1,0.1]; we note that this is true for both the Gaussian

and non-Gaussian maps. In this way, not only are we able to deploy algo-

rithms which have been extensively validated in a plethora of ML works us-

ing square images, but we obtain a dataset made of images with a smoother

behaviour than the original maps, as displayed in Fig. 6.1. We show two ex-

amples of these images, for the Gaussian and lognormal case respectively,

in Fig. 6.1(b).
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6.4 Methods

6.4.1 Generative models

6.4.1.1 Generative adversarial networks

Generative adversarial networks (GANs) are a generative model recently

proposed by Goodfellow et al. (2014), which we extensively described in

Sect. 1.2.3.2. While GANs have shown impressive performance on a vari-

ety of tasks and disciplines, completely revolutionising many scientific fields

and fuelling a plethora of theoretical and experimental advances in com-

puter vision (see e.g. Gui et al. 2020; Wang et al. 2021 for recent reviews),

they have nevertheless shown some significant limitations and drawbacks,

including being hard to train, not reaching clear convergence, as well as be-

ing affected by mode collapse (cf. Sect. 1.2.3.2). For these reasons, in this

work, alongside GANs we further explore the performance of Wasserstein

GANs with gradient penalty (WGANs-GP, Arjovsky et al., 2017; Gulrajani

et al., 2017), which we also introduced in Sect. 1.2.3.2; the loss fuction we

consider in this case is reported in Eq. 1.33. In this work, we apply both

GANs and WGANs-GP to the datasets described in Sect. 6.3, and present

a critical analysis of their results and performance in Sect. 6.5.

6.4.1.2 Variational autoencoders

Besides GAN, we also deploy variational autoencoders (VAEs, as intro-

duced in Sect. 1.2.3.1) to perform our generative tasks. In addition to the

limitations of GANs detailed in Sect. 6.4.1.1, we argue that the images we

are working with, as well as the datasets usually considered in cosmology,

have an underlying description in a lower-dimensional space represented by

the parameters of the chosen cosmological model (cf. Table 6.1), and this is

well-modelled by the latent space of VAEs. The loss function we consider in

this case is reported in Eq. 1.24.
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6.4.2 Network architecture

Before describing our networks in detail, we shall provide a description of an

additional type of convolutional neural network layer we are going to employ

in this work: a spherical convolutional layer. When training directly on the

spherical random fields, we cannot apply a standard convolutional layer to

fabricate the neural networks that our models are made of (i.e. the genera-

tor and discriminator for GANs, the encoder and decoder for VAEs). In this

instance, we decide to apply the spherical convolutional layers proposed in

DeepSphere (Perraudin et al., 2019a; Defferrard et al., 2019, 2020). In this

framework, a spherical field is sampled using the Hierarchical Equal Area

isoLatitude Pixelation (HEALPix, Górski et al., 2005), and then treated as a

graph. An efficient spherical convolution operation based on Defferrard et al.

(2016) is then applied in a similar fashion to standard 2-D convolution oper-

ations, ensuring at the same time rotational equivariance (i.e. that applying

the convolution operation and then rotating the output yields the same result

as rotating the input and then applying the convolution operation); note that

breaking rotational equivariance has been shown to severely penalise the

performance of the model (Defferrard et al., 2016). Note that no padding is

used in these spherical convolutional layers.

To train our neural networks, we split our datasets in three chunks, and

use 80% of the maps for training, 10% for validation, and 10% for testing.

The network architectures vary depending on the task. When training on

the spherical maps directly, we employ fully spherical convolutional archi-

tectures made of three layers that either downsample or upsample the side

of the maps by a factor of two each. For GANs, Gaussian noise is upsam-

pled when passing through the generator, while the discriminator (or critic)

downsamples the maps, and passes the flattened output to a single label

through a fully-connected layer. For VAEs, the encoder downsamples the

maps, and the decoder upsamples the latent vectors. When training on the
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square images described in Sect. 6.3.3, the architectures we employ com-

bine fully-connected and convolutional layers: the encoder (as well as the

discriminator and the critic) network is made of four layers, the first three be-

ing convolutional with strides of two and no padding, and the last one being a

dense layer with 256 neurons; the decoder (generator) network is built sym-

metrically, by using transposed convolutions to upsample the latent space

(noise) vector back to square images. Note that, in the VAE case, the output

of the encoder is a diagonal multivariate normal distribution, with mean and

variance given by two additional dense layers with size 64, which is the latent

space dimension (as well as the noise vector size for GANs and WGANs-

GP). The prior pθ (z) we use for the latent space of the VAE is a multivariate

diagonal normal distribution with µp = 0, σp = 1. We apply a Rectified Linear

Unit (ReLU) activation function to every layer in the decoder (generator), ex-

cept for the final layer, where we keep a linear activation function. In the VAE

case, in the final variance layer we choose a softplus activation function. In

the encoder (as well as discriminator and critic), we replace the ReLUs with

Leaky ReLUs with slope parameter α = 0.2, since we observed a better per-

formance. All the code is written in TensorFlow (Abadi et al., 2015) and run

on a Tesla K20 Graphics Processing Unit (GPU). In all our experiments, we

employ the Adam optimizer with lr = 10−4, β1 = 0.5, β2 = 0.999, and ε = 0.1,

with meaning of these additional parameters detailed in Sect. 1.2.2. We

train our networks with a batch size of 16 for 3000 epochs, and analyse the

generated samples every 50 epochs after convergence to look for the best

samples in terms of the statistical tests described in the next paragraph.

We summarise the details of a typical VAE network in Table 6.2; analogous

networks are built for the various experiments that we run in this work.

6.4.3 Statistical tests

The scientific value of the images we are working with, and of astrophysical

images in general, is that they carry some well-defined statistical information
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Table 6.2: Example architecture of the neural networks employed in this work in
the variational autoencoder (VAE) case, when training on square im-
ages; analogous architectures have been designed for all the experi-
ments described in Sect. 6.4. The first row, left to right, corresponds to
the encoder, while the second row, right to left, correspond to the de-
coder. This neural network has about 2.7 million parameters, and we
train it with batches of 16 images for 3000 epochs. More details can be
found in Sect. 6.4.2.

Input data First layer Second
layer Third layer Fourth

layer
Latent
space

Square
images

with side
(`max +1)×
(`max +1) =

31×31

Convolu-
tional layer

with
64×5×5
kernels,
strides
= 2, no

padding,
Leaky
ReLU

activation

Convolu-
tional layer

with
128×4×4

kernels,
strides
= 2, no

padding,
Leaky
ReLU

activation

Convolu-
tional layer

with
64×4×4
kernels,
strides
= 2, no

padding,
Leaky
ReLU

activation

Dense
layer with

512 nodes,
Leaky
ReLU

activation

Two dense
layers with
64 nodes
each, one
with linear
activation,
one with
softplus

activation

Sampled
data

Fourth
layer Third layer Second

layer First layer Latent
space

Square
images

with side
(`max +1)×
(`max +1) =

31×31

Two
transposed

convolu-
tional

layers with
1×5×5
kernels,
strides
= 2, no

padding,
one with

linear
activation,
one with
softplus

activation

Trans-
posed

convolu-
tional layer

with
64×4×4
kernel,
strides
= 2, no

padding,
ReLU

activation

Trans-
posed

convolu-
tional layer

with
128×4×4

kernels,
strides
= 2, no

padding,
ReLU

activation

Dense
layer with
2 ·2 ·64 =

256 nodes,
ReLU

activation

Sampled
vector of
size 64
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beyond pure visual features, unlike standard computer science benchmarks.

For this reason, after transforming back the sampled square images to the

spherical maps using the healpy module alm2map, not only do we perform

a visual test to assess that the generated images “look like” the maps in our

dataset, but we carry out a suite of statistical tests to validate the samples

obtained from the network.

The tests include: the one-point statistics, i.e. the histogram of the field

values in each map; the two-point statistics, i.e. the rescaled angular power

spectrum described in Sect. 6.3; peak counts (Jain and Van Waerbeke,

2000; Hamana et al., 2004; Pires et al., 2009, 2012; Dietrich and Hart-

lap, 2010; Marian et al., 2011; Mainini and Romano, 2014; Lin and Kil-

binger, 2015a,b; Lin et al., 2016), where a peak is defined as a pixel which

is greater than the 8 closest neighbours; independence of the maps, i.e. we

calculate Eq. 6.6 between two sets of a`m coefficients coming from different

maps; fourth-order statistics, implicitly probed by the power spectra covari-

ance matrix as described in Eq. 20 of Joachimi et al. (2008). All the tests

are run over a certain number of sampled images (with the same cardinality

as the validation set), which are compared to the images in the validation

set; once the best model is found, we sample additional maps and compare

them to the test set. For the case of the two-point statistics only, we compare

the power spectra to the ground truth provided by the power spectrum given

as an input to FLASK. All results show the mean value with the associated

error on the mean over the number of samples. We present all our results

in Sect. 6.5.

6.4.4 Exploring higher resolution

In our experiments with the spherical maps, we have to reduce Nside from

the initial 512 to 64 in order to be able to fit the data and the parameters of

the spherical convolutions to the GPU memory; while spherical convolutions

allow us to deal with non-Euclidean data, we found them to be less memory-
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efficient than standard convolutional layers (Perraudin et al., 2019a). A sim-

ilar issue arises when dealing with the square a`m data: standard cosmolog-

ical analyses require up to `max = 2000, but it is currently not possible to feed

2001×2001 images to an ML model, due to memory constraints. This is also

true for large, high-resolution N-body simulations, which present a challenge

for ML not only because of the concurrence of large and small features, but

also because of their substantial memory footprint (see e.g. Perraudin et al.

2019b). While it would be possible to devise a careful pipeline that could

partially relieve these issues, and deploy more sophisticated hardware with

more memory available, training with such large images suffers the curse of

dimensionality (Bellman, 1957), and considerations about the environmen-

tal impact of these choices should also be made (Patterson et al., 2021).

In the experiments described so far, we always considered `max = 30,

bearing in mind that the resolution of these maps is far below the reso-

lution usually chosen in any physical analysis. We now propose a pos-

sible scheme to train a generative model of high-resolution spherical ran-

dom fields with `max = 2000 through the square a`m images described in

Sect. 6.3.3. We anticipate that in the experiments that we ran our proposed

approach worked in the Gaussian random field case only, while failing to re-

produce a high-resolution lognormal map; we further observe that we only

tested the VAE performance in this case, and expect a GAN to perform sim-

ilarly.

We describe here how we can actually encapsulate the information con-

tained in such large images and exploit their smooth behaviour, while keep-

ing the training time and the size of the network relatively small. We start

by showing one Gaussian random field realisation with `max = 2000 together

with the corresponding square image in the left column of Fig. 6.5. As one

can see, the map has a much higher resolution, and the smooth behaviour

of the a`m coefficients becomes more evident. The first step consists of re-

binning the square images into smaller images of a chosen size, which are
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then used as training data; we choose the size to be 128 in this case, which

allows for a relatively quick training. We create a division of each original

axis, with the number of points being the new side of the images, thus ef-

fectively mapping rectangular patches in the original image onto one pixel in

the rebinned image. When the rectangular patches do not match the pixels

exactly, we weight each pixel in the rectangles according to its area, con-

strained to be between 0 and 1. To avoid the possibility that one pixel in the

new image corresponds to a fraction of a pixel in the original image, we use

a linear division up to a certain threshold (64 in this case), and a logarithmic

division after that. This is inspired by the shape of the power spectrum we

consider, which is approximately linear at low and high ` in logarithmic bins

(cf. the right panel in Fig. 6.7). While it would be easy to take the mean of all

pixel values in each rectangular patch and consider this as the value of the

new pixel in the smaller image, we argue that this would destroy the noise

present in the pixels, thus affecting the final reconstruction. Instead, we take

samples from the pixels in these patches, and create an augmented dataset

of 128× 128 square images. We find that a good augmentation factor is

f = 3, i.e. from each patch in each image we sample 3 pixel values which

we assign to the pixels in 3 new smaller images. In this way, we obtain a

training dataset with f more square images, which we feed to the ML model

in the same way as described in Sect. 6.4.2. We claim that by sampling

the pixel values, we are able to preserve not only the mean, but also the

variance of each pixel, which is what the model will try to learn.

When the training has ended, we need to transform the samples back

to the higher-resolution domain. To this purpose, we propose the follow-

ing procedure: rather than sampling from the Gaussian distribution at the

top of the decoder network, we take into consideration the learnt mean and

variance for each pixel. Also, we recall that every pixel has a unique cor-

respondence to a patch in the 2001× 2001 domain: therefore, we consider

the learnt mean and variance values as corresponding to the centre of the
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patch itself. The next step consists of interpolating: exploiting the smooth-

ness of the a`m coefficients, we interpolate on a 2001× 2001 grid the mean

values and the variance values, thus obtaining a mean and a variance for

each pixel in the image. We finally sample Gaussian variables in each pixel

according to the mean and variance just obtained. We repeat the statistical

tests described in Sect. 6.4.3, and present the results in Sect. 6.5.2.

6.5 Results

6.5.1 Spherical maps

We start by showing the results when training our models on spherical

maps downsampled to side of 64 to avoid memory issues, as described

in Sect. 6.4.4, in Fig. 6.3. We find that, despite this resolution reduction, all

models struggle to learn both Gaussian and lognormal random fields, with

the results in the latter case being remarkably unsatisfactory. In particular,

even at the visual level, the spherical maps sampled by the VAE are blurry

and fail to capture the small-scale details, while GANs generate artefacts

that are not present in the training set; we argue that GANs might need a

more fine-tuned optimisation and careful training procedure to display a bet-

ter performance. Moreover, we observe that the WGAN-GP model, while

improved both in training stability and sample quality, still lacks the proper

texture of the large-scale structure when carefully observed. We do not

show here the statistical tests ran on these samples, as we found them

to be rather poor; at the same time, we argue that a different approach is

needed (as we present in the next sections), as well as that more work on

the spherical convolutions should be done in order to get competitive re-

sults. Note that, in all cases, generating samples from the ML models takes

O(1 s) on the same training hardware.
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Figure 6.3: Samples from the best models — a variational autoencoder (VAE),
generative adversarial networks (GANs), and Wasserstein generative
adversarial networks with gradient penalty (WGANs-GP), all described
in Sect. 6.4.1 — trained on Gaussian (first row) and lognormal (second
row) spherical random fields. We find that training directly on these
spherical maps using spherical convolutional neural networks does not
yield satisfactory results, as we detail in Sect. 6.5.1, especially in the
lognormal case; the maps shown here do not display the same visual
features as the maps in Fig. 6.1(a), and even the best model (WGAN-
GP, Gaussian) still lacks the proper texture.

6.5.2 Square images

We now present the results of the approach proposed in Sect. 6.3.3, where

we attempt to learn the information contained in the a`m coefficients. For the

Gaussian case, we show the results for both low (`max = 30) and high (`max =

2000) resolution, while we report that this approach yields poor results for

the lognormal case, which we further discuss in Sect. 6.6. For this reason,

we only show the low-resolution results for the lognormal case. Note that

we find the three ML models (VAEs, GANs and WGANs-GP) to yield similar

results in these cases, hence we only show the results for the VAE here. We

show one sample for the low-resolution Gaussian and lognormal random

fields in Fig. 6.4, and one learnt sample for the high-resolution Gaussian

case, together with one sample from the training set, in Fig. 6.5. Note that,

in this case as well, generating samples from the ML models takes O(1 s)

on the same hardware used for training. The extra interpolation procedure
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(a) Square images obtained from the trained models, in the Gaussian (left) and log-
normal (right) low-resolution cases.

-0.0010 0.0008Field value -0.0016 0.0043Field value
(b) Spherical random field maps, as obtained by applying the healpy module alm2map to

the set of a`m coefficients obtained from the images in (a).

Figure 6.4: After training the networks, we are able to sample images like the ones
in (a), which we then transform back to the maps in (b). We note here
that we do not expect the samples to be identical to the ones shown in
Fig. 6.1, but rather that these images carry the same statistical informa-
tion as the ones in the original dataset. In order to assess this, we run
the tests described in Sect. 6.4.3. We observe a good performance in
the Gaussian case, and some limitations in the lognormal case, which
we further discuss in Sect. 6.5.2 and Sect. 6.6.

for high-resolution maps takes O(10 s), and saving a single high-resolution

map to disk takes O(1 s).

6.5.2.1 Field values count

The first test consists of calculating histograms of the field values in each

map. We compute the histogram for each individual map, and average the

number of counts in each bin across all maps. The error bands are given by

the error on the mean of the number of counts in each bin. To demonstrate

that the generated samples are statistically close to the target samples, we

consider an additional test set (in the Gaussian low-resolution case only),
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(a) Target (left) and generated (right) Gaussian high-resolution maps, with `max = 2000.
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(b) Square images obtained from applying the process described in Sect. 6.3.3 to the
spherical maps in (a). The size of these images is set by the value of `max, which is
`max = 2000 in this case. As one can see, the behaviour in this Euclidean domain is
smoother with ` and m than in the spherical maps. Note that we took the absolute
value of each a`m in order to help visualising the individual pixels.

Figure 6.5: High-resolution samples from the training set (left) and from the best
machine learning model (right). We set the highest multipole value in
the harmonic expansion to `max = 2000, and trained the model on down-
sampled images to avoid memory issues, as described in Sect. 6.3.3
and Sect 6.4.4.

and calculate the relative differences assuming the test set to be the ground

truth. We present the results in Fig. 6.6 (Gaussian low- and high-resolution)

and in the left panel of Fig. 6.8 (lognormal low-resolution): in the top panel

we show the histograms, while in the bottom panel we show the relative

difference of the generated and additional test histograms with respect to

the test set (except for Fig. 6.8, where we omitted this comparison due to

the obvious limitations of our model).

In the Gaussian case, the histograms overlap completely, and the rela-

tive differences, whose error is propagated from the errors on the bin counts,

are perfectly consistent with 0, at both low and high resolution. More impor-
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(a) Low-resolution, Gaussian (b) High-resolution, Gaussian

Figure 6.6: Left panel : at the top, we show the field values histograms for the test
dataset, the generated samples, and the additional test dataset in the
Gaussian low-resolution case. The values displayed are the mean of
the counts in each bin for each map, while the error bands represent
the error on the mean. The three histograms overlap quite remark-
ably. At the bottom, we display the relative percentage difference of
the generated and additional test histograms with respect to the test
set, considered as the ground truth. We argue that the high fluctua-
tions in the tails are due to the low number of counts in the tails of the
histograms. The differences are perfectly compatible with 0, and the
results from the additional test set and the generated maps are con-
sistent with each other. Right panel : same as the left panel for the
high-resolution maps. Note that in this case we do not consider an
additional test set, and only show the relative difference between the
ML-generated samples and the target samples.
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tantly, the behaviour of the generated maps and of the maps in the additional

test set is consistent within the error bands. We argue that the high differ-

ences in the tails are due to the low number of counts, rather than a problem

in the way the maps or the histograms are produced. In the lognormal case,

on the other hand, we find that the generated samples completely fail to

capture the skewed distribution of the density values, displaying a symmet-

ric distribution. We further discuss these results in Sect. 6.6.

6.5.2.2 Angular power spectrum

We then measure the angular power spectrum, as described in Sect. 6.3.2,

using the healpy module anafast. Since in this case we know the ground

truth, given by the input power spectrum to FLASK produced with CLASS, we

do not need the additional test dataset. We recall that, given the side of the

square images we trained our networks with, it makes sense to compare the

results only up to the chosen `max.

We show the results in Fig. 6.7 (Gaussian low- and high-resolution) and

in the right panel of Fig. 6.8 (lognormal low-resolution). The top panel shows

the direct D` comparison (Eq. 6.7), while the bottom panel shows the rela-

tive difference with respect to the FLASK input power spectrum (except for

Fig. 6.8, where we omitted this comparison). As one can see, the agree-

ment in the Gaussian case is excellent and always within a few percent; the

significant deviations at high ` for the high-resolution case are within the limit

in the accuracy of the non-linear power spectrum predictions (cf. Blas et al.

2011). On the other hand, the model trained on the lognormal maps fails to

reproduce the correct power spectrum.

6.5.2.3 Peak counts

Since we demonstrated that the lognormal random fields were not correctly

learnt by any of our models, in what follows we only test the Gaussian maps.

A Gaussian field is entirely specified by its power spectrum, and a complete

description of peak counts can be obtained from it (Bardeen et al., 1986);

however, it is interesting to assess whether further non-Gaussian features
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(a) Low-resolution, Gaussian (b) High-resolution, Gaussian

Figure 6.7: Left panel : at the top, we show the rescaled power spectra for the
test dataset and the generated maps, together with the ground truth in-
put power spectrum (dotted green line), in the Gaussian low-resolution
case. We rebin the values in the range 10≤ `≤ 30. We show the aver-
age of the power spectra at each multipole `, with error bands given by
the error on the mean. At the bottom, we show the relative difference
between the test set and the generated maps power spectra and the
input one. Right panel : same as the left panel in the high-resolution
case. The agreement in this case is still excellent, and the significant
deviations at high ` are within the accuracy limit of standard power
spectrum model predictions at non-linear scales.
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(a) Low-resolution, lognormal (b) Low-resolution, lognormal

Figure 6.8: Left panel : same as Fig. 6.6 for the lognormal maps. Note that in
this case we do not consider an additional test set, and do not show
the relative difference due to obvious limitations of our model Right
panel : same as Fig. 6.7 for the lognormal case (except for the input
power spectrum, which is not shown in this case). In this instance,
our proposed approach entirely fails to reproduce the correct statistical
information contained in the lognormal random fields, hence we do not
show the relative difference in the bottom panel.

arise in the generated samples. In the top panels of Fig. 6.9, we compare

the histograms with the peak counts from the test set and the generated

maps. By assuming that the test set is the ground truth, in the bottom panels

we show the relative differences: these are consistent with 0 in both cases

(except for a single bin with very few counts), and are well within the typical

accuracy limit for peak counts (see e.g. Peel et al. 2017 which allow up to

50% percentage difference and recover tight — while biased — constraints

on σ8 and Ωm).

6.5.2.4 Cross power spectrum

Cross power spectra can be used to highlight whether the generated maps

are dependent on each other; a high cross-correlation signal among gener-

ated samples, or between generated samples and the test set, could indi-

cate that the maps generated by the model are not independent, a feature

which could bias cosmological analyses. For this test only, we consider a

subsample of Ns = 100 maps to speed up the calculation. We measure the

angular cross power spectrum, as defined in Eq. 6.6, within the test dataset
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(a) Low-resolution, Gaussian (b) High-resolution, Gaussian

Figure 6.9: Left panel : at the top, we show the peak count histograms for the test
dataset, the generated samples, and the additional test dataset in the
Gaussian low-resolution case. A peak is defined as a pixel which is
higher than the closest 8 neighbouring pixels. The values displayed
are the mean across all maps of the counts in each bin, while the error
bands represent the error on the mean. At the bottom, we show the
relative difference of the generated and additional test histograms with
respect to the test set, considered as the ground truth. The error bands
are obtained by propagating the errors. The differences are compatible
with 0 (except for the left-most point, where the statistics is extremely
low though), and the behaviour of the additional test set and the gen-
erated maps are consistent with each other. Right panel : same as the
left panel for the high-resolution maps, without the additional test set.
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(a) Low-resolution, Gaussian (b) High-resolution, Gaussian

Figure 6.10: Left panel : angular cross power spectra, as defined in Eq. 6.6, for
the test dataset, the generated maps, and between the two sets of
maps, in the Gaussian low-resolution case. The signals are rebinned
in the range 10≤ `≤ 30, and multiplied by ` to highlight any deviations
from 0. All power spectra are consistent with 0. Right panel : same as
the left panel for the high-resolution case, except that the signals are
multiplied by `2 .

maps, within the generated maps, and between generated and test maps.

We obtain Ns·(Ns−1)
2 = 4950 power spectra for the first two cases, and N2

s = 104

power spectra for the latter case.

We show the results in Fig. 6.10, where we plotted ` ·CX
` (and `2 ·CX

`

in the high-resolution case) to highlight any deviations from the expected

zero value. All three signals are consistent with 0 ∀`, and do not show any

particular type of pathological behaviour.

6.5.2.5 Power spectrum covariance

By considering the covariance matrix of the power spectra of the different

maps, we are effectively accessing the fourth-order statistics, and address-

ing a key application for such fast generated fields, as explained in Sect. 6.2.

For each dataset, we consider the value of the spectrum at each ` to be a

variable, and the different maps to be separate realisations of each variable.

Then, following Eq. 20 in Joachimi et al. (2008), we define ∆C` = Ĉ`− Ĉ`,

where Ĉ` is the mean value across all observations at each `, and calculate

the covariance matrix as:
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Cov(Ĉ;`,`′) = 〈∆C`,∆C`′〉 . (6.8)

We then obtain the correlation matrix, namely:

Corr(Ĉ;`,`′) =
Cov(Ĉ;`,`′)√

Cov(Ĉ;`,`) ·Cov(Ĉ;`′, `′)
, (6.9)

which we display in Fig. 6.11 (low resolution) and in the left panel of Fig. 6.12

(high resolution, residuals only). The results clearly agree between the gen-

erated maps and the test set, thus validating our method on the Gaussian

maps once again. In the right panel of Fig. 6.12 we further compare the diag-

onal of the covariance matrix against the theoretical prediction from Eq. 26

in Joachimi et al. (2008):

diag
[
Cov(Ĉ;`,`′)

]
=

4π

A`∆`

(
Ĉ(`)+

σ2
ε

2n̄

)2

δ``′ =
Ĉ(`)2

`∆`
, (6.10)

where A = 4π is the fraction of the sky we are considering, ∆` is the size

of the ` bin, δ``′ is the Kronecker delta, n̄ is the average number density of

galaxies in the field, which we can ignore as the ellipticity dispersion σε =

0, since we are not adding noise to the convergence maps. We observe

that while the model’s predictions do not match exactly the theory prediction

(especially at low `), they are perfectly compatible with the test set.

6.6 Discussion and conclusions

In this work, we investigated the possibility of employing advanced ma-

chine learning (ML) models to yield a fast generator of random fields on

the sphere, which are commonly used in analyses of the large-scale struc-

ture of the Universe. We remark that we considered random fields for their

computational speed and their controlled statistical information, but the algo-

rithms we investigated would eventually be run on N-body-generated maps.
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Figure 6.11: First row : correlation matrix as defined in Eq. 6.9 for the test set,
the generated maps and the additional test set in the Gaussian low-
resolution case. Second row : absolute value of the difference of the
generated and the additional test maps with respect to the test set,
considered as the ground truth. As one can see, the results agree
between the generated maps and the additional test maps.

(a) Correlation residuals (b) Covariance diagonal

Figure 6.12: Left panel : absolute value of the residuals for the correlation matrix
as in the central column of Fig. 6.11 in the high-resolution case. The
values are clipped between 0 and 0.10 for ease of visualisation. Right
panel : the diagonal of the covariance matrix against the prediction
reported in Eq. 6.10, with the relative difference at the bottom.
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We considered both Gaussian and lognormal random fields, and trained the

models using recently proposed spherical convolutional neural networks.

Additionally, we proposed a novel method to translate the spherical fields

to a Euclidean domain using spherical harmonics, thus obtaining a set of

square images and avoiding the problems arising when dealing with non-

Euclidean geometries. We trained three different models: a variational au-

toencoder (VAE), generative adversarial networks (GANs), and Wasserstein

generative adversarial networks with gradient penalty (WGANs-GP), show-

ing the advantages and limitations of each of them in learning the statistical

features of the random fields. We carried out five different statistical tests

to assess whether the maps generated by the trained networks contain the

same statistical information as the original dataset, and showed the results

coming from all these tests.

We found that spherical convolutions need additional investigation be-

fore reaching a satisfactory level of accuracy; in particular, they require a

compromise on the number of pixels that can be used to represent each

field due to memory limitations, and often fail to reproduce even the correct

texture of the fields. We found our proposed approach of learning the a`m co-

efficients to be more efficient and robust in learning Gaussian random fields:

we obtained remarkable agreement within the error bars for the histogram of

field counts, and within 3% up to `max = 2000 for the power spectrum, namely

within the accuracy limits of the typical non-linear model predictions. We ar-

gue that this can be attributed to the fact that our approach allows for the

efficient compression of the images we consider: by sampling a`m values

we can preserve the map information while effectively reducing the size of

the data. At the same time, we found this method to fail for the lognormal

fields, and we argue this is due exactly to the choice of focussing on the

a`m coefficients. We believe that the models failed at picking up the proper

correlations between different coefficients, and thus failed to learn the non-

Gaussianity of the fields, which lies exactly in these correlations (Coles and
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Chiang, 2000); we conclude that this is an intrinsic limitation of the approach

proposed in this work.

Another limitation lies in the memory requirements of large N-body sim-

ulations, and the related lack of training data. Availability of large simula-

tions is scarce, and they typically include so many particles that the only

alternative is to split up the large volume into smaller sub-volumes, in order

to avoid memory overflows. However, this approach removes the informa-

tion of the larger modes in the box, and thus require further sophistication

to retain such information. A common approach is to train the model to gen-

erate a sub-volume conditioned on neighbouring volumes; however, there

is no commonly-accepted way to carry out the conditioning, and more work

is needed to further explore this avenue (see e.g. Perraudin et al. 2019b

for a recent attempt). By working in a non-Euclidean domain, we further

complicated the problem: spherical data require specific, more expensive

convolutional layers, and our proposed spherical harmonic approach was

not capable of learning the right correlations between a`m coefficients, as

we discussed.

A final point to raise is related to the possibility of varying the cosmolog-

ical parameters used to generate the simulations. It is essential to be able to

explore different values of the cosmological parameters to have constraining

power on their statistical distribution; however, in this work, we only explored

a single cosmology, ignoring the necessity of a more flexible model including

this dependency. A common approach to model different cosmological re-

alisations is to sample cosmological parameters from a prior space, include

training data with the sampled cosmological parameters in the training set,

and learn a conditional model using all these data points. At the same time,

it has been argued that the ML model could learn this dependency from the

training data alone, and some early experiments showed that it is possible

for an ML model trained on a single realisation of the cosmological parame-

ters to naturally extrapolate to different cosmologies (see e.g. He et al. 2019;
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Kodi Ramanah et al. 2019, 2020).

In conclusion, in this work we demonstrated that it is not possible to

straightforwardly apply state-of-the-art machine learning generative tech-

niques to learn cosmological random fields, and that more work is needed to

correctly capture the various features of N-body simulations. We believe that

there are at least two ways forward. On one hand, one could develop more

sophisticated generative models, with more expressiveness, flexibility, and

stability, or with more theoretical guarantees — this is the case of normal-

ising flows, which are emerging as a powerful generative model equipped

with a clear statistical interpretation (Dinh et al., 2016; Papamakarios et al.,

2017, 2019; see e.g. Rouhiainen et al. 2021 for a recent application to cos-

mology). On the other hand, we argue that it is crucial to provide the model

with more information than just noise (as in the GAN framework), thus get-

ting a physics-informed model. Designing models with a meaningful physical

starting point is a key feature to improve their performance, and we show in

the next chapter how to properly integrate such information to learn a useful

model that transforms lognormal samples of the dark matter density field to

more realistic N-body realisations.
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7
Fast and realistic large-scale structure from

machine-learning-augmented random field simu-

lations

In this final chapter, we demonstrate that it is possible to employ machine

learning techniques to develop a generative model of the large-scale struc-

ture of the Universe, with the caveat that we must feed it with a physically-

meaningful starting point. In this case, we choose the lognormal approxi-

mation, introduced in Chapter 2 and analysed in Chapter 6, as the input for

our model, which will be trained to transform lognormal fields to dark mat-

ter N-body maps, extracted from the Quijote simulation suite (Villaescusa-

Navarro et al., 2020); we are grateful to Francisco Villaescusa-Navarro for

providing guidance about the Quijote simulations. The results presented

in this chapter demonstrate that supplying the ML model with information

about the physics of the problem is key to obtain a useful model, and offer

several opportunities for further improvements.
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7.1 Abstract

Being able to produce thousands of simulations of the dark matter distribu-

tion in the Universe with increasing precision is a challenging task, and the

case for fast and accurate generative methods is compelling today. Many in-

expensive substitutes to full N-body simulations have been proposed, even

though they often fail to reproduce the statistics of the smaller, non-linear

scales. Among these alternatives, a common approximation is represented

by the lognormal distribution, which comes with its own limitations as well,

while being extremely fast to compute even for high-resolution density fields.

In this work, we train a machine learning model to transform projected log-

normal dark matter density fields to more realistic dark matter maps, as

obtained from full N-body simulations. We detail the procedure that we fol-

low to generate highly-correlated pairs of lognormal and simulated maps,

which we use as our training data, exploiting the information of the Fourier

phases. We demonstrate the performance of our model comparing various

statistical tests with different field resolutions, redshifts and cosmological

parameters, proving its robustness and explaining its current limitations; we

reproduce the power spectrum, bispectrum and peak count statistics within

10%, and always within the error bars, of the target simulations. Finally, we

describe how we plan to integrate our proposed model with existing tools to

yield more accurate spherical random fields for weak lensing analysis, going

beyond the lognormal approximation.

7.2 Introduction

The best current model to describe our Universe is the ΛCDM model, which

prescribes the existence of a cosmological constant Λ associated with dark

energy, together with cold dark matter (CDM) and ordinary matter (baryons;
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see Sect. 2.2). In particular, the ΛCDM model predicts that dark matter is

about five times more abundant than ordinary matter, with galaxies forming

along the cosmic web structure woven by dark matter, made of filaments

connecting different clusters surrounded by voids. While its gravitational

effects are observed by many probes, the nature of dark matter remains a

mystery, with multiple experiments still ongoing to shed light on it (see e.g.

Trimble 1987; Bertone et al. 2005; Buchmueller et al. 2017; de Swart et al.

2017, and references therein).

The most common tool to analyse and track the origin and evolution

of dark matter structures are cosmological N-body simulations (Holmberg

1941; Navarro et al. 1996; Tormen 1997; Jenkins et al. 1998; Springel

2005; Springel et al. 2005; Boylan-Kolchin et al. 2009; Angulo et al. 2012;

Villaescusa-Navarro et al. 2020, 2021; Chacón et al. 2020, and references

therein). In its basic formulation, an N-body simulation is run by putting a

certain number of massive particles in a cubic box, imposing periodic bound-

ary conditions and letting gravity be the only force acting on the particles

through its gravitational potential, governed by the Poisson equation (see

Sect. 2.2.4). The initial conditions are usually described with a Gaussian

density field, which can entirely be summarised by a given power spectrum,

i.e. by the Fourier counterpart of the correlation function between different

particles in the simulation. Starting from high redshift, the position and ve-

locity of the particles are updated iteratively until today (z = 0), while various

snapshots are taken at different redshifts.

Several methods to run an N-body simulation are available, with differ-

ent levels of complexity, approximation, and speed (Hockney and Eastwood,

1988; Chacón et al., 2020). These include the direct resolution of the equa-

tion of motion for each particle (Mikkola and Aarseth, 1993), approximated

methods like the tree code method (Barnes and Hut, 1986; Callahan and

Kosaraju, 1992), or mean-field approaches like standard (Klypin and Holtz-

man, 1997) or adaptive (O’Shea et al., 2004) particle mesh. In general,
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though, N-body simulations are computational expensive to run, and usu-

ally require access to high performance computing hardware. This limits

the possibility of fully exploring the impact of different cosmological and as-

trophysical parameters on the dark matter evolution in our Universe, and

hinders statistical analyses of the large-scale structure (see e.g. Taylor et

al. 2013; Taylor and Joachimi 2014): N-body simulations are essential to

associate a covariance matrix to real measurements, and thousands of sim-

ulations are usually needed to obtain accurate estimates of such matrices.

In recent years, many cheaper approximations have been proposed,

which try to capture both the large-scale structure of the cosmic web and its

smaller-scale details. These approximations often rely on Lagrangian per-

turbation theory (Buchert, 1992; Buchert and Ehlers, 1993; Buchert, 1994),

and can produce accurate dark matter halo mock catalogues and dark mat-

ter density fields (Monaco et al., 2002, 2013; White et al., 2013; Kitaura

et al., 2013; Chuang et al., 2014; Tassev et al., 2013, 2015; Howlett et al.,

2015; Rizzo et al., 2017). While being capable of capturing the large-scale-

structure statistics with fewer computational resources, these methods usu-

ally fail to accurately produce the correct small-scale statistics, and to date

no inexpensive exact alternative to N-body simulations exists.

Another typical approximation to describe (dark) matter fields is found

by resorting to a lognormal random field, which represents the simplest al-

ternative to running an entire N-body simulation (Coles and Jones, 1991;

Peebles, 1993; Taruya et al., 2002; Percival et al., 2004; Hilbert et al., 2011;

Xavier et al., 2016). A lognormal random field can be easily obtained from

a Gaussian random field (see Sect. 2.2.4.1 and 7.4.1 for further details);

moreover, a lognormal variable has the property of always taking positive

values (a desirable feature when considering the matter density), and, akin

to a Gaussian field, a lognormal field can be entirely described by a small

number of parameters. Moreover, a skewed distribution like the lognormal

one is suited for e.g. the matter overdensity field, whose values range from
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-1 in voids to up to 107 in clustered dense regions. However, as reported in

Xavier et al. (2016) and as shown in Fig. 7.1, the lognormal approximation

comes with its own limitations, and fails to reproduce the right matter density

especially at the tails of the distribution.

Machine learning (ML) techniques have also been proposed to re-

place expensive N-body simulations. In Rodrı́guez et al. (2018), Generative

Adversarial Networks (GANs, Goodfellow et al., 2014) were successfully

trained to generate slices of N-body simulations; Perraudin et al. (2019b)

and Feder et al. (2020) then extended the application of GANs to 3-D boxes,

proving that, while challenging to train, GANs can capture both large- and

small-scale features, and are capable of accurately recovering the statistical

information contained in the training data. He et al. (2019) and Alves de

Oliveira et al. (2020), on the other hand, showed that it is possible to train a

U-shaped neural network architecture (U-net, Ronneberger et al., 2015) to

map simple linear initial conditions to the corresponding final evolved fields,

correctly learning the non-linear growth of structures under the gravitational

influence. In these latter works, it was also shown that such architectures

can perform well even on input data obtained from different cosmological

parameters than the training data, thus demonstrating the appealing feature

of being able to extrapolate outside of the training distribution. Other works

have explored the application of super-resolution techniques to N-body sim-

ulations (Kodi Ramanah et al., 2020; Li et al., 2021), or combinations of

ML-inspired techniques with more traditional methods to improve the accu-

racy of fast N-body solvers (Dai et al., 2018, 2020; Dai and Seljak, 2021;

Böhm et al., 2021).

While being useful, all of the previous approaches still require a rela-

tively high amount of computational resources, or introduce many approxi-

mations that prevent them from being used reliably in place of full N-body

simulations. In this chapter, we show that it is possible to improve the log-

normal approximation by means of ML techniques, with the long-term goal
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of integrating our approach with the Full-sky Lognormal Astro-fields Simu-

lation Kit (FLASK, Xavier et al., 2016), in order to be able to generate more

realistic full-sky random fields.

For this purpose, we start from the Quijote N-body simulation suite

(Villaescusa-Navarro et al., 2020), which offers thousands of realisations of

a single cosmological parameterisation, as well as hundreds of simulations

at different values of the cosmological parameters. We devise a pipeline to

create lognormal density fields which are the approximated counterpart of

the simulated density fields. By construction, these lognormal fields have

the same power spectrum as the simulated density fields, and the phases

of the underlying Gaussian fields are taken from the initial conditions of the

simulated fields (all details are reported in Sect. 7.4.1). Having the pairs

of lognormal and corresponding simulated density fields, we draw from ad-

vanced image-to-image translation techniques based on convolutional neu-

ral networks and adversarial training, in order to obtain a model that can

map simple lognormal fields to more realistic density fields (see Fig. 7.1).

We extensively validate our model by measuring first-, second-, and higher-

order statistics, obtaining good agreement, almost always within 10%, on

all scales. We additionally show that our model, despite being trained on

a single set of cosmological parameters, can be applied to slightly different

cosmologies without re-training, while needing a more extensive study to

be successfully applied to different redshifts or to cosmologies with bigger

variations in the parameters.

The chapter is structured as follows. In Sect. 7.3 we describe the Qui-

jote simulation data, on which this work is based. In Sect. 7.4, we detail the

procedure that we apply to obtain the training data, and describe the image-

to-image translation technique that we employ in this work. In Sect. 7.5, we

present the results for different resolutions of the density fields, as well as for

different values of redshift and cosmological parameters, and demonstrate

the performance of our model through a wide range of statistical tests. We
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Figure 7.1: Left panel : histograms of the matter overdensity δ , defined in Eq. 7.1,
for a lognormal random field (red) and an N-body simulation dark mat-
ter density field (grey). Middle and right panels: square maps of a
lognormal (middle) and N-body (right) density fields, with a side of 512
pixels. In these heatmaps, we clipped the maximum and minimum val-
ues after applying the logarithm to reduce their dynamic range; the
symbol log indicates the natural logarithm throughout this chapter. The
right-hand-side plot is a slice of a simulation from the Quijote suite
(Villaescusa-Navarro et al., 2020), while the middle plot, obtained fol-
lowing the procedure described in Sect. 7.4.1, represents its lognormal
counterpart. The goal of this chapter is to train a machine learning
model (described in Sect. 7.4.2) to transform the lognormal map to the
more realistic N-body map, thus improving the statistical power of the
fast lognormal approximation.

conclude in Sect. 7.6 with a summary of our work, planned improvements

and an outline of possible future applications of our model.

7.3 Data

In this work, we use the Quijote simulation suite (Villaescusa-Navarro et

al., 2020). This set of N-body simulations includes 15000 realisations fol-

lowing 5123 dark matter particles in a box with side of 1 h−1 Gpc, with

the matter density parameter Ωm = 0.3175, the baryon density parameter

Ωb = 0.049, the Hubble parameter h = 0.6711, the scalar spectral index

ns = 0.9624, the root mean square of the matter fluctuations in spheres of

radius 8 h−1 Mpc σ8 = 0.834, and the dark energy equation of state parame-

ter w =−1; neutrinos are considered massless. These simulations were run

using the TreePM code Gadget-III, which is an improved version of Gadget-
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II (Springel, 2005). We consider snapshots of both the initial conditions

(z = 127) and today (z = 0), as well the z = 1 snapshot for further validation

of our model (see Sect. 7.5.5).

In each N-body simulation, we convert the information on the particles’

position to a continuous random field through a mass assignment scheme.

We are interested in analysing the matter overdensity field δ (x), defined as:

δ (x) =
ρ(x)

ρ̄
−1 , (7.1)

with ρ(x) being the matter density field at each position x, and ρ̄ being the

mean density in the volume of the simulation.

Following Chaniotis and Poulikakos (2004), Jing (2005), and Sefusatti

et al. (2016), we consider a regular grid of points in all 3 directions. The con-

tinuous overdensity field is obtained by interpolating the discrete overdensity

field on this grid, i.e. by evaluating the continuous function

δ̃ (x) =
∫ dx′

(2π)3W (x−x′)δ (x′) (7.2)

on the grid, with W (x) being the weight function describing the number of

grid points to which every particle is assigned. We choose the piecewise

cubic spline interpolation scheme, i.e. we explicitly write the weight function

as W (x) = W1D(x1/H)1D(x2/H)1D(x3/H), with H being the grid spacing, x1

(x2, x3) being the x (y, z) direction, and W1D being the unidimensional weight

function

W1D(s) =


4−6s2+3|s|3

6 if 0≤ |s|< 1 ;

(2−|s|)3

6 if 1≤ |s|< 2 ;

0 otherwise ,

(7.3)

with s =
xG

j −x j

H , j = {1,2,3} and the superscript G indicating grid points; we

refer the reader to Sefusatti et al. (2016) for more details. We consider both

a grid with side Nhigh = 512 points and Nlow = 128, and present the results in
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Sect. 7.5.3 and Sect. 7.5.4, respectively.

Note that in Sect. 7.5.6, when we explore the dependence of our model

on the cosmological parameters, we additionally consider 500 N-body sim-

ulations with a different value of Ωm and σ8 on a grid with Nlow points.

7.4 Method

Our goal is to obtain 2-D projected density lognormal fields corresponding

to slices of the Quijote simulations, in order to train a model that can take as

an input a lognormal map and predict a more realistic density field with the

same statistics as the simulated one. In the following sections, we describe

the procedure that we follow to obtain such a dataset (Sect. 7.4.1), and

the machine learning algorithm that we employ to learn the transformation

(Sect. 7.4.2).

7.4.1 Obtaining the training data

Since the long-term goal of the project is to increase the accuracy in large-

scale structure description of random field maps on the sphere like the ones

produced by FLASK (Xavier et al., 2016), we choose to work with slices of

the density field rather than the full 3-D boxes. We slice a given box along

the third axis, and obtain multiple square density fields from a single simu-

lation (128 in the low-resolution case, and 512 in the high-resolution case).

Since we consider 800 simulations in the low-resolution case, and 200 in

the high-resolution case, we are left with 102400 maps in both cases. We

also consider the initial conditions of these slices, which correspond to the

N-body simulations at z = 127.

In order to create the lognormal counterpart of the more realistic maps,

we start by measuring the average power spectrum of the simulations, which

we wish to impose on the lognormal fields. We recall here that the matter

power spectrum P(k) can be implicitly defined through the Fourier transform
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δ (k) of the matter density contrast δ (x), defined as in Eq. 7.1:

〈δ (k)δ (k′)〉= (2π)3 P(k)δD(k′−k) , (7.4)

where 〈·〉 denotes an average over the whole Fourier space, k = |k|, and

δD(·) indicates the Dirac delta function (Dodelson, 2003); this in turn yields

the estimator

P̂(k) =
1

Nmodes(k)
∑
k=k
|δ (k)|2 , (7.5)

where Nmodes(k) is the number of modes in each k bin. The definition in

Eq. 7.4 implies that P(k) is the Fourier counterpart of the matter correlation

function ξ (r), with r = |r|, i.e.

P(k) =
∫

ξ (r)e−ik·r d3r , (7.6)

where ξ (r) is defined as

ξ (r) = 〈δ (x)δ (x+ r)〉 , (7.7)

with 〈·〉 representing the average over all locations x in this case.

In order to generate a lognormal random field with a given power spec-

trum, we follow the procedure of Coles and Jones (1991) and Percival et al.

(2004). We start by converting the measured power spectrum to the matter

correlation function ξLN(r), then we calculate the corresponding Gaussian

correlation function

ξG(r) = log [1+ξLN(r)] , (7.8)

transform it back to Fourier space and create a Gaussian random field re-

alisation δG on a grid with this power spectrum and the required resolution

(Nlow or Nhigh). It is well known that a Gaussian field is entirely specified

by the given power spectrum, which only depends on the absolute value

of the Fourier coefficients (cf. Eq. 7.5): this means that the Fourier phases
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Figure 7.2: Flowchart of the steps to create the training data, as described in
Sect. 7.4.1. We first measure the average power spectrum of the z = 0
boxes (in red in the top panel), which is concatenated with the theory
power spectrum obtained using CLASS (Blas et al., 2011; in grey in
the top panel). We then generate a lognormal random field with this
power spectrum, following Coles and Jones (1991) and Percival et al.
(2004). Crucially, when generating the underlying Gaussian field, we
do not choose any random Fourier phases, but we use the Fourier
phases of the initial conditions of the N-body simulation (which consist
of a Gaussian random field at z = 127). In this way, the lognormal field
displays high correlation with the N-body field. The final training data
consists of pairs of lognormal (δLN) and simulated (δSIM) density fields,
with either low (side Nlow = 128) or high (side Nhigh = 512) resolution, as
explained in Sect. 7.3. The machine learning model employed to learn
the mapping from δLN to δSIM is presented in Sect. 7.4.2.
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can be uniformly sampled from the [0,2π] interval (Coles and Chiang, 2000;

Chiang and Coles, 2000; Watts et al., 2003). Crucially, when generat-

ing the Gaussian random field, instead of having any random phases we

employ the random phases of the Gaussian initial conditions of the Qui-

jote simulations, so that the final lognormal density fields will correlate with

the density fields obtained from the simulations, as shown in Fig. 7.1. Fi-

nally, we obtain the lognormal field δLN by calculating for each grid point

δLN = exp
{(

δG−σ2
G/2
)}
−1, where σG is the standard deviation of the Gaus-

sian field. Note that for all these operations we employ the python package

nbodykit (Hand et al., 2018). A flowchart representing the steps followed to

produce the training data is reported in Fig. 7.2.

We observe three limitations due to the fact that we measure the power

spectrum from a finite-resolution grid. First, by relying on the boxes only,

we are capable of surveying only a limited range in k, namely no larger than

k ∈ [0.025 h Mpc−1, 1 h Mpc−1]. In order to access larger scales (i.e. lower

k values), we concatenate the measured power spectrum with the theo-

retical one obtained with (CLASS Blas et al., 2011) for k ∈ [10−5 h Mpc−1,

0.025 h Mpc−1]: this makes the procedure outlined in the previous para-

graphs numerically stable. Second, we observe that we do not correct for

the chosen mass assignment scheme when measuring the box power spec-

trum (Sefusatti et al., 2016); however, we think this is not a limitation of our

approach, as we could in principle impose any given power spectrum onto

the lognormal fields. Third, we observe an increase in power at high k in

the lognormal fields with respect to the imposed power spectrum, which we

attribute to the fact that we combine the phases of a smoothed Gaussian

random field from the simulated initial conditions with a Gaussian random

field obtained with nbodykit. We correct for this effect, which is more pro-

nounced at higher resolution, by simply rescaling the input power by this

difference at each k, thus effectively obtaining a lognormal field with the

same power spectrum as the simulated density field.
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We are left with pairs of density field square maps (dubbed δLN and

δSIM), which we use as the training (80%), validation (10%) and test (10%)

data, further discussed in the next section. Note that, to reduce the corre-

lations between slices coming from the same simulation cube, we shift the

grid points by a random amount along both the first and second axis, in-

dependently for each pair of maps, assuming periodic boundary conditions.

We observe it could also be possible to randomly rotate and flip the slices

in order to augment the training data; while we found it is not needed in

our setup, we defer further investigations to future work. Before feeding the

pairs into the neural network architecture described in the next section, we

additionally preprocess each map by calculating log(1+δ ) to decrease the

dynamic range of each density value δ .

7.4.2 Image-to-image translation

As discussed in Sect. 7.2, machine learning generative techniques have

extensively been applied to many natural sciences. In this work, we aim

at mapping lognormal fields to more realistic fields, hence we employ the

pix2pix network structure, first proposed in Isola et al. (2017). The model

is composed of two parts, as sketched in Fig. 7.3, and all implementation

details are reported in Sect. 7.7. The first part is a U-net (Ronneberger et

al., 2015), which takes as an input a lognormal map δLN, obtained and pre-

processed as described in Sect. 7.4.1. The map is passed through various

convolutional layers to yield a compressed feature map, which is then up-

sampled back to the original resolution. Crucially, these upsampling steps

are concatenated with the corresponding downsampled feature maps, which

allow various scales to be accessible in the output map. We call the output

map the generated map δGEN.

We want the generated map to carry the same statistical information

as the δSIM density field. We tested that minimising a simple `1 or `2 norm

between δGEN and δSIM is not sufficient to yield accurate results. For this rea-
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2

Figure 7.3: A representation of the generative model employed in this work, as
described in Sect. 7.4.2. Following Isola et al. (2017), we have two
convolutional neural networks, the generator (bottom left) and the critic
(top right). We feed the lognormal maps through the generator, which
is a U-net (Ronneberger et al., 2015), that first downsamples and then
upsamples each image using various convolutional layers, with all de-
tails reported in Sect. 7.7. To improve the performance of the model,
each upsampling step is concatenated with the output of a downsam-
pling step, as indicated by the dashed lines (skip connections). The
output of the generator, dubbed δGEN, is then compared with the target
data δSIM by the critic network, which is again made of various convolu-
tional layers, ending with a dense layer in order to have a single output.
The critic and generator networks are trained altogether, minimising
the loss function of Eq. 7.9. Note that in addition to the standard adver-
sarial loss, we include a penalty term in the form of the mean squared
error between the generated and target maps, which we found to sig-
nificantly improve the performance of our model; this is indicated by the
short-dashed lines (identity ).
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son, following Isola et al. (2017), we employ a second convolutional block as

a discriminator, and express the loss in the framework of adversarial train-

ing. Since we found the GAN framework as in Goodfellow et al. (2014) to be

particularly unstable during training, we actually implemented the Wasser-

stein GAN with gradient penalty, described in detail in Sect. 1.2.3.2. We

slightly modify Eq. 1.33, and consider the following loss function:

EδGEN
[C(δGEN)]−EδSIM

[C(δSIM)]+

+λ1Eδ̂

[(
||∇

δ̂
C(δ̂ )||2−1

)2
]
+λ2||δGEN−δSIM||22 , (7.9)

where δGEN = G(δLN), EδGEN
and EδSIM

indicate the expectation value over

samples of the generated and simulated maps, respectively, δ̂ represents a

linear combination of δGEN and δSIM (as already explained in Sect. 1.33), and

λ1 and λ2 are two positive hyperparameters that allow us to tune the amount

of regularisation given by the gradient penalty and the `2 norm, respectively.

We observe that in the standard WGAN-GP formulation λ2 = 0, while in

our case we found it key to minimise the `2 norm between simulated and

generated maps as well in order to obtain sensible results.

To train the networks, we use the Adam optimiser with learning rate

10−5; we set the additional Adam hyperparameters β1 = 0 and β2 = 0.9, fol-

lowing Gulrajani et al. (2017), and refer the reader to Sect. 1.2.2 for more

details. We feed the data in batches of 32 pairs at each iteration, and train

our model for 20 epochs, where each epoch consists of feeding the entire

training set through the network. For each batch, we update the critic pa-

rameters 10 times, and the generator parameters only once. Each epoch

takes about 1 h (2 h) for the low (high) resolution case, on a Tesla P100

GPU; after training, mapping a lognormal map through the generator takes

O(1 s) on the same hardware, and can be efficiently done in batches.

We save the model after each epoch. In order to select the best model

amongst the saved ones, for each of them we run the statistical tests de-
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Figure 7.4: The lognormal (left) and N-body (middle) density fields as in Fig. 7.1,
with the prediction of our model (right) given the lognormal field. In
these heatmaps, we clipped the maximum and minimum values before
applying the logarithm to reduce their dynamic range. The model is
described in Sect. 7.4.2. We observe that we are not interested in an
exact match of the middle and right panels, as we explain in Sect. 7.5.1,
and thoroughly test that the predicted fields carry the same statistical
information as the N-body maps from Sect. 7.5.2.

scribed in Sect. 7.5.2, and measure the mean percentage difference be-

tween the target and predicted maps for randomly-sampled maps of the

validation set. The best model is then chosen as the one which minimises

the sum of the mean percentage differences over all tests. We show the

results of our best model on the test set in the next section. Our best model

is found with λ1 = 100 and λ2 = 10.

7.5 Results

In this section, we validate the performance of the trained model by compar-

ing the statistics of the generated and simulated maps. As we anticipated

in the previous section, we compare the statistics of the simulated and pre-

dicted maps from the validation set to choose the best model, and show

here the results on maps sampled from the test set using that model.

7.5.1 Qualitative comparison

While the appearance of the maps is statistically irrelevant for the purpose

of our analysis, a visual inspection is nonetheless useful to intuitively under-

stand whether our model is on the right track to learn the N-body features.
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We show a lognormal map, its N-body counterpart and the prediction of our

model given the lognormal map in Fig. 7.4 for the high-resolution case. We

note that our goal is not to obtain an exact visual match between the model’s

prediction and the N-body map: for the applications we focus on (discussed

in Sect. 7.6), the actual position of peaks and voids in the lognormal map is

irrelevant, since it is dictated by the random sampling of the phases. On the

other hand, we aim to generate maps which carry the same statistical signal

as the N-body maps on average, improving on the lognormal approximation.

We observe that the model has learnt the correct texture of the large-

scale structure on top of the lognormal field; we argue that this does not

match the N-body pattern since the lognormal maps in our training data are

built from the Fourier phases of the initial conditions of the N-body simula-

tions (z = 127, cf. Fig. 7.2), while the simulation snapshot is taken at z = 0,

when the initial structures have moved around in the simulation box.

7.5.2 Statistics

While visual inspection of the generated maps against the target ones is a

necessary zeroth-order test to provide intuition on whether the model was

adequately trained, it is then fundamental to compare the summary statis-

tics of interests and carefully quantify their agreement. We run 4 different

statistical tests, which we briefly describe here.

7.5.2.1 Pixel counts

The first test consists of binning the pixels of the generated and target den-

sity fields into a histogram. While the lognormal distribution is a good ap-

proximation of the simulated fields, there is a significant difference between

the two, especially at the tails of the density values (see e.g. Fig. 7.1). We

show in panel (a) of Fig. 7.5 and Fig. 7.6 the performance of our model with

respect to the pixel counts for high and low resolution, respectively.
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7.5.2.2 Power spectrum

We compare the power spectrum as defined in Eq. 7.4 for the simulated

maps and the ones predicted by our model given the lognormal maps. While

it could be argued that this is a trivial task, given that the input and output

maps have the same power spectrum by construction, it is not obvious that

our model does not modify the power spectrum information while learning

the new density distribution. Moreover, we recall here that while we impose

the mean 3-D power spectrum to be the same for δSIM and δLN, this does not

necessarily imply that the power spectrum measured on the sliced maps will

be the same. We therefore compare the power spectra and show the results

in panel (b) of Fig. 7.5 and Fig. 7.6, for high and low resolution, respectively.

7.5.2.3 Bispectrum

To probe the non-Gaussian features of the density fields, we measure the

matter bispectrum of the maps, i.e. the counterpart of the 3-point matter

correlation function in Fourier space. The matter bispectrum B(k1,k2,k3) is

usually defined implicitly as (see e.g. Sefusatti et al. 2006):

〈δ (k1)δ (k2)δ (k3)〉= (2π)3
δD(k1 +k2 +k3)B(k1,k2,k3) , (7.10)

where δ (k) indicates the Fourier transform of the matter overdensity δ (x) (cf.

Eq. 7.4), and as usual ki = |ki|. To further assess that our model correctly

captured the information beyond the power spectrum, we also measure the

reduced matter bispectrum Q(k1,k2,k3) (see e.g. Liguori et al. 2010), defined

as

Q(k1,k2,k3) =
B(k1,k2,k3)

P(k1)P(k2)+P(k1)P(k3)+P(k2)P(k3)
. (7.11)

We calculate these quantities using Pylians3 (Villaescusa-Navarro,

2018), and we correct for the mass assignment scheme in this case. We

measure bispectra and reduced bispectra for different configurations de-

pending on the resolution; different triangle configurations usually probe dif-
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ferent inflationary models that aim to explain non-Gaussian features of the

large-scale structure, and one must include as many configurations as pos-

sible to break degeneracies when inferring cosmological parameters (Bergé

et al., 2010; Liguori et al., 2010). Moreover, different bispectra configura-

tions can shed light on the size of collapsing regions, as well as on the

relative position of clusters and voids in the large-scale structure (Munshi et

al., 2020). We report the results in panels (d)–(g) of Fig. 7.5 and Fig. 7.6 (for

high and low resolution, respectively) as a function of the angle θ between

the vectors k1 and k2, which are lying on the plane of the slices.

7.5.2.4 Peak counts

To further assess whether the model has correctly learnt the most non-

Gaussian features of the simulated density fields, we verify that the peak

counts of the generated and target maps match within the error bars. A

peak is defined as a density pixel which is higher than the 8 surrounding

pixels. Peak count statistics have been shown to carry significant cosmo-

logical information, especially in weak lensing studies, as it traces the most

dense regions (Pires et al., 2009, 2012; Dietrich and Hartlap, 2010; Marian

et al., 2011; Mainini and Romano, 2014; Lin and Kilbinger, 2015a,b; Lin et

al., 2016). We bin the peak values for both the simulated and target maps,

and compare them in panel (c) of Fig. 7.5 and Fig. 7.6, for high and low

resolution, respectively.

7.5.3 High resolution

In Fig. 7.5 we compare the performance of the predictions of our model

against the target maps, for the case with 5122 grid points. We run the

statistical tests on 30 maps randomly sampled from the test set; the solid

lines show the mean values and the dashed areas represent the error on

the mean.

In panel (b), we show that the trained model is capable of preserving the

correct power spectrum on all scales from 0.025 h Mpc−1 to 1 h Mpc−1, with
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Figure 7.5: Comparison of the statistical tests described in Sect. 7.5.2 for the log-
normal (δLN, in red), N-body (δSIM, in grey), and predicted (δGEN, in
cyan) maps, considering a resolution of Nhigh = 512. The performance
is measured at the bottom of each panel by calculating the relative
difference of N-body against predicted and lognormal maps (dashed
lines). All solid lines indicate the mean values over 30 maps, and the
error bars represent the error on the mean (or propagated error, in
the case of the relative differences). We observe that, except for the
range −1 < δ < 0 in panel (a), the prediction always matches the target
statistics within the error bars, performing significantly better than the
lognormal; we discuss in Sect. 7.5.3 how the results could be further
improved.
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percentage differences going no higher than 10%, and always within the er-

ror bars. At the same time, the model correctly improves on the lognormal

approximation as far as the peak counts and pixel counts are concerned,

with significant differences for −1 < δ < 0 in the latter case only. We believe

that the performance in this case could be ameliorated by exploring different

network architectures, or by improving the preprocessing steps when creat-

ing the training set. In panels (d)–(g), we show the results for the (reduced)

bispectrum, for k1 = 0.4 h Mpc−1, k2 = 0.6 h Mpc−1 — panels (d) and (e) —

and for k1 = 0.5 h Mpc−1, k2 = 0.5 h Mpc−1 — panels (f) and (g). The perfor-

mance is very good overall, with the percentage difference between target

and predicted maps always being within the error bars.

7.5.4 Low resolution

In Fig. 7.6 we compare the performance of the predictions of our model

against the target maps, for the case with 1282 grid points. In this case, we

use 100 randomly-sampled maps from the test set, given the lower compu-

tational cost. We observe good agreement between predicted and target

maps for the pixel counts, power spectrum and peak counts statistics, al-

most always within 5%. As far as the bispectra are concerned, we consider

two configurations, one with k1 = 0.1 h Mpc−1, k2 = 0.3 h Mpc−1 — pan-

els (d) and (e) — and for k1 = 0.2 h Mpc−1, k2 = 0.2 h Mpc−1 — panels (f)

and (g). Since the fields have a lower resolution, the scales we probe are

larger than in Sect. 7.5.3. While the bispectrum results match within the

error bars, the reduced bispectra show a significant discrepancy at low θ .

We argue that these deviations are due to small differences in the power

spectrum predictions, in particular for k ≥ 0.1 h Mpc−1 where the predicted

power spectrum always lies below the target power spectrum; we expect

a model trained between maps with exactly the same power spectrum (as

anticipated in Sect. 7.5.2.2) to reduce these discrepancies, and defer this

study to future work.
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Figure 7.6: Same as Fig. 7.5, with a lower field resolution Nlow = 128. In this case,
the solid lines indicate the mean values over 100 maps. We observe
that the model’s performance in this case is almost always within the
5% range, with the exception of the bispectra, where significant differ-
ences are present, especially at low θ ; we discuss these discrepancies
in Sect. 7.5.4. Despite these differences, our model still outperforms
the lognormal approximation.

7.5.5 Redshift dependence

So far, we have shown the performance of our model on a given fiducial

set of cosmological parameters, from which the training data were obtained.

It is of general interest to assess whether the performance degrades when

the model is tested on lognormal maps obtained with a different cosmology,

and it has been shown that machine learning models applied to cosmologi-

cal problems may display good generalisation properties (see e.g. He et al.

2019). In our experiments, we verified that feeding our model with lognormal
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Figure 7.7: Same as Fig. 7.6, for a different model trained on data at redshift z = 1.
We observe a good overall performance of our model, which outper-
forms the lognormal approach, while showing significant discrepancies
only around k = 0.25 h Mpc−1 for the power spectrum — panel (b) —
and δ <−0.5 for the pixel counts — panel (a).

maps at z = 0.5 or z = 1.0 does not yield satisfactory results, with percent-

age errors going well above 50%. We attribute this failure to the different

dynamic range of the lognormal maps at different redshifts, highlighting that

our model is not capable of extrapolating to such different values.

To overcome this limitation, we propose the following two solutions.

First, it is possible to train a second model on data generated as described in

Sect. 7.4.1 with z 6= 0, and we show the results for a separate model trained

at z = 1 in Fig. 7.7, for the low-resolution case, with a good performance

overall. Second, it is possible to train a conditional model by providing the

redshift label together with the input lognormal map, thus obtaining a con-

ditional WGAN-GP (see e.g. Mirza and Osindero 2014); we defer this study
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to future work.

7.5.6 Cosmology dependence

While in the previous section we showed that our non-conditional model fails

to generalise to different redshifts, in this section we show the performance

of our model does not degrade much when acting on fields with different

values of Ωm and σ8.

In particular, we consider small variations in the matter density param-

eter Ωm and the matter density fluctuations σ8. We separately vary each of

them, for a total of 4 sets of test data, which we use to further validate our

model and show its weak dependence on the cosmological parameterisa-

tion. We consider Ωm
m = 0.3075, Ω

p
m = 0.3275, σm

8 = 0.819, and σ
p
8 = 0.849.

We repeat the steps described in Sect. 7.4.1 to obtain the lognormal fields

corresponding to these simulations, and compare the statistics of the tar-

get maps against the ones generated by applying our model trained on the

fiducial cosmology to the lognormal fields. We show the results for 1282 grid

points in Sect. 7.8: we observe an overall acceptable performance, with mi-

nor further degradations in the reduced bispectra results, as well in the pixel

counts and power spectrum of the σ
p
8 = 0.849 results. We defer the study

of our model’s performance on bigger variations of these cosmological pa-

rameters, as well as varying other cosmological parameters, to future work,

where we plan to employ the Quijote simulations run at Latin hypercube

samples of the cosmological parameters (Villaescusa-Navarro et al., 2020)

to train a conditional model, as suggested in Sect. 7.5.5.

7.6 Conclusions

In this chapter, we employed the Quijote simulations as a starting point to

train a machine learning model that is capable of transforming simple lognor-

mal realisations of the dark matter density field to more realistic samples of
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the dark matter distribution. We employed state-of-the-art image-to-image

translation techniques, combining convolutional neural networks and adver-

sarial training, to learn such a model, and extensively validated its perfor-

mance through a thorough set of statistical tests. We observed a significant

reduction in the error for non-Gaussian features like peak counts and bis-

pectra, from tens of percent for the pure lognormal model to no more than

10% obtained by our model in most cases; the latter frequently shows an

order of magnitude improvement over the former. Furthermore, we showed

that our model displays good performance on the cosmological set of pa-

rameters it was trained on, and that its performance did not degrade much

with small changes in the cosmological parameters. At the same time, we

verified that there is still room for improvement when generalising the per-

formance of our model to different redshift values and bigger variations in

the cosmological parameters, and we outlined a few promising avenues to

investigate to overcome these issues.

We will extend this work to random fields on the sphere, and integrate

it into the FLASK package developed in Xavier et al. (2016). We plan to

extend our approach to spherical random fields by iteratively applying our

model to square patches of the sky, thus providing the community with a

tool to quickly generate realistic dark matter realisations that overcome the

limitations of the lognormal approximation. Additionally, we believe that the

procedure outlined in this chapter could also be applied to augment ana-

lytical approximations to N-body simulations (like L-PICOLA, Howlett et al.,

2015, or FastPM, Feng et al., 2016), as well as semi-analytical models of

galaxies, which, in the same vein as lognormal random fields, provide a

fast approximation to hydrodynamical simulations by modelling complicated

baryonic processes (White and Frenk, 1991; Kauffmann et al., 1993; Cole

et al., 1994; Somerville and Primack, 1999; Lacey, 2001). We further plan

to explore the possibility to employ the dataset described in this work to

reduce the variance in the statistics of large-scale structure observables us-
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Table 7.1: Size of each layer’s output in the generator and the critic neural net-
works, detailed in Sect. 7.4.2 and Sect 7.7, for the high-resolution case.
The low-resolution architecture is built analogously.

Size Comments
Generator 512×512×1 Input size; δLN

256×256×64
128×128×128

64×64×256
32×32×512
64×64×512 First upsampling step

128×128×256
256×256×128
512×512×64
512×512×1 Linear activation; δGEN

Critic 512×512×1 Input size; either δSIM or δGEN
256×256×32
128×128×64
64×64×128
63×63×512

62×62×1
3844 Flattening; input to dense layer

1

ing a small number of expensive simulations (Chartier et al., 2021; Chartier

and Wandelt, 2021), as well as to replace our heavy WGAN-GP model with

a more compact model, like the one proposed in the context of Lagrangian

deep learning (LDL, Dai and Seljak, 2021) or with scalable normalising flows

(e.g. FFJORD, Grathwohl et al., 2018). This will be investigated in future

work.

7.7 Model architecture

Convolutional neural networks (CNNs) have been introduced in Sect. 1.2.2.

Stacking convolutional layers allows one to extract progressively larger

scales from the input data, and represents a more efficient implementation

of a neural network with respect to standard dense layers when dealing with

high-dimensional data like images (Le Cun et al., 1989; Goodfellow et al.,
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2016). We recall here that in a dense (feedforward) neural network, instead,

each layer is made up of a certain number of neurons, and each neuron is

linked to all previous neurons through some learnable weights, which are

combined linearly (and possibly passed through an activation function) to

obtain the output (see e.g. Schmidhuber 2015 for a comprehensive review).

As anticipated, our model, depicted in Fig. 7.3, consists of two neural

networks. The first neural network (the generator) contains four downsam-

pling blocks, followed by four upsampling blocks. Each downsampling block

first pads the input data assuming periodic boundary conditions, and then

applies a convolution operation with 4x4 filters. There are 64 convolutional

filters in the first place, and this number doubles for each block. Note that no

pooling layers are present (Yamaguchi et al., 1990), and we are able to re-

duce the dimensionality of the extracted feature maps by shifting each filter

by two pixels in both directions; in other words, we set a stride of 2. The com-

pressed map is then symmetrically upsampled using the transposed convo-

lution operation (Dumoulin and Visin, 2016). At each block, each feature

map is concatenated with the corresponding downsampled map by simply

stacking them along the last spatial axis; this is done in order to better learn

the representations at each level (Ronneberger et al., 2015). The activation

function used after each downsampling layer is the ReLU, while for the up-

sampling blocks we found the Leaky ReLU with α = 0.3 to perform better. A

final convolutional layer with linear activation function outputs the generated

map δGEN. Note that all downsampling and upsampling blocks include batch

normalisation (Ioffe and Szegedy, 2015), which during training subtracts the

batch mean and divides by the batch standard deviation, in order to make

the training procedure more stable. The second neural network is done sim-

ilarly, with three downsampling blocks followed by two convolutional layers

with Leaky ReLU as the activation function, and a final dense layer with a

single output and a linear activation function. Input and output shapes for

each layer are reported in Table 7.1. We implement our neural networks in
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TensorFlow (Abadi et al., 2015).

7.8 Cosmology dependence results

We show the results of our model trained on the fiducial cosmology and

applied to different cosmological sets, as detailed in Sect. 7.5.6, in Fig. 7.8-

Fig. 7.11.
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Figure 7.8: Relative difference for the N-body (grey) and our model’s prediction
(cyan) between the fiducial cosmology and a cosmology with the dif-
ferent value Ωm

m = 0.3075. Note that the model has been trained on
the fiducial cosmology, and applied to a lognormal map with a different
value of Ωm.
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Figure 7.9: Same as Fig. 7.8, comparing the fiducial cosmology and a different
cosmology with Ω

p
m = 0.3275.
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Figure 7.10: Same as Fig. 7.8, comparing the fiducial cosmology and a different
cosmology with σm

8 = 0.819.
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Figure 7.11: Same as Fig. 7.8, comparing the fiducial cosmology and a different
cosmology with σ

p
8 = 0.849.
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8
Conclusions

But if, instead, we have only succeeded in wearying him,

he may rest assured that we did not do so on purpose.
A. Manzoni, The Betrothed, as translated by James Burns in 1844, referring to the reader

8.1 Summary

Throughout this thesis, we explored the application of machine learning (ML)

generative models to accelerate inference in cosmology and seismology.

We demonstrated that it is possible to employ neural networks to train sur-

rogate models for seismic traces and cosmological summary statistics, ac-

celerating Bayesian inference by orders of magnitude on inexpensive hard-

ware. At the same time, we showed that learning an entire cosmological

simulation with machine learning techniques is a more challenging task,

which requires more sophisticated algorithms and more powerful hardware.

Despite the wide excitement and promise of ML applications across the sci-

ences, we found that it is not sufficient to simply feed a certain number

of simulations to standard ML generative models in order to claim that the

problem is solved, and more craftwork is required to obtain sensible results.

However, we further demonstrated that if we provide the model with relevant

information about the physics of the problem, as we did in Chapter 7, it is

possible to obtain a useful ML model which could greatly benefit upcoming
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surveys of the large-scale structure of the Universe. This has been shown to

be a possible way forward in e.g. He et al. (2019) and Dai and Seljak (2021),

amongst the others.

Generally speaking, we argue that bespoke solutions have to be de-

veloped to achieve significant advances in the physical sciences by means

of ML techniques, and one should not rely on off-the-shelf packages that

promise to yield a master key solving any scientific problem. In other words,

we believe that we are currently far away from a full automation of the sci-

entific process: we still need the critical analysis of scientists, even more so

to judiciously integrate artificial intelligence in the physical sciences. We re-

mark that this is not only due to the black-box nature of many ML algorithms:

we argue that since ML models are usually very flexible, as e.g. they include

millions of parameters, they often struggle to generalise to different data do-

mains, and lack the abstraction needed for model building that is central to

physics. We therefore advocate for the careful and restrained use of ma-

chine learning techniques, especially when other well-understood solutions

with comparable performance are available. On the other hand, we believe

that the potential impact of AI in the physical sciences is enormous and well

worth exploring, and that proper ML techniques can benefit seismology and

cosmology in particular, opening up many interesting avenues. If this will

not be the case, we still believe that AI in the natural sciences is fostering

fruitful conversations among different branches that could otherwise miss

the opportunity to exchange ideas, and we deem this a positive outcome

anyway.

We extensively validated the ML models that we trained in each chap-

ter, as well as demonstrated their advantages and limitations. Attractive

features of these models include the need to be trained only once, if the

prior space does not change, and their high speed of evaluation, especially

if one has access to Graphics Processing Units (GPUs). The models we de-

veloped are being shared with the relevant communities, and we hope that
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through a collective effort we will see a useful integration of such techniques

in upcoming scientific endeavours.

8.2 Outlook

8.2.1 Emulators

The seismological emulators we developed are up to 4 orders of magni-

tude faster than traditional techniques. This opens up many opportunities

of deploying them in real scenarios, where we are interested in locating the

source of underground seismic events, including actual earthquakes. On-

going work and collaborations will develop a more complete model that can

infer the location and the source mechanism of both microseismic and more

powerful underground events. As we discussed in Chapter 3 and 4, this will

probably require more training data, and a more careful framework to opti-

mise the limited amount of data that is available. Another interesting exten-

sion would include the possibility to limit the amount of re-training needed

when the density and velocity models change — this happens when we fo-

cus on different seismic sites, as well as when we observe a single site for

a long time, depending on the particular type of underground structure. We

argue that this avenue can be explored borrowing techniques from transfer

learning, as well as integrating our framework with physics-informed neu-

ral networks, which include information about the physical features of the

problem in the machine learning model. This will be investigated in future

work.

The emulators we developed for the cosmological summary statistics

are currently in the process of being wrapped as a Python module; parts of

it are already being shared with other practitioners and integrated in wider

pipelines that require fast evaluation of cosmological power spectra. As we

detailed in Chapter 5, we expect CosmoPower to be key in achieving accurate
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Bayesian posterior contours for Stage IV surveys in a reasonable amount of

time, which will leave more time for the exploration of disagreements be-

tween different probes, which might open a window on new physics. At

the same time, we are aware that many other avenues could now be pur-

sued. In particular, the full differentiability of the emulators implies that they

lend themselves well to different posterior samplers like Hamiltonian Monte

Carlo, which could further accelerate the Bayesian inference while reducing

the correlation among different samples. We plan to investigate this further

in future work.

8.2.2 Generative models

The model we developed in Chapter 7 is amenable to some straightforward

further improvements. For instance, we aim to turn it into a conditional model

as a function of cosmological parameters and, arguably more importantly,

redshift value: since the ultimate goal would be to integrate our model with

FLASK (Xavier et al., 2016), it is essential for it to be able to capture the vari-

ations in the large-scale structure at different redshifts. Such a model would

be able to return the integrated signal along the line of sight, used e.g. when

modelling the convergence field or redshift space distortions, and could be

extremely useful for upcoming surveys of the large-scale structure. An addi-

tional challenge consists of translating the domain of our model from flat sky,

i.e. the box simulations used for training, to curved sky maps as produced

by FLASK: to this purpose, we plan to investigate the iterative application of

our model to small patches of the sky, which are approximately flat, or to

switch to spherical training data. These improvements will be explored in

future work.

In conclusion, we look forward to adventuring and exploring these

paths, and we hope that we convinced the reader to come along with us.
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Mead, A. J., Brieden, S., Tröster, T., and Heymans, C. (2021). hmcode-2020: improved

modelling of non-linear cosmological power spectra with baryonic feedback. Monthly

Notices of the Royal Astronomical Society 502.1, pp. 1401–1422. DOI: 10.1093/

mnras/stab082 (page 171).

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).

Equation of State Calculations by Fast Computing Machines. The Journal of Chemical

Physics 21.6, pp. 1087–1092. DOI: 10.1063/1.1699114 (page 38).

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. (2016). Unrolled Generative Adversarial

Networks. CoRR abs/1611.02163 (page 60).

de Mijolla, D., Viti, S., Holdship, J., Manolopoulou, I., and Yates, J. (2019). Incorporating

astrochemistry into molecular line modelling via emulation. Astronomy & Astrophysics

630, A117. DOI: 10.1051/0004-6361/201935973 (page 161).

Mikkola, S. and Aarseth, S. J. (1993). An Implementation of N-Body Chain Regularization.

Celestial Mechanics and Dynamical Astronomy 57.3, pp. 439–459. DOI: 10.1007/

BF00695714 (page 231).

Miller, A. D., Foulger, G. R., and Julian, B. R. (1998). Non-double-couple earthquakes 2.

Observations. Reviews of Geophysics 36.4, pp. 551–568. DOI: https://doi.org/

10.1029/98RG00717 (page 75).

Minson, S., Simons, M., and Beck, J. (2013). Bayesian inversion for finite fault earthquake

source models I—Theory and algorithm. Geophysical Journal International 194.3,

pp. 1701–1726 (page 130).

Mirza, M. and Osindero, S. (2014). Conditional Generative Adversarial Nets. arXiv e-prints,

arXiv:1411.1784 (page 251).

285

https://doi.org/10.3847/1538-4357/ab1d49
https://doi.org/10.1093/mnras/staa3891
https://doi.org/10.1093/mnras/stv2036
https://doi.org/10.1093/mnras/stw681
https://doi.org/10.1093/mnras/stab082
https://doi.org/10.1093/mnras/stab082
https://doi.org/10.1063/1.1699114
https://doi.org/10.1051/0004-6361/201935973
https://doi.org/10.1007/BF00695714
https://doi.org/10.1007/BF00695714
https://doi.org/https://doi.org/10.1029/98RG00717
https://doi.org/https://doi.org/10.1029/98RG00717


Monaco, P. et al. (2002). Predicting the Number, Spatial Distribution, and Merging History of

Dark Matter Halos. The Astrophysical Journal 564.1, pp. 8–14. DOI: 10.1086/324182

(pages 198, 232).

Monaco, P. et al. (2013). An accurate tool for the fast generation of dark matter halo cat-

alogues. Monthly Notices of the Royal Astronomical Society 433.3, pp. 2389–2402.

DOI: 10.1093/mnras/stt907 (pages 198, 232).

Mootoovaloo, A., Heavens, A. F., Jaffe, A. H., and Leclercq, F. (2020). Parameter infer-

ence for weak lensing using Gaussian Processes and MOPED. Monthly Notices of the

Royal Astronomical Society 497.2, pp. 2213–2226. DOI: 10.1093/mnras/staa2102

(pages 161, 166, 188).

Mootoovaloo, A., Jaffe, A. H., Heavens, A. F., and Leclercq, F. (2021). Kernel-Based Emula-

tor for the 3D Matter Power Spectrum from CLASS. arXiv e-prints, arXiv:2105.02256

(pages 161, 188).

Moseley, B., Markham, A., and Nissen-Meyer, T. (2018). Fast approximate simulation of

seismic waves with deep learning. arXiv e-prints, arXiv:1807.06873 (page 97).

— (2020a). Solving the wave equation with physics-informed deep learning. arXiv

preprint arXiv:2006.11894 (pages 97, 129, 157).

Moseley, B., Nissen-Meyer, T., and Markham, A. (2020b). Deep learning for fast simulation

of seismic waves in complex media. Solid Earth 11.4, pp. 1527–1549 (page 97).
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