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a b s t r a c t 

In computer vision, reference datasets from simulation and real outdoor scenes have been highly success- 

ful in promoting algorithmic development in stereo reconstruction. Endoscopic stereo reconstruction for 

surgical scenes gives rise to specific problems, including the lack of clear corner features, highly specular 

surface properties and the presence of blood and smoke. These issues present difficulties for both stereo 

reconstruction itself and also for standardised dataset production. Previous datasets have been produced 

using computed tomography (CT) or structured light reconstruction on phantom or ex vivo models. We 

present a stereo-endoscopic reconstruction validation dataset based on cone-beam CT (SERV-CT). Two ex 

vivo small porcine full torso cadavers were placed within the view of the endoscope with both the endo- 

scope and target anatomy visible in the CT scan. Subsequent orientation of the endoscope was manually 

aligned to match the stereoscopic view and benchmark disparities, depths and occlusions are calculated. 

The requirement of a CT scan limited the number of stereo pairs to 8 from each ex vivo sample. For 

the second sample an RGB surface was acquired to aid alignment of smooth, featureless surfaces. Re- 

peated manual alignments showed an RMS disparity accuracy of around 2 pixels and a depth accuracy 

of about 2 mm. A simplified reference dataset is provided consisting of endoscope image pairs with cor- 

responding calibration, disparities, depths and occlusions covering the majority of the endoscopic image 

and a range of tissue types, including smooth specular surfaces, as well as significant variation of depth. 

We assessed the performance of various stereo algorithms from online available repositories. There is a 

significant variation between algorithms, highlighting some of the challenges of surgical endoscopic im- 

ages. The SERV-CT dataset provides an easy to use stereoscopic validation for surgical applications with 

smooth reference disparities and depths covering the majority of the endoscopic image. This comple- 

ments existing resources well and we hope will aid the development of surgical endoscopic anatomical 

reconstruction algorithms. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In minimally invasive surgery (MIS), endoscopic visualisation fa- 

ilitates procedures performed through small incisions that have 

he potential advantages of lower blood loss and infection rates 

han open surgery as well as better cosmetic outcome for the 

atient. Despite the potential advantages of MIS, working within 

he limited endoscopic field-of-view (FoV) can make surgical tasks 
∗ Corresponding author. 

E-mail address: eddie.edwards@ucl.ac.uk (P.J.E. Edwards). 
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ore demanding, which may lead to complications and adds sig- 

ificantly to the learning curve for such procedures. 

Techniques such as augmented reality (AR) can be used to 

nhance preoperative surgical visualization and provide detailed, 

ulti-modal anatomical information. This is a significant research 

eld in itself, with AR abdominal laparoscopic applications hav- 

ng been proposed in various fields, including surgery of the liver 

 Hansen et al., 2010; Thompson et al., 2018; Quero et al., 2019 ),

terus ( Bourdel et al., 2017 ), kidney and prostate ( van Oosterom 

t al., 2018; Bertolo et al., 2020; Hughes-Hallett et al., 2014 ). The 

pplication-specific literature in all these areas as well as more 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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eneral reviews of AR surgery ( Bernhardt et al., 2017; Edwards 

t al., 2021 ) all conclude that the technology shows great promise, 

ut also note that alignment accuracy, workflow integration and 

erceptual issues have limited clinical uptake. 

Vision has the potential to provide both the 3D shape of the 

urgical site and also the relative location of the camera within 

he 3D anatomy, especially when stereoscopic devices are used 

n robotic MIS ( Mountney et al., 2010; Stoyanov, 2012 ). A range 

f optical reconstruction approaches have been explored for en- 

oscopy with computational stereo being by far the most pop- 

lar due to the clinical availability of stereo endoscopes ( Maier- 

ein et al., 2013; Röhl et al., 2012; Chang et al., 2013 ). Despite re-

ent major advances in computational stereo algorithms ( Zhou and 

agadeesan, 2019 ), especially with deep learning models, in the 

urgical setting robust 3D reconstruction remains difficult due to 

arious challenges including specular reflections and dynamic oc- 

lusions from smoke, blood and surgical tools. 

While stereo endoscopy is routinely used in robotic MIS, the 

ajority of endoscopic surgical procedures are performed using 

onocular cameras. With monocular endoscopes, 3D reconstruc- 

ion can be approached as a non-rigid structure-from-motion (SfM) 

r simultaneous localisation and mapping (SLAM) problem ( Grasa 

t al., 2013 ). This is typically more challenging than stereo be- 

ause non-rigid effects and singularities need to be accounted for 

s the camera moves within the deformable surgical site. Alterna- 

ive vision cues such as shading have also been explored histori- 

ally but with limited success until recent promising results from 

onocular single image 3D using deep learning models ( Mahmoud 

t al., 2018; Bae et al., 2020 ). Such approaches have been ap- 

lied in general abdominal surgery ( Lin et al., 2016 ), sinus surgery 

 Liu et al., 2018 ), bronchoscopy ( Visentini-Scarzanella et al., 2017 ), 

nd colonoscopy ( Mahmood and Durr, 2018; Rau et al., 2019 ). 

hile monocular reconstruction has been shown to be feasible 

nd extremely promising, the accuracy and robustness of the sur- 

aces produced requires improvement and further development is 

eeded. 

Whatever the chosen method for 3D reconstruction, evaluation 

f the reconstruction accuracy by establishing appropriate bench- 

ark datasets has been a major hurdle impeding development 

f the field. Standardised datasets providing accurate references 

ave been instrumental in the rapidly advancing development 

f 3D reconstruction algorithms in computer vision ( Scharstein 

nd Szeliski, 2003; Scharstein et al., 2014; Menze and Geiger, 

015 ). In surgical applications, however, it has proved difficult to 

roduce accurate standardised datasets in a form that facilitate 

asy and widespread use and adoption. Assessment of reconstruc- 

ion accuracy requires 3D reference information and during in 

ivo surgical procedures this is not currently available. Phantom 

odels made from synthetic materials have been used as surro- 

ate environments with a corresponding gold standard from CT 1 

 Stoyanov et al., 2010 ). The CT model is registered to the stereo-

ndoscopic view using fiducials and dynamic CT is used to pro- 

ide low frequency estimates of the phantom motion. More re- 

ently, the EndoAbS dataset was reported with stereo-endoscopic 

mages of phantoms with gold standard depth provided by a laser 

angefinder ( Penza et al., 2018 ) 2 . Many challenging images are pre- 

ented, including low light levels and smoke, and the dataset con- 

entrates on the robustness of algorithms to these conditions. One 

f the main problems with phantom environments is their lim- 

ted representation of the visual complexity of real in vivo images 

hough some exciting progress in phantom fabrication and design, 
1 http://hamlyn.doc.ic.ac.uk/vision/ . 
2 https://zenodo.org/record/60593 . 

h

s

2 
uch as the work by Ghazi et al. (2017) , may overcome this in the

uture. 

Stereo-endoscopic datasets have also been created using ex vivo 

nimal environments. The first contains endoscopic images of sam- 

les from different porcine organs (liver, kidney, heart) captured 

rom various angles and distances including examples with smoke 

nd artificial blood ( Maier-Hein et al., 2014 ). Gold standard 3D re- 

onstruction is provided within a masked region for each stereo 

air from CT scans registered using markers visible in both the CT 

can and the endoscopic images. Analysis tools are also provided 

ithin the MITK 

3 framework. The area of analysis is restricted to 

airly small regions near the centre of the images leading to a 

omparatively narrow range of depths and tissue types within one 

ample. 

Most recently, as part of the Endoscopic Vision (EndoVis) se- 

ies of challenges, the 2019 SCARED challenge 4 provides per-pixel 

epth ground truth annotations as a gold standard to be used for 

raining of learning based methods or to evaluate reconstruction 

lgorithms ( Allan et al., 2021 ). The HD endoscope images from ex 

ivo samples are brightly lit and the coverage of scene is excellent. 

ince reconstruction occurs from data captured directly from the 

ndoscope’s camera there is no requirement for registration. The 

CARED dataset is an important contribution to surgical stereo re- 

onstruction covering a range of tissues with frames including sur- 

ical tools and blood. There are some limitations, however. Briefly 

hose are, the format of the provided dataset, occasional outliers 

nd artefacts in the ground truth and inconsistent calibration for 

ome frames, all of which are mentioned in the challenge paper 

nd the reader can refer to section 5.1 for more details. 

To overcome some of these limitations, we examine the feasi- 

ility of producing such a dataset using a cone-beam CT scan en- 

ompassing both the endoscope and the viewed anatomy. The con- 

ributions of this work are as follows: 

1. The release of an ex vivo stereo endoscopic dataset and evalua- 

tion toolkit, aiming to assist the development of reconstruction 

algorithms in the medical field. 

2. The detailed description of the data acquisition and processing 

protocol used and the release of the manual alignment software 

used for registration. 

3. The evaluation of several stereo correspondence algorithms us- 

ing our verification set. 

. The SERV-CT reference dataset construction 

The working hypothesis of this research is that a CT scan con- 

aining both the endoscope and the viewed anatomical surface can 

e used to provide a sufficiently accurate reference for stereo re- 

onstruction validation. To establish whether this is feasible, multi- 

le stereo-endoscopic views of two ex vivo porcine full torsos were 

aken. A schematic of the overall process is shown in Fig. 1 and 

he range of views can be seen in Fig. 2 (b). As a secondary, aim

e examine whether a textured RGB surface model can facilitate 

egistration, particularly where there are few visible geometrical 

eatures to use for alignment. 

.1. Equipment 

As our anatomical model, we used two fresh ex vivo full torso 

orcine cadavers including thorax and abdomen. In this study, we 

ave focused on the abdomen as this is where most endoscopic 

urgery occurs. The outer tissue layers were removed by a clinical 
3 https://www.mitk.org . 
4 https://endovissub2019- scared.grand- challenge.org/ . 

http://hamlyn.doc.ic.ac.uk/vision/
https://zenodo.org/record/60593
https://www.mitk.org
https://endovissub2019-scared.grand-challenge.org/
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Fig. 1. A schematic flowchart showing the process of dataset generation, processing and alignment. Corresponding cone-beam CT and stereo endoscope images are taken 

(middle left). The top row (brown box) shows the process of anatomical surface and endoscope segmentation detailed in section 2.3 . The output is the segmented volume, 

which forms the input to the interactive manual alignment (see section 2.6 for details). The resulting OpenGL Z-buffer of the aligned rendering can generate both depth 

and disparity maps by the process described in section 2.6.2 . The blue box (bottom row) shows the standard OpenCV stereo camera calibration process (see section 2.2 ). 

This generates left/right projection matrices, the Q matrix that relates disparity to depth, rigid left-to-right transformation and distortion coefficients. These feed into the 

rectification process, rectified manual alignment and disparity-to-depth calculation as shown. In the red boxes we have the final form of the released dataset, including 

rectified stereo image pairs, calibration parameters, depth and disparity maps as well as occlusion areas for both left and right images. 

Fig. 2. The equipment setup is shown, with the endoscope attached to the da Vinci TM surgical robot placed within the O-arm 

TM interventional scanner (a). The left images 

of all the views from the dataset alongside renderings of each endoscope view (b). A range of tissue types is evident. The top row shows features with interesting variation 

of depth (image 1 and 3 are chosen to be similar to assess repeatability). The second row shows the kidney at different depths, with and without renal fascia. The third row 

shows the liver and surrounding tissues from the second ex vivo sample. The bottom row includes some smooth, featureless and highly specular regions from the kidney of 

sample 2. There is considerable variation of depth in most of these images (see Fig. 3 ). 

3 
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Fig. 3. Z-Depth and disparity ranges calculated from the reference standard for 

each sample in our dataset showing wide variation of depths provided by the sam- 

ple images. 
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Fig. 4. O-arm 

TM CT scan showing our anatomical full torso model (yellow) and the 

endoscope (blue) visible in the same scan (a). Streak artefacts from the presence 
olleague in a manner that mimics surgical intervention to reveal 

he inner organs. 

CT scans were provided using the O-arm 

TM Surgical Imaging 

ystem (Medtronic Inc., Dublin, Ireland). This is a cone-beam CT 

nterventional scanner. For simplicity, we will refer to the images 

rom this device as CT scans throughout the paper. For the second 

ataset, in order to facilitate alignment in very smooth anatomi- 

al regions with few geometric features, the sample torso was also 

canned with a Creaform Go SCAN 20 hand-held scanner (Creaform 

nc., Lévis, Canada) to provide a textured, triangulated RGB surface. 

Endoscope images are collected using a first generation da 

inci TM surgical system (Intuitive Surgical, Inc., Sunnyvale, CA, 

SA), which can also be used to manipulate the endoscope posi- 

ion. This robotic surgical setup is not ideally designed to fit within 

he confines of the O-arm 

TM and positioning requires considerable 

ngulation of both the robot setup joints and the O-arm 

TM itself. 

he setup can be seen in Fig. 2 (a), showing the robotic endoscope 

ithin the O-arm 

TM and the ex vivo model. Images were gathered 

n two separate experiments using the straight and 30 ◦ endoscopes 

upplied with the da Vinci TM system. 

.2. Endoscope calibration 

Endoscope calibration follows a standard chessboard OpenCV 

5 

tereo calibration protocol. Images of a chessboard calibration ob- 

ect are taken from multiple viewpoints. The corners detected, en- 

ble intrinsic calibration of the two cameras of the stereo endo- 

cope. The same chessboard pattern viewed in corresponding left 

nd right views can also provide the transformation from the left 

o the right camera. We used 18 images pairs in Expt. 1 and 14 

mage pairs in Expt. 2 covering the endoscope’s filed of view and 

 range of depths. 

Once the left and right images have been rectified, the projec- 

ion for each eye is given by two matrices: 

 1 = 

⎡ 

⎣ 

f 0 C 1 x 0 

0 f C 1 y 0 

0 0 1 0 

⎤ 

⎦ , P 2 = 

⎡ 

⎣ 

f 0 C 2 x T x f 

0 f C 2 y 0 

0 0 1 0 

⎤ 

⎦ (1) 

Their elements combine to give a matrix, Q , that relates the dis- 

arity, δ, at a pixel (u, v ) to a to 3D location (x, y, z) : 

 

⎡ 

⎢ ⎣ 

x 
y 
z 
1 

⎤ 

⎥ ⎦ 

= Q 

⎡ 

⎢ ⎣ 

u 

v 
δ
1 

⎤ 

⎥ ⎦ 

(2) 
5 https://opencv.org/ . 

o

a

t

4 
here 

 = 

⎡ 

⎢ ⎢ ⎣ 

1 0 0 −C 1 x 

0 1 0 −C 1 y 

0 0 0 f 

1 0 

−1 
T x 

C 1 x − C 2 x 

⎤ 

⎥ ⎥ ⎦ 

(3) 

In addition to multiple views being used for camera calibration, 

everal CT scans depicting the endoscope and the chessboard are 

aken. Six fixed spherical ceramic coloured markers can be seen in 

oth the CT scan and the endoscope views (see Fig. 6 (a)). These 

an be used to validate our alignment method and provide accu- 

acy measurement of the CT alignment process. 

The calibration process is depicted boxed in blue in the 

chematic flowchart ( Fig. 1 ). The output feeds into the image rec- 

ification, rectified rendering for manual alignment and depth- 

o-disparity calculations. For the simplified form of the released 

ataset, only the three matrices, P 1 , P 2 and Q are provided along- 

ide the rectified left and right images with corresponding refer- 

nce disparities, depths and occlusions. 

.3. CT segmentation of endoscope and anatomy 

In this section we describe the process of anatomy and endo- 

cope surface generation from CT depicted in the top row of the 

owchart shown in Fig. 1 . As can be seen in Fig. 4 (a), both the

ndoscope and the anatomical surface are visible in the CT scan. 

he ITKSnap software (version 3.8.0) is used for its convenience 

nd simple user interface ( Yushkevich et al., 2006 ). Automated seg- 

entation with seeding and a single threshold is used initially. The 

ndoscope is mostly at the fully saturated CT value so a very high 

hreshold is used (2885). For the anatomical tissue-air interface, a 

ery low value works well (-650 to -750). Partly due to the arti- 

acts from the presence of the endoscope, but also because of thin 

embranes and air filled pockets, a single threshold does not cap- 

ure all the anatomical surface. Some of the anatomical detail must 

e hand segmented (see Fig. 4 (c)). ITKSnap provides tools for this 

urpose, including pencils and adaptive brushes. Hand segmenta- 

ion is limited to a few small regions, with most of the anatomical 

urface having clear contrast in the CT image. 

.4. Identification of CT endoscope position and orientation 

To relate the coordinates of the endoscope to the CT, we first 

ark a rough position for the endoscope cameras. By rotating the 
f the metal endoscope are evident, but the viewed anatomical surface can still be 

ccurately segmented. A single threshold does not always provide accurate segmen- 

ation (b) and these regions must be segmented by hand (c). 

https://opencv.org/
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Fig. 5. Approximate left (red) and right (green) camera positions are marked on 

the endoscope surface in the CT scan using the segmented endoscope rendering 

(bottom left). The left camera position is fixed in subsequent manual alignment and 

a target point is identified roughly in the direction of the relevant anatomy. The 

resulting axes of this 30 ◦ endoscope are shown in yellow, with the Z axis pointing 

towards the target point. This provides an initial alignment from CT to endoscope, 

which can be subsequently refined manually. 
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Fig. 6. The 6 coloured bearings and the chessboard corners are identified on a 

Meshroom reconstruction of the calibration object (a). This provides 3D registra- 

tion between the markers and chessboard corners, and registration to the bearings 

locates the chessboard corners in the CT scan. Fixing the left camera position at the 

end of the endoscope and performing our constrained alignment to the bearings, 

results in the alignment shown in (b), where the green dots are the chessboard 

positions from CT and the red dots are the same points from stereo reconstruc- 

tion. There is a small misregistration in depth resulting in a visible scaling error (c). 

Translation of the cameras into the endoscope shaft results in good alignment (d) 

and accurate reconstruction (e) with typical errors of ≈0.4 mm. This highlights the 

fact that the unknown position of the effective pinhole of the endoscope cameras 

can be estimated by allowing a small translation into the body of the endoscope. 

This degree of freedom is incorporated into our manual alignment process (see sup- 

plementary video). 
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urface rendered view of endoscope and anatomy, it is usually pos- 

ible to identify which region of the CT is being viewed. Orienting 

he views accordingly, approximate positions for the left and right 

ameras can be marked on the end of the endoscope. It should be 

oted that the exact orientation is not important, as this will be 

djusted manually later on. However, constraining the location of 

he camera to be near the end of the endoscope and largely lim- 

ting the motion to rotation about the left camera has two ben- 

fits. It reduces the complexity of the alignment task but more 

mportantly it ensures that the distance from the camera to the 

natomical surface is that described by the CT scan. Since stereo- 

copic disparity depends directly on this depth, a constrained mo- 

ion preserving the camera position from the CT scan should lead 

o a more accurate reference. 

In addition to the left and right cameras, a further point along 

he endoscope is manually identified to provide an initial approx- 

mate viewing direction. The left and right camera positions and 

his point define an axis system and an initial estimate of the rigid 

ransformation from CT to stereo endoscopic camera coordinates 

see Fig. 5 ). The purpose of this initial rough alignment is partly 

o ensure that in the next phase of manual alignment, the relevant 

natomy can be seen in a virtual rendering from the endoscope po- 

ition. By constraining the endoscope camera position, we ensure 

hat the anatomy is viewed from the correct perspective, which is 

ey to making an accurate reference. 

.5. Verification using a calibration object 

To establish an upper limit of accuracy for our method we have 

ollected stereo images of the calibration object with a correspond- 

ng CT scan. Six coloured spherical bearings are used as fiducial 

arkers. These can be readily identified in both the CT scan and 

he endoscopic view. To establish the location of the chessboard 

elative to the markers, a surface was produced from multiple im- 

ges from an iPhone 7 using the 3D reconstruction software, Mesh- 

oom 

6 . Marking of both the fiducial markers and the chessboard 

oints on this model provides a correctly scaled, aligned model 

nd allows the fiducials to be expressed in chessboard coordinates 

 Fig. 6 (a)). Registration of the fiducial markers from the Meshroom 

odel to the CT scan gives a residual alignment error of < 0.5 mm 

nd the resulting chessboard points transformed to CT align well 

ith the plane of the board. 
6 https://github.com/alicevision/meshroom . 

p

s

(

5 
Stereo reconstruction of the chessboard points ( Fig. 6 (b)) ex- 

ibits a small scaling error ( Fig. 6 (c)) which can be corrected for by

oving the camera position back along the endoscope ( Fig. 6 (d)). 

he initial camera positions are placed on the end of the endo- 

cope surface, but the lens arrangement and optics of the endo- 

cope is not known, so the effective pinholes will be deeper inside 

he shaft. The resulting chessboard reconstruction after translation 

nto the shaft is accurate ( ∼0.4 mm) and the position of the cam- 

ras within the endoscope is visually reasonable ( Fig. 6 (e)). 

The process of manually adjusting the endoscope position and 

rientation to match the chessboard is the same as the align- 

ent procedure discussed in the next section for registration of 

he anatomy, but the chessboard points give a measure of accuracy. 

egistration of the fiducial markers from the Meshroom model 

o the CT scan, provides the chessboard points in CT coordinates, 

hich align well with the segmented plane of the board ( Fig. 6 (e)).

.6. Manual alignment of the endoscope orientation to match the 

natomical surface 

In this section we describe the manual alignment process boxed 

n green on the flowchart (Fig 1 ). To achieve an accurate alignment 

he human eye is a very useful tool. We are able to fuse even the

ifficult stereo images from surgical scenes and can accurately as- 

ess depth. To make use of this human ability, we devised an inter- 

ctive application that overlays the anatomical surface from the CT 

can onto the stereo endoscope view. Some example renderings are 

hown in Fig. 7 . The surface can be turned on and off, faded in and

ut, rendered solid textured or as lines or points. Rendering and 

nteraction use the Visualization Toolkit (Python VTK version 8.1.2) 

rom Schroeder et al. (2004) . The VTK cameras corresponding to 

he left and right views are adjusted to match the OpenCV stereo 

ectification using elements from the SciKit-Surgery library from 

hompson et al. (2020) (scikit-surgeryvtk version 0.18.1). The un- 

erlying rectified left and right images are shown as a background 

o the rendering. The surface can also be moved, but only the three 

ngles of the endoscope rotation about the left camera can be ad- 

usted. The endoscope position is constrained. This ensures that the 

erspective from the endoscope is maintained, ensuring that occlu- 

ions and the distance to the anatomical surface should be correct. 

 Fig. 8 ). 

https://github.com/alicevision/meshroom
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Fig. 7. The manual alignment method, showing the original image pair (a), the corresponding rendering of the CT surface (b) and processed images to help with reg- 

istration (c), which include a rendering of the boundary of the CT surface in green on the left and a subtraction image showing the difference between left and right 

corresponding pixels according to the current registration. These hints are updated live during the manual interaction. Overlays can be displayed using different renderings 

(surface, wireframe or points) and manipulated to provide a more accurate alignment. Projection of the left image as a texture on the CT surface after alignment is shown 

in (d). This process can be seen in the supplementary videos. In all cases the left image of a stereo pair is shown on the right to facilitate cross-eyed fusion . 
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7 https://ntrs.nasa.gov/citations/20 070 017872 . 
The X and Y rotations about the endoscope camera are actu- 

lly very similar to translation in Y and X for small angles. The Z 

otation orients the endoscope about its axis, which approximates 

o a 2D rotation of the image. A small translation along the en- 

oscope axis also allowed to account for the true position of the 

ffective pinhole within the endoscope shaft. The effect is simi- 

ar to an overall scaling of the image. The left and right images 

re swapped for display to facilitate cross-eyed fusion of the stereo 

air. Coarse and fine adjustments are made until the user is happy 

ith the registration. This is not an easy process, requiring some 

oncentration and skill, but usually takes only a few minutes for 

ach image set (see Fig. 7 and the supplementary video). 

.6.1. Assessment of manual registration using repeat alignments 

To assess the accuracy of manual alignment we performed re- 

eated registrations. We use the bad3 statistic for comparison, 

hich is the proportion of the image with greater than 3 pix- 

ls disparity error. Two people performed the manual alignment 3 

imes each for every image pair. Based on the evaluation study (see 

ection 3 ), we chose the two best performing networks trained in 

eneric data – HSM (Level 1) and DeepPruner – to provide inde- 

endent estimates of the disparity. All error metrics were calcu- 
6 
ated and the bad3 results from each alignment can be seen in 

ig. 9 . 

It is clear from these results that each network performs bet- 

er on some images. DeepPruner is better for images 0 06, 0 07 and 

08, whereas results are similar or HSM (level1) is better for all 

thers. To reduce the effect of human error, we consider manual 

lignments that have a bad3 of > 20% compared to both networks 

s outliers. These are removed before averaging all remaining inlier 

lignments. 

The process of averaging deserves some attention. The i th man- 

al alignment results in a rigid transformation from CT to the left 

ndoscope camera which can be represented by a rotation, R i and 

ranslation T i . We want to find the mean, R̄ , T̄ , of { R i , T i } . 
Averaging a set of rotations is a well studied problem and the 

igen analysis solution from Markley et al. (2007) that is freely 

vailable as a NASA report 7 is widely accepted as an optimal solu- 

ion. We compute this average using the quaternion representation 

nd provide a mean rotation matrix, R̄ . 

It is sometimes suggested that averaging the translations is triv- 

al or can be achieved by simply taking the mean of { T i } , but this

https://ntrs.nasa.gov/citations/20070017872
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Fig. 8. Manual alignment for a smooth surface where there is little geometrical variation to register on (a). It is possible to use the Creaform scanner RGB surface. This 

provides surface texture and can be readily aligned to features in the image (b). Overlay of the endoscope image projected onto the RGB surface is also shown (c). In all 

cases in the paper the left image of a stereo pair is shown on the right to facilitate cross-eyed fusion . 
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i  
s not the case. This would provide the average translation of the 

T origin. Our anatomical surface comes from a CT scan where 

oth anatomy and endoscope must be visible, which means that 

oth are pushed towards the periphery of the scan and are some 

istance from the origin. Using the mean of { T i } leads to a trans-

ormed surface that is not centrally placed relative to the manually 

ligned surfaces. 

To obtain a more suitable average translation, we require a 

ore relevant center of rotation in the CT space, C ct . In most 

raphical applications this could be the centroid of an object. In 

ur case a suitable choice would be a point on the viewed CT sur- 

ace near the centre of endoscope image. For each image pair, such 

 point was identified on the anatomical CT surface with approx- 

mately average depth and near to the centre of the endoscope 

iew. 

Having chosen C ct , calculation proceeds as follows: 

¯
 i = 

1 

n 

∑ 

i 

y i (4) 

here y i = R i C ct + T i (5) 

hen T̄ = ȳ i − R̄ C ct (6) 

With R̄ , T̄ calculated in this way we achieve a mean rigid trans- 

ormation that provides a natural average of the manual inputs. 

ig. 9 shows the bad3 and depth errors for the mean (last bar in

ink) compared to each of the individual manual alignments. In all 

ases the mean provides an error close to the best. While this does 

ot constitute a statistical proof of correctness, the average calcu- 

ated in this way is more valid than simply choosing the lowest er- 

or, which may bias towards one of the algorithms. Fig. 10 shows 

he results for each of the frames, with errors compared to the best 
7 
erforming metric of around 2 pixels or 2 mm depth. This mean is 

sed in all subsequent calculations and to provide the depth and 

isparity maps for the released version of SERV-CT. 

.6.2. Calculation of depth maps, disparity maps and regions of 

orrespondence 

Once the CT scan is aligned to the stereo endoscopic view we 

an produce depth maps and subsequently disparity images. The 

penGL Z-buffer provides a depth value for every pixel. For per- 

pective projection, the normalised buffer value, Z gl , has a non- 

inear relationship to actual depth that can be readily calculated 

rom the near and far clipping planes, Z near and Z far : 

 world = 

−2 Z near Z far 

2(Z gl − 0 . 5)(Z far − Z near ) − Z near − Z far 

(7) 

The Q matrix equations ( Eqns. (2) and (3) ) can also be easily 

nverted to provide disparity from depth. 

= 

T x f 

Z world 

− (C 1 x − C 2 x ) (8) 

his gives a disparity for every pixel, which is the x displacement 

etween the corresponding point in the left and right images. 

A depth map is produced for both the left and right images. 

cclusions can be calculated by looking at the depth for a pixel in 

he left image and its corresponding, based on disparity, pixel in 

he right image. In a rectified setup, the Z coordinate of a point 

hould be the same in the left and right camera coordinates. Any 

oints that do not have the same Z value within an error margin 

re considered occluded regions visible in the left image but not in 

he right image. We calculate occlusions for both the left and right 

mages for completeness. A depth equivalent to the back clipping 

lane corresponds to a point not visible in the CT scan. The result- 

ng images can be seen in Fig. 11 with left occlusions in red and
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Fig. 9. Depth error and bad3 metric (percentage of disparities > 3 pixels error) for multiple manual alignments. Results with a bad3 of > 20% for both HSM (level 1) and 

DeepPruner are considered as outliers due to human error. Outliers were not taken into consideration when computing the average manual alignment (in pink). This average 

produces a consistently low bad3 error for the best performing network and the depth error is around 2 mm for all but the most challenging images. 
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ight occlusions in green. The useful pixels for stereo can be iden- 

ified and cover the majority of the image as there are only small 

egions of occlusion. 

.7. Distribution format 

Since there are a number of different packages, formats and co- 

rdinate systems for stereo calibration, we distribute the dataset 

n a much simplified form. We provide only the rectified left and 

ight images with corresponding left and right depth images and 

isparity from left to right. In addition, we provide a combined 

ask image for both cameras that shows regions of non-overlap, 
8 
reas not covered by the 3D model and also identifies occluded 

ixels which can be seen in one view but not the other. Stereo 

ectification parameters are provided in a single JSON file con- 

aining the P 1 , P 2 and Q matrices for each image. The parts of 

he distributed form are boxed in red in the schematic flowchart 

 Fig. 1 ). This format can be directly used by both stereo corre- 

pondence algorithms and monocular, single frame depth estima- 

ion approaches. We feel that this format significantly simplifies 

he process and will enable rapid use of the dataset. The original 

mages, full calibration parameters, segmented CT scans, surfaces 

nd scripts for registration are also made available in a separate 

rchive. 
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Fig. 10. Per frame error metrics of the two best performing networks, evaluated on the dataset created using the average manual registration of each image. Some very high 

errors can be attributed to failure of the networks on these difficult images, but at least one network succeeds for each sample. The Disparity has a consistent RMS error of 

around 2 pixels or less compared to the best performing network. Depth error is also around 2 mm in most cases. Samples 5 and 7 have higher depth error compared to 

disparity due to greater absolute depth (see Fig. 3 ). The difficult smooth specular images (14 and 16) have slightly higher error, which is likely to be, at least in part, due to 

errors from the networks rather than the reference. 
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. Evaluation study 

We use SERV-CT to evaluate the performance of different stereo 

lgorithms. To evaluate disparity outputs we use the bad3 % error 

nd root mean square disparity error (RMSE) since these are the 

opular metrics in stereo evaluation platforms ( Scharstein et al., 

014 ). In addition using the Q matrix, we convert estimated dis- 

arities to depth and measure the depth RMSE error in mm. 

.1. Investigated stereo algorithms 

We primarily focus on the performance of fast learning based 

tereo algorithms as these perform best in different challenges. 

he models were selected based on their accuracy and inference 

ime, as reported on KITTI-15 leader-board. We chose methods that 

re publicly available and can provide inference at more than 10 

rames per second. We also included PSMNET despite its slower 

erformance since this was the winning technique of a grand chal- 

enge in endoscopic video ( Allan et al., 2021 ). GitHub reposito- 

ies containing both implemented networks and pre-trained mod- 

ls used in this study, are provided as footnotes. Inference runtime 

erformance and GPU memory consumption for each network on a 

ingle NVIDIA Tesla V100 can be found in Table 1 . We measure in-

erence time excluding loading time from a storage device to CPU 

AM but including prepossessing. 

Experimentally we found that KITTI-15 fine-tuned methods 

ere able to produce satisfactory results in our evaluation set. 

o make our result reproducible we chose to only use networks 

hose pretrained weights in a large stereo dataset are available 

nline. This will also allow us to showcase how these networks 

dapt to a completely different domain from the their training 
able 1 

eural network average computational memory and speed when producing dispar- 

ty maps on the SERV-CT frames. 

Model GPU Memory (MB) Frames/sec. 

PSMNet 4345 3 

DeepPruner 1311 16 

HSM(level1) 1273 20 

HSM(level2) 1209 28 

HSM(level3) 1187 32 

HAPNet 1139 20 

DispnetC 2311 20 

MADNet 1043 35 

3
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e

m

w
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9 
ample and how they compare with the best methods for surgi- 

al stereo. All the networks we are testing are regression end-to- 

nd architectures, meaning that they allow gradients to flow freely 

rom the output to their inputs and also produce subpixel dispar- 

ties. We test some of the fastest deep stereo architectures as in- 

erence time performance is an important aspect of any surgical 

econstruction system. We also include in our comparison a tra- 

itional vision method devised specifically for endoscopic surgical 

ideo, the quasi-dense stereo (Stereo-UCL) algorithm by Stoyanov 

t al. (2010) , which was used in the the TMI study by Maier-Hein

t al. (2014) and its implementation is available online and as part 

f OpenCV contrib since version 4.1. 

.1.1. DispNetC 

Along with the introduction of large synthetic stereo dataset for 

raining deep neural networks, Mayer et al. (2016) introduced the 

rst end-to-end stereo network architectures, which achieved sim- 

lar results the best contemporary methods while being orders of 

agnitude faster. We will focus on DispNetC 

8 which consists of a 

eature extraction module, a correlation layer and a encoder de- 

oder part with skip connections which aims to refine the cost 

olume and compute disparities. The feature extraction part of this 

etwork downsamples and extracts unary features for each image 

eparately. Those features get correlated together in the horizontal 

imension, building a cost volume, which in turn gets further re- 

ned. This last refinement and disparity computation sub-module, 

ollows an 2D encoder-decoder architecture, with skip connections, 

hich is in place to allow matching for large disparities and pro- 

ides subpixel accuracy. 

.1.2. PSMNet 

Influenced by work in semantic segmentation literature, Chang 

nd Chen (2018) introduced PSMNet 9 , achieving then leading per- 

ormance on the KITTI leaderboard. Although it cannot be consid- 

red real time, its novelty lies on the incorporation of spatial pyra- 

idal pooling (SPP) module. This architecture enables such net- 

orks to extract unary features that take into account global con- 

ext information, something that is crucial in surgical stereo ap- 

lications due to homogeneous surface texture or the presence 
8 https://github.com/CVLAB- Unibo/Real- time- self- adaptive- deep- stereo (commit 

20eb32). 
9 https://github.com/JiaRenChang/PSMNet (commit a5c2704). 

https://github.com/CVLAB-Unibo/Real-time-self-adaptive-deep-stereo
https://github.com/JiaRenChang/PSMNet
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Fig. 11. The images that comprise the SERV-CT testing set. Depth maps are constructed using the OpenGL Z-buffer. Disparity comes from the depth and the stereo rectified 

Q matrix. Occluded regions are those that have different depths for left and right once correspondence is established using the disparity (non overlap is shown in yellow, 

occlusion is in red and green, for right and left images respectively, and areas outside the surface model are in blue). Resampled right-to-left and amplified colour difference 

images are also shown. 

10 
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f specular highlights. The SPP module achieves this by extract- 

ng features at different scales and later concatenates them before 

orming a 4D feature volume. This 4D feature volume gets refined 

y a stacked hourglass architecture which further improves dispar- 

ty estimation. 

.1.3. HSM 

Yang et al. (2019) , in an effort to develop a network that can

nfer depth fast in close range, to be used in autonomous vehicles 

latforms, developed the hierarchical deep stereo matching (HSM) 

etwork 10 . This allows fast and memory efficient disparity com- 

utation enabling it to process high resolution images. During the 

eature extraction process, the down-sampled feature images form 

eature volumes, each, corresponding to a different depth scale. 

eature volumes of coarser scales get refined, upsampled and con- 

atenated to the one of the next finer scale, hierarchically refin- 

ng the disparity estimation. This enables the network to make fast 

ueries from intermediate scales in the expense of depth accuracy. 

.1.4. DeepPruner 

DeepPruner 11 is another fast and memory efficient deep stereo 

rchitecture from Duggal et al. (2019) . Based on the PatchMatch 

lgorithm from Barnes et al. (2009) , they created a fully differ- 

ntiable version of it making ideal to incorporate it in a end-to- 

nd neural network. The PatchMatch module prunes the disparity 

earch space, enabling the network to search in a smaller dispar- 

ty range, which in turn reduces the memory consumption, as well 

s the time to build and process this feature volume. The feature 

olume gets processed by a refinement network to increase match- 

ng performance. The differentiable PatchMatch module, though it 

oes not contain any learnable parameters, enables gradient flow, 

acilitating end-to-end training. In our test we use the fast config- 

ration of this method as described in the original paper. 

.1.5. MADNet 

To tackle the domain shift problem most deep learning archi- 

ecture experience, Tonioni et al. (2019) introduced a modularly 

daptive network, MADNet 12 , which can be used with the mod- 

lar adaptation (MAD) algorithm enabling the network to adapt in 

 different tar get domain from the one that it’s trained on. The 

rchitecture is one of the fastest in the literature and the online 

odular adaptation scheme is efficient enough to run in real time. 

ADNet is based on a hierarchical pyramid and cost volume archi- 

ecture, which enables it to employ the adaptation scheme at in- 

erence time, without reducing real time performance significantly. 

n our experiments we do not use the MAD because the number 

f available samples are limited. 

.1.6. HAPNet 

3D convolutions and manual feature alignment are the two 

east efficient operations deep stereo neural networks perform. 

orking towards a real time stereo matching network, Brandao 

t al. (2020) introduced HAPNet 13 , an architecture that extract fea- 

ures in different scales, concatenates them and find correspon- 

ences using a 2D hourglass encoder decoder block. The dispar- 

ty estimation process is done in a hierarchical fashion, where low 

esolution feature maps are used to find low resolution dispari- 

ies. Those low resolution disparities get up-convolved and con- 

atenated with the features of the next scale to hierarchically re- 
10 https://github.com/gengshan- y/high- res- stereo (commit 669e5d5). 
11 https://github.com/uber-research/DeepPruner (commit 7cfd5e6). 
12 https://github.com/CVLAB- Unibo/Real- time- self- adaptive- deep- stereo (commit 

20eb32). 
13 https://github.com/patrickrbrandao/HAPNet-Hierarchically-aggregated-pyramid- 

etwork- for- real- time- stereo- matching (commit cc39708). 

t

e

e

l

11 
ne and regress the final disparity. The 2D hourglass encodes cor- 

espondences from the concatenated features, effectively enlarging 

he receptive field of the network. 

.1.7. Stereo-UCL 

To estimate depth in surgical environments that specular reflec- 

ions and homogeneous texture make most stereo algorithms fail, 

toyanov et al. (2010) developed an algorithms we will refer to as 

tereo-UCL 14 to be compatible with the TMI evaluation study from 

aier-Hein et al. (2014) . The algorithms produces semi-dense dis- 

arities based on a best first region growing scheme. It is the only 

lgorithm out of the methods of this study that can robustly esti- 

ate matches between unrectified surgical stereo pairs. In an ini- 

ial step, the method finds sparse features in the left frame and 

hen it uses optical flow to match with pixels in the right view. 

hose pixels are used as inputs seeds in a region growing algo- 

ithm that propagates disparity information from known dispari- 

ies to adjacent pixels. 

.2. Evaluation details 

For each deep learning model and method we run inference 

cross all samples, using models trained on mainstream computer 

ision datasets ( Menze and Geiger, 2015; Mayer et al., 2016 ). All 

eep learning based methods are configured to search for matches 

p to at least 192 pixels, and results are stored as 16-bit PNG im- 

ges, normalized appropriately to encode subpixel information. We 

se the depthmap supplied as part of SERV-CT as previously de- 

cribed and compare this to a triangulated depthmap from the 

etwork output. For disparity evaluation, since we have dispari- 

ies from both SERV-CT and from the stereo algorithms, we can 

irectly measure the error without further processing. Addition- 

lly, using the occlusion images, we provide separate results for 

ccluded and non-occluded pixels. We separate the results for the 

rst ex vivo sample (Expt. 1 - CT) and the second sample where we 

ave both the CT surface (Expt. 2 - CT) and the RGB surface from 

he Creaform scanner (Expt. 2 - RGB). 

. Results 

Results are split into three groups - ex vivo sample 1 with CT 

eference (Expt. 1 – CT), and ex vivo sample 2 with reference from 

ither the CT scan (Expt. 2 - CT) or Creaform RGB surface regis- 

ered to CT (Expt. 2 – RGB). 

Numerical results are summarised in Tables 2 , 3 and 4 . There 

s a general trend that learning based methods trained only on 

ynthetic data produce disproportionately high error when com- 

ared to versions trained on real data. Networks fine-tuned on 

eal data perform slightly better than the domain specific classi- 

al stereo method (Stereo-UCL). HSM and DeepPruner consistently 

erformed the best across all dataset cases. We do not consider 

etworks trained on synthetic data in subsequent analysis. 

The greater consistency of the 3D error across our experiments 

s an encouraging indicator of the reliability of the reference, since 

D error metrics give an idea of the performance in real world dis- 

ances. The bad3 metric is harder to optimise for as it is highly de- 

endent on the distribution of errors, but gives an indication of the 

roportion of the image where there are errors. Disparity metrics 

nable comparison of matching performance on data from poten- 

ially very different camera setups. 

Figs. 12 , 13 and 14 provide error images showing the differ- 

nce between the reference and the result from each algorithm for 

very pixel. Error metrics are lower for Expt. 1. Some more chal- 

enging images are presented in Expt. 2, particularly samples 013, 
14 Available in OpenCV version 4.1 and above. 

https://github.com/gengshan-y/high-res-stereo
https://github.com/uber-research/DeepPruner
https://github.com/CVLAB-Unibo/Real-time-self-adaptive-deep-stereo
https://github.com/patrickrbrandao/HAPNet-Hierarchically-aggregated-pyramid-network-for-real-time-stereo-matching
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Fig. 12. Signed disparity error in pixels of each algorithm compared to the CT reference for Expt. 1 (hotcold colormap from endolith ). 

Fig. 13. Signed disparity error in pixels of each algorithm compared to the CT reference for Expt. 2 (hotcold colormap from endolith ). 

Fig. 14. Signed disparity error in pixels of each algorithm compared to the Creaform RGB reference for Expt. 2 (hotcold colormap from endolith ). 

12 

https://github.com/endolith/bipolar-colormap
https://github.com/endolith/bipolar-colormap
https://github.com/endolith/bipolar-colormap
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Table 2 

Expt. 1 - CT results. 

Mean bad3 Error Mean RMSE Mean RMSE 

% 3D Distance (mm) Disparity (pixels) 

Occlusions: not included included not included included not included included 

Method 

DeepPruner(KITTI) 12.50 ( ±7.44) 17.18 ( ±8.18) 2.91 ( ±1.71) 3.77 ( ±1.65) 1.91 ( ±0.51) 2.47 ( ±0.60) 

DeepPruner(SceneFlow) 53.63 ( ±20.39) 56.27 ( ±19.70) 13.01 ( ±8.60) 17.09 ( ±8.79) 18.29 ( ±14.44) 24.35 ( ±15.69) 

DispNetC(KITTI) 40.09 ( ±26.41) 42.79 ( ±27.32) 4.58 ( ±0.76) 5.66 ( ±0.95) 4.24 ( ±2.70) 5.20 ( ±3.29) 

DispNetC(SceneFlow) 26.78 ( ±17.77) 31.00 ( ±19.13) 4.66 ( ±1.52) 6.22 ( ±2.14) 4.23 ( ±2.59) 5.75 ( ±4.20) 

HSM(level1) 8.34 ( ±8.31) 10.84 ( ±8.93) 3.18 ( ±2.03) 4.43 ( ±2.91) 1.75 ( ±0.53) 2.19 ( ±0.69) 

HSM(level2) 12.28 ( ±10.20) 14.76 ( ±10.21) 3.53 ( ±2.16) 4.64 ( ±2.65) 2.13 ( ±0.69) 2.50 ( ±0.74) 

HSM(level3) 63.90 ( ±12.27) 63.00 ( ±11.93) 10.09 ( ±7.07) 10.62 ( ±7.16) 5.42 ( ±1.29) 5.50 ( ±1.37) 

Hapnet 17.85 ( ±13.31) 21.35 ( ±13.11) 6.01 ( ±4.07) 8.27 ( ±3.94) 7.41 ( ±7.40) 12.47 ( ±11.38) 

MADNet(KITTI) 26.58 ( ±18.11) 30.09 ( ±18.28) 4.23 ( ±1.42) 5.05 ( ±1.50) 3.44 ( ±1.64) 3.83 ( ±1.62) 

MADNet(SceneFlow) 34.01 ( ±16.31) 39.52 ( ±15.49) 13.22 ( ±13.31) 16.48 ( ±13.69) 15.75 ( ±14.89) 19.78 ( ±14.95) 

PSMNet(KITTI) 12.16 ( ±7.12) 17.37 ( ±8.15) 9.53 ( ±9.40) 18.15 ( ±21.23) 3.48 ( ±2.21) 5.59 ( ±4.32) 

PSMNet(SceneFlow) 98.31 ( ±1.23) 98.11 ( ±1.11) 19.63 ( ±6.33) 22.52 ( ±7.13) 24.60 ( ±6.22) 31.61 ( ±9.23) 

Stereo-UCL 33.24 ( ±10.09) 34.43 ( ±10.18) 26.40 ( ±19.55) 36.46 ( ±32.03) 9.24 ( ±2.96) 10.89 ( ±4.29) 

Table 3 

Expt. 2 - CT results. 

Mean bad3 Error Mean RMSE Mean RMSE 

% 3D Distance (mm) Disparity (pixels) 

Occlusions: not included included not included included not included included 

Method 

DeepPruner(KITTI) 19.13 ( ±16.95) 24.58 ( ±15.75) 3.21 ( ±1.31) 3.82 ( ±1.65) 3.12 ( ±2.77) 4.03 ( ±2.71) 

DeepPruner(SceneFlow) 87.73 ( ±15.79) 88.99 ( ±14.13) 29.77 ( ±11.76) 33.14 ( ±12.52) 55.27 ( ±16.00) 68.05 ( ±13.15) 

DispNetC(KITTI) 47.87 ( ±27.58) 50.72 ( ±25.40) 7.07 ( ±4.56) 7.49 ( ±4.70) 7.53 ( ±7.33) 8.12 ( ±7.20) 

DispNetC(SceneFlow) 47.60 ( ±32.15) 50.25 ( ±31.02) 7.68 ( ±3.68) 8.77 ( ±4.67) 15.21 ( ±17.76) 17.09 ( ±20.14) 

HSM(level1) 5.46 ( ±2.96) 9.22 ( ±5.20) 2.12 ( ±0.54) 2.98 ( ±1.29) 1.81 ( ±0.83) 2.73 ( ±2.07) 

HSM(level2) 9.73 ( ±3.96) 13.68 ( ±5.72) 2.78 ( ±1.17) 3.74 ( ±1.24) 2.07 ( ±0.63) 3.08 ( ±1.92) 

HSM(level3) 46.95 ( ±11.61) 49.77 ( ±9.73) 6.47 ( ±3.68) 7.43 ( ±3.09) 4.57 ( ±1.00) 5.68 ( ±2.35) 

Hapnet 23.64 ( ±17.61) 27.71 ( ±16.56) 8.45 ( ±4.99) 10.33 ( ±5.24) 13.09 ( ±8.88) 18.82 ( ±12.96) 

MADNet(KITTI) 38.24 ( ±30.26) 40.39 ( ±27.63) 6.31 ( ±3.13) 6.72 ( ±3.89) 7.21 ( ±7.02) 7.68 ( ±7.25) 

MADNet(SceneFlow) 69.49 ( ±19.68) 71.61 ( ±18.34) 30.17 ( ±15.19) 31.24 ( ±12.45) 46.47 ( ±21.83) 50.59 ( ±18.03) 

PSMNet(KITTI) 15.41 ( ±13.02) 19.58 ( ±15.52) 9.19 ( ±7.67) 12.94 ( ±12.58) 5.09 ( ±4.99) 6.65 ( ±5.85) 

PSMNet(SceneFlow) 96.18 ( ±1.58) 96.38 ( ±1.30) 23.78 ( ±9.26) 25.17 ( ±8.76) 35.85 ( ±17.75) 40.98 ( ±18.94) 

Stereo-UCL 42.74 ( ±22.25) 43.05 ( ±22.44) 35.19 ( ±37.62) 35.63 ( ±37.49) 12.45 ( ±8.01) 13.10 ( ±8.82) 

Table 4 

Expt. 2 - Creaform results. 

Mean bad3 Error Mean RMSE Mean RMSE 

% 3D Distance(mm) Disparity(pixels) 

Occlusions: not included included not included included not included included 

Method 

DeepPruner(KITTI) 15.31 ( ±12.91) 21.62 ( ±12.51) 3.30 ( ±1.30) 3.91 ( ±1.59) 3.11 ( ±2.84) 3.99 ( ±2.76) 

DeepPruner(SceneFlow) 87.06 ( ±17.17) 88.44 ( ±15.26) 29.36 ( ±11.75) 32.86 ( ±12.55) 54.62 ( ±16.35) 67.77 ( ±13.13) 

DispNetC(KITTI) 48.24 ( ±24.92) 51.05 ( ±22.92) 7.19 ( ±4.43) 7.60 ( ±4.60) 7.46 ( ±7.15) 8.08 ( ±7.13) 

DispNetC(SceneFlow) 47.99 ( ±30.72) 50.48 ( ±29.93) 7.71 ( ±3.46) 8.86 ( ±4.60) 15.01 ( ±17.34) 16.92 ( ±19.80) 

HSM(level1) 6.58 ( ±4.82) 10.40 ( ±7.05) 2.25 ( ±0.45) 3.17 ( ±1.54) 2.00 ( ±1.06) 2.96 ( ±2.38) 

HSM(level2) 10.98 ( ±5.99) 15.12 ( ±8.13) 2.96 ( ±1.20) 3.95 ( ±1.52) 2.29 ( ±0.91) 3.32 ( ±2.23) 

HSM(level3) 49.78 ( ±13.02) 52.30 ( ±10.49) 6.48 ( ±3.53) 7.51 ( ±3.07) 4.84 ( ±1.19) 5.98 ( ±2.62) 

Hapnet 27.07 ( ±20.93) 31.15 ( ±20.08) 8.72 ( ±5.27) 10.60 ( ±5.46) 13.46 ( ±9.14) 19.11 ( ±13.08) 

MADNet(KITTI) 40.28 ( ±32.16) 42.27 ( ±29.22) 6.49 ( ±3.25) 6.92 ( ±4.00) 7.55 ( ±7.28) 8.06 ( ±7.53) 

MADNet(SceneFlow) 68.25 ( ±19.47) 70.58 ( ±18.16) 30.17 ( ±14.94) 31.26 ( ±12.20) 46.38 ( ±22.09) 50.52 ( ±18.37) 

PSMNet(KITTI) 14.05 ( ±8.03) 18.47 ( ±10.70) 9.34 ( ±7.48) 13.08 ( ±12.34) 5.16 ( ±4.85) 6.76 ( ±5.71) 

PSMNet(SceneFlow) 96.26 ( ±1.22) 96.47 ( ±0.96) 23.85 ( ±9.67) 25.28 ( ±9.16) 36.11 ( ±17.95) 41.21 ( ±19.10) 

Stereo-UCL 43.72 ( ±23.50) 44.02 ( ±23.64) 35.03 ( ±37.87) 35.48 ( ±37.72) 12.68 ( ±8.35) 13.34 ( ±9.14) 
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14 and 016. These depict smooth surfaces that are either feature- 

ess or contain significant specular highlights and clearly present a 

roblem for some of the networks. The difficulty of these images 

ay account for much of the increase in error. 

The bad3 % error results for our dataset are higher than those 

enerally reported in the computer vision literature. This is mainly 

ecause the tested methods are not fine-tuned for this specific 

ataset. The limited sample size does not facilitate training on this 
13 
ataset. The challenging images presented to the algorithms and 

lso any inaccuracies in the CT or Creaform reference surfaces will 

ontribute to this error. It is hard to separate algorithm fitting error 

rom reference error, but the spread of performance from all meth- 

ds suggests that inaccuracies from the reconstruction algorithms 

ay dominate. 

The analysis has slightly higher error for the Creaform surfaces 

or Expt. 2, which may result from the extra registration process 
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Fig. 15. X-Z view of a SCARED sample (left) and a SERV-CT sample (right). Samples 

provided from the SCARED challenge, exhibit significant outliers and step artefact. 

SERV-CT provides smooth smooth ground truth reference captured using a CT scan- 

ner. 
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rom the RGB surface to the CT scan. The only significant improve- 

ent is with frame 16, where there is less variation and a lower 

ean error when aligning with the RGB surface. However, the abil- 

ty to register using visible surface features that have no corre- 

ponding geometric variation is potentially useful and may offer 

 route to automated alignment. 

Overall, we can see that algorithmic performance can be com- 

ared using our dataset and that the images included, present dif- 

erent challenges to what is offered by existing datasets. Although 

he dataset has limitations, we believe the value of providing direct 

isparity maps for evaluation will significantly ease the process of 

valuating new algorithms and support the community by estab- 

ishing benchmarks. 

. Discussion 

Standardised datasets have been instrumental in accelerating 

he development of algorithms for a wide range of problems in 

omputer vision and medical image computing. They not only al- 

eviate the need for data generation but also provide a means of 

ransparently and measurably benchmarking progress. Despite re- 

ent progress and emergence of datasets in endoscopy, for exam- 

le for gastroenterology (the GIANA challenge 15 and the KVASIR 

ataset from Pogorelov et al. (2017) ), instrument and scene seg- 

entation ( Allan et al., 2019; Maier-Hein et al., 2020; Al Hajj 

t al., 2019 ), and for 3D reconstruction ( Maier-Hein et al., 2014; 

au et al., 2019; Penza et al., 2018; Allan et al., 2021 ), there is

till a need for improved datasets in surgical endoscopy, which 

resents specific challenges due to the lack of clearly identifiable 

eatures, highly deformable tissue and the presence specular high- 

ights, smoke, tools and blood. 

.1. Comparison with the SCARED Challenge Dataset 

The most closely related work to that described in this paper 

s the SCARED challenge dataset ( Allan et al., 2021 ). This dataset is

n excellent achievement that provides keyframes with for a range 

f anatomy that also incorporates tools in some of the frames. It is 

he best available endoscopic stereo reconstruction benchmark to 

ate. 

However, there are some issues arising with the data. We list 

ome of the ways the method described here compares favourably 

o SCARED. 

1. SCARED provides reference in form of 3D images where each 

pixel encodes the 3D location of the point that gets projected 

to it. Although creating depthmaps out of this format is trivial, 

some processing is needed to stereo rectify the RGB images and 

construct the disparity reference, making the dataset compati- 

ble with stereo matching algorithms. The output of this process 

heavily depends on the rectification parameters and implemen- 

tation. By providing our reference in both depth and disparity 

domains, we ensure that reported results across different pa- 

pers using SERV-CT will only reflect the performance of the al- 

gorithms and will be invariant of any data processing pipeline. 

2. The quality of the endoscope’s calibration in SCARED varies 

across the sub-datasets. We provide a consistent stereo calibra- 

tion. 

3. Identification and reconstruction of occluded regions. The full 

CT surface provides true reference depth for regions that are 

visible only from a single camera and the appropriate masks 

to identify those occluded regions. Some algorithms will pro- 

vide better monocular reconstruction in these areas and SERV- 

CT’s occlusion masks provide a way to evaluate performance 
15 https://giana.grand-challenge.org/ . 

c

s

p

14 
in these regions. Although depth information for occluded pix- 

els may be provided in the interpolated depth sequences of 

SCARED, appropriate occlusion masks are absent making it hard 

to evaluate the performance stereo matching algorithms in the 

absence of pixel correspondences. 

4. The SCARED dataset includes outliers and exhibits a signifi- 

cant step artefact, especially in the periphery. SERV-CT pro- 

vides a smooth surface without significant holes or artefacts 

(see Fig. 15 ). 

5. Acquisition time The time taken to produce a scan with the O- 

arm 

TM is 30s. Though the scan time is not described in the 

SCARED paper, there are 40 images that need to be projected 

to grab a frame with the projection system: (10bits x 2(orien- 

tation) x2 (negative/positive)). To cover the whole scene or ini- 

tially out of focus regions requires repositioning and refocussing 

of the projector. We estimate that the collection time will be 

several minutes, during which the tissue may move or deform 

under gravity and introduce ambiguities in the ground truth. 

Any such motion will be reduced using the faster O-arm 

TM . 

It is unclear how the staircase artefact in particular could influ- 

nce the performance of learning based algorithms trained on the 

CARED dataset. Due to the same artifact we cannot get a clear pic- 

ure of marginal performance differences between two algorithms. 

During training, SERV-CT can be used in combination with 

CARED to create models robust to data shift and potentially one 

ataset can help mitigate issues introduces by the other. Addition- 

lly, rather than using SERV-CT for training, we can leverage the 

ense and smooth annotation of its samples to measure marginal 

erformance differences between two methods and their robust- 

ess to data shift. 

.2. Alternative protocols for dataset reconstruction 

The protocol followed in this work involved moving the endo- 

cope under robotic motion to provide multiple views in a man- 

er similar to surgery. An alternative would be to clamp the endo- 

cope and move the phantom. If the endoscope can be held suffi- 

iently rigid with respect to the scanner, then registration from CT 

o endoscope should be maintained between scans. Multiple scans 

an be taken and the phantom moved, deformed or cut between 

cans. For our bulky torso phantom and with the constraints of 

he O-arm 

TM volume this significant movement was not consid- 

red feasible. Small motions and deformations of the scene would 

e possible, but these will need to be stable over the period of 

he scan. Any cutting, deformation or resection under this proto- 

ol would only be viewed from one perspective. This was not con- 

idered practical in our setup, but for other arrangements such a 

rotocol might provide a means of increasing the sample size. 

https://giana.grand-challenge.org/
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Another option would be to take a scan, then place a calibration 

bject or a set of markers in the scan volume and rescan. Again, 

he endoscope would have to be fixed with respect to the O-arm 

TM 

or the duration of the scans. With a limited number of markers in 

lose proximity for our calibration object this was not sufficiently 

ccurate. But again, with alternative setups such a method could be 

sed. The point registration to the calibration frame and any insta- 

ility of the endoscope clamping will introduce their own errors, 

ut such a method could be used in principle. 

As a further alternative, we initially attempted to use marker 

earings attached to the endoscope to provide tracking frame of 

eference. Due to artifact from the endoscope itself, these could not 

e located with sufficient accuracy for precise hand-eye calibration. 

There are structured light scanning methods that provide sub- 

ixel reconstruction, avoiding step artefact. These methods may in- 

rease the data collection time further, however. One method that 

ay offer promise is to perform a combined approach, with an ac- 

urate external surface from one device being aligned with with 

 similar reconstruction through the endoscope. There are many 

otential avenues for future reference dataset construction and we 

ope that this discussion and the account of SERV-CT offer useful 

uidance to the research community. 

.3. Note on human visual adjustment and verification of stereo 

econstruction 

Any reference dataset will involve a reconstruction process and 

erhaps registration too. All such methods will have associated er- 

ors. In addition to analysis of error metrics and loss functions, 

tereo human visual inspection of reference surfaces should be a 

tandard part of the verification process for future datasets. Where 

here are errors, human visual correction and adjustment can be 

acilitated under constraints that ensure that aspects well mea- 

ured by the process are maintained. This was our strategy with 

ERV-CT. As methods become more accurate, human manual ad- 

ustment may no longer be needed, but visual inspection is still 

dvised to provide insight into the errors that remain. 

. Conclusions 

With this paper, we have developed and reported a validation 

ataset based on CT images of the endoscope and the viewed 

natomical surface. The location of the endoscope constrains the 

erspective from which the anatomical surface is viewed. Subse- 

uent rotation of the view is established by manual alignment, fol- 

owed by a small Z translation to account for the true lens posi- 

ion within the endoscope (see section 2.6 ). Constraining the en- 

oscope location in this way, ensures that the distance from cam- 

ra to anatomy comes from the CT dataset. This method of con- 

trained alignment could be used for any 3D modelling system that 

overs both the endoscope and the viewed anatomy. The dataset 

nd algorithms for processing the raw data and the generated dis- 

arity maps are openly available 16 . In addition, we report the per- 

ormance of various fast computational stereo algorithms that are 

pen source and provide the full parameter settings alongside the 

rained model weights to allow experiments to be reproduced eas- 

ly. 

SERV-CT adds to existing evaluation sets for stereoscopic sur- 

ical endoscopic reconstruction. The validation covers the major- 

ty of the image and there is considerable variation of depth in 

he viewed scenes (see Fig. 3 ). The analysis of several stereo re- 

onstruction algorithms has been performed and demonstrates the 

easibility of SERV-CT as a validation set, but also highlights chal- 

enges. The results suggest that learning based stereo methods, 
16 https://www.ucl.ac.uk/interventional- surgical- sciences/serv- ct . 

E

[

o

15 
rained on real world scenes, are promising candidates for surgi- 

al stereo-endoscopic reconstruction. 

There are limitations to the work. A relatively small number of 

6 frames with corresponding reference are provided. The man- 

al alignment relies heavily on operator skill and is not a trivial 

rocess. Automating this part of the procedure would be desirable 

ut presents an open registration problem in its own right. There 

s variation of anatomy and considerable variation of depth in the 

mages presented, but further realism could be provided by the in- 

roduction of tools, smoke, dissection or resection and blood. The 

ndoscope images from the original da Vinci are comparatively low 

ontrast and resolution compared to newer endoscopes and there 

s noticeable colour difference between the eyes. 

Datasets are not only important for validation but also for train- 

ng deep learning models. The sample size of our dataset, alone, 

s not sufficient to train accurate models. A possible way of ad- 

ressing this is through simulation ( Rau et al., 2019; Pfeiffer et al., 

019 ), but fine tuning may still be required. In our future work 

lans, we intend to extend this dataset significantly in a variety 

f ways. Kinematic or other tracking may extend the CT alignment 

o multiple frames, significantly increasing the number of stereo 

airs available and also providing a reference for video-based re- 

onstruction and localisation methods such as SLAM. We intend 

o gather more such datasets under different conditions and will 

lso investigate the use of other devices for measurement of the 

issue surface, such as laser range finders and further structured 

ight techniques. 

Despite the recognised limitations of the SERV-CT dataset, we 

ave established the feasibility of this methodology of reference 

eneration. The method could be applied to any measurement sys- 

em that can provide the location of both the endoscope and the 

iewed anatomy in the same coordinate system. It may poten- 

ially be a way of approaching the bottlenecks in image-guided 

urgery through preoperative and intraoperative surface registra- 

ion. We also hope that this work encourages further development 

f such reference surgical endoscopic datasets to facilitate research 

n this important area which may help provide surgical guidance 

nd is likely to be of significant benefit in the development of fu- 

ure robotic surgery. 
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