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ABSTRACT

Convergence maps of the integrated matter distribution are a key science result from weak gravitational lensing surveys. To
date, recovering convergence maps has been performed using a planar approximation of the celestial sphere. However, with the
increasing area of sky covered by dark energy experiments, such as Euclid, the Vera Rubin Observatory’s Legacy Survey of
Space and Time (LSST), and the Nancy Grace Roman Space Telescope, this assumption will no longer be valid. We recover
convergence fields on the celestial sphere using an extension of the Kaiser—Squires estimator to the spherical setting. Through
simulations, we study the error introduced by planar approximations. Moreover, we examine how best to recover convergence
maps in the planar setting, considering a variety of different projections and defining the local rotations that are required when
projecting spin fields such as cosmic shear. For the sky coverages typical of future surveys, errors introduced by projection effects
can be of the order of tens of percent, exceeding 50 per cent in some cases. The stereographic projection, which is conformal and
so preserves local angles, is the most effective planar projection. In any case, these errors can be avoided entirely by recovering
convergence fields directly on the celestial sphere. We apply the spherical Kaiser—Squires mass-mapping method presented to
the public Dark Energy Survey science verification data to recover convergence maps directly on the celestial sphere.
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1 INTRODUCTION

Weak gravitational lensing distorts the shape and size of images of
distant galaxies due to the gravitational influence of matter perturba-
tions along the line of sight (see e.g. Bartelmann & Schneider 2001;
Schneider 2005; Munshi et al. 2008; Heavens 2009). The amplitude
of the distortion — a change in the ellipticity (third flattening or third
eccentricity) and apparent size of an object — contains information
on the integrated Newtonian potential and can be used to estimate
the integrated mass distribution. The lensing effect is dependent on
the total mass distribution and therefore, because massive structures
are dominated by dark matter, the mass distributions recovered by
weak lensing are colloquially referred to as mass-maps of the dark
matter of the Universe. The creation of such maps constitutes one
of the main empirical observations that underpins the dark matter
paradigm (Clowe et al. 2006).

The most common approach to extract cosmological information
from weak lensing surveys is to compute the two-point correlation
function (e.g. Kilbinger 2015) or power spectrum (e.g. Alsing et al.
2016) from observational data and compare to an expectation from
theory. However, such analyses are sensitive only to the Gaussian
component of the underlying field. To capture the entire information
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content of the shear field, higher order statistics (e.g. Munshi et al.
2011) or phase information (e.g. Coles & Chiang 2000) must be
considered. Recovering mass-maps provides the basis for performing
a wide variety of complimentary higher order statistical analyses that
probe the non-Gaussian structure of the dark matter distribution. For
example, properties of dark matter can then be studied using analyses
based on peak and void statistics (e.g. Lin & Kilbinger 2015a,b; Lin,
Kilbinger & Pires 2016; Peel et al. 2016), Minkowski functions (e.g.
Kratochvil et al. 2012; Munshi et al. 2012; Petri et al. 2013), or
wavelets (cf. Hobson, Jones & Lasenby 1998; Aghanim et al. 2003;
Vielva et al. 2004, McEwen et al. 2005), to name just a few.

Further to this, mass-mapping provides an efficient way to cross-
correlate weak lensing data with other cosmological data (e.g. with
observations of the cosmic microwave background; Liu & Hill 2015).
More directly, dark matter maps are of interest for galaxy evolution
studies: it is known from simulations that the dark matter structure
should exhibit a filamentary or ‘cosmic web’ structure inference of
which can then provide dark matter environmental information that
can then be used in galaxy evolution studies (Brouwer et al. 2016).
Finally, mass-mapping is a continuation of cartography on to the
cosmic scale — the making of such maps is therefore laudable in its
own right.

Recovering mass-maps requires solving an inverse problem to
recover the underlying mass distribution from the observable cosmic
shear. There are a number of approaches to estimating mass-maps
from weak lensing data. The method most commonly used on
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large scales is colloquially known as ‘Kaiser—Squires’ (KS) and
is named after the paper in which the method was first described
(Kaiser & Squires 1993). This approach is based on a direct Fourier
inversion of the equations relating the observed shear field to the
convergence field, which is a scaled version of the integrated mass
distribution. Although it is widely known that such an approach,
based on a direct Fourier inversion, is not robust to noise, the
method remains in widespread use today (in practice, the resultant
mass-map is smoothed to mitigate noise). Indeed, the KS method
has been used to recover mass-maps from data from by a number
of recent weak lensing surveys, including data from the Cosmic
Evolution Survey (COSMOS; Scoville et al. 2007), the Canada—
France—Hawaii Telescope Lensing Survey (CFHTLenS; Heymans
etal. 2012), and the Dark Energy Survey (DES; Flaugher et al. 2015)
Science Verification (SV) data (respectively, Massey et al. 2007;
Van Waerbeke et al. 2013; Chang et al. 2015). Alternative mass-
mapping techniques to recover the convergence field have also been
developed, however, these are not typically in widespread use and in
many cased are focused on the galaxy cluster scale. On the galaxy
cluster scale, parametric models (e.g. Jullo et al. 2007) and non-
parametric methods (e.g. Massey et al. 2015; Lanusse et al. 2016;
Price et al. 2021) have been considered. Szepietowski et al. (2014)
have investigated the use of phase information from galaxy number
counts to improve the reconstruction.

While the methods discussed above focus on recovering the two-
dimensional convergence field, which represents the integrated mass
distribution along the line of sight, it is also possible to recover
the full three-dimensional gravitational potential. Such an approach
involves an additional inverse problem and thus an additional level of
complexity. This has been considered by a number of works (Bacon
& Taylor 2003; Massey et al. 2004; Taylor et al. 2004; Simon, Taylor
& Hartlap 2009; VanderPlas et al. 2011; Leonard, Dupé & Starck
2012; Simon 2013; Leonard, Lanusse & Starck 2014)

In general, mass-mapping techniques for weak lensing consider
a small field-of-view of the celestial sphere, which is approximated
by a tangent plane. The mass-mapping formalism is then developed
in a planar setting, where a planar two-dimensional Fourier trans-
form is adopted. Such an assumption will not be appropriate for
forthcoming surveys, which will observe significant fractions of the
celestial sphere, such as the Kilo Degree Survey (KiDS'; de Jong
et al. 2013), DES? (Flaugher et al. 2015), Euclid® (Laureijs et al.
2011), LSST* (LSST Science Collaboration et al. 2009), and the
Nancy Grace Roman Space Telescope® (Spergel et al. 2015). Fig. 1
illustrates the approximate sky coverage for DES SV data, DES
full data, and Euclid observations, from which it is apparent that
planar approximations will become increasingly inaccurate as sky
coverage areas grow over time. Existing mass-mapping techniques
that are based on planar approximations therefore cannot be directly
applied to forthcoming observations, without introducing significant
errors into subsequently inferred statistics (see e.g. Vallis, Wallis
& Kitching 2018, for an analysis of projection effects on peak
statistics and minkowski functionals). This work aims to highlight
the necessity of spherical methods, by demonstrating the inevitability
of errors introduced by planar projections, and does not attempt to
quantify the effect of such projection errors on global statistics.

Uhttp://kids.strw.leidenuniv.nl
Zhttp://www.darkenergysurvey.org
3http://euclid-ec.org
“https://www.lsst.org
Shttps://roman.gsfc.nasa.gov
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(b) DES full

(c) Euclid (front and rear views)

Figure 1. Approximate coverage area of different weak lensing surveys illus-
trated on the celestial sphere. In particular, the coverage area corresponding
to DES SV observations, DES full observations, and Euclid observations are
shown. It is apparent that existing planar mass-mapping techniques will not
be appropriate for the large coverage areas of forthcoming surveys. We extend
the KS technique for mass-mapping to the spherical setting in this article, in
order to recover mass-maps on the celestial sphere.

In this article, we consider the KS approach for recovering mass-
maps defined on the full celestial sphere. While the harmonic space
expressions in the spherical setting relating the observed shear field to
the convergence field, via the lensing potential, have been presented
already (e.g. Taylor 2001; Castro, Heavens & Kitching 2005; Pichon
et al. 2010), to the best of our knowledge, naive Fourier inversion
on the celesital sphere (i.e. spherical KS) has not been considered
previously. We compare the spherical KS formalism with the planar
case, considering several different spherical projections.® Spherical
mass-mapping techniques have also been considered by Pichon
et al. (2010), where a maximum a posteriori (MAP) estimator was
presented. In addition, the authors consider using a Wiener filter to
denoise the shear in advance of attempting to recover convergence
maps. However, as far as we are aware, these techniques have not been
applied to observational data. The spherical KS technique that we
present here is a first step towards more sophisticated spherical mass-
mapping techniques that will be the focus of future work. In practice,
only partial-fields defined on the celestial sphere are observed. The
KS estimator suffers due to leakage induced by the masking of the
observed region (it is well-known that the decomposition of a spin
field into scalar and pseudo-scalar components, and consequently
mass-mapping, is not unique on a manifold with boundary; Bunn

% An alternative to recovering mass-maps directly on the sphere is to tile the
celestial sphere and perform mass-mapping on planar patches, as considered
for the lensing of the cosmic microwave background by Plaszczynski et al.
(2012). An extension of this work to galaxy lensing, when shear is observed,
would be of great interest.
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et al. 2003). Pure mode estimators on the celestial sphere can
be developed to remove this leakage (e.g. Leistedt et al. 2017).
Furthermore, the impact of noise can be mitigated by the use of
regularization methods adapted to the spherical setting (e.g. Wallis,
Wiaux & McEwen 2016).

The remainder of this article is structured as follows. In Section 2,
we briefly review the mathematical background of spin fields on the
sphere and weak gravitational lensing. Mass-mapping on the celestial
sphere is presented in Section 3. In Section 4, we use simulations to
compare the spherical case to a variety of planar settings for various
spherical projections. In Section 5, we present an application of the
spherical KS technique to DES SV data in order to recover spherical
mass-maps. Concluding remarks are made in Section 6. Throughout,
we adopt the cubehelix (Green 2011) colour scheme.

2 BACKGROUND

Weak gravitational lensing gives rise to scalar and spin fields defined
on the celestial sphere. For example, the observed shear field induced
by weak gravitational lensing is a spin £2 field. We therefore review
scalar and spin fields on the sphere and their harmonic representation,
before reviewing the mathematical details of rotation and the Dirac
delta function on the sphere, which we make use of subsequently
when considering mass-mapping on the celestial sphere. Weak
gravitational lensing in the three-dimensional spherical setting is
then reviewed concisely.

2.1 Spin fields on the sphere

Square integrable spin fields on the sphere  f, with integer spin s €
Z, are defined by their behaviour under local rotations. By definition,
a spin field transforms as

sf (@) =e™ [ f(w), (1

under a local rotation by x € [0, 27t), where the prime denotes
the rotated field (Newman & Penrose 1966; Goldberg et al. 1967;
Kamionkowski, Kosowsky & Stebbins 1997; Zaldarriaga & Seljak
1997).7 It is important to note that the rotation considered here is
not a global rotation on the sphere but rather a rotation by x in the
tangent plane centred on the spherical coordinates w = (6, ¢) € S,
with co-latitude 6 € [0, 7] and longitude ¢ € [0, 271). The case s = 0
reduces to the standard scalar setting.

The canonical basis for scalar fields defined on the sphere are given
by the (scalar) spherical harmonics Y, . Basis functions for spin fields
can be defined by applying spin lowering and raising operators to
the scalar spherical harmonics. Spin raising and lowering operators,
0 and O respectively, increment and decrement the spin order of a
spin-s field by unity and are defined by

0 i 0
O0=—sin’0 ( —+—— ] sin"*0 2
s (66 + sin 6 E)(p) s @
and
- 0 i 0
0= —sin""0 ——;— sin® 6, 3)
060  sin6 0g

"The sign convention adopted for the argument of the complex exponential
differs to the original definition (Newman & Penrose 1966) but is identical
to the convention used typically in astrophysics (Kamionkowski et al. 1997;
Zaldarriaga & Seljak 1997).
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respectively (Newman & Penrose 1966; Goldberg et al. 1967,
Kamionkowski et al. 1997; Zaldarriaga & Seljak 1997). When ap-
plied to spherical harmonics, the spin raising and lowering operators
take the form

1/2
3 Yim(@) = [(€ =) +5+ D] 1Y) )
and
_ 12
3 Y@ = =€+ ) =5+ D] " 1 Yin(@), ©)

respectively (see e.g. Zaldarriaga & Seljak 1997). The spin-s spher-
ical harmonics can, thus, be expressed in terms of the scalar (spin-
zero) harmonics through the spin, raising and lowering operators
by

e—s)1"?
sYZm(w) = |:E‘€ +S§':| 6SY@m(a))s (6)
for 0 <s < ¢, and by

L+ s)!
€ —s)!

for —¢ < s <0, where Yy,, denote the scalar (spin-zero) spherical
harmonics.

Due to the orthogonality and completeness of the spin spherical
harmonics, a spin field on the sphere can be decomposed into its
harmonic representation by

12
sYem(@) = (=1)° [ } 0 Yem(w), @)

o] 14
@ =D fom Yim(@) . ®)

=0 m=—¢

The harmonic coefficients of ; f, denoted by f , are given by the
usual projection on to the basis functions

Jom = f $Yen) = [32 dQA(w) s f(@) Y}, (@), ()]

where the rotation invariant measure on the sphere is given by
dQ2(w) = sin 6 db dg, the inner product on the sphere is denoted by
(-, -) and -* denotes complex conjugation. In practice, we consider
harmonic coefficients up to a maximum degree £,y i.e. signals on
the sphere band-limited at £,,,x With 5 f,,, = 0, V£ > €., in which
case, summations over £ can be truncated at {,,,. For notational
brevity, we sometimes do not explicitly show the limits of summation
where these can be inferred easily.

2.2 Rotation on the sphere

We subsequently consider the rotation of fields on the sphere, defined
by application of the rotation operator R,, where the rotation is
parametrized by the Euler angles p = («, B, y) € SO(3). We adopt
the zyz Euler convention corresponding to the rotation of a physical
body in a fixed coordinate system about the z, y, and z axes by y,
B, and «, respectively. Often, we consider rotations with y = 0 and
adopt the shorthand notation R,, = Ry,0,0)-

The spin spherical harmonic functions are rotated by (e.g. McEwen
et al. 2015)

4
(R, sYi)(@) = > DL (p) Yuu(@), (10)

n=—"{

where D!, are the Wigner D-functions (Varshalovich, Moskalev &
Khersonskii 1989), which follows from the additive property of the
Wigner D-functions (Marinucci & Peccati 2011).
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The Wigner D-functions may also be related to the spin spherical
harmonics by (Goldberg et al. 1967)

20+ 1

—— D, (. B.y). (11)

eiixy.rYZm(ﬁv J/) = (_1)v 47

2.3 Dirac delta on the sphere

We subsequently make use of the Dirac delta function on the sphere
8P, defined by

(Ruy8P)w) = —— 508 — ) 3" — ¢ (12)
sin @
0 4
= Z Z YZ,,((L),) Yem(w) s (]3)
(=0 m=—¢

where §'P(-) denotes the standard one-dimensional (Euclidean) Dirac
delta. The spherical harmonic coefficients of the Dirac delta defined
on the sphere are given by

. . [2¢+1
Sp, =Yr (0)= e 8o - (14)

2.4 Weak gravitational lensing

We now turn our attention to weak gravitational lensing, concisely
reviewing the related mathematical background, which is covered in
more depth in several review articles (e.g. Bartelmann & Schneider
2001; Schneider 2005; Munshi et al. 2008; Heavens 2009).

The weak gravitational lensing effect is typically expressed in
terms of the lensing potential ¢, which depends on the integrated
deflection angle along the line of sight, sourced by the local
Newtonian potential ®

2 " / fK(r - r/)
)= [ ar IKT )
A C2/0 " () fr ()

where c is the speed of light in a vacuum, r and r’ are comoving
distances, and w = (6, ¢) denote spherical coordinates, as defined
previously. The angular diameter distance factor reads

o1, w), (15)

sin(r), if K =1
Sk(r)y=4qr, ifK=0 |, (16)
sinh(r), if K =-1

for cosmologies with positive (K = 1), flat (K = 0), and negative
(K = —1) global curvatures. This expression assumes the Born
approximation. The gravitational potential is related to the density
field by Poisson’s equation

3QuH?
V2O(r, w) = M0
2a(r)

where Q) is the current average matter density of the Universe as
a fraction of the critical density, Hy is the current expansion rate of
the Universe, a(r) is the scale factor, and § is the fractional matter
overdensity. Equations (15) and (17) relate the matter perturbations
§ to the lensing potential ¢.

The lensing potential describes how light from a background
source (e.g. galaxy) at a position (r, w) is distorted by the lensing
effect. This deflection, to first order, affects the images of galaxies in
two ways. First, images of background sources are magnified by the
convergence k, which is related to the lensing potential by

8(r, w), 17)

Ok (r, w) = 1 (30 + 80) 0 (r, w) , (18)
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through the spin raising and lowering operators introduced in
equations (2) and (3). The convergence is not measured directly in
weak lensing experiments because the intrinsic magnitude of galaxy
sizes is unknown. Here and subsequently, we denote the spin of each
field explicit with a proceeding subscript, i.e. 0p = ¢ and Ok = «k
are both spin-zero (scalar) fields. Secondly, images of background
sources are sheared by 2y, which is related to the lensing potential
by

2y(r, w) = 1000¢(r, ) , (19)

where we make it explicit that the shear is a spin-2 field. Upon
averaging the shapes of many galaxies, one would expect the intrinsic
shear to average to zero (i.e. there is no preferred orientation). Hence,
one can measure shear by averaging the shapes of many galaxies.
In the remainder of this article, we do not consider ‘tomography’
(the separation of a source galaxy sample into populations labelled
by redshift or time) and so drop the radial dependence shown in the
above equations (for notational brevity, henceforth, we typically do
not show the angular dependence either). For further information,
see the discussions in Kitching et al. (2016) on spherical-radial and
spherical-Bessel representations of the shear field.

In general, the potential O¢ can be decomposed into its parity even
and parity odd components, namely the E- and B-mode components,
respectively

0p = 0¢F + 10¢° . (20)

However, the shear induced by gravitational lensing produces an E-
mode field only since density (scalar) perturbations cannot induce a
parity odd B-mode component. In the absence of systematic effects,
we have 0¢F = 0¢ and 0¢® = 0. The convergence can also be
decomposed into a parity even E-mode component and a parity odd
B-mode component

Ok = OkE + 10«8, (21)

where the B-mode component is again zero in the absence of
systematics effects. While the E-mode convergence field is of most
interest in the standard cosmological model, the B-mode convergence
field is important for testing for residual systematics. Moreover, B-
modes are also useful in studying exotic cosmological models that
exhibit parity violation (e.g. Kaufman, Keating & Johnson 2016).
Theoretical models of intrinsic alignments of galaxies can create B-
modes ( Crittenden et al. 2001, 2002; Hirata & Seljak 2004), although
the measured level is uncertain (Kirk et al. 2015).

The E-mode convergence field represents a scaled version of the
integrated mass distribution and thus mapping the intervening matter
distribution is often performed by estimating the convergence field.
Since the shear is related to the convergence via the lensing potential
through equations (18) and (19), convergence maps can be recovered
from the observable shear field, which amounts to solving an inverse
problem.

3 MASS-MAPPING ON THE CELESTIAL
SPHERE

In this section, we describe the process of estimating a convergence
field from an observed shear field in the spherical setting. Recovering
mass-maps by estimating the convergence field involves solving
a spherical inverse problem, as discussed above. First, we define
the forward problem in spherical harmonic space and explicitly
define the spherical generalization of the KS estimator for solving
this inverse problem. Secondly, we present an equivalent real space
representation of the spherical mass-mapping inverse problem, where

MNRAS 509, 4480-4497 (2022)

220z fienuep go uo Jasn uopuoT 10N A9 ££64219/0811/S/60S/2101e/seluw/wod dno olwapese//:sdiy Woll papEojuMo(]



4484  C. G. R. Wallis et al.

it can be seen as a deconvolution problem with a spin kernel. Thirdly,
we consider the planar approximation of the full spherical setting,
recovering the standard planar KS estimator. Finally, we consider
iterative refinements to convergence estimators that account for the
fact that it is the reduced shear that is observed, rather than the
true underlying shear. A variety of such spherical mass-mapping
techniques have recently been applied and contrasted on DES year 3
observational catalogues (see e.g. Jeffrey et al. 2021).

3.1 Harmonic representation

Using the harmonic representations of the spin raising and lowering
operators, it is straightforward to show that the harmonic represen-
tations of the convergence and cosmic shear of equations (18) and
(19) read, respectively

Okgm = —30(€ 4+ 1) Oy (22)

and

N N (TR T

where Oq.@gm and 0Ky, are the scalar spherical harmonic coefficients of
the lensing potential and the converge field, respectively, and 29, are
the spin-2 spherical harmonic coefficients of the cosmic shear field,
i.e. 0un = (09, You), Oem = (Ok, Y), and 29, = (2, 2Ypm).
It follows that the spin-2 harmonic coefficients of the shear are related
to the scalar harmonic coefficients of the convergence by

2)7lm = D/ZO’QL/m s 24

where we define the kernel

D, = -1 /(€+2)!. 25)
Le+10\ =2

Recovering the convergence field from the observable shear
field therefore amounts to solving the inverse problem defined by
equation (24). The simplest method to invert this problem is to
consider a direct inversion in harmonic space. In the planar setting,
such an approach gives rise to the KS estimator (Kaiser & Squires
1993). An analogous approach in the full-sky setting leads to the
spherical generalization of the KS estimator, defined by

0k =Dy ' 204 . (26)

where Pg% denotes the estimate of the shear harmonic coefficients

computed from observational data and g5 is the spherical Kaiser—
Squires (SKS) estimator of the harmonic coefficients of the con-
vergence field. A spherical convergence map OxS¥S(w) can then
be recovered by an inverse scalar spherical harmonic transform,
following equation (8), from which the E- and B-mode components
can be determined by considering the real and complex components,
following equation (21).

Itis well-known that a direct Fourier inversion approach to solving
inverse problems, on which the KS estimator is based, is susceptible
to noise. On large scales, one typically draws a central limit
theory argument for noise Gaussianity, in which case a mutlivariate
Gaussian noise model is adopted. In such settings, the KS approach is
straightforwardly given by the maximum likelihood estimator, which
implicitly assumes a uninformative flat prior. This, combined with
the fact that the KS inversion kernel defined by equation (24) has a flat
frequency response, indicates that noise present in the observational
data set propagates unchecked into the convergence estimate.

MNRAS 509, 44804497 (2022)

Typically one may wish to adopt more informative priors, within a
Bayesian setting, to regularize this noise contribution (see e.g. Pichon
et al. 2010; Price et al. 2021, where Gaussian and wavelet sparsity
priors are adopted respectively). However, for the KS approach, the
recovered convergence field is, somewhat naively, smoothed with a
Gaussian kernel to mitigate the impact of noise. In this paper, we
adopt this post-processing Gaussian smoothing approach and leave
more advanced alternatives to future research.

3.2 Real space representation

It is insightful to express the forward problem connecting the
observable cosmic shear and the convergence field in real space.
The differential form of this problem is readily apparent from
equations (18) and (19), from which it follows that

2y =200 (00 + 50) 0« . @7

An integral form can also be recovered, where the real space spin-2
shear field is related to the scalar convergence by a type of spherical
convolution with a spin-2 kernel 2/C

2y(w) = / dQ(0) (R 2K)(@) Ok () (28)
32

where the rotation operator R,, is defined in Section 2.2. From
comparison with equation (27), it is apparent that the kernel is given
by

2K(w) =200 (00 +50) ' 8°(w) , 29)

where §P(w) is the Dirac delta function on the sphere defined in
Section 2.3. Noting the spherical harmonic representation of the
Dirac delta function of equation (14) and the harmonic action of the
spin raising and lowering operators of equations (4) and (5), it is
straightforward to show that the harmonic coefficients of the kernel
read

-1 Je+2)! [2e+1
2 m = 8m .
Ko e+ @@=V axr (30)

An explicit expression for the kernel in real space can then be
recovered from its harmonic representation, yielding

3 -1 20+1 ,
QIC(Q))_ZiE(E_’_l)iMT P}(cos ), €1V

14

where PZ(-) is the associated Legendre function of order two. The
equivalence of the harmonic and real space expressions of the forward
problem of equations (24) and (28), respectively, can also be seen by
the explicit harmonic representation of equation (28), as shown in
Appendix A.

3.3 Planar approximation

We now consider the planar approximation of the spherical mass-
mapping estimator presented in Section 3.1, recovering the standard
planar KS estimator (Kaiser & Squires 1993). First, we note the
planar approximations of the spin raising and lowering operators
given by

0~ —(ax + iay) (32)
and
o~ _(ax — iay) , 33)
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respectively (see e.g. Bunn et al. 2003). In the planar approximation,
the convergence and cosmic shear are then related to the lensing
potential by

Ok = 1 (00 +00)0¢ ~ 5 (07 + 03)0¢ (34)
and
2y = ;0009 ~ | (97 —id}) +i0,0, |0 . (35)

respectively. It is common to decompose the shear component into
its real and imaginary component by

2y =y1+in. (36)

The planar Fourier representations of equations (34) and (35) are
then given by

0k (ky. ky) = — 35 (k7 + k2) 0Bk, ky) 37)
and

)91 (kxa k)) = _% (kf - k\z)oéE(kh kv) + kxkyOé\B(kxv kx) s
Pk ky) = —koky 0B (ke ky) — 3 (k7 — k7) 00 (ks ky)
respectively, where © denotes the Fourier transform and &, and k,
denote the Fourier c/o\ordinates, and we make use of the Fourier
derivative property 9, f = ik, f. It follows that under the planar

approximation, the shear can be related to the convergence in Fourier
space by

2p(ky, ky) = Ek),.k_v Ok (ky, ky) , 39)
where

k2 — k2 + 12k.k,
gk P —~ J =7

= 4
oy 2 A2 (40)

Analogous to the spherical setting considered in Section 3.1, in
the planar setting recovering the convergence field from the shear
amounts to solving the inverse problem defined by equation (39).
Again, the simplest method to invert this problem is to perform a
direct inversion in harmonic space, which gives rise to the standard
planar KS estimator (Kaiser & Squires 1993) of

R S (ks k) = E Yy 2P (ks ky) = EF 4 27 ks Ky) (41)

where we have taken advantage of the fact that &_ fk‘_ =& ky since
|€k, &, | = 1. Recall that ,p*'(k,, k,) is the estimate of the planar
Fourier coefficients of the shear computed from observational data.
Expanding the real and imaginary components, one recovers the
familiar KS estimators for the E- and B-mode component of the
convergence given by

(k7 = k3) 297 (ks Key) + 2kky 275 (ks y)

~E,KS
ok (ky, ky) = (42)
kZ + k2
and
k\B.KS(k k ) _ _2k.\'ky 2)//\1“[(]()(: k)) + (k)% - k?,) Z?ZESL(kxs kv)
0 xs Ry k)% + kf s
(43)

respectively. A planar convergence map O« XS(w) can then be recov-
ered by an inverse Fourier transform.

In the above derivation, we have not considered the practicalities
of the projection of the fields considered, which are defined natively
on the celestial sphere, on to a planar region. In practice, one must
choose a specific projection, the choice of which can have a large
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impact on the quality of the convergence map recovered from the
observed shear. We describe a variety of projections in Appendix B
and discuss their properties. Care must be taken when projecting a
spin-2 field such as the cosmic shear as local rotations must be taken
into account, as described in detail in Appendix B.

3.4 Reduced shear

In deriving the estimators presented in Sections 3.1 and 3.3, we
made the assumption that one could observe the pixelized shear field
directly. However, in practice, one can only measure the pixelized
reduced shear , g, which is related to the true underlying shear by

= (44)
11— oK

The problem of recovering the convergence field then becomes non-
linear. However, this non-linear problem can be solved iteratively
(Seitz & Schneider 1995; Mediavilla et al. 2016, p.153), as discussed
below. These techniques and similar are in common use in the
literature (e.g. Jullo et al. 2014; Lanusse et al. 2016; Price et al.
2021)

The first step is to denoise the map of reduced shear. In this work,
we use a Gaussian smoothing. We make an initial estimate of the
shear by assuming it is simply the measured reduced shear. Then an
initial estimate of the pixelized convergence field is made. The first
step of the iterative algorithm is thus

0
2)/()=2g,

45
@ =M [y©] , (45)

where M denotes the mass-mapping estimator used to recover the
convergence from the shear (in this article, we consider either the
spherical or planar KS estimators described in Sections 3.1 and 3.3,
respectively) and the superscript denotes iteration number. We then
use our estimate of the convergence to update the estimate of the
shear and repeat. The (i 4 1)-th iteration is thus

D = 5e(1 — o™y,

- M [2y(i+l)} .

2Y

0K(i+l) (46)

Iterations are continued until the absolute difference of the conver-
gence between iterations is below some threshold value. In this work,
we choose
max on-i) _OK;i—l) < 10—10’ 47)
J
where j runs over all pixels. Typically, for a convergence field
including ellipticity/shot noise, 4-5 iterations are required before
converging.

3.5 Implementation

We have written the PYTHON package massmappy® to implement
the algorithms presented. The package can perform standard mass-
mapping on the plane, with the option to perform iterations to account
for reduced shear. We also implement the SKS estimator described
above so that mass-mapping can be performed on the celestial sphere.
We support the use of two spherical pixelizations schemes. First,
we support the use of HEALPix’ (Gérski et al. 2005), an equal
area pixelization with an accompanying software package that can

8http://www.massmappy.org
“http://healpix.jpl.nasa.gov
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perform fast spherical harmonic transforms. We also support the
use of the standard equiangular sampling scheme implemented in
SSHT'? (McEwen & Wiaux 2011). This sampling scheme supports
fast spherical harmonic transforms that are theoretically exact and
achieve close to floating point precision in practice. The most recent
release of SSHT includes fast routines to compute the projections of
the sphere on to the plane considered in this work.

4 EVALUATION ON SIMULATIONS

In this section, we evaluate the mass-mapping algorithms presented in
Section 3 on simulations. We study the error introduced by the planar
approximation, for a variety of projections and for varying survey
coverage area, when compared to the spherical setting. We also assess
the ability of the iterative algorithm described in Section 3.4 to deal
with the reduced shear that is observed, rather than the underlying
true shear.

4.1 Comparison of planar and spherical mass-mapping

We study the impact of the flat-sky planar approximation in mass-
mapping, compared to the spherical setting, and determine the typical
errors induced for the sky coverages of upcoming surveys. We do this
as an idealized situation to focus the study on the effect of projecting
the sphere on to the plane. To do so, we need to understand how best
one can estimate mass-maps on the plane for large coverage areas.

When creating convergence maps on the plane (i.e. mass-maps),
the exact projection used to map the celestial sphere to the plane can
have a large impact on the quality of the reconstructed convergence
map. In Appendix B, we describe a variety of spherical projections
that can be considered, which we evaluate on simulations here. One
important aspect when projecting a non-zero spin field, e.g. shear (or
galaxy ellipticities), is to ensure that the correct local rotations are
performed, as described in Appendix B2. This is typically neglected
in existing mass-mapping works.

We now describe the simulations that we use to assess the
effect each projection has on the quality of the reconstruction of
convergence maps. We simulate Gaussian convergence maps using
a convergence power spectrum generated by the software package
CcosMOSIS'! (Zuntz et al. 2015). The power spectrum was generated
with a standard ACDM cosmology with galaxies in high redshift
bin z 2 1. We simulate the map up to a harmonic band-limit of
Cimax = 512 using the sampling of the sphere of SSHT (McEwen
& Wiaux 2011). We consider this spherical sampling scheme for
these numerical experiments since the resulting spherical harmonic
transforms are theoretically exact and the implementations in SSHT
achieve accuracy close to machine precision (which is not the
case for HEALPix; see Leistedt et al. 2013 for concise accuracy
benchmarks). Any errors will therefore be due to projection effects
rather than inaccuracies in harmonic transforms. We smooth the
simulated convergence maps with the Gaussian kernel G, = e*“z"z,
with o = 71/256, to mitigate pixelization issues. The shear field is
simulated by transforming the scalar convergence field to harmonic
space and then applying equation (24), before transforming back to
real space to recover a spin-2 shear field on the celestial sphere. In
these simulations, we aim to understand the effect of the projections
so we do not consider the effects of reduced shear or noise.

10http://www.spinsht.org
https://bitbucket.org/joezuntz/cosmosis/wiki/Home
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To evaluate the accuracy of planar mass-mapping, we first project
the simulated shear field from the celestial sphere to the plane, using
a particular projection. We estimate the convergence field from the
planar shear field using the planar KS estimator of equation (41).
We then compare this recovered planar convergence to a planar
projection of the convergence simulated initially on the celestial
sphere. A number of different projections are considered, as defined
in Appendix B. In general, we consider two classes of spherical
projection: namely, equatorial and polar projections.

In Fig. 2, we show example planar reconstructions and errors
for a variety of equatorial projections. These projections are highly
accurate on the equator, with distortion due to the projection typically
increasing with distance from the equator. We consider, first, a
simple cylindrical projection, where the (6, ¢) angles are taken
to be Cartesian coordinates (x, y). We also consider the Mercator
projection, which is often used for geographical maps. The Mercator
projection is a conformal projection, in that it preserves local angles.
The poles in this projection would be at infinity, so we limit the
projection to 77t/16 radians above and below the equator. Finally,
Fig. 2 shows results using the sinusoidal projection, a simple equal
area projection used by the DES collaboration for the convergence
map generated from DES SV data (Vikram et al. 2015).

In Fig. 3, we show example planar reconstructions and errors for
a variety of polar projections. These projections are highly accurate
around the pole defining the centre of the projection, with distortion
increasing as one moves away from this point. For these projections,
we project one hemisphere around a pole defined by the x-axis only;
hence, two projections (one for each hemisphere) are required to
cover the entire sphere.'> We consider the orthographic projection,
which is a simple vertical projection, the stereographic projection,
which is another conformal projection, and finally the Gnomonic
projection, which has the special property that the local rotations
required for the projection of spin fields are zero (if no coordinate
rotation is performed). The edge of the hemisphere for the Gnomonic
projection lies at infinity so we only project the sphere on to the
square where the distance from the centre of the square and its edge
represents an angle of 7t/4 radians.

For all projections, we show in Figs 2 and 3 the projected shear,
the recovered E-mode convergence, and the error in the E- and B-
mode convergence. As expected, the convergence reconstruction is
best where the planar approximation is most accurate and worse as
one moves away from this region. We can also see by eye that the
conformal projections (the Mercator and stereographic projections)
perform the best. This is due to fact that local angles are preserved by
the projection. What is also clear is that for many of the projections,
the B-mode convergence error can be large in certain regions even
in the absence of noise or systematic errors.

We can use these simulations to examine the error in the recon-
structed convergence field as a function of angular size. In Fig. 4,
we show how the accuracy of the recovered convergence field
changes with patch size. We consider a similar simulation setup
as the low resolution experiments described above but now simulate
the convergence field up to a band limit €, = 4000, using the
same power spectrum and smoothing kernel as before. We set a
higher band-limit to eliminate all pixelization effects (a lower band-

12For the stereographic projection, a single projection can be applied to map
the sphere to the plane. However, the opposite pole is mapped to the point at
infinity. Moreover, the size of the planar regions grows considerably as the
full coverage of the celestial sphere is approached. Consequently, for practical
purposes, the two hemispheres are projected separately.

220z fienuep go uo Jasn uopuoT 10N A9 ££64219/0811/S/60S/2101e/seluw/wod dno olwapese//:sdiy Woll papEojuMo(]


http://www.spinsht.org
https://bitbucket.org/joezuntz/cosmosis/wiki/Home

Mapping dark matter on the celestial sphere 4487

Cylindrical

Mercator

Sinusoidal

(b)')’2 (c)kEKS (d) «BXS error

—0.016 -0.012 -0.008 -0.004 0.000 0.004 0.008 0.012 0.016

Figure 2. Simulated reconstructions of the convergence field (mass-maps) on large regions of the celestial sphere when using equatorial projections, in order to
assess the impact of different planar projections. The shear field is shown in the first and second columns (the first showing y; and the second showing y»). The
third column shows the reconstructed convergence field (E-mode), while the forth and fifth columns show the error on the £-mode and B-mode convergence,
respectively. Each row shows a different projection: the first row shows the simple cylindrical projection; the second shows the Mercator projection; and the
final row shows the sinusoidal projection. The entire sphere is projected on to the plane, except for the Mercator projection where only 77t/16 radians above and
below the equator are considered (as explained in the main text).

Orthographic

Stereographic

Gnomonic

)2 (c) kEKS (d) kEXS error

—0.016 -0.012 -0.008 -0.004 0.000 0.004 0.008 0.012 0.016

Figure 3. Same as Fig. 2 for the polar projections. The first row shows the orthographic projection, the middle row shows the stereographic projection, and
the third row shows the Gnomonic projection. For these projections, we only project one hemisphere on to the sphere, with the pole defined by the x-axis. The
entire hemisphere is shown except for the Gnomonic projection where we project the sphere on to a square where distance from the centre of the square and the
edge represents an angle of 7t/4 radians (as explained in the main text). Of course, planar approaches are typically restricted to a field of view of ~ 20°, these
figures simply illustrate why this consensus is adhered to.
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Figure 4. Relative rms error of recovered convergence fields (mass-maps) when using various planar projections in the standard planar KS estimator, as a
function of angular distance from the centre of the projection. Note that all planar projections were significantly zero-padded (to four times their original
dimension) to minimize any contribution to this error from mode mixing at boundaries. Further, we note that residual boundary effects inevitably exist, thus we
clip the figure 20° from any boundary, thus restricting the figure to ® domains over which it is expected the primary error contribution comes from projection
effects. rms errors are averaged over 10 realizations. Approximate opening angles for the coverages of existing and upcoming surveys are overlaid. For future
surveys, such as Euclid and LSST, projection errors can be of order tens of percent, exceeding 50 percent in some cases. The conformal projections (i.e. the
Mercator and stereographic projections), which preserve local angles, are typically superior to the other projections. In any case, these errors can be avoided

entirely by recovering convergence fields directly on the celestial sphere.

limit was sufficient for the previous numerical experiments which
were used for visualization purposes only). We oversample on the
plane too, again to eliminate all pixelization effects. For the polar
projections, we use a square map of 2000 x 2000 pixels, capturing
the same hemisphere as before. For the equatorial projections,
we use maps of size (2€y,x — 1) X nax pixels for the cylindrical
projection, (2. — 1) x 5901 pixels for the Mercator projection,
and (2€pmux — 1) X £y pixels for the sinusoidal projection. The
number of pixels is different of the Mercator projection as it stretches
the 6 direction in projection. The equatorial projections, as before,
have the entire sphere projected on to the plane except for the
Mercator projection where we project to 77t/16 radians above and
below the equator only as the poles are at infinity in this projection.
The exact planar sampling resolutions are not important as we are
intentionally oversampling to eliminate pixelization effects.

In a similar way to the other simulations we simulate the conver-
gence and shear on the sphere, project the shear on the plane, and
recover the convergence on the plane to compare this to the projected
simulated convergence. We then calculate the root-mean-square
(rms) error of ﬁ Z[N(KKS — k)2 at different angular distances
from the most accurate region of each projection, where N is the
number of pixels in the region and «"P"! is the input convergence. The
exact angular distances considered for each projection are defined in
Appendix B. We calculate the error in annuli of constant angular
distances away from the centre, defined by the angular metric.
The error in the recovered convergence will be a result of not
only the projection distortion but also a sub-dominant contribution
from the leakage due to the boundary created by the projection.
The leakage due to boundary effects will be minimal for small
and intermediate scales but will become more significant for the
largest scales considered — i.e. as the annuli approach the boundary
region. Both projection and boundary effects are intrinsic to the
projection when using KS inversion and are therefore included here.
To minimize the contribution of such boundary effects, we zero-
pad planar projections to four times their original dimensions, and

MNRAS 509, 4480-4497 (2022)

restrict any analysis to annuli separated by at least 20° from any
boundaries.

Fig. 4 shows the rms error, averaged over 10 realizations, at
different angular distances for the various projections considered.
We normalize the rms error with the rms of the fluctuations in
that region to give a relative error. Relative error for both the E-
and B-modes fields are shown. Approximate opening angles for the
coverages of existing and upcoming surveys are overlaid on Fig. 4.
For future surveys, such as Euclid and LSST, projection errors can
be of the order of tens of percent, exceeding 50 percent in some
cases. The conformal projections (i.e. the Mercator and stereographic
projections), which preserve local angles, are typically superior to
the other projections. In any case, these errors can be avoided entirely
by recovering convergence fields directly on the celestial sphere.

5 APPLICATION TO DES SV DATA

In this section, we apply the mass-mapping techniques presented in
Section 3 to the DES SV data, which are publicly available.'> We use
the galaxy shapes estimated by the IM3SHAPE method that lie in the
range 60° < RA <95  and —70" < Dec. < —40", where RA and
Dec. are the right ascension and declination in degrees. We apply the
sval_flag = 0 selection to the DES SV catalogue in order to select
galaxies that have a shape that is measured and calibrated ready to be
used for weak lensing studies. These cuts leave 793 743 galaxies, with
a density of 1.4 galaxies per square arcmin. We pixelize the data by
binning into pixels in various settings. We always pixelize the galaxy
in the space that the convergence map is generated; for example,
when a map is made on the sphere the galaxies are pixelated on
the sphere directly. In all cases, we apply the recommended weights
and corrections to account for multiplicative and additive biases, as
described by Becker et al. (2016).

Bhttps://des.ncsa.illinois.edu/releases/sval/doc/shear
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Figure 5. Spherical convergence maps recovered by the SKS estimator applied to spherical maps of the reduced shear created using galaxies from DES SV
data. The top two plots show stereographic projections of the convergence map recovered on the celestial sphere using the SSHT sampling, while the bottom
two plots show Stereographic projections of the convergence maps recovered on the celestial sphere using HEALPix sampling. The left-hand column shows
the recovered E-mode convergence, while the right-hand column shows the recovered B-mode convergence. To generate these maps from the DES observation
catalogue, we first grid on to a HEALPix sampling scheme, then convert this to a SSHT sampling scheme through harmonic space, thus, both reconstructions
are working with the same information which mitigates any discrepancies due to the initial catalogue projection.

We create two spherical maps of the reduced shear using the
SSHT and HEALPix sampling schemes, considering resolutions to
best match the 660 = 5arcmin pixels considered by Vikram et al.
(2015), which corresponds to setting an appropriate bandlimit £y,
for the SSHT sampling scheme and an appropriate Nggq. resolution
parameter for HEALPix. Explicitly, for SSHT, we find €y =
/80 = 2160. For HEALPix, we set Ngge such that the area of
a pixel is as close as possible to that of a S5-arcmin pixel, i.e.
A = 47/12N2,, ~ (86)?, yielding Ngge = 512 (with the restriction
that Ngge is a power of two). The resulting SSHT map has pixels
of size 5arcmin at the equator, while the resulting HEALPix map
has pixels of size 7 arcmin. For the HEALPix sampled data, we
use a maximum multipole €;,,x = 4Ng.. The exact choice of £,
is not critical as smoothing removes the power on small scales. We

smooth the reduced shear before reconstructing the mass-map with
a Gaussian Kernel G, = e‘ez"z, with o such that the half width at
half maxima is 20 arcmin, to best match that of Vikram et al. (2015).

It is academic to note that interpolation errors are effectively
unavoidable when mapping observations continuous in position on to
a finite grid. Furthermore, gridding on to different sampling schemes
inherently introduces different interpolation error. One may wonder,
quite reasonably, which sampling (or corrective measure) minimizes
this interpolation error, however, this is beyond the scope of this
paper. To normalize for this effect within this analysis, we first grid on
to HEALP1ix map which we then convert into a SSHT sampled map
with the aforementioned dimensions. In this way both maps begin
with the same information contaminated with the same interpolation
error.

MNRAS 509, 4480-4497 (2022)
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Figure 6. Planar convergence maps recovered by the planar KS estimator applied to planar maps of the reduced shear created using galaxies from the DES SV
data. The top row of plots show the results where the sinusoidal projection is used, while the bottom row shows the results when the stereographic projection is
used. These projections were chosen since the the sinusoidal projection is used by the DES collaboration (Vikram et al. 2015), while the stereographic projection
was shown in Fig. 4 to minimize rms error. The left-hand column shows the recovered E-mode convergence, while the right-hand column shows the recovered

B-mode convergence.

Further, one should note that the noise properties of interpolated
spherical maps depend fundamentally on the sampling scheme
adopted. When one considers HEALPix equal area sampling, each
pixel contains roughly the same number of observations, whereas
for SSHT equiangular sampling pixels have significant variation in
the number of observations (due to variability in pixel size). As
such, the assumption of noise Gaussianity is more easily justified for
HEALPix maps.

Fig. 5 shows the E- and B-mode convergence maps recovered
from the DES SV data using the spherical Kaiser—Squires (SKS)
estimators. We apply the iterative algorithm described in Section 3.4
to estimate the underlying shear from the observed reduced shear.
The recovered convergence maps show near perfect agreement with
each other and reasonable agreement with the maps recovered by

MNRAS 509, 4480-4497 (2022)

the DES collaboration for a similar choice of galaxies (Vikram
et al. 2015, fig. 2). It should be noted that the galaxies used here
are not the exact same galaxies used in estimating the convergence
maps recovered by Vikram et al. (2015) due to small differences
between the private and public DES catalogues (C. Chang &
J. Zuntz, private communication). Therefore, exact equivalence is
not excepted, however, through private communication, C. Chang
has provided convergence maps recovered by the DES map making
pipeline when using the public catalogue and in this case, there is
good agreement between the two convergence maps.

For comparison purposes, in Fig. 6, we show the results when
we bin galaxies on to two planar maps. The top row shows the
results when using a sinusoidal projection, as also used by the DES
collaboration (Vikram et al. 2015). We rotate the projection such
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Figure 7. Similar to Fig. 6, where here we plot the difference between the convergence recovered on the plane by the planar KS estimator and the convergence
recovered on the sphere by the SKS estimator. The purpose of this figure is to compare the planar and spherical results. For the spherical case, we consider the

SSHT sampling only, i.e. differences are relative to Figs 5(a) and (b).

that the central line of the projection corresponds to RA = 70°, as
also done by Vikram et al. (2015). No other rotation is applied to
fully centre the region of interest. In the second row, we show results
using a stereographic projection that has been rotated by the Euler
angles o = 159", B = —37", and y = 90, to fully centre the area
of interest to the South Pole about which the projection is then
performed. We choose to also show results using the stereographic
projection as the results from Fig. 4 suggest that this is the best
projection to use. In both cases, we use 5-arcmin pixels and apply a
20-arcmin smoothing as they do in Vikram et al. (2015). We apply the
required local rotations as described in Appendix B (in Appendix B,
we also examine the effect of not applying such rotations). For these
planar results, we also use the reduced shear algorithm described in
Section 3.4. Fig. 7 shows the difference between the convergence
recovered on the plane for these projections and the projected
convergence recovered on the sphere using the SSHT sampling
shown in Fig. 5. As is common with the KS estimator, both the

planar and the spherical mass-maps suffer from leakage between the
E- and B-mode due to both the effects of the boundary and, perhaps
primarily, the significant complex noise contribution.

6 CONCLUSIONS

We have described how one can recover convergence fields, or
mass-maps, directly on the celestial sphere, adopting the spherical
equivalent of KS inversion. We demonstrate that the spherical
formulation reduces to the usual flat-sky KS approach in the planar
approximation. We study the accuracy of the planar approximation
for mass-mapping and address the important question of whether
one needs to recover the convergence field on the sphere for
forthcoming surveys or whether recovery on the plane would be
sufficient. The comparison between the planar and spherical settings
depends largely on the projection used. In Appendix B, we describe
a number of projections that are used in this work and show
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how to account for the local rotations required when projecting
spin fields, such as shear, on to the plane. In Fig. 4, the relative
error introduced by the planar approximation, for a variety of
projections, is presented. Conformal projections, for which local
angles are conserved, are found to be the most effective. Nevertheless,
errors in the planar setting are typically tens of percent and can
exceed 50percent in some cases. These projection errors can be
entirely eliminated by recovering mass-maps directly on the celestial
sphere by the SKS technique presented in this article. This analysis
of projection errors has broader implications for the analysis of
signals over the sphere, e.g. cosmic microwave background analysis
etc.

We apply the SKS estimator to the publicly available DES SV data.
We present maps of the convergence field recovered on the celestial
sphere using both the SSHT and HEALPix sampling schemes (see
Fig. 5), accounting for the fact that one measures reduced shear,
rather than the true underlying shear, by applying the iterative
algorithm discussed above. We compare the results to those recovered
on the plane, using the sinusoidal projection adopted by the DES
collaboration and also the stereographic projection since it was found
to be most effective projection for mass-mapping, particularly for
large scales (see Fig. 4). In this setting, we demonstrate reasonable
agreement between the spherical and planar reconstructions. While
the coverage area of DES SV data is not sufficiently large for
the planar approximation to induce significant errors (see Fig. 4),
recovering spherical mass-maps for DES SV data is nevertheless a
useful demonstration of the SKS estimator on real observational data.

In this article, we consider the most naive estimator of the
convergence field on the celestial sphere, namely a direct spherical
harmonic inversion of the equations relating the observed shear field
to the underlying convergence field, i.e. the generalization of the
KS estimator from the plane to the sphere. In practice, the shear
field is not observed over the entire celestial sphere, which induces
leakage in the recovered convergence field for the simple harmonic
estimator considered. In future work, we will apply the pure mode
wavelet estimators developed by Leistedt et al. (2017) to remove
leakage when recovering spherical mass-maps. In addition, in future
work, we also intend to develop methods to better mitigate the impact
of noise and to estimate the statistical uncertainties associated with
recovered mass-maps (see e.g. Price et al. 2020). In all of these
extensions, however, it is clear that for future surveys like Euclid
and LSST, it will be essential to recover mass-maps on the celestial
sphere, to avoid the significant errors than are otherwise induced by
planar approximations.
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APPENDIX A: EQUIVALENCE OF DIFFERENT
REPRESENTATIONS OF SPHERICAL
MASS-MAPPING INVERSE PROBLEM

The equivalence of the harmonic and integral expressions, equa-
tions (24) and (28), respectively, connecting the observable cosmic
shear field to the convergence field can also be shown by considering
the harmonic representation of the integral expression. Consider the
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integral representation, decomposing the kernel and convergence
field into their harmonic expansions

2y (w) = / dQ(@) (Re2K) () Ok (') (AD)
32
= / dQ((U,) Z2K(Zm (Rw’zylm)(w)
52 tm

> kg oYerm (@), (A2)

'm’

The rotation of the spin spherical harmonic in the above expression
is given by

(Rur2Yi) (@) = Y Di(@) 2Yiu() (A3)

47 .
- /TH zﬂ:oym(w ) 2Y (@), (A4)

where it is necessary to only consider m = 0 due to the Kronecker
delta term 8,0 appearing in 2/Cy,,, as shown in equation (30), and
noting equations (10) and (11). Equation (A2) can then be written as

2y(@) = 0, wany/ (2 0fen 2Yin(@) . (AS)
where we have noted the orthogonality of the spherical harmonics,
i.e. (Yom, Yom) = 8008 . The resulting harmonic representation
of equation (28) is, thus, identical to equation (24), as expected.

APPENDIX B: PROJECTIONS

In this appendix, we outline the details of each projection considered.
We first define each projection and describe its properties. Each
projection has different beneficial properties, for example whether
the projection is equal-area, has appropriate boundary conditions
or conformal. Conformal projections conserve local angles and are
often used for geographical maps. We also describe the distance
metric we use for each projection to define the opening angle of
the patch of sky seen by an experiment, i.e. the angle considered
in Fig. 4. We then detail how to calculate the local rotation
angles required when projecting spin fields, such as shear (without
this rotation E- and B-modes will be misinterpreted) and finally
illustrate the impact of neglecting this local rotation on DES SV
data.

B1 Projection definitions

We consider two general types of projection: equatorial and po-
lar projections. Equatorial projections are defined relative to the
equator, while polar projections are defined relative to a pole. The
precise definitions of the different equatorial and polar projections
are given in the following subsections. The equatorial projections
considered include: the sinusoidal projection, which is a simple
equal area projection that was used by the DES collaboration;
the Mercator projection that is a conformal projection, often used
in geographical maps as it preserves local angles; and a simple
cylindrical projection. The polar projections considered include:
the orthographic projection, which is a simple vertical projection
from the sphere to a tangent plane; the Gnomonic projection
that has the useful property that the local rotations are trivial to
calculate; and the stereographic projection that is another conformal
projection.
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Figure B1. Diagram to describe graphically the equatorial projections,
including the sinusoidal, Mercator, and the simple cylindrical projections.
These can all be seen as types of cylindrical projections since the sphere is
projected onto a cylinder wrapped round the sphere. The u variable simply
describes how far round the cylinder a point is and is therefore give by ¢ (up
to some arbitrary shift), except in the sinusoidal case where the u variable
is contracted away from the equator to ensure the projection is equal-area.
The v variable can vary between projections and can be specified by various
functions d(6). In the Mercator projection, this function is chosen to ensure the
projection is conformal. In the sinusoidal and simple cylindrical projections,
this function is simply d(0) = B = 71/2 — 6.

B1.1 Equatorial projections

Fig. B1 shows graphically how the equatorial projections can be
viewed as a projection on to a cylinder wrapped round the sphere.
Each projection is defined by the relation between the spherical
coordinates (6, ¢) and the planar coordinates (u, v).

The sinusoidal projection (used by the DES collaboration) is

defined by
u = (¢ —m)sin(@), B1)
v=20.

This projection results in minimal distortion in the central region (6 =
/2, ¢ = ). Moving away from this point in any direction increases
the distortion but particularly in a diagonal direction (specifically

along the lines y = x or y = —x). We define the distance metric for
this projection by
©=(0-m/22+ (@ —m72. (B2)

The sinusoidal projection has the useful property of being equal-
area. It is simpler to define than the Mollweide projection, also an
equal-area projection, which is commonly used for plotting in the
cosmological community.

The Mercator projection is commonly used for geographical maps
and is defined by

u=¢—m,

(B3)
v = In[tan(7t/2 — 6/2)] .

This projection has the useful property of being conformal, meaning
that local angles on the sphere will not be distorted. The projection
introduces minimal distortion at the equator, while the projected
image is stretched and distorted as one moves towards the pole. Since
the poles themselves are at infinity the projection cannot completely
cover the full sky in practice. The projection is a cylindrical projection

MNRAS 509, 4480-4497 (2022)

Figure B2. Diagram to describe graphically the polar projections, including
the orthographic, stereographic, and gnomic projections. In these projections,
a point on the sphere is projected to the tangent plane at a pole (here chosen to
be the South Pole). For projections around the North or South Pole, the angle
¢ is simply taken as the polar coordinate ¢ in the planar space. The radial
coordinate o is a function of the angle between the point and the pole whose
tangent plane is considered (7t — 6@ for the South Pole). The orthographic
projection is a vertical projection, giving 0 = sin(7t — ) for the tangent plane
at the South Pole. The gnomic projection casts a ray from the origin to the
point on the sphere and through to the tangent plane, giving o = tan(7t — 6)
for the tangent plane at the South pole. Finally, the stereographic projection
casts a ray from the opposite pole to the point on the sphere and through to
the tangent plane, giving o = 2 tan[(7t — 0)/2] for the tangent plane at the
South Pole. In the diagram, the point P is projected to PO, PS, and PG by the
orthographic, stereographic, and gnomic projections, respectively.

and therefore has the correct boundary conditions in the u direction.
The metric used to define the angular distance from the undistorted
region is simply given by

®=0—-m/2|. (B4)

The final equatorial projection we consider is the simple cylindrical
projection defined by

u=¢—r1,

v=0—-1/2. ®3)

There are no particular properties to inspire us to propose this
projection over the more sophisticated cylindrical projection of the
Mercator projection. Its attractiveness is in its simplicity and the
ability to map the entire sphere on one plane. The distortions increase
away from the equator leading to the same distance metric as the
Mercator projection, i.e. equation (B4).

B1.2 Polar projections

Fig. B2 shows a graphical representation of the polar projections,
where again the spherical coordinates (6, ¢) are projected on to the
planar coordinates (u, v). It is most straightforward to define these
projections using polar coordinates on the plane (o, ¢), which are
related to the Cartesian coordinates by

u = ocos(p), (B6)
v = psin(p) .

In each of the polar projections, we simply have that ¢ = ¢. The
projections differ in the way 6 is mapped to o, where each projection
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has its own mapping function f, i.e.
o= fO). (B7)

It is a common feature of these projections that the entire sphere
cannot be projected to a single plane in practice (since in many cases
the opposite pole is mapped to the point at infinity). In that case,
we often project around the South Pole as well as the North Pole
and consider o = f(7t — 6). We define the distance metric for these
projections to be

O=6. (B8)
The orthographic projection is defined by
0 = sin(9) . (B9)

For this projection, a point on the sphere is mapped vertically from
the sphere to the tangent plane at the North Pole. As a result, the
whole sphere cannot be projected on to one plane in practice and one
must project each hemisphere on to a different plane.

We also consider the Gnomonic projection defined by casting a ray
from the centre of the sphere to the point considered and then through
to the tangent plane at the North Pole. The Gnomonic projection is
therefore defined by

0 = tan(9) . (B10)

For this projection, the whole sphere again cannot be projected on to
one plane in practice since the equator is projected to infinity. One
must again project the sphere into a number of regions, for example
considering each hemisphere separately.

The final projection we consider is the stereographic projection.
This is defined by casting a ray from the South Pole to the point
considered on the sphere and then through to the tangent plane at the
North Pole. The resulting projection is defined by

o =2tan(0/2). (B11)

We can project almost all of the sphere with this projection, except
near the South Pole, as the South Pole is mapped to infinity. This
projection is conformal, preserving local angles.

B2 Rotation angles

Spin fields on the sphere have local directions defined relative to
the North pole, whereas on the plane the spin fields have their spin
defined relative to some universal direction (usually the ‘top’ of the
planar map). We define this direction on the plane by 9, the unit vector
in the v direction. On projection, the spin field must be rotated from
its original coordinate frame on the sphere to the new coordinate
frame on the plane. Here, we describe how to calculate this local
rotation angle.

When we project from the sphere to the plane, it is common
to rotate our coordinate system before we project. This is done in
order to centre the region of interest so that distortions due to the
projection are minimized at this point. We therefore need to define
a number of coordinate systems, including the original sphere, the
rotated sphere, and the plane. First, consider a field defined on the
original sphere with spherical coordinates (6’, ¢") and corresponding
Cartesian coordinates (x’, y’, 7). Consider then the rotated field,
where the spherical coordinates of the rotated sphere are (6, ¢),
with corresponding Cartesian coordinates (x, y, z). We define the
rotation relating the primed frame to the unprimed frame by R,
with corresponding 3D rotation matrix R. From the rotated sphere, the
field is then projected on to the plane defined by Cartesian coordinates
(u, v) and polar coordinates (o, ¢).
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We need to find the angle between ¥ and the projected direction
of the North pole of the original sphere. To do this, we consider an
infinitesimal step North on the sphere and then find the infinitesimal
step this makes on the plane (du, dv). The rotation angle ¥ required
is then the angle between the ¥ direction and the projected North
direction.

B2.1 Equatorial projections

The first step is to construct a vector that is an infinitesimal step
North in the original space. This vector is given by

0
0| de,
1

dx’ = (B12)

where de is an infinitesimal element of the real line. When this
infinitesimal element is projected on to the sphere at any point, it
always points North (with the exception of the poles). Moving in
this direction, thus, yields a vector that is further North but is not
normalized to lie on the unit sphere. The normalization of the vector
is unimportant as later on in this proof we require the direction
of this vector only and not its length. In the unprimed frame, this
infinitesimal step is given by

dx = Rdx',
dx R1,3 (Bl3)
dy = R2_3 de .
dZ R3,3

Now we apply the chain rule twice to calculate the projected

infinitesimal step in the plane (du, dv). First, we note the relation
between (x, y, z) and (0, ¢) of

/2 + 2
0 = arctan (x J ,
< (B14)
y
¢ = arctan <7) ,
X
where the normalization of the vector is unimportant, ensuring the
definition of dx’ is acceptable. Applying the chain rule, we have

df = cos(f)[cos(¢)dx + sin(¢)dy — tan(f)dz] ,
d¢ = csc(8)[— sin(¢p)dx + cos(¢)dy],

where a unit vector is assumed without loss of generality. We now
generalize the equatorial projections as

(B15)

u=g®,eo),
8(0.4) (B16)
v="h(0,9).
We then apply the chain rule again to give
og 0g
du = —do + —d¢,
=599t 5,9
oh oh
dv=—df + —do, B17
v=759973 ) @ (B17)
from which the rotation angle ¥ can be calculated by
du
Y = —arctan [ — | . (B18)
dv

After substituting all the terms from the above expressions into
equation (B18), de cancels out and the limit de — 0O follows trivially.
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B2.2 Polar projections

For polar projections, the calculation begins in the same way as for
equatorial projections, up until equation (B15). Then, we apply the
chain rule giving

do=% 40
=W (B19)
dp =d¢ .

Applying the chain rule again to the relation between (u, v) and (o, ¢)
of equation (B6), we have
du = cos(p)do — o sin(p)dy ,

. (p)do — o sin(p)dy (B20)
dv = sin(¢)do + o cos(p)dy .

We then compute the local rotation angle ¥ in the same manner
as above, i.e. by equation (B18). It is possible to show from this
result the special property of the Gnomonic projection: when there

MNRAS 509, 4480-4497 (2022)

is no rotation and f(0) = tan(@), as is the case for the Gnomonic
projection, the rotation angle is zero everywhere.

B3 Application to DES SV data

Here, we demonstrate the importance of applying this rotation in
practice, using DES SV data. As far as we are aware, applying these
local rotations is not standard practice. We consider the sinusoidal
projection also used by the DES collaboration. However, here we do
not apply the necessary rotations to the galaxy shapes (as we did in
the main body of the article). Figs B3(a) and B3(b) show the results
when no rotation is applied and Figs B3(c) and B3(d) show the error
introduced by not applying the local rotations, i.e. the differences
with the maps shown in Figs 6(a) and (b). While the effect is not large
for DES SV data, it is not insignificant. Furthermore, if considering
planar mass-mapping techniques for larger survey coverages this
effect becomes increasingly important.
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Figure B3. Plot to show the importance of applying the local rotations to real data when performing projections. We project the DES SV data using the
sinusoidal projection considered by the DES collaboration. However, in this case, we do not apply the necessary rotations to the galaxy shapes. Panels (a) and
(b) show the results when no rotation is applied, while panels (c) and (d) show the error introduced by not applying the local rotations, i.e. the differences with
the maps shown in Figs 6(a) and (b).
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