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1 Abstract9

Numerous approaches to earthquake risk modelling and quantification have already10

been proposed in the literature and/or are well established in practice. However, most11

of these procedures are designed to focus on risk in the context of current static expo-12

sure and vulnerability, and are therefore limited in their ability to support decisions re-13

lated to the future, as yet partially unbuilt, urban landscape. We propose an end-to-end14

risk modelling framework that explicitly addresses this specific challenge. The framework15

is designed to consider the earthquake (ground-shaking) risks of tomorrow’s urban en-16

vironment, using a simulation-based approach to rigorously capture the uncertainties in-17

herent in future projections of exposure as well as physical and social vulnerability. The18

framework also advances the state-of-practice in future disaster risk modelling by addi-19

tionally: (1) providing a harmonised methodology for integrating physical and social im-20

pacts of disasters that facilitates flexible characterisation of risk metrics beyond phys-21

ical damage/asset losses; and (2) incorporating a participatory, people-centred approach22

to risk-informed decision making. The framework is showcased using the physical and23

social environment of an expanding synthetic city. This example application demonstrates24

how the framework may be used to make policy decisions related to future urban areas,25

based on multiple, uncertain risk drivers.26

2 Introduction27

Many earthquake risk-modelling approaches and computational tools for quanti-28

fying the consequences of seismic events on urban environments (e.g., direct and indi-29

rect physical damage, economic and social losses) already exist in the literature. For ex-30

ample, one of the most well-established natural-hazard (including earthquake) risk com-31

putational platforms is HAZUS (Hazards United States) (FEMA, 2018), which is used32

to calculate city-wide seismic losses across at least four continents (Freddi et al., 2021).33

Other procedures include MAEviz (Mid-America Earthquake Center Seismic Loss As-34

sessment System) (Elnashai et al., 2008), SELENA (Seismic Loss Estimation using a Logic35

Tree Approach) (Molina et al., 2010), the OpenQuake Engine (Silva et al., 2014), and36

CAPRA (Comprehensive Approach to Probabilistic Risk Assessment) (Daniell et al., 2014)37

. Recent state-of-the-art achievements like the FEMA P-58 methodology (FEMA, 2018)38

facilitate earthquake risk quantification at a finer resolution, offering the ability to con-39

duct detailed structure-specific loss assessments that enable more informed decision-making40

for individual assets (Cremen, Seville, & Baker, 2020).41

These tools have mainly been used to quantify earthquake risk in the context of42

the present day, and are designed for static (and often deterministic) representations of43

exposure and seismic vulnerability. This significantly inhibits their ability to be imple-44

mented in future earthquake risk-mitigation planning. Given that climate change (e.g.,45

M. G. Stewart & Deng, 2015; Yang & Frangopol, 2020), rapid population growth (e.g.,46

Yang & Frangopol, 2019; Muis et al., 2015) and urbanisation are expected to significantly47
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change the urban landscape (in terms of both exposure and seismic vulnerability) in the48

coming decades, this is a generationally important issue. For example, UN-Habitat fore-49

cast that by 2050 some 70% of the world population will live in cites, adding some two50

billion citizens to the cities of the developing world (Habitat, 2020). Reducing disaster51

risk in new developments built to accommodate these new citizens is urgent and essen-52

tial. While some attempts have been made in the literature to model earthquake risk53

(or some of its components) from a future-focused perspective (e.g., Calderón & Silva,54

2021; Lallemant et al., 2017; Motamed et al., 2020; Wyss, 2005; Lallemant, 2015), there55

remain a number of limitations associated with the state-of-the art in this space.56

Firstly, future earthquake risk studies have predominantly focused on the evolu-57

tion of exposure and vulnerability in the context of the (physical) built environment, fail-58

ing to consider the effect of sociodemographic changes that are an important part of com-59

munity resilience planning (Sutley et al., 2017). This means that they quantify earth-60

quake risk in terms of traditional metrics like physical asset losses and casualties, which61

are narrow dimensions of impact (Walsh & Hallegatte, 2020) that do not account for the62

disproportionate consequences of disasters on vulnerable, low-income groups, for instance63

(e.g., Markhvida et al., 2020; Verschuur et al., 2020; Adnan et al., 2020). These stud-64

ies are consequently missing a people-centred (ideally participatory) approach to future65

earthquake risk assessment (e.g., Scolobig et al., 2015; I. S. Stewart et al., 2017), which66

is actively encouraged by forward-looking international agreements on disaster risk man-67

agement like the 2015-2030 Sendai Framework for Disaster Risk Reduction (Aitsi-Selmi68

et al., 2016). Shortcomings of existing future earthquake risk assessment approaches stem69

from the general lack of a commonly agreed framework for modelling tomorrow’s risks70

from natural hazards.71

This study attempts to overcome these limitations, by proposing a comprehensive72

end-to-end simulation-based framework for quantifying future earthquake ground-shaking73

risk. The proposed framework can be used as part of an effective support environment74

for urban development decision making. Here we use the word ’environment’ to indicate75

the potential for iterative engagement with stakeholders to evolve optimised low-risk so-76

lutions within externally imposed constraints. Hence, the proposed framework is more77

than just a risk model or computational tool but provides an environment to support78

risk-sensitive planning decisions, incorporating a participatory approach to risk under-79

standing and quantification that can account for diverse stakeholder priorities towards80

different dimensions of risk (see Galasso et al., 2021). The stakeholder steps into the pro-81

cess and is encouraged to engage with its functionality, potentially modifying its con-82

struction and many of its assumptions. It is an invitation to co-production, providing83

decision support rather than a tool to usurp authority. In addition, it includes a harmo-84

nious integration of physical and social impact quantification that (1) explicitly accounts85

for uncertainties in the future projections of underlying variables (e.g., asset location and86

structural or nonstructural features, building fragility, age and income profile of inhab-87

itants); and (2) facilitates a flexible approach to risk measurement beyond conventional88

asset losses. We apply the framework to the hypothetical city of “Futureville”, showcas-89

ing its ability to support decisions related to policy-making for the communities of to-90

morrow.91

This paper is structured as follows. The framework is introduced and described in92

Section 3. Section 4 applies the framework to the city of “Futureville”, demonstrating93

how it can be used to determine the optimum future-focused policy according to differ-94

ent sets of stakeholder risk priorities. Section 5 highlights the versatility of the proposed95

framework, showcasing its ability to adapt to alternative assumptions and/or additional96

uncertainties in the underlying risk calculations. Conclusions of the paper are finally pro-97

vided in Section 6.98
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3 Proposed Framework99

The proposed framework for earthquake risk-informed, people-centered future ur-100

ban development is presented in Figure 1, and is composed of four main calculation stages101

(or modules): (1) Seismic Hazard Module; (2) Engineering Impact Module; (3) Social102

Impact Module; and (4) Decision Module. For a specific temporal instant in the future,103

each ith iteration of the framework evaluates the risk associated with a set of “hard” (i.e.,104

directly related to the physics of the built environment, such as urban design that could105

constrain the location of future development and building code improvement) and/or “soft”106

(e.g., social safety nets, post-disaster financing or insurance) policies to be implemented,107

with the ultimate aim of identifying the policy option leading to the minimum risk out-108

come. In this context, risk refers to the collective values of collaboratively selected risk109

metrics that are weighted in line with the priorities of stakeholders (e.g., administrative110

authorities responsible for future urban development and related policy implementation111

and/or relevant community representatives). Monte Carlo simulation is used to capture112

uncertainties in the calculations, such that random variables included as part of Mod-113

ules (1) to (3) are sampled Ns times at the specific temporal instant of interest, to pro-114

duce the risk-metric values that act as input to Module (4) in each iteration. During the115

first iteration, the framework provides flexibility to modify the considered risk metrics116

through a participatory process, which may require additional data collection and cal-117

culations in Modules (2) and (3). The components of the framework are now briefly ex-118

plained, and are described in more detail for a case-study demonstration in Section 4.119

1. Seismic Hazard Module: This module contains calculations related to the earth-120

quake ground-shaking hazard of interest. This hazard could be expressed in the121

form of a scenario earthquake, with a prescribed rupture (i.e., magnitude, loca-122

tion, etc.) that produces either deterministic or uncertain ground-motion fields123

across target locations. The hazard could also be represented probabilistically, ac-124

counting for uncertainty in the rupture features within a specified time frame (e.g.,125

Iacoletti et al., 2021). However, time-based seismic hazard assessments are more126

likely to appeal to the insurance sector rather than public policy makers (Bonstrom127

et al., 2012). The scenario approach (as opposed to probabilistic seismic hazard128

analysis) is particularly beneficial for communicating risk to a policy maker or to129

communities, who may not have an intuitive sense of probability and the dynamic130

discounting of financial assets (Bonstrom et al., 2012). Since ground-motion vari-131

ability can dominate the uncertainty associated with scenario-based seismic risk132

calculations (e.g., Markhvida et al., 2020), adopting a fully deterministic earth-133

quake scenario is useful for obtaining a more comprehensive understanding of risk134

changes that are specifically related to the different policies of interest. The out-135

puts of this module are ground-motion field estimates across a number of locations136

of interest (i.e., close to where assets/infrastructure at risk are located).137

These fields can be sampled from a ground-motion model (GMM), for instance,138

which describe probability density functions of different ground-motion intensity139

measures (i.e., descriptions of the strength of shaking) that are conditional on prop-140

erties of the earthquake source, wave path, and site-specific characteristics (e.g.,141

Stafford et al., 2008). GMMs typically have the following functional form (e.g.,142

Cremen, Werner, & Baptie, 2020):143

log(imobs,ne,nr ) = log(imGMM,ne,nr ) + zE,neσE + zA,ne,nrσA (1)

where, for the neth event, log(imobs,i,j) is the logarithm of the predicted inten-144

sity measure for the ground-motion field at the nrth point; log(imGMM,ne,nr
) is145

the corresponding logarithm of the GMM’s median estimated intensity measure146

given certain variables (related to source, path, and site effects) and model param-147

eters; zE,ne is the normalised inter-event residual (common across the ground-motion148

field of the neth event); and zA,ne,nr is the normalised intra-event residual (that149

captures site-to-site variations in the ground-motion field). σE and σA are the GMM’s150
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inter-event and intra-event standard deviations, respectively. Models that account151

for correlations between the intra-event residuals at different locations - due to sim-152

ilarities in experienced wave path and fault distance - are often used in conjunc-153

tion with GMMs, for more accurate representations of ground-motion fields and154

resulting damage/losses (e.g., Weatherill et al., 2015).155

Alternatively, ground-motion fields can be numerically simulated using physics-156

based models of source, path, and site effects (e.g., Graves et al., 2011) that are157

capable of computing the complete ground-motion time series. Physics-based sim-158

ulations can lead to ground-motion predictions of similar or higher quality than159

statistically-driven GMMs (with lower uncertainty) (e.g., Bradley, 2019), but re-160

quire significantly longer computational time and extensive input data that can161

prohibit their widespread use (e.g., Freddi et al., 2021).162

2. Engineering Impact Module: This module conducts calculations for assess-163

ing earthquake-induced physical damage (structural and nonstructural) to the fu-164

ture built environment (including buildings and critical infrastructure). The out-165

puts of this module are damage and/or direct asset loss estimates (e.g., repair cost,166

casualties, asset downtime).167

Damage can be computed using building-level fragility functions for instance, which168

translate measures of ground-motion intensity (recorded or simulated at or near169

a given asset of interest) into probabilities of collapse and/or other limit (or dam-170

age) states of interest (Porter et al., 2007). Losses may then be computed using171

damage-to-loss models that relate different damage states to various degrees of con-172

sequences, or vulnerability functions that estimate losses directly from ground-motion173

intensity measures (Martins & Silva, 2020). Fragility functions, damage-to-loss mod-174

els, and vulnerability functions can be obtained analytically, using the results of175

structural analyses that incorporate physics-based representations of the built en-176

vironment (e.g., Pitilakis et al., 2014; Silva et al., 2019; Baker, 2015). They may177

also be empirically derived, based on damage data collected during past earthquakes178

(e.g., Maqsood et al., 2016; Gautam et al., 2018). Interconnected infrastructure179

losses (e.g., downtime of a water or gas pipelines or road network) can be estimated180

using network analysis techniques that aggregate asset-specific consequences and181

account for inter-asset functionalities (e.g., Esposito et al., 2015; Guidotti et al.,182

2016).183

The exact spatial and physical configuration of the built environment (denoted184

as “conditional urban plan” in Figure 1) can depend on projections of future pop-185

ulation and land-use (Seto et al., 2012), as well as the potentially time-dependent186

vulnerability of engineering assets (Mondoro et al., 2018; Lallemant et al., 2017).187

Any proposed hard policies (such as structural or nonstructural improvements,188

building-code upgrades, and critical infrastructure relocation) will also influence189

the details of the future built environment.190

3. Social Impact Module: This module is used to enrich the asset loss estimates191

of the Engineering Impact Module on the basis of socio-economic and/or demo-192

graphic projections. For example, Engineering Impact Module calculations of dam-193

age to commercial buildings could be combined in the Social Impact Module with194

data on the industrial flow of goods, to determine earthquake-induced impacts on195

the productivity of different economic sectors (Markhvida et al., 2020). This mod-196

ule also facilitates the disaggregation of asset losses in terms of socio-economic/demographic197

factors such as income level, age, or gender, which could be derived from census198

data or household surveys (among other sources). For instance, road network down-199

time outputs of the Engineering Impact Module can be attributed spatially to dif-200

ferent socio-economic groupings, to determine accessibility losses across specific201

wealth classes (Miller & Baker, 2016).202

The introduction of soft policies (related to disaster insurance or enhanced post-203

event liquidity access, for instance) can influence the coping capacity or response204

of different social systems to the hazard of interest, and therefore can alter the data205
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examined in this module. The outputs of this module are used to construct risk206

metrics for decision making.207

4. Decision Module: This module leverages stakeholder feedback in a participa-208

tory process to determine: (1) the nfinal ultimate risk metrics to be considered209

based on outputs of the Social Impact Module. This step is necessary for the first210

framework iteration only, when ninitial metrics initially proposed by the modeller211

are modified and finalised according to stakeholder perspectives; and (2) the weights212

to be placed on each finalised risk metric, in line with decision-maker risk prior-213

ities. Values for (2) can be obtained according to the analytic hierarchy process214

(Saaty, 1980), for instance. This procedure involves the stakeholders comparing215

the relative importance of pairs of risk metrics on a scale from 1/9 to 9, where 1216

indicates both metrics are equally significant, 5 implies that risk metric #1 is strongly217

important over risk metric #2, 9 indicates that risk metric #1 is significantly more218

important than risk metric #2, and reciprocal values imply inverse opinions. Weights219

wj for each metric are equivalent to the principal right eigenvector of a nfinal×220

nfinal matrix that summarises the quantitative results of the comparison.221

5. Policy with Lowest Overall Risk: This calculation uses the outputs of the De-222

cision Module across all npolicy examined policies in a decision-making algorithm223

to determine the overall risk associated with each policy. TOPSIS (Technique for224

Order of Preference by Similarity to Ideal Solution; Yoon & Hwang, 1995) is one225

such decision-making approach that could be used in this module. This multi-criteria226

decision-making methodology first involves normalising the risk-metric values ac-227

cording to:228

rij =
xij√∑npolicy

k=1 x2kj

(2)

where xij is the magnitude of the jth risk metric for the ith policy. Then, the to-229

tal distance of a given policy from the best and worst policies are respectively com-230

puted as:231

y+i =

√√√√ 2∑
j=1

(v+j − rijwj)2 (3)

and232

y−i =

√√√√ 2∑
j=1

(v−j − rijwj)2 (4)

Both rij and wj are as previously defined. v+j and v−j respectively denote the most233

ideal (i.e., minimum) and most non-ideal (i.e., maximum) values of rijwj across234

all examined policies. Finally, the best policy is deemed to be that with the largest235

Si value, calculated from:236

Si =
y−i

y−i + y+i
(5)

4 Case-Study Description237

The virtual urban area examined here is a heavily altered version of the Center-238

ville Virtual Community introduced in Ellingwood et al. (2016) (Figure 2), herein referred239

to as “Futureville”. Futureville exists on the same 104 km2 physical footprint as Cen-240

terville, but excludes for simplicity prominent geographical features (i.e., the hills and241

water bodies, given the focus on earthquake hazard only) and contains a modified set242

of Centerville’s engineered assets (see Section 4.2). Futureville is divided into 9 build-243

ing zones, four of which (i.e., Zones 6 to 9) are yet to be developed. We specifically as-244

sess the implementation of policies at 2050, which is the target year for which Zones 6245
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Figure 1: Proposed simulation-based framework for earthquake risk-informed and people-
centred future planning.
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Figure 2: (a) Physical outline of the “Futureville” case study urban area and (b) the set
of PGA values associated with the selected (fully deterministic) scenario earthquake (see
Section 4.1).

to 9 are intended to be built. 1,000 Monte Carlo simulations are used for each policy it-246

eration, which was found to produce reasonably stable results for the various framework247

outputs.248

4.1 Seismic Hazard Module249

We adopt a fully deterministic scenario-based approach for this study, assuming250

that the event of interest is a magnitude 7 earthquake that occurs on a vertical strike-251

slip fault situated approximately 30 km southwest of Futureville. The only ground-motion252

intensity measure examined in this case is peak ground acceleration (PGA), given the253

format of the fragility functions used as part of the Engineering Impact Module (see Sec-254

tion 4.2). We first use the Boore et al. (2014) GMM to sample 1,000 sets of PGA val-255

ues on a 500 m × 500 m grid within each polygon of Futureville (assuming a uniform256

V s30 value of 500 m/s across the city), incorporating spatial correlation in the intraevent257

term of the GMM using the model of Jayaram and Baker (2009). We then base the se-258

lected scenario on the set that produces the 75th percentile mean PGA value across all259

locations; this set is used for all Ns Monte Carlo simulations of the analysis. Figure 2(b)260

displays the chosen set of ground motions.261

4.2 Engineering Impact Module262

The Engineering Impact Module focuses exclusively on buildings for this case study.263

Zones 1 to 3 of “Futureville” are current residential zones, composed of only low-rise dwellings264

(i.e., light-frame wood buildings classified as W1 in FEMA, 2018), and contain a total265

of 8,309 buildings to serve the current (2021) Futureville population of 27,250 (note that266

the buildings in each zone are randomly positioned across a 20m spaced grid). These zones267

are respectively associated with the same proportional distribution of building codes as268

the original Centerville Virtual Community z1 (52% of buildings are not seismically de-269

signed, 47% have low strength and ductility, 1% have moderate strength and ductility),270

z2 (69% are not seismically designed and 31% have low strength and ductility) and z5271

(100% are not seismically designed). Each current residential zone also contains one school272

(with the same characteristics as the RC3 structural type in the original Centerville, i.e.,273

low-rise concrete moment frame with moderate strength and ductility) and one grocery274

store (with the same characteristics as the S2 structural type - steel light frame with low275

strength and ductility - in the original Centerville) located at/near its centroid.276
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Zone 4 is a current retail/business zone containing 66 buildings randomly distributed277

across a 110m-spaced grid, with the same proportional distribution of structure types278

as z9 of the original Centerville (31% of buildings are low-rise steel braced frame with279

low strength and ductility, 14% are low-rise concrete moment frame with low strength280

and ductility, 49% are low-rise reinforced masonry bearing walls with wood or metal deck281

diaphragms that are not seismically designed, and 6% are steel light frame with low strength282

and ductility). Zone 5 is a current heavy and light industrial zone containing 134 build-283

ings randomly distributed across a grid of 110m spacing, with 50% of these sharing the284

characteristics as buildings in z10 of the original Centerville (low-rise steel braced frame285

that is not seismically designed), and the other 50% sharing the same building charac-286

teristics as z11 of the original Centerville (low-rise steel braced frame with moderate strength287

and ductility). We assume that the current buildings of Centerville will still exist in 2050,288

and will have the same seismic capacity as now (i.e., the potential time-dependence of289

building seismic fragilities are neglected at this stage of the analysis).290

Zones 6 to 8 will be future residential areas (with one grocery store and one school291

at/near their centroids) with the same type of building as Zones 1 to 3, and Zone 9 will292

be a future retail/business district with the same distribution of building types as Zone293

4. All future buildings will be built to conform to the “high-code” description of FEMA294

(2018), i.e., they possess high strength and ductility. It is anticipated that the popula-295

tion of Futureville will grow broadly in line with a uniform distribution version of the296

Global United Nations Population Prospects for 2050 (United Nations, 2019). Thus, the297

total 2050 population for each kth Monte Carlo simulation is computed as follows:298

pk2050 =
27, 250

p̃2020

nage∑
age=1

F−1
age(uk) (6)

where F−1
age(x) is an inverse uniform distribution between the lower and upper 80 per-299

cent prediction intervals of the 2050 global population projections provided in United300

Nations (2019) for a given age group (the results of which are reduced by 20% in the 18-301

25 years age category to accommodate out-of-town college students - see Section 4.3 -302

assuming an even age distribution of the population across the 15-19 year grouping), nage303

is the total number of 5-year age groups considered in United Nations (2019), uk is a ran-304

dom number between 0 and 1, p̃2020 is the United Nations (2019) median projection of305

the world’s total population in 2020, and 27,250 is the current population of Futureville.306

Since the exact layout of future development within Zones 6 to 9 is uncertain, the num-307

ber and location of associated buildings varies for each simulation (see Figure 3). We as-308

sume that the number of residences is evenly distributed across Zones 6 to 8, and that309

for each Monte Carlo simulation, there are exactly enough buildings within these zones310

to facilitate the additional corresponding sampled Futureville population for 2050. We311

assume that the number of buildings within Zone 9 is equal to 5% of the total number312

of buildings in Zones 6 to 8. For each simulation, every building in Zones 6 to 8 is ran-313

domly assigned to one point on a 20m spaced grid, and each building in Zone 9 is ran-314

domly positioned on a 110m spaced grid.315

Note that the damage state of each building within Futureville is randomly sam-316

pled for each Monte Carlo simulation according to the corresponding equivalent-PGA317

fragility functions in FEMA (2018) and using the PGA output of the Seismic Hazard318

Module closest to the building’s location. A selection of these fragility functions are pre-319

sented in Figure 4, to illustrate capacity differences between different structural types320

and building codes. Information presented in this section is summarised in Table 2.321

4.3 Social Impact Module322

This case study particularly focuses on socio-economic projections in terms of age323

and income (gender is not anticipated to be a defining vulnerability factor in 2050 Fu-324

tureville). Zones 1 to 3 are respectively associated with the same median incomes as z1,325
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Figure 3: Current and future urban development in Futureville. Each subfigure displays
a different Monte Carlo sample of future development in Zones 6 to 9 (see Figure 2). Note
that each plotted point represents one building.
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Figure 4: Various FEMA (2018) equivalent-PGA fragility functions that describe the
probability of experiencing at least moderate damage, corresponding to (a) different
structural types built to the “high-code” specification of FEMA (2018) and (b) light-
frame wood buildings designed to different structural codes. W1 = light-frame wood, C1L
= low-rise concrete moment frame, S3 = steel light frame, S2L = low-rise steel braced
frame, and RM1L = low-rise reinforced masonry bearing walls with wood or metal deck
diaphragms. Note that “pre-code”, “low-code”, “moderate-code”, “high-code”, and ”spe-
cial high-code” respectively correspond to the absence of seismic-resistant design, low
strength and ductility, moderate strength and ductility, the ”high-code” FEMA (2018)
specification, and the case of maximum strength and ductility for a high seismic design
level.
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Table 2: A summary of Futureville zone information related to the Engineering Impact
Module (see Section 4.2). Note that in the “Design-Code Distribution” column, “N” in-
dicates an absence of seismic-resistant design, “L” implies low strength and ductility,
“M” represents moderate strength and ductility, and “H” denotes the ”high-code” FEMA
(2018) specification.

Zone Number Zone Type Structural Type Design-Code Distribution

1 Residential Light-frame Wood (Housing) 52% N, 47% L, 1% M
Low-rise Concrete Moment Frame (School) 100% M
Light-frame Steel (Grocery Store) 100% L

2 Residential Light-frame Wood (Housing) 69% N, 31% L
Low-rise Concrete Moment Frame (School) 100% M
Light-frame Steel (Grocery Store) 100% L

3 Residential Light-frame Wood (Housing) 100% N
Low-rise Concrete Moment Frame (School) 100% M
Light-frame Steel (Grocery Store) 100% L

4 Retail/Business Low-Rise Steel Braced Frame 100% L
Low-Rise Concrete Moment Frame 100% L
Low-Rise Reinforced Masonry Bearing Walls 100% N
Light-frame Steel 100% L

5 Industrial Low-rise Steel Braced Frame 100% N
Low-rise Steel Braced Frame 100% M

6 Residential Light-frame Wood (Housing) 100% H
Low-rise Concrete Moment Frame (School) 100% H
Light-frame Steel (Grocery Store) 100% H

7 Residential Light-frame Wood (Housing) 100% H
Low-rise Concrete Moment Frame (School) 100% H
Light-frame Steel (Grocery Store) 100% H

8 Residential Light-frame Wood (Housing) 100% H
Low-rise Concrete Moment Frame (School) 100% H
Light-frame Steel (Grocery Store) 100% H

9 Retail/Business Low-Rise Steel Braced Frame 100% H
Low-Rise Concrete Moment Frame 100% H
Low-Rise Reinforced Masonry Bearing Walls 100% H
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z2, and z5 in the original Centerville. Thus, Zone 1 may be broadly classed as “high in-326

come”. Zone 2 may be described as “middle income”, and Zone 3 can be categorised as327

“low income”. Futureville’s urban planners have provided the following details. Zone 6328

will contain high-end residences that accommodate“high income” future residents, and329

the other two future residential zones will be populated with 50% middle- and 50% low-330

income housing. (Note that these future income/household distributions align with 2050331

socioeconomic projections for the city, and income bands for current residential zones332

are not expected to vary in the future). Each household will depend on the nearest gro-333

cery store for food needs. It is anticipated (based on the city’s most recent census) that334

all people under the age of 60 will live in a residential building with three other people,335

all others will live in a two-person building, and there will be no disabled members of336

Futureville’s population. All children under the age of 18 will avail of the nearest school337

and will live with at least two older people. The exact inhabitant profile of each indi-338

vidual building in 2050 is currently uncertain, and is therefore randomly sampled in line339

with the age distribution of the simulated population (see equation 6 ) for each Monte340

Carlo simulation. While the proportion of college-going students among Futureville’s pop-341

ulation is currently negligible, a recent report commissioned by the city’s administrators342

projects this to increase to 20% of all 18 to 25 year olds in 2050. Since Futureville does343

not (or will not) contain tertiary education facilities, we remove 20% of the simulated344

18-25 year old population from our analysis.345

It is understood that all people between the ages of 18 and 60 living in the city will346

work at some location within Futureville (but the exact workplace of each person is cur-347

rently uncertain). Workplace buildings are randomly assigned to each worker in a house-348

hold for a given Monte Carlo simulation, in accordance with the following information349

obtained from Futureville’s most recent census (which is not expected to notably change350

by 2050). All high-income workers work in retail/business zones. Middle-income work-351

ers are distributed in the ratio 7:2:1 among retail/business, light industry, and heavy in-352

dustry. Low-income workers are distributed in the ratio 4:3:3 among retail/business, light353

industry, and heavy industry. It is anticipated that retail workers of Zones 1 to 3 will354

work in Zone 4, whereas retail workers of Zones 6 to 8 will work in Zone 9. It is believed355

that all workers from the same household will work within the same Zone (but not nec-356

essarily the same building). A schematic summary of Futureville’s engineering asset de-357

pendence across different demographic groups is presented in Figure 5.358

4.4 Proposed Policies359

We examine three hypothetical policies in this case (two hard and one soft), which360

are mutually exclusive (and therefore intended for individual implementation) due to bud-361

getary constraints. Policy #1 involves retrofitting all buildings within the existing low-362

income Zone 3 to conform to FEMA (2018) high-code specification. Policy #2 provides363

financial support to facilitate a requirement that all buildings within future Zones 6 to364

9 are instead built to “special high-code”, and that all existing non-residential buildings365

with no seismic design are upgraded to FEMA (2018) high-code specification. Policy #3366

provides post-disaster employment insurance to all workers and issues post-disaster re-367

pair assistance that covers minor damage to residential structures.368

Note that Policy #1 and Policy #2 alter the types of fragility functions considered369

in the Engineering Impact Module for certain buildings. Both of these policies result in370

the replacement of fragility functions for retrofitted buildings with corresponding FEMA371

(2018) models that represent high strength and ductility. Special-code buildings stipu-372

lated in Policy #2 are modelled using appropriate equivalent-PGA special high-code fragility373

functions detailed in FEMA (2018) (see Figure 4 for further explanation and an exam-374

ple). It is assumed that Policy #3 eliminates the need for people to depend on their work-375

place for income, and therefore removes Wy,z from the social network summarised in Fig-376
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Figure 5: A graphical summary of asset dependence (i.e., the social network) for differ-
ent demographic groups within Futureville. Within the bth zone, the ath household Ha,b

(containing either four people under the age of 60 or two people above this age) depends
on the local grocery store Stb. Each adult inhabitant of Ha,b under the age of 60 works at
some workplace Wy,z within a different (zth) zone. Each child inhabitant of Ha,b attends
the local school Sb.
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ure 5. Policy #3 also avoids a self-funded payout in the case of minor residential dam-377

age, which may be particularly relevant for low-income households.378

4.5 Initial Risk Metrics379

We initially assume that ninitial = 3 risk metrics are of interest to stakeholders:380

(1) the expected proportion of the population that is displaced; (2) the expected pro-381

portion of the population that experiences some financial loss due to damage to their res-382

idence (i.e., at least minor damage for Policy #1 and 2, and at least moderate damage383

for Policy #3), and (3) the maximum expected proportion of casualties across any time384

of the day, all of which are disaggregated in terms of income band and age bracket. Note385

that the expected values for all risk metrics are obtained by averaging the correspond-386

ing quantities produced from the Ns Monte Carlo samples.387

For assessing the initial risk metric (1), we assume that all occupants of a house-388

hold will be displaced for a given Monte Carlo simulation if there is moderate damage389

to at least two nodes of their social network, which includes the residence itself, the near-390

est grocery store and can also (for relevant age groups) incorporate schools and work-391

places (except in the case of Policy #3, as described in Section 4.4). The initial risk met-392

ric (3) is computed using the aggregate of all casualty rates (i.e., accounting for each ca-393

sualty severity level, including minor injuries) provided in Tables 12-3 to 12-11 of FEMA394

(2018), according to each building type included in Futureville. It is assumed that all395

of Futureville’s oldest (i.e., 60 or over) residents will be at home when the earthquake396

occurs, and those younger than 60 will be at their residence if the earthquake occurs at397

nighttime and/or on a weekend. For a weekday earthquake in the daytime or at com-398

mute time, it is assumed that all workers will be at work and that all children will be399

at school. The indoor/outdoor population distribution of a given building is obtained400

from Table 12-2 of FEMA (2018), using “Residential” occupancy values for casualties401

that occur at home, “Commercial” occupancy values for casualties in Zones 4 and 9, and402

“Industrial” occupancy values for casualties in Zone 5. We find that the maximum ex-403

pected proportion of casualties occurs for a daytime earthquake on a weekday, which is404

therefore used as the temporal basis for initial risk metric (3).405

Values of each initial risk metric are displayed in Figures 6 and 7 across the three406

examined policies; also shown for completeness are results for the case in which no pol-407

icy is implemented, as well as median, 25th, and 75th percentile values to convey the un-408

derlying distributions. It is interesting to note that the expected proportion of the old-409

est age group displaced is significantly lower than that of younger age groups, for all cases.410

This may be explained by the fact that the displacement of the oldest age group does411

not depend on the functionality of either workplaces or schools. In the case of Policy #3412

(where displacement of all ages is independent of workplace damage), the most affected413

age group is clearly young people, whose post-disaster displacement status (and that of414

the adults they live with) depends on the functionality of the nearest school (in addi-415

tion to that of the grocery store and their place of residence).416

The expected proportion of the population that experiences some financial loss due417

to residential damage is notably lower for Policy #3 than other cases, across all ages and418

income levels. This is because the level of damage that triggers self-funded repairs is higher419

for Policy #3 (i.e., moderate damage versus slight damage for other cases). A further420

noteworthy observation from Figure 7 is that while the proportion of the population ex-421

periencing loss due to residential damage for a given policy case is fairly constant across422

all age groups, there are some discrepancies in the value of this metric for different in-423

come groups, which vary for different policies. For example, the proportion of low-income424

households experiencing residential-damage-induced loss is significantly larger than that425

of higher income groups except for Policy #1 (as expected, since this policy particularly426

targets a low-income residential zone).427
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It can be seen that the total expected proportion of casualties is approximately 1%428

of the future projected population. The most affected age group in terms of casualties429

is adults under the age of 60, suggesting that the majority of casualties occur in work-430

places. This conclusion is supported by the fact that Policy #2 - which involves retrofitting431

work buildings that have not been seismically engineered - significantly mitigates the dis-432

crepancy in casualties between age groups. The poorest residents of Futureville tend to433

suffer more casualties than those of other income groups, except in the case of the low-434

income targeted Policy #1.435

There is noticeable uncertainty in the underlying distributions of initial risk met-436

rics (1) and (3). This observation may be partially explained by the large dispersions437

that characterise FEMA (2018) equivalent-PGA fragility functions; the resulting uncer-438

tainties in damage states could be reduced using state-of-the-art structure-specific an-439

alytical fragility models that use more appropriate ground-motion intensity measures for440

damage quantification (e.g., Silva et al., 2019). The variability associated with initial risk441

metric (1) may also be caused by the dependence of this metric on the uncertain states442

of multiple engineered assets. The breadth of the distribution underlying initial risk met-443

ric (3) can be partially attributed to the large variation in casualty rates associated with444

different damage states of a given building type (see Tables 12-3 to 12-11 of FEMA, 2018);445

this type of uncertainty can be mitigated by adopting more sophisticated casualty mod-446

els that explicitly capture potential injuries and fatalities associated with building-specific447

structural and non-structural components (e.g., FEMA, 2018).448

4.6 Decision Module449

The initial risk metrics are discussed with hypothetical stakeholders in Futureville,450

whose feedback leads to several modifications. The stakeholders are interested in the ex-451

pected proportion of total people displaced (PDtotal) across all income bands and ages452

(Risk Metric #1), and would like to quantify the extent to which those in the low-income453

band disproportionally experience some losses related to residential damage. Due to the454

relatively low number of resulting casualties (predominantly minor injuries), which is in-455

significant compared to the potentially vast amount of people affected by cascading im-456

pacts of displacement and low-income residential damage (e.g., Watson et al., 2007; Chang-457

Richards et al., 2019; Mallick & Vogt, 2014; Office of the US Surgeon General, 2009),458

the stakeholders have chosen to neglect the third initial risk metric in the analysis (and459

it is therefore removed from consideration in subsequent calculations).460

We leverage a modified version of the Poverty Exposure Bias Indicator introduced461

in Winsemius et al. (2018) - called the Poverty Bias Indicator (PBI ; Risk Metric #2)462

- to express the disproportional losses experienced by low-income households, as follows:463

PBI =
losslow
lossall

− 1 (7)

where losslow indicates the expected proportion of low-income households that experi-464

ence loss due to self-funded residential repairs and lossall is the equivalent expected pro-465

portion of all households. A negative value of PBI indicates a pro-poor approach (i.e,466

the proportion of low-income households experiencing losses is less than average). The467

underlying data for Risk Metrics #1 and #2 may be derived from the results shown in468

Figures 6 and 7, so no additional iteration through the Engineering Impact Module and469

the Social Impact Module is necessary in this case.470

A summary of Risk Metric #1 and #2 values are shown in Figure 8, for the three471

examined policies. Results for the case in which no policy is implemented are also shown472

for completeness. Among the Policies #1 to 3, it can be seen that Policy #1 is associ-473

ated with the lowest (i.e., most pro-poor) value of PBI, but results in the largest expected474

proportion of people displaced. Policy #3 produces the highest (and therefore worst) value475

of PBI, but is expected to result in a lower level of population displacement than both476
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(a)

Figure 6: (a) Proportion of the population that will be dislocated, (b) Proportion of
the population that will need to self-fund some repair costs for residential damage, and
(c) Proportion of casualties, across the three examined policies and if no policy is imple-
mented, disaggregated by age.
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(a)

Figure 7: (a) Proportion of the population that will be dislocated, (b) Proportion of
the population that will need to self-fund some repair costs for residential damage, and
(c) Proportion of casualties, across the three examined policies and if no policy is imple-
mented, disaggregated by income bracket.
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Figure 8: Values of PBI and PDtotal risk metrics across the three examined policies and
if no policy is implemented.

other policies. Policy #2 produces intermediate results for both metrics. The “No Pol-477

icy” case leads to a worse outcome than any examined policy in terms of population dis-478

placement. However, it is associated with a much smaller PBI value than Policy #3,479

indicating that doing nothing is a more pro-poor strategy than offering post-disaster re-480

pair assistance for minor damage (at least for the scenario earthquake examined, which481

results in the strongest shaking in the low-income Zone 3 - see Figure 2(b).482

We assume that the finalised risk metrics are weighted according to the analytic483

hierarchy process (see Section 3). Stakeholder feedback has suggested that it is equally484

important to minimise both metrics, so w1 = w2 = 0.5 .485

4.7 Policy with Lowest Overall Risk486

We leverage the TOPSIS multi-criteria decision-making methodology (see Section487

3) to compare the risk associated with the npolicy = 3 examined policies. A summary488

of Si values for each examined policy is provided in Table 3. It can be seen that Policy489

#1 is the best option in this case.490

Table 3: Si values for the three examined policies. Bold font indicates the optimum policy
selection.

Weighting Scheme S1 S2 S3

w1 = w2 = 0.5 0.76 0.55 0.24

–19–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Earth’s Future

5 Sensitivity Analyses491

The case study of the proposed framework presented in Section 4 relied on a num-492

ber of assumptions and hypothetically known details related to the data required for all493

modules. The purpose of this section is to demonstrate the versatility of the framework,494

by investigating the impact on the overall results of some alternative assumptions and495

additional uncertainties in the underlying data.496

The first sensitivity analysis (herein referred to as “SA #1”) alters the Seismic Haz-497

ard Module, by replacing the scenario earthquake with a fully deterministic magnitude498

6 rupture that is located 20 km closer to Futureville. (Note that the GMM and spatial499

correlation model remain unchanged, and the set of ground-motion fields that forms the500

basis of the scenario is chosen using the procedure outlined in Section 4.1).501

The second sensitivity analysis (consequently labelled as “SA #2”) modifies the502

Engineering Impact Module, by assuming that the seismic resistance of current build-503

ings degrades with age. The dynamic vulnerability of engineered assets is an important504

consideration for seismic risk analyses (Lallemant et al., 2017) that is often overlooked505

in conventional risk assessments (Lallemant, 2015). For this analysis, the median val-506

ues of the fragility functions associated with each current building are independently re-507

duced by a uniformly distributed factor between 0.2 and 0.3 in each Monte Carlo iter-508

ation of the computation, which is broadly in line with the 25-year aging effects on vul-509

nerability found in Karapetrou et al. (2017). (Note that all retrofits included in Policies510

#1 and #2 are assumed to take place today, and are therefore also affected by reduced511

vulnerability in SA #2).512

The third sensitivity analysis (henceforth regarded as “SA #3”) investigates the513

implications of not knowing the breakdown of employment industry by income group-514

ing. In this case, the work zone of each household for a given Monte Carlo simulation515

is randomly sampled (with equal likelihood) from retail/business, light industry, and heavy516

industry. (Retail/business workers within Zones 1 to 3 and Zones 6 to 9 are still assumed517

to work in Zones 4 and 9, respectively).518

The PBI and PDtotal risk metric values associated with each analysis are sum-519

marised in Figure 9. The general trend in risk-metric values is the same across each SA;520

Policy #1 always leads to the lowest value of PBI, whereas PDtotal is consistently min-521

imised by applying Policy #3. However, there is noteworthy variation in the absolute522

values of the risk metrics for different analyses. In particular, it is interesting to note that523

SA #1 results in lower PBI values, implying that the location of the selected scenario524

earthquake requires careful consideration when evaluating the pro-poor effect of a given525

policy. Values of PDtotal are significantly higher than those of the original Section 4 cal-526

culations and less conservative PBI values are obtained if the vulnerability of existing527

structures degrades in time, further underlining the importance of considering this pos-528

sibility when evaluating future risks. Another interesting observation is that SA #3 pro-529

duces near-equivalent PDtotal results to those of the original calculations (note that SA530

#3 does not influence PBI values, which exclusively relate to residential damage). How-531

ever, it is important to note that SA #3 does lead to notable changes in the expected532

proportion of people displaced within given income brackets, and therefore the appro-533

priate inclusion of uncertainties in the Social Impact Module can be crucial for accurately534

characterising certain risk metrics.535

The final part of this section evaluates the optimum policy for each SA and var-536

ious alternative potential stakeholder risk priorities (i.e., different values of wj in equa-537

tions 3 and 4) that may arise due to diverse political outlooks, for instance: w1 = 0.5, w2 =538

0.5 (reducing PBI and reducing PDtotal are equally important), w1 = 0.9, w2 = 0.1539

(reducing population displacement is prioritised), and w1 = 0.1, w2 = 0.9 (reducing540

poverty bias in losses is prioritised). Table 4 presents the resulting Si values for each SA,541
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(a) (b)

(c)

Figure 9: Values of PBI and PDtotal risk metrics across the three examined policies and
if no policy is implemented, for (a) SA #1, (b) SA #2, and (c) SA #3.
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Table 4: Si values for the three examined policies across SA #1, SA #2, and SA #3. Si

values associated with the original calculations in Section 4 are also shown for complete-
ness. Bold font indicates the optimum policy selection.

Weighting Scheme S1 S2 S3

Original Calculations (Section 4)
w1 = w2 = 0.5 0.76 0.55 0.24
w1 = 0.9, w2 = 0.1 0.26 0.20 0.74
w1 = 0.1, w2 = 0.9 0.97 0.60 0.03
SA #1
w1 = w2 = 0.5 0.78 0.56 0.22
w1 = 0.9, w2 = 0.1 0.28 0.20 0.72
w1 = 0.1, w2 = 0.9 0.97 0.60 0.03
SA #2
w1 = w2 = 0.5 0.83 0.64 0.17
w1 = 0.9, w2 = 0.1 0.35 0.27 0.65
w1 = 0.1, w2 = 0.9 0.98 0.67 0.02
SA #3
w1 = w2 = 0.5 0.76 0.55 0.24
w1 = 0.9, w2 = 0.1 0.26 0.20 0.74
w1 = 0.1, w2 = 0.9 0.97 0.60 0.03

as well as for the original calculations. All of the various analyses lead to the same con-542

clusion. Policy #1 is the best option if equal importance is placed on both risk types and543

if adopting a pro-poor approach is prioritised, whereas Policy #3 is the optimum selec-544

tion if stakeholders place higher importance on minimising population displacement. The545

equivalent ultimate findings of each analysis is not unexpected, given the same general546

trend in risk-metric values that was observed for each policy in Figures 8 and 9.547

6 Conclusions548

This paper has introduced an end-to-end simulation-based framework for modelling549

risks associated with future earthquakes, which addresses some significant gaps associ-550

ated with state-of-practice approaches to future seismic risk assessment. The framework551

may be leveraged to support decision making on urban planning/design and/or related552

policies, accounting for varied stakeholders perspectives and priorities around the con-553

cept of risk.554

We demonstrated the framework using the hypothetical city of “Futureville”, which555

was conceived on the basis of completely synthetic physical and socio-demographic data.556

In particular, we showcased the framework’s ability to determine the optimum among557

a set of potential earthquake risk-reduction policies, considering the risk dimensions of558

interest to stakeholders and a multitude of uncertainties inherent in future projections559

of urban landscapes. We ultimately determined that the optimum policy can change de-560

pending on stakeholder’s priorities towards different risk types. This finding, which mir-561

rors the conclusions of similar studies in different contexts (e.g., Cremen & Galasso, 2021),562

underlines the critical importance of a collaborative risk assessment process that inte-563

grates stakeholder participation, capacity and feedback (Galasso et al., 2021). For the564

specific case study examined, it was found that a “soft policy” of providing post-disaster565

financial assistance for city inhabitants is the best option if stakeholders are most inter-566
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ested in minimising population displacement, whereas a “hard policy” of replacing low-567

income housing and facilities with code-compliant buildings is the optimal solution for568

stakeholders who are particularly motivated to reduce the relative burden of financial569

loss on the city’s poorest.570

While the hypothetical case study used was relatively limited in scope (i.e., con-571

sidered only two or three risk metrics, incorporated a simplified earthquake scenario cal-572

culated purely on the basis of statistical models, and made a number of elementary as-573

sumptions on the city’s functionality), we further demonstrated that the proposed frame-574

work is versatile enough for accommodating flexible (and potentially more realistic) data575

in each of its core modules, through a series of sensitivity analyses that altered the hy-576

pothetical inputs and/or amplified the uncertainties present in the underlying calcula-577

tions. The ultimate conclusions of the study remained unchanged in these supplemen-578

tary analyses. However, variations in the absolute values of the risk metrics obtained un-579

derline the importance of accurately characterising the input data and the associated un-580

certainties, which the proposed framework is explicitly designed to facilitate. We antic-581

ipate that the framework has the potential to play a leading role in preparing societies582

for future challenges related to earthquake hazards, directly addressing a need outlined583

in both the Sendai Framework for Disaster Risk Reduction (Aitsi-Selmi et al., 2016) and584

the United Nations Sustainable Development Goal 11 (Sustainable Cities and Commu-585

nities; Assembly, 2015).586

Finally, while this specific paper focuses on earthquake ground-shaking risk, the587

proposed framework can be easily extended to more earthquake-related hazards (e.g.,588

liquefaction, tsunami inundation) or other (multiple) natural hazards with some ad-hoc589

modifications. For instance, tsunami inundation would require relevant tsunami inten-590

sity measures (e.g., peak velocity, momentum flux) to be output from the “Seismic Haz-591

ard Module”. Future risks from river and flash flood hazard in urban/rural environments592

could be modelled by switching the positions of the Hazard and Engineering Impact Mod-593

ules. This alteration would be necessary to account for the hazard’s dependence on en-594

vironmental change resulting from socioeconomic development; the expansion of imper-595

meable surfaces (e.g., concrete or paved surfaces replacing natural ground cover) decreases596

infiltration and increases runoff during precipitation events.597
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