
J
H
E
P
1
2
(
2
0
2
1
)
1
6
3

Published for SISSA by Springer

Received: April 20, 2021
Revised: October 29, 2021

Accepted: November 26, 2021
Published: December 22, 2021

Exact ground states and domain walls in one
dimensional chiral magnets

Calum Ross,a,b,1 Norisuke Sakaia and Muneto Nittaa
aDepartment of Physics and Research and Education Center for Natural Sciences, Keio University,
Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521, Japan
bDepartment of Mathematics, University College London,
Gower Street, London WC1E 6BT, U.K.
E-mail: c.ross@keio.jp, norisuke.sakai@gmail.com,
nitta@phys-h.keio.ac.jp

Abstract: We determine exactly the phase structure of a chiral magnet in one spatial
dimension with the Dzyaloshinskii-Moriya (DM) interaction and a potential that is a func-
tion of the third component of the magnetization vector, n3, with a Zeeman (linear with
the coefficient B) term and an anisotropy (quadratic with the coefficient A) term, con-
strained so that 2A ≤ |B|. For large values of potential parameters A and B, the system
is in one of the ferromagnetic phases, whereas it is in the spiral phase for small values.
In the spiral phase we find a continuum of spiral solutions, which are one-dimensionally
modulated solutions with various periods. The ground state is determined as the spiral
solution with the lowest average energy density. As the phase boundary approaches, the
period of the lowest energy spiral solution diverges, and the spiral solutions become domain
wall solutions with zero energy at the boundary. The energy of the domain wall solutions
is positive in the homogeneous phase region, but is negative in the spiral phase region,
signaling the instability of the homogeneous (ferromagnetic) state. The order of the phase
transition between spiral and homogeneous phases and between polarized (n3 = ±1) and
canted (n3 6= ±1) ferromagnetic phases is found to be second order.
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1 Introduction

Chiral magnets are special examples of magnetic materials where the energy functional
which describes the system contains a term with a preferred chirality for the magnetization
vector [1–4]. This chirality preference comes from the parity (inversion) violating (noncen-
trosymmetric) interaction called the Dzyaloshinskii-Moriya (DM) interaction consisting of
an inner product of the magnetization vector ~n with the curl ∇× ~n of the magnetization
vector [5, 6]. The chiral magnet models are considered in various spatial dimensions with
a variety of potentials for the magnetization vector besides the DM interaction term and
the exchange term (square of derivative of magnetization vector). The ground state of the
system is a translationally invariant homogeneous configuration, if the DM interaction is
weak compared to the potential for the magnetization vector. If the DM interaction be-
comes more important than the potential, however, spatially modulated solutions become
more favorable, and can become the ground state, which is spatially inhomogeneous and
breaks the translation invariance.

The spiral phase is one such interesting phase, with various terminologies used for
various specific cases in the existing literature for magnetic systems. One of the first
and simplest examples is the case of no potential (with only exchange term and a DM
interaction), which is called a chiral helimagnet. When the potential consists only of a
Zeeman term (a term proportional to the component n3 of the magnetization vector), the
spiral solution is called a chiral soliton lattice. These specific spiral solutions are discussed
in detail in [7, 8]. Both of these terms refer to spiral solutions in a chiral magnet without
an anisotropy term (quadratic in the component n3 of the magnetization vector) in the
potential. In this work, we will use the terminology of spiral solutions for generic cases [9],
and use the term chiral soliton lattice for the specific case of no anisotropy, although chiral
soliton lattice is sometimes used for generic spiral solutions [10].

In high energy physics, a similar situation occurs, with chiral soliton lattice states
possible due to both magnetic effects [11] and vortical effects [12]. Another related one-
dimensional modulated state is the nematic phase of chiral nematic liquid crystals [13–15].
The Frank free energy which describes liquid crystals is known to become equivalent to
the free energy of a chiral magnet in a suitable limit [16] and skyrmion configurations can
be observed experimentally in liquid crystals. This correspondence is also commented on
in [7]. Another interesting inhomogeneous phase is the skyrmion lattice phase [9]. Skyrmion
solutions were first studied in [17] in two dimensions. Among the spatially modulated
solutions, magnetic skyrmions are intrinsically two dimensional [17, 18]. In contrast, the
spiral solutions are modulated along only one spatial dimension, and persist in the one
dimensional system. In some special situations, spiral solutions have been constructed
exactly [7, 19]. In the case of antiferromagnetic materials, various interaction terms due
to the sublattice structure are considered phenomenologically, and various inhomogeneous
solutions have been extensively studied and the phase diagram obtained [20, 21]. For a
different combinations of potential and the DM interaction term in one spatial dimension,
instanton solutions have been exhaustively studied [22]. Effective low-energy field theories
in the spiral phase has been worked out to yield anisotropic dispersion relations [23]. When
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one considers chiral magnets in three spatial dimensions, a richer phase structure emerges
including modulated solutions in three spatial directions such as the cone or elliptic cone
phases [24].

If we restrict ourselves to one spatial dimension, we obtain the one-dimensional chiral
magnet. It can offer a simpler system where we can study spiral solutions extensively. The
field equations for a one dimensional model of a chiral magnet are closely related to the
double sine-Gordon model. When there is no DM interaction, the model has been studied
extensively, to obtain in particular domain wall (kink) solutions and their thermodynamic
properties for the double sine-Gordon chain [25]. The double sine-Gordon model also
appears in high energy contexts such as two Higgs doublet models [26, 27] and 3P2 neutron
superfluids [28], but without an interaction of the DM type. One should note, however, that
the presence of the DM interaction is crucially important to understand the energetics of
spiral solutions and the phase structure of chiral magnets. The double sine-Gordon domain
wall solutions have also been discussed in the context of two dimensional chiral magnets,
in particular at their one-dimensional edges [10].

The purpose of our paper is to introduce a model of a chiral magnet in one-spatial
dimension to obtain the phase diagram exactly, and clarify its relation to energetics of
domain wall solutions. Alongside the usual energy term for the Heisenberg ferromagnet the
model includes a Dzyaloshinskii-Moriya (DM) interaction term with the coefficient κ [5, 6]
and a potential which is a sum of a Zeeman term (linear in n3) with the coefficient B and an
anisotropy term (quadratic in n3) with the coefficient A. We find that the boundary energy
functional needed to obtain the Euler-Lagrange equation (through the variational principle)
does not contribute to the solutions of interest to us here, such as spiral or domain wall
solutions. We exhaustively work out the static solutions of the model, and find that spiral
solutions have a continuous spectra of average energy density, and the lowest energy spiral
solution gives the ground state in the spiral phase (for small potential parameters A,B).
On the other hand, homogeneous (polarized or canted ferromagnetic) solutions give the
ground state for large A,B. We demonstrate that the phase boundary between the spiral
phase and the homogeneous (ferromagnetic) phases is characterized by the emergence of
zero energy domain wall solutions. In the homogeneous (ferromagnetic) phase, the domain
wall solution is a soliton as a finite positive energy excited state. In the spiral phase region,
the domain wall solutions, as solitons above the homogeneous background, have negative
energy signaling the instability of the homogeneous solution. The zero energy domain wall
solutions are obtained as the (infinite period) limit of the spiral solutions when the phase
boundary is approached from the spiral phase region. The exact phase boundary in the
A/κ2, B/κ2 plane with 2A ≤ |B| is worked out explicitly. That is the transition between
the spiral phase and the homogeneous, polarised, ferromagnetic phase which we show to
be a second order transition. We also obtain exact domain wall solutions explicitly for all
parameter regions and confirm our general argument on the phase diagram.

After finishing this work we became aware of the recent paper [38], as well as the
older work [39]. The former obtains the phase boundary between homogeneous phases
and the spiral phase using explicit spiral solutions in terms of elliptic functions, although
they consider a different physical situation, namely with an external elastic strain applied

– 3 –



J
H
E
P
1
2
(
2
0
2
1
)
1
6
3

to the chiral magnet. We have approached the problem from a complementary point of
view, with general arguments using inequalities to show the region of the spiral phase. In
particular, we have clarified the role of domain wall solutions explicitly to work out the
phase boundary, and also have included more detail about the domain wall limit of the
spiral solutions at the phase boundary. We have also explicitly derived the order of phase
transition across the phase boundary.

Another related work is [32] where a similar model, with just an anisotropy term
and no magnetic field is considered. The model is studied numerically and two spiral
phases are discussed; a “flat” spiral similar to what we construct here, and a “non-flat”
spiral. The difference between the two types of spirals is apparent in a spherical coordinate
decomposition of the magnetisation field. For flat spirals the angular variable Φ(x) is a
constant, while for a non-flat spiral it is allowed to vary. There is a numerical evidence
that the non-flat spiral has lower energy than the flat spiral close to the transition to the
homogeneous phase, and that it determines the location of the phase transition. The non-
flat spiral has no analytic expression, here we focus on the flat spiral, just called spiral
throughout, configurations which can be constructed explicitly. This is why we restrict to
2A ≤ |B|, as for 2A > |B| the non-flat spiral is the ground state and the phase transition
cannot be found analytically. We still discuss details about spiral and domain wall solutions
in this parameter region.

Our model can be obtained as a dimensional reduction of the most popular model of
two-dimensional chiral magnets [17, 18, 29–31, 33, 34]. Hence one can expect that all the
solutions that we consider are also solutions of chiral magnet models in two or higher spa-
tial dimensions. We would only need to additionally study other solutions specific to two
spatial dimensions in order to determine the phase diagram of a two dimensional model.
A similar problem was studied for the case of noncentrosymmetric uniaxial antiferromag-
netic materials [20], where the authors considered various interaction terms arising from
sublattice magnetization vectors. As a result, physical consequences such as the diagram
are different, although the mathematical structure is similar.

The paper is organized as follows. In section 2 we introduce the one dimensional model,
discuss its homogeneous phases and the vanishing boundary contributions. Section 3 gives
the field equations and a classification of the different types of solutions. In section 4, the
lowest energy spiral solution is shown to give the ground state in the spiral phase, and the
phase boundary between the homogeneous phase is determined explicitly. The exact spiral
solutions in terms of elliptic functions are also given for B = 0 or A = 0 cases. In section 5
we present the exact domain wall solutions for the model. Section 6 contains a summary
of the work presented in the paper and a discussion of some open questions. Appendix A
is devoted to the evaluation of the integrals needed to obtain the second derivative of
the average energy density of the spiral ground state near the phase boundary. Finally
appendix B gives some details of exact spiral solutions for B = 0 or A = 0.

– 4 –



J
H
E
P
1
2
(
2
0
2
1
)
1
6
3

2 One dimensional chiral magnet

2.1 Model

Throughout this paper we study chiral magnets in one spatial dimension, in particular their
phases and exact spiral and domain wall solutions. The energy density of the particular
model we consider is given in terms of a real three component magnetization vector field
~n : R1 → S2 with the constraint ~n2 = 1

E = 1
2

(
d~n

dx

)2
+ κ~n · ∇−α × ~n+ U(n3) + Eboundary, (2.1)

where the potential is
U(n3) = −Bn3 +An2

3. (2.2)

We leave to the next subsection a discussion of the boundary term Eboundary, which does
not affect the field equations but is needed to make the variational problem well-defined.
The rotated gradient ∇−α is defined in terms of ∇ =

(
d
dx , 0, 0

)T
and a rotation matrix

R(−α) by an angle −α ∈ (−2π, 0] about the 3-axis

∇−α = R(−α)∇ =

 cosα
− sinα

0

 d

dx
. (2.3)

Using this the Dzyaloshinskii-Moriya (DM) interaction term [5, 6] can be written explic-
itly as

~n · ∇−α × ~n = cosαwB + sinαwN , (2.4)

Here wB and wN are the Bloch and Neél DM terms which in one dimension become

wB = n3
dn2
dx
− n2

dn3
dx

, wN = n3
dn1
dx
− n1

dn3
dx

, (2.5)

respectively.
This model has the symmetry that the B > 0 and B < 0 parameter regions are related

by sending B → −B and n3 → −n3. As such we chose to work with B ≥ 0.
As observed in [29] working in terms of a rotation by α around the 3-axis, R(α), we

can rewrite the DM term as

~n · ∇−α × ~n = ~nα · ∇ × ~nα, (2.6)

with
~nα = R(α)~n. (2.7)

Since the first and third term in eq. (2.1) are invariant under R(α), eq. (2.1) can be rewritten
in terms of ~nα and ∇ replacing ~n and ∇−α.
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2.2 Boundary terms

A total derivative term in the action is a boundary term which does not affect the equa-
tions of motion. However, it can in general contribute to the energy similarly to the DM
interaction term. It has been realized in ref. [29] that there are subtle contributions from
infinity (the boundary) to the energy of the skyrmion (hedgehog) solutions in the case of
two-dimensional chiral magnets along the solvable line 2A = B. Subsequently it has been
realized that the additional total derivative term in the energy density is needed to make
the variational principle well-defined, in deriving the field equations for the skyrmion [31].
We call this term the boundary energy functional. In the two dimensional solvable case,
the boundary energy functional gives a finite and crucial negative energy contribution to
the skyrmion energy. This fact leads to the instability of the polarized ferromagnetic back-
ground solution and a phase transition to other phases, such as the skyrmion lattice phase,
below the critical value of potential parameters [31].

When one varies the energy functional to obtain the equation of motion, it requires a
partial integration for the DM interaction term. The resulting surface term can be canceled
by adding a boundary energy functional of the form [31]

Eboundary = κεijk∇i
(
nα,bound
j nαk

)
, (2.8)

where ~nα,bound is the boundary value of the magnetization vector. It is important to realize
that the derivative is acting also on the boundary value ~nα,bound(x), since it can depend
on the position along the boundary, namely (two) isolated points in our one-dimensional
model. Let us consider the total energy in an interval −x1 ≤ x ≤ x2 with the boundaries
located at x = −x1 and x = x2. The contribution from the boundary term is given by

Eboundary = κ

∫ x2

−x1
dx∂1

(
nbound

3 (x)nα2 (x)− nα,bound
2 (x)n3(x)

)
= 0,

(2.9)

since the magnetization vector ~nα(x) takes the boundary value ~nα,boundary(x) at the bound-
ary. In the case of spiral solutions, we are interested in the total energy in one period, taking
x2+x1 to be the period. In the case of domain wall solutions, we should choose x1, x2 →∞.
Thus we find no contribution from the boundary term for the class of solutions that we
consider here. As such we will drop the boundary term from the energy density from
now on.

2.3 Homogeneous phases

Our field equations admit not only one-dimensionally modulated solutions but also homo-
geneous configurations as solutions.

They are the ground states in parameter regions with vanishing or small DM term.
Homogeneous solutions are given by the stationary points of the potential, and are in
common with the model in two or higher spatial dimensions which has the same potential
as in eq. (2.2), see for instance refs. [29, 31].
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A

B

I

II

III

Figure 1. The three ferromagnetic phases of the potential U(n3) = −Bn3 +An2
3.

Restricting to homogeneous solutions and comparing the energy density results in the
familiar phase diagram shown in figure 1.

There are three distinct regions:

1. region I: −2A ≤ B ≤ 2A, with the minimum at n3 = B
2A , and

Ecanted = Umin = −B
2

4A. (2.10)

This is the canted ferromagnetic phase. The minimum configuration of ~n is the circle
(n1)2 + (n2)2 = 1− B2

4A2 .

2. region II: B ≥ 0, and B ≥ 2A, with minimum at n3 = 1, and

E+ = Umin = A−B. (2.11)

This is the positively polarized ferromagnetic phase.

3. region III: B ≤ 0, and B ≤ 2A, with the minimum of the potential

E− = Umin = A+B, (2.12)

at n3 = −1. This is the negatively polarized ferromagnetic phase.

The phase boundary lines are located at B = 2A ≥ 0 (between I and II), B = 0, A ≤ 0
(between II and III), and B = 2A ≤ 0 (between II and III). The order of the phase
transition was found previously [22]. The phase transition between regions I and II is of
second order, since the energy density and its first derivative are continuous, while the
second derivative is discontinuous. Similarly the phase transition between regions I and III
is also of second order. In figure 2, we illustrate the second order phase transition between
II and I (B > 0) or III and I (B < 0). The phase transition between the regions II and III
across the line B = 0, A < 0 is of first order, since the energy density is identical on both
sides but its first derivative is discontinuous. Moreover, there are two distinct minima at
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A
Umin

Figure 2. The energy density E(A,B) = Umin of the homogeneous ground state as a function of
A for a fixed B 6= 0. It exhibit the second order transition between polarized (2A < |B|) and the
canted (|B| < 2A) ferromagnetic phase.

B
Umin

B
Umin

Figure 3. The energy density E(A,B) = Umin of the homogeneous ground state as a function of
B for fixed A. The left panel is for fixed A < 0, exhibiting the first order phase transition between
region II and III. The right panel is for A > 0, exhibiting the second order phase transitions between
regions II (positively polarized) and I (canted), and I and III (negatively polarized) phases.

n3 = 1 and n3 = −1 with the same energy. In figure 3, we illustrate the first order phase
transition between II and III (for a fixed A < 0) in the left panel and the second order
phase transition between II and I, and one between I and III (for a fixed A > 0) in the
right panel.

One can expect that homogeneous configurations tend to have lower energy when the
potential term U is more important than other terms, in particular the DM term. It is
known that spiral solutions become the ground states for parameter regions where the DM
interaction is more important than the potential. We will determine the precise phase
boundary.

3 The field equation

3.1 Conservation of “mechanical energy”

To find the solutions for the energy density in eq. (2.1), it is easiest to first solve the
constraint, (~nα)2 = 1, using the independent angular variables Θ,Φ

~nα = (sin Θ cos Φ, sin Θ sin Φ, cos Θ)T . (3.1)
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The energy density in eq. (2.1) is given in terms of the independent fields Θ(x) and Φ(x) as

E = 1
2

{(
dΘ
dx

)2
+
(

sin ΘdΦ
dx

)2}
+ κ

(
sin ΦdΘ

dx
+ 1

2 sin 2Θ d

dx
sin Φ

)
+ U(Θ), (3.2)

with the potential
U(Θ) = −B cos Θ +A cos2 Θ. (3.3)

Minimising the energy functional leads to the Euler-Lagrange or field equations for Θ and
Φ being

−d
2Θ
dx2 + 1

2 sin 2Θ
(
dΦ
dx

)2
− 2κ sin2 Θd sin Φ

dx
+ ∂U

∂Θ = 0, (3.4)

− d

dx

(
sin2 ΘdΦ

dx

)
+ 2κ sin2 Θ cos ΦdΘ

dx
= 0. (3.5)

These equations are written down for the case B = 0 and α = 3π
2 in [32], where they are

numerically studied, including beyond the constant Φ approximation that we make here.1

It is worth reiterating here that the flat spirals we consider here have Φ(x) = constant,
while a non-flat spiral would not have this restriction.

As a first step, we solve eq. (3.5) for Φ(x) by assuming a constant value. We then find

Φ(x) =
(

2n± 1
2

)
π, n ∈ Z. (3.6)

Then the DM interaction term κ disappears from the field equation for Θ(x) and eq. (3.4)
becomes

d2Θ
dx2 = +∂U

∂Θ . (3.7)

If we regard x as “time”, eq. (3.7) is the equation of motion of a particle with unit mass
moving in the periodic potential −U(Θ). Since the potential is periodic, the particle is
constrained to move on a circle, S1. This classical mechanics analogy is useful for classifying
solutions and finding their properties. Multiplication of (3.7) by dΘ

dx gives a conservation
law corresponding to translational invariance

1
2

(
dΘ
dx

)2
− U(Θ) = C0, (3.8)

where the constant C0 is a conserved quantity (an integral of motion) corresponding to the
“mechanical energy” (sum of kinetic and “potential energy” −U(Θ)) in classical mechanics.

3.2 Classification of solutions

We denote the value of the maximum of the potential as Umax.
Since a symmetry B → −B,n3 → −n3 allows us to obtain solutions for B ≤ 0 from

those of B ≥ 0, we concentrate here on regions I and II. The conservation law implies
1As a comment on notation in [32] they use λ for the DM parameter κ and their γ2 = 2A is equivalent

to our anisotropy parameter.
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Spiral Solutions

Domain Wall Solutions

Oscillating Solutions

Homogeneous Solutions

Figure 4. A plot of the potential −Umin(Θ) for the “mechanical analog” when B > 2A. The
upper solid horizontal line (red) is −Umin = −A+B and the lower horizontal dashed line (blue) is
−Umax. Motions (from right to left) with the “mechanical energy” C0 > −Umin give spiral solutions.
Motions with C0 = −Umin connect two neighboring Θmin and give domain wall solutions. Motions
with C0 < −Umin give oscillating solutions.

that solutions exist if and only if C0 ≥ −Umax, because of the positivity
(
dΘ
dx

)2
≥ 0. We

depict a typical figure of −U(Θ) for the region II in figure 4. In the captions we discuss
the qualitatively different types of solutions in terms of the value of C0.

Using the constant solution (3.6) for Φ, the energy density becomes

Esol = κ
dΘ
dx

+ 1
2

(
dΘ
dx

)2
+ U(Θ). (3.9)

The energy of the solution depends on the DM interaction term, even though the field
equation (3.7) does not. However, the DM term does not contribute to the energy for
homogeneous oscillating solutions after averaging over one period.

The inequality 1
2

(
dΘ
dx

)2
+ U(Θ) ≥ Umin implies that the energy density of the homo-

geneous ground state at Θmin is lower than the average energy densities of the oscillating
solutions and other homogeneous solutions. We will study spiral solutions and domain
wall solutions in order to find the ground state of a one dimensional chiral magnet in the
following.

For the spiral and domain wall solutions with C0 > −Umin, eq. (3.8) implies that dΘ
dx

never vanishes. Hence its sign never changes, and the solutions are monotonic. Since the
energy density (3.9) favors the negative sign for dΘ

dx , we should choose the negative chirality
solution with dΘ

dx < 0 in order to obtain the ground state of the chiral magnet. Therefore
we need to solve the following first order equation

dΘ
dx

= −
√

2(C0 + U(Θ)). (3.10)

By making use of the conservation of “mechanical energy” from eq. (3.8), we can rewrite
the energy density as

Esol = κ
dΘ
dx

+
(
dΘ
dx

)2
− C0 = κ

dΘ
dx

+ 2U(Θ) + C0. (3.11)
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Explicit solutions are found by integrating the first order equation (3.10). We observe
that the solutions are given in terms of elliptic functions. In the next subsection, however,
we derive general properties of spiral solutions and will calculate the phase boundary
between the spiral and homogeneous phases without needing to find explicit solutions.

4 Properties of spiral solutions

4.1 Spiral solutions without the potential

As a warm up for studying more general spirals let us first consider the case without a
potential, A = B = 0, U(Θ) = 0. This has been treated in the literature before [18]
and we discuss it here to set up our conventions for future sections. In this case, we
need C0 ≥ 0 and obtain dΘ

dx = −
√

2C0 from (3.10). The general solutions contain one
additional parameter, x0 as a Nambu-Goldstone (NG) mode for the spontaneously broken
translational symmetry,

Θ(x) = −
√

2C0(x− x0). (4.1)

The magnetisation vector is n3 + inα2 = e−i
√

2C0(x−x0) rotating along x with the momentum
−
√

2C0 < 0, namely a negative chirality plane wave as a spiral solution. The period L of
this spiral solution is L = 2π/

√
2C0. Although all the configurations with different values

of C0 are solutions of the equations of motion, they have different energy densities

E = −κ
√

2C0 + C0. (4.2)

As illustrated in the left panel of figure 5, the energy E of spiral solutions as a function of
C0 has a minimum at C0,min = κ2

2 giving the lowest energy spiral solution as

Emin = −C0,min = −κ
2

2 . (4.3)

This energy density is lower than that of the homogeneous solution (Ehomogeneous = 0),
thus A = B = 0 is in the spiral phase. For later use, we define the excess energy f(C0;A =
B = 0) in one period above the constant energy density −C0 as

f(C0;A = B = 0) =
∫ L

0
dx(E + C0) = −2πκ+ 2π

√
2C0. (4.4)

As illustrated in the right panel of figure 5, f(C0;A = B = 0) increases monotonically
and vanishes at C0 = C0,min = κ2

2 .

4.2 Lowest energy flat spiral solution

Although spiral solutions (including domain wall solutions) are monotonic functions of Θ,
they are periodic as a function of magnetization vector ~n. We define the period L of spiral
solutions as the distance corresponding to translation by 2π in Θ. Since eq. (3.10) gives a
one-to-one correspondence between x and Θ, once the NG mode x0 is fixed by Θ(x0) = 0

– 11 –
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Figure 5. Left: energy density E of spiral solutions as a function of C0 for A = B = 0. The lowest
energy spiral solution occurs at C0 = C0,min = κ2/2, giving the energy density Emin = −κ2/2 for
the spiral ground state. Right: the excess energy f(C0;A = B = 0) in one period as a function of
C0 for A = B = 0. It increases monotonically and vanishes at C0 = C0,min = κ2/2.

for instance. We can now change variable from x to Θ by using eq. (3.10). The period L
of a spiral solution is given by

L =
∫ L

0
dx =

∫ 2π

0
dΘ

[
−dΘ
dx

]−1
=
∫ 2π

0

dΘ√
2(C0 + U(Θ))

. (4.5)

The average energy density 〈E〉 is given by

〈E〉 = 1
L

∫ L

0
dx E = f(C0;A,B)

L
− C0, (4.6)

where

f(C0;A,B) =
∫ L

0
dx

[
κ
dΘ
dx

+
(
dΘ
dx

)2]

= −2πκ+
∫ 2π

0
dΘ
√

2(C0 + U(Θ)),

(4.7)

is the energy in one period due to the excess energy density above the constant value
−C0. As in eq. (4.4) we call f(C0;A,B) the excess energy. Only the first term of the
excess energy comes from the DM interaction, this gives a negative energy contribution
only when the solution has a non-zero winding (−2π) after one period of translation. This
feature makes it a possibility for spiral solutions to have lower average energy density than
the homogeneous ground state.

For fixed values of parameters κ,A,B, our spiral solutions have two parameters (mod-
uli) C0 and x0. The average energy density depends only on C0 and is independent of
x0. Therefore we need to look for the lowest energy solution among spiral solutions, by
minimizing the average energy density as a function of C0. We find the identities

∂f(C0;A,B)
∂C0

=
∫ 2π

0

dΘ√
2(C0 + U(Θ))

= L, (4.8)

∂L

∂C0
= −

∫ 2π

0

dΘ
(2(C0 + U(Θ)))3/2 , (4.9)
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some of which are also given in [32]. Thus we obtain

∂〈E〉
∂C0

= −1
L2

∂L

∂C0
f(C0;A,B). (4.10)

Eq. (4.8) shows that f(C0;A,B) is monotonically increasing. Because of (4.9), the average
energy density reaches a minimum when

f(C0;A,B) = −2πκ+
∫ 2π

0
dΘ
√

2(C0 + U(Θ)) = 0, (4.11)

is satisfied, provided this value of C0,min is in the allowed region of spiral solutions C0 ≥
−Umin. This minimum energy condition (4.11) gives C0,min as a function of A and B.
Eq. (4.6) implies that the average energy density of the lowest energy spiral solution is
given by this C0,min as

〈E〉min = −C0,min. (4.12)

Hence the lowest energy spiral solution always has lower energy than the homogeneous
ground state with the energy density Umin

〈E〉min = −C0,min ≤ Umin. (4.13)

We conclude that a chiral magnet is in the spiral phase, once the minimum energy condition
is satisfied in the allowed region for spiral solutions C0 > −Umin.

4.3 Boundary between spiral and homogeneous phases

As given in eq. (4.4), the function f at A = B = 0 becomes f(C0;A = B = 0) =
−2πκ + 2π

√
2C0. This behaves asymptotically as f(C0;A = B = 0) ∼ 2π

√
2C0 > 0 for

C0 → ∞ whereas f(C0 = −Umin = 0;A = B = 0) = −2πκ2 < 0. Hence the excess energy
f(C0;A = B = 0) has a zero in the region C0 > −Umin, ensuring the existence of the lowest
energy spiral solution for A = B = 0.

Let us now study the case of nonvanishing values of A,B, such that 2A ≤ B. We
observe that the excess energy f(C0;A,B) at C0 � A,B, κ2 becomes asymptotically

f(C0;A,B) ∼ 2π
√

2C0 > 0. (4.14)

Since the excess energy f(C0; , B) is monotonically increasing, the zero of the excess energy
f(C0;A,B) = 0 occurs in the allowed region if and only if f(C0 = −Umin;A,B) < 0.

When C0 approaches the lower bound at −Umin, we find

L→∞, (4.15)

since the integrand diverges at Θ = Θmin, as
√
C0 + U(Θ) →

√
U ′′(Θmin)

2 |Θ − Θmin| with
U ′′ = d2U

dΘ2 . On the other hand, the excess energy remains finite as C0 → −Umin. Therefore
the average energy density (4.6) becomes

〈E〉|C0=−Umin
= Umin, (4.16)
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which is the same as that of the homogeneous solution. We denote the excess energy at
this C0 = −Umin as

Eperiod(A,B) = f(C0 = −Umin;A,B)

= −2πκ+
∫ 2π

0
dΘ
√

2(U(Θ)− Umin). (4.17)

Summarizing the above, we find that the chiral magnet is in the spiral phase if
Eperiod(A,B) < 0, and in the homogeneous phase if Eperiod(A,B) > 0. The phase boundary
between spiral phase and the homogeneous phases is given by

0 = Eperiod(A,B) = −2πκ+
∫ 2π

0
dΘ
√

2(U(Θ)− Umin). (4.18)

Since the period is infinite, the spiral solution in this limit becomes a domain wall solution
connecting two adjacent values of Θmin. We will describe more explicitly the domain wall
solutions as a limit of spiral solutions in a later section. Since −Umin is the energy density of
the homogeneous solution, the excess energy above this energy density integrated over one
period Eperiod(A,B) is precisely the domain wall energy as a finite energy soliton solution
on the homogeneous background. Our results show that the domain wall solution as a
single soliton above the homogeneous background has positive energy and is an ordinary
excitation in the homogeneous phase. It becomes zero energy at the boundary between
the homogeneous and spiral phases. It has a negative energy in the spiral phase region,
and signals the instability of the homogeneous background solution and its decay to the
lowest energy spiral solution as the true ground state. One can intuitively visualize the
deformation of the configuration as a condensation of these negative energy solitons settling
down to the spiral ground state.

4.4 Explicit formula for phase boundaries

When 2A ≤ B, the homogeneous phase in this region is the polarized ferromagnetic phase
n3 = +1. The minimum of the potential is Umin = A − B which occurs at Θmin = 2Zπ.
We find that the boundary in eq. (4.18) between the polarized ferromagnetic phase and
the spiral phase is given by

2πκ =
∫ 2π

0
dΘ
√

2(−B cos Θ +A cos2 Θ−A+B)

= 4
√
B − 2A+ 4B√

2A
arcsin

√
2A
B
. (4.19)

This boundary is depicted as the (blue) curve to the left of B = 2A line in figure 6. This
expression is manifestly real for 0 ≤ A. This formula is also valid for A ≤ 0 by an analytic
continuation of A > 0 → A < 0. We find a convenient (manifestly real) expression in the
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Figure 6. The phase diagram in the A
κ2 ,

B
κ2 plane. The spiral phase is below the blue curve. The

(positively) polarized ferromagnetic phase is above the blue curve. The two ferromagnetic phases
are separated by the green line B = 2A. Below the tricritical point B = 2A = κ2, the dashed line
B = 2A does not correspond to a phase boundary. The dashed red line shows where flat spirals in
the anisotropy dominated case have zero energy. This is not a phase boundary as the flat spiral is
not the ground state.

region A ≤ 0 to be

2πκ = 4
√
B − 2A+ 4B√

−2A
arcsinh

√
−2A
B

(4.20)

= 4
√
B − 2A+ 2B√

−2A
log

(√
B − 2A+

√
−2A√

B − 2A−
√
−2A

)
,

where the last expression agrees with the one derived in the case of A ≤ 0 previously [18],
apart from the difference in conventions.

This boundary curve is also depicted as the (blue) curve to the left of the B = 2A line
in figure 6.

For completeness, in order to see the region of negative B, we note that the phase
diagram is symmetric under B → −B.

Although partial results for particular parameter values or regions have been obtained
for the phase boundary between homogeneous ferromagnetic phases and spiral phase, our
results give the complete boundary curve explicitly for the first time.

4.5 Order of phase transition between spiral and homogeneous phases

In this subsection, we will demonstrate that the phase transition between the spiral and
homogeneous phases is of second order.
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The phase transition is of the n-th order if the l-th order derivatives of the free energy
at the phase boundary are continuous for l < n and discontinuous for l = n. At zero
temperature, the free energy density is given by the average energy density of the ground
state. In the homogeneous phase, the energy density is given by the minimum Umin of the
potential. The average energy density of spiral phase 〈E〉spiral is given by that of the lowest
energy spiral solution in eq. (4.12)

〈E〉spiral = −C0,min(A,B), (4.21)

where the mechanical energy C0,min of the lowest energy spiral solution is determined as a
function of the potential parameters A,B by the minimum energy condition in eq. (4.11) as

2πκ =
∫ 2π

0
dΘ
√

2(U(Θ) + C0,min)

=
∫ 2π

0
dΘ
√

2(−B cos Θ +A cos2 Θ + C0,min). (4.22)

As noted in eq. (4.16), the energy density of the spiral phase tends continuously to that of
the homogeneous phase at the phase boundary

〈E〉spiral → Umin(A,B) = 〈E〉homogeneous. (4.23)

Since the energy density along the boundary is common for homogeneous and spiral phases,
all of their derivatives tangential to the phase boundary are continuous between the homo-
geneous and spiral phases. Therefore, we need to consider only the derivative perpendicular
to the boundary.

Let us parametrize the difference between the energy density of the spiral and homo-
geneous phases in terms of the deviation ∆C ≥ 0 defined as

C0,min(A,B) = −Umin(A,B) + ∆C(A,B), (4.24)
〈E〉spiral − 〈E〉homogeneous = −∆C(A,B). (4.25)

The limiting procedure of the parameters A,B approaching the phase boundary is equiv-
alent to ∆C(A,B) → 0. We can obtain the first derivative of ∆C in terms of A,B by
differentiating the minimum energy condition in eq. (4.22)

0 =
∫ 2π

0
dΘ
−∂Umin

∂A + ∂∆C
∂A + cos2 Θ√

2(U(Θ)− Umin + ∆C)
, (4.26)

0 =
∫ 2π

0
dΘ
−∂Umin

∂B + ∂∆C
∂B − cos Θ√

2(U(Θ)− Umin + ∆C)
. (4.27)

We can rewrite these relations as

− ∂∆C
∂A

= L01
0
L
, −∂∆C

∂B
= L10

0
L
, (4.28)

where the period L and weighted integrals Lkln are defined as

L = L00
0 =

∫ 2π

0

dΘ√
2(U(Θ)− Umin + ∆C)

, (4.29)
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and

Lkln =
∫ 2π

0
dΘ

(
−∂Umin

∂B − cos Θ
)k (

cos2 Θ− ∂Umin
∂A

)l
[2(U(Θ)− Umin + ∆C)]n+1/2 . (4.30)

As is derived in appendix A, L → ∞ in the limit of ∆C → 0, whereas L10
0 , L

01
0 are finite.

Therefore, we obtain at the phase boundary
∂∆C
∂A

→ 0, ∂∆C
∂B

→ 0, (4.31)

implying that the first derivative of energy density is continuous at the phase boundary.
Similarly we can obtain the second derivative of ∆C by differentiating (4.27) and (4.26)

in terms of A,B again. We find an exact expression for ∂2∆C
∂Ai∂Aj

with A1 = A,A2 = B using
the integral in eq. (4.30). As described in appendix A, we find that the second derivative
diverges at the boundary

−

 ∂2∆C
∂A2

∂2∆C
∂A∂B

∂2∆C
∂B∂A

∂2∆C
∂B2

 ∼ −L00
1
L3

[(
L01

0
L10

0

)(
L01

0 L10
0

)]
boundary

, (4.32)

with the asymptotic behavior as ∆C → 0
L00

1
L3 ∼

1

∆C
(
log 1

∆C

)3 → +∞. (4.33)

Therefore the second derivative of the difference of energy density 〈E〉spiral−〈E〉homogeneous =
−∆C is not continuous. Hence we conclude that the phase transition between homogeneous
phases and the spiral phase is of second order.

The rank of the coefficient matrix is unity. This corresponds to the fact that the
derivative is nonzero only along the normal to the phase boundary. The boundary is
defined by eq. (4.18) corresponding to ∆C = 0. By varying this condition we find that
along the boundary

0 = dA

dB

[
L01

1

]
boundary

+
[
L10

0

]
boundary

. (4.34)

The relation shows that the second derivative vanishes along the tangential direction to
the boundary.

4.6 Exact spiral solutions

As we have seen in the previous sections, there is a spiral phase in the regions below the
boundary line defined in eq. (4.18). In order to illustrate our results more explicitly, we
here present exact spiral solutions for the simple typical cases. The solutions are given in
terms of elliptic functions and the technical details are relegated to appendix B.1. Here
we just present the period and energy of the solutions. Throughout this section K(k) and
E(k) are the complete elliptic integral of the first and the second kind defined as

K(k) =
∫ π

2

0

dϕ√
1− k2 sin2 ϕ

, (4.35)

E(k) =
∫ π

2

0
dϕ
√

1− k2 sin2 ϕ, (4.36)

respectively.
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Figure 7. Case of B = 0. Red solid curves and blue solid curves correspond to spiral phase and
homogeneous ferromagnetic phase, respectively. Left: average energy density 〈E〉min = −C0(A, 0)
as a function of A

κ2 , determined by eqs. (4.38), (4.40), and (4.41) for A < 0. Right: derivative of
average energy density as a function of A

κ2 . The second derivative diverges at the phase boundary
A = − (πκ)2

8 showing the second order phase transition.

4.6.1 Spirals without external magnetic fields (B = 0)

In the case of nonzero anisotropy (A 6= 0) without the Zeeman term (B = 0), the first
order equation for Θ(x) in eq. (3.10) becomes

dΘ
dx

= −
√

2(C0 +A cos2 Θ). (4.37)

A < 0 case: the elliptic modulus k and the period L in this case are given by

k =
√
−A
C0

, L = 4√
2C0

K(k). (4.38)

The average energy density of the spiral solution 〈E〉 = f(C0;A>0,B=0)
L −C0 is minimized by

the condition of vanishing excess energy

f(C0;A < 0, B = 0) = −2πκ+ 4
√

2C0E(k) = 0, (4.39)

which determines C0(A) as a function of A through

A = −π
2κ2

8

(
k

E(k)

)2
. (4.40)

and (4.38). The minimum energy density

〈E〉 = −C0(A). (4.41)

The critical point occurs at A = −π2

8 . At this point, the energy density of the lowest
energy spiral solution becomes equal to that of the ferromagnetic state.

The average energy density of the lowest energy spiral solutions and its derivatives are
plotted in figure 7 exhibiting the second order phase transitions at A = ±π2κ2

8 .
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4.6.2 Spiral solutions without anisotropy (A = 0)

The solution for A = 0 has been studied previously [7]. In this case the first order equation
for Θ(x) in eq. (3.10) becomes

dΘ
dx

= −
√

2(C0 −B cos Θ). (4.42)

The solutions are elliptic functions with the elliptic modulus k and the period L

k =
√

2B
C0 +B

, L = 2
√

2
C0 +B

K(k). (4.43)

The average energy density of the spiral solution 〈E〉 = f(C0;A>0,B=0)
L −C0 is minimized by

the condition of vanishing excess energy

f(C0;A = 0, B) = −2πκ+ 4
√

2(C0 +B)E(k), (4.44)

which determines C0(B) as a function of B through

B = π2κ2

16

(
k

E(k)

)2
, (4.45)

and (4.43). The minimum energy density is given by

〈E〉 = −C0(B), (4.46)

where C0(B) is defined by (4.44). This energy density −C0(B) ≤ 0 is lower than the
energy density of the positively polarized ferromagnetic state with the energy density −B.
As C0 approaches the lowest allowed value −Umin = B, the period L becomes infinite, and
the lowest energy spiral solution has the same average energy density as the ferromagnetic
state. This critical point B = π2

16κ
2 occurs at the C0 → 0 limit of the minimum energy

condition (4.44).
As an example we draw the energy density, its first and second derivatives as a function

of A in the case of B = 0 in figure 7. Similar plots of the energy density, and its first and
second derivatives are given as a function of B for the case of A = 0 in figure 8.

4.7 Domain walls as infinite period limit of spirals

For generic values of parameters A,B, one can still integrate (3.10), since it is an elliptic
integral. We can express the one-to-one mapping between x and Θ of spiral solutions in
terms of Jacobi elliptic functions, although the mapping is similar to, but algebraically more
involved than the explicit spiral solutions in simple cases: eq. (B.19) in the case of A = 0,
and eq. (B.13) in the case of B = 0, A < 0. One should note that the functional form of the
profile function Θ(x) of the domain wall solutions or spiral solutions are determined solely
by the parameters of the potential A,B and C0, but are independent of the DM interaction
parameter κ. The DM interaction parameter comes in only when we evaluate the average
energy density of the spiral solutions or domain wall solutions. Therefore the lowest energy
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Figure 8. Case of A = 0. Red solid curves and blue solid curves correspond to spiral phase and
homogeneous ferromagnetic phase, respectively. Left: average energy density 〈E〉min = −C0(A =
0, B) as a function of B

κ2 , determined by eqs. (4.43), (4.45), and (4.46). Right: derivative of average
energy density as a function of B

κ2 . The second derivative diverges at the phase boundary B = (πκ)2

16
showing the second order phase transition.

spiral solutions and the critical point explicitly depends on the DM parameter κ. Similarly
the domain wall solutions can exist irrespective of the value of κ, but they become zero
energy solitons at the phase boundary between spiral and homogeneous ferromagnetic
phases.

Let us examine the infinite period limit of the lowest energy spiral solutions. As
we approach the phase boundary, the period of spiral solutions tends to infinity, and the
solutions become domain wall solutions, as we argued. At the boundary we find the average
energy density becomes identical to that of the homogeneous solution. Moreover, the total
energy of the domain wall vanishes at the boundary. We will explicitly see these properties
by studying domain wall solutions in all parameter regions across the phase boundary
in the following section. The domain wall solutions Θ(x) can be expressed in terms of
elementary functions. This corresponds to the fact that the elliptic function describing a
spiral solution becomes an elementary function in the limit of infinite period. Let us take
the limit of infinite period for illustrative examples of spiral solutions in the case of A = 0
and B = 0.

A = 0, B > 0 case: one period of the spiral solution (B.19) reduces to two sets of
the following domain wall solution in the limit of infinite period k → 1 corresponding
to B = (πκ)2

16

Θ = −4 arctan
(
exp(
√
Bx)

)
,

~nα =

0, 2
tanh

(√
Bx
)

cosh
(√

Bx
) , 1− 2 sech2

(√
Bx
)T . (4.47)

We note that this is a domain wall solution for any B > 0 with A = 0. The total energy of
the domain wall is zero at the phase transition point B = (πκ)2

16 , positive in the positively
polarized ferromagnetic phase B > (πκ)2

16 , and negative in the spiral phase B < (πκ)2

16 . We
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Figure 9. This is the profile function Θ from eq. (4.47) plotted against the dimensionless variable
κx for the critical value B

κ2 = π2

16 at A = 0.

plot this on the right in figure 9. It should be noted that while we have referred to the
configurations as domain walls for A = 0, B > 0 they do not connect two different magnetic
domains. In fact they interpolate between a magnetic domain and itself, since their phase
rotates by a full 2π. Some times these configurations would be called kinks, however, we
would reserve that for when they are genuine soliton solutions with positive energy above
the ferromagnetic phase. As such we stick to calling them domain walls.

5 Domain walls in chiral magnets

5.1 Exact domain wall solutions

Since the field equation (3.7) involves only the potential parameters A,B and is independent
of the DM interaction parameter κ, the shapes of domain wall solutions are identical to
those of the double sine-Gordon model. For instance, ref. [25] gave domain wall solutions for
the double sine-Gordon model, but in an entirely different physical context. The functional
form of our exact solutions agree with those in ref. [25] after adjusting for the different
conventions. However, our energy functional involves the DM term, which gives a crucial
negative energy contribution for the energy of domain wall solution as solitons. This fact
is the basis of our finding of zero energy domain wall solutions at the boundary between
the homogeneous phase and the spiral phase. We will derive exact domain wall solutions
and evaluate their energy, in order to be reasonably self-contained.

A domain wall is a soliton with a localized energy. We will demonstrate explicitly that it
has positive energy in the homogeneous phase, negative energy in the spiral phase, and zero
energy at the phase boundary. The domain wall solutions are found to correspond to the
infinite period limit of the lowest energy spiral solution. These features show that domain
wall solutions are solitons for excited states in the homogeneous phase, but are instability
modes for the homogeneous background solution in the spiral phase. This picture agrees
with the fact that the lowest energy spiral solution gives the ground state in the spiral
phase region, which has lower average energy density than the homogeneous solution.

The domain wall solutions of our interest are defined as those solutions of the first
order equation (3.10) with the mechanical energy tuned as C0 = −Umin. The first order
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equation for Θ(x) in eq. (3.10) becomes

dΘ
dx

= −
√

2(−B cos Θ +A cos2 Θ + Umin), (5.1)

which gives a monotonically decreasing function Θ(x) connecting two adjacent minima
Θmin of the potential.

5.2 Domain wall solutions for 0 ≤ B ≤ 2A

In the parameter region 0 ≤ B ≤ 2A, the minimum of the potential is Umin = −B2

4A , and
the homogeneous phase is given by the canted ferromagnetic solution with n3 = B

2A . The
first order field equation (5.1) becomes

dΘ
dx

= −
√

2A
∣∣∣∣cos Θ− B

2A

∣∣∣∣ . (5.2)

Since there are two degenerate minima in one period 2π, we have two different types of
domain walls: the long wall connecting Θ = 2π − arccos B

2A at x = −∞ to arccos B
2A at

x =∞, and the short wall connecting Θ = arccos B
2A at x = −∞ to − arccos B

2A at x =∞.

5.2.1 Long wall

The long wall is obtained by integrating (5.2) with B
2A − cos Θ ≥ 0. By choosing Θ = π at

x = 0 (midpoint of the domain wall), we obtain the solution connecting Θ = 2π−arccos B
2A

at x = −∞ to arccos B
2A at x =∞ as

x = − 1√
2A

∫ Θ

π

dΘ′
B
2A − cos Θ′

=
√

2A
4A2 −B2 log

tan Θ
2 +

√
2A−B
2A+B

tan Θ
2 −

√
2A−B
2A+B



=
√

2A
4A2 −B2 2 arccoth

√2A+B

2A−B tan Θ
2

 . (5.3)

On the left in figure 10, we plot the domain wall profile Θ as a function of x.
In the limit of 2A→ B + 0, the domain wall solution reduces to

x = 1√
B

cot Θ
2 , (5.4)

where we choose the branch 2π ≥ Θ ≥ π for −∞ ≤ x ≤ 0, and π ≥ Θ ≥ 0 for 0 ≤ x ≤ ∞.
This solution is depicted on the right in figure 10.

5.2.2 Short wall

The short wall is obtained by integrating (5.2) with cos Θ− B
2A ≥ 0. By choosing Θ = 0 at

x = 0 (midpoint of the domain wall), we obtain the solution connecting Θ = arccos B
2A at
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Figure 10. On the left is a plot of the profile function Θ as a function of the dimensionless quantity
κx for the long wall for 0 ≤ B ≤ 2A in eq. (5.3). We take A

κ2 = 3, Bκ2 = 2 as an example, and the
domain wall to be centred at x = 0. On the right is the profile of the domain wall solution Θ and
in eq. (5.4) plotted against the dimensionless quantity κx for B = 2A = 1

2κ
2, with the domain wall

to be centred at x = 0.
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Figure 11. This is a plot of the profile function Θ as a function of the dimensionless quantity κx
for the short wall for 0 ≤ B ≤ 2A in eq. (5.5). We take A

κ2 = 4, Bκ2 = 2 as an example, and the
domain wall to be centered at κx = 0.

x = −∞ to − arccos B
2A at x =∞ as

x = − 1√
2A

∫ Θ

0

dΘ′

cos Θ′ − B
2A

=
√

2A
4A2 −B2 log


√

2A−B
2A+B − tan Θ

2√
2A−B
2A+B + tan Θ

2



= −
√

2A
4A2 −B2 2 arctanh

√2A+B

2A−B tan Θ
2

 . (5.5)

In figure 11, we plot the domain wall profile Θ as a function of the dimensionless quan-
tity κx.

In the limit of B → 0, the long wall connects Θ = 3π
2 to π

2 , whereas the short wall con-
nects Θ = π

2 to −π
2 . We find that the long and short walls at B → 0 are precisely identical

to those walls emerging from the infinite period limit of the spiral solution at B = 0.
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5.2.3 Energy of long and short domain walls

For the long wall, the value of Θ spans from 2π − arccos B
2A at x = −∞ to arccos B

2A at
x =∞. The total energy of the long domain wall on the homogeneous solution (with energy
density Umin) as background is given by integrating over the energy density in eq. (3.11)
with C0 = −Umin:

Elong =
∫ ∞
−∞

dx (Esol − Umin)

=
∫ ∞
−∞

dx

(
κ
dΘ
dx

+ 2(U(Θ)− Umin)
)
. (5.6)

Changing variable from x to Θ, we obtain by using the domain wall equation in eq. (5.1)
with dΘ

dx = −
√

2(U(Θ)− Umin) = −
√

2A
(
B
2A − cos Θ

)
:

Elong =
∫ arccos B

2A

2π−arccos B
2A

dΘ
(
dΘ
dx

)−1(
κ
dΘ
dx

+ 2A
(
B

2A − cos Θ
)2
)

(5.7)

= −2κ
(
π − arccos B

2A

)
+ 2B√

2A

(
π − arccos B

2A

)
+ 2

√
2A− B2

2A.

Similarly, the total energy of the short domain wall on the homogeneous solution as the
background is given by integrating over the energy density. The only difference from the
long wall is that Θ varies from arccos B

2A at x = −∞ to − arccos B
2A at x = ∞, and

cos Θ− B
2A ≥ 0. By noting dΘ

dx = −
√

2(U(Θ)− Umin) = −
√

2A
(
cos Θ− B

2A

)
, we find

Eshort =
∫ arccos B

2A

− arccos B
2A

dΘ
(
dΘ
dx

)−1(
κ
dΘ
dx

+ 2A
(

cos Θ− B

2A

)2
)

(5.8)

= −2κ arccos B

2A −
2B√
2A

arccos B

2A + 2

√
2A− B2

2A.

In order to obtain domain wall solutions as the infinite period limit of a spiral solution, we
need to consider domain walls connecting minimum of the potential which are ∆Θ = 2π
apart. Such limiting domain walls precisely correspond to the sum of a pair of long and
short domain walls. The sum of the energy of the short and long domain wall is given by

Eperiod = Elong + Eshort (5.9)

= −2πκ+ 4B√
2A

(
π

2 − arccos B

2A

)
+ 4

√
2A− B2

2A.

Thus we see that the energy of a pair of long and short domain wall solutions is positive in
the (homogeneous) ferromagnetic phase, negative in the spiral phase, and zero along the
dashed red line in figure 6. Considering both the B → 2A and the B → 0 limits of the
long and short walls we see that they have the same energy in the B → 0 limit, while the
long wall has lower energy in the B → 2A limit. In fact for B → 2A the short domain wall
disappears and has zero energy.
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Figure 12. This is a plot of the profile function Θ as a function of the dimensionless variable
κx for a domain wall in the magnetic field dominated region B ≥ 2A in eq. (5.11). We take
A = κ2

2 , B = 2κ2 as an example, and the domain wall to be centered at x = 0.

5.3 Domain wall solutions for B > 0 and B > 2A

In the parameter region B > 0 and B > 2A, the minimum of the potential is Umin = A−B,
and the homogeneous phase is given by the polarized ferromagnetic solution with n3 = 1.
The first order equation (5.1) becomes

dΘ
dx

= −
√

2(1− cos Θ)(B −A−A cos Θ). (5.10)

In the region B > 0 and B > 2A, the minimum of the potential occur at Θ = 2πZ. Let us
consider a domain wall connecting Θ = 2π at x = −∞ to Θ = 0 at x = ∞. By choosing
the midpoint of the domain wall Θ = π at x = 0, we find

x = −
∫ Θ

π

dΘ′√
2(1− cos Θ′)(B −A−A cos Θ′)

= 1√
B − 2A

log

√1 +
(

1− 2A
B

)
cot2 Θ

2 +

√
1− 2A

B
cot Θ

2

 . (5.11)

In figure 12, we plot the domain wall profile Θ as a function of x. In the limit of 2A→ B−0,
the domain wall solution reduces to an identical form to the domain wall obtained in the
limit of 2A→ B + 0 from eq. (5.4).

Since the energy density of the homogeneous solution (polarized ferromagnetic ground
state) is Umin = A−B, the total energy of the domain wall on the homogeneous background
is given by

EDW =
∫ ∞
−∞

dx

(
κ
dΘ
dx

+ 2(U(Θ)− Umin)
)

= −2πκ+ 4
√
B − 2A+ 4B√

2A
arcsin

√
2A
B
, (5.12)

in the case of A > 0, and

EDW = −2πκ+ 4
√
B − 2A+ 4B√

−2A
arcsinh

√
−2A
B

, (5.13)
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in the case of A ≤ 0. We see that the zero energy condition for the domain wall gives
the boundary between the homogeneous phase and spiral phase, as given in eqs. (4.19)
and (4.20). Moreover, the domain wall is a positive energy soliton as an excited state
in the homogeneous phase. In the spiral phase, on the other hand, the domain wall on
the (homogeneous) ferromagnetic background solution gives a negative energy solution,
signaling the instability of the ferromagnetic (homogeneous) solution. These observations
confirm our conclusion that the homogeneous solution is unstable in the spiral phase and
decays into the spiral solution, giving the ground state.

6 Conclusion and discussion

We have studied solutions of the field equations for chiral magnets in one spatial dimen-
sion, in order to determine their phase diagram. There are three distinct homogeneous
phases: the canted polarized ferromagnetic phase with n3 6= ±1, the positive polarized
ferromagnetic phase with n3 = 1, and the negative polarized phase with n3 = −1. These
homogeneous ferromagnetic phases are realized for large values of potential parameters,
whereas the spiral phase is realized for small values of the potential parameters. We have
explicitly determined the exact phase boundary between spiral and homogeneous ferro-
magnetic phases. As mentioned previously, there is numerical evidence in [32] that a lower
energy non-flat spiral state is possible when B = 0. This state cannot be studied analyt-
ically which is why we have not discussed it here, and we have focused on the parameter
region 2A ≤ |B| where the flat spiral is the ground state. The lowest energy spiral solution
has an infinite period at the phase boundary, and becomes a domain wall solution with
zero energy. We have constructed domain wall solutions and found that they have positive
energy in the homogeneous ferromagnetic phases and have negative energy in the spiral
phase, exhibiting the instability of the homogeneous ferromagnetic solution in the spiral
phase region. We have also found that the phase transitions between spiral phase and
homogeneous ferromagnetic phases are of second order.

Our results should be useful when discussing the phase diagram of chiral magnets in
spatial dimensions two or higher [17, 18, 29–31, 33, 34]. The homogeneous and spiral solu-
tions are also present in higher spatial dimensions. However, We need to examine possible
instabilities due to the fluctuations around these solutions, in particular those emerging
from additional dimensions. More importantly, we need to consider other inhomogeneous
solutions that are intrinsically two or higher dimensional, such as skyrmions or merons and
their lattices.

Another interesting question to be addressed is the low energy effective field theory
on the spiral ground state. Since the spiral solutions are spatially inhomogeneous, the low
energy effective field theory is not invariant under translation nor rotation. Therefore the
dispersion relation of fluctuations is expected to exhibit asymmetry in this regards. It has
been already computed for the simplest spiral ground state for the chiral magnet without
the potential, and an interesting anisotropic dispersion relation was found in ref. [23].
Moreover, the frequency of the fluctuations depends on the structure of the time derivative,
which is different for ferromagnetic, antiferromagnetic, or ferrimagnetic materials [36].
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For a single domain wall, the first order time derivative introduces a type-B NG mode
due to spontaneously broken translational and U(1) symmetries [37].

It is also interesting to consider a more general potential. The more general interac-
tion terms arising from antiferromagnetic materials have been considered phenomenologi-
cally [20].

In this work, we considered only the effect of various solitonic objects such as domain
walls and spiral solutions in a mean-field approximation. It is an interesting future task to
consider quantum effects, including nonperturbative effects in the chiral magnet.
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A Derivative of energy density of spiral solutions

To obtain the second derivative of energy density of the lowest energy spiral solution, we
differentiate eqs. (4.27) and (4.26) in terms of B,A. We can express them in terms of the
weighted integrals defined in eq. (4.30) as

L
∂2∆C
∂A2 = (L01

0 )2L
00
1
L2 − 2L01

0
L01

1
L

+ L02
1 , (A.1)

L
∂2∆C
∂A∂B

= (L10
0 L

01
0 )L

00
1
L2 − L

10
0
L01

1
L
− L01

0
L10

1
L

+ L11
1 , (A.2)

L
∂2∆C
∂B2 = (L10

0 )2L
00
1
L2 − 2L10

0
L10

1
L

+ L20
1 , (A.3)

We need to evaluate them at the phase boundary, namely in the limit of ∆C → 0. In
the limit, the period L diverges logarithmically as log

(
1

∆C

)
because of the singularity of

the integrand at Θmin. More generally the weighted integral Lkln diverges logarithmically
Lkln ∼ log

(
1

∆C

)
if and only if n = k+l. If n ≥ k+l+1, Lkln diverges as

(
1

∆C

)n−k−l
, whereas

they are finite if n ≤ k + l− 1. The second derivative has only nonvanishing contributions
from the power divergent term (the first term) because of L→∞ and becomes

∂2∆C
∂A2 ∼ (L01

0 )2L
00
1
L3 , (A.4)

∂2∆C
∂A∂B

∼ (L10
0 L

01
0 )L

00
1
L3 , (A.5)

∂2∆C
∂B2 ∼ (L10

0 )2L
00
1
L3 , (A.6)

These give eq. (4.32).
We can evaluate the leading behavior of Lkln in the limit of ∆C → 0 more explicitly

by distinguishing the three parameter regions I, II, and III, since the values Umin and the
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associated Θmin are different in three regions. Let us assume B ≥ 0, since B ≤ 0 case can
be obtained by using the symmetry n3 → −n3, B → −B.

In region I, we have B ≤ 2A and Θmin = arccos B
2A , and Umin = −B2

4A . In this case, the
weighted integral becomes using t = cos Θ

Lkln =
∫ 2π

0
dΘ

(
B
2A − cos Θ

)k (
cos2 Θ−

(
B
2A

)2
)l

[
2
(
A
(
cos Θ− B

2A

)2
+ ∆C

)]n+1/2 (A.7)

= 2
∫ 1

−1

dt√
1− t2

(
B
2A − t

)k (
t2 −

(
B
2A

)2
)l

[
2
(
A
(
t− B

2A

)2
+ ∆C

)]n+1/2 .

For n ≤ k+l−1, Lkln are finite in the limit of ∆C → 0. For n = k+l, Lkln are logarithmically
divergent as ∆C → 0. We find that the leading behavior is given by

Lkln=k+l = 2
√

2A√
4A2 −B2

(−1
2

)k ( B

2A2

)l (
log 1

∆C + constant
)
. (A.8)

For n ≥ k+ l+ 1, Lkln are divergent in powers of 1
∆C . We find that the leading behavior is

given by

Lkln = 4
√

2A√
4A2 −B2

1
2n
(−1
A

)k ( B
A2

)l 1
(∆C)n−k−l

n−k−l−1∑
r=0

(−1)r

2r − 1

(
n− k − l − 1

r

)
. (A.9)

In region II, we have B ≥ 2A and Θmin = 2πZ, and Umin = A − B. In this case, the
weighted integral becomes using t = cos Θ

Lkln =
∫ 2π

0
dΘ (1− cos Θ)k

(
cos2 Θ− 1

)l
[2 ((1− cos Θ)(B −A−A cos Θ) + ∆C)]n+1/2

= 2
∫ 1

−1

dt√
1− t2

(1− t)k
(
t2 − 1

)l
[2 ((1− t)(B −A−At) + ∆C)]n+1/2 . (A.10)

For n ≤ k+l−1, Lkln are finite in the limit of ∆C → 0. For n = k+l, Lkln are logarithmically
divergent as ∆C → 0. We find that the leading behavior is given by

Lkln=k+l = (−1)l

2k(B − 2A)k+l+ 1
2

(
log 1

∆C + constant
)
. (A.11)

For n ≥ k+ l+ 1, Lkln are divergent in powers of 1
∆C . We find that the leading behavior is

given by for n ≥ k + l + 1 ≥ 2

Lkln = (−1)l

2n−l(B − 2A)n
1

(B − 2A)k+l+ 1
2

1
(∆C)n−k−l . (A.12)

For n ≥ 1, k = l = 0, we find that the leading behavior is given by

L00
n = 1

2n−1
√
B − 2A

1
(∆C)n

n−1∑
r=0

(−1)r

2r + 1

(
n− 1
r

)
. (A.13)
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B Exact spiral solutions for B = 0 or A = 0

Here we give some details about the spiral solutions in section. 4.6. These are standard
results about elliptic functions and some of them can also be found in the discussion of the
spiral configurations in [18, 32].

B.1 Spirals without external magnetic fields (B = 0)

B.1.1 Case of positive anisotropy (A > 0)

In the case of A > 0, B = 0, we obtain the flat spiral solution as√
2(C0 +A)(x− x0) = −

∫ Θ(x)

Θ(x0)

dΘ√
1− k2 sin2 Θ

, (B.1)

where the modulus parameter of the elliptic integral k is given by

k =
√

A

C0 +A
. (B.2)

As mentioned in the main body, these are not the lowest energy solutions as a non-flat
spiral exists which can only be studied numerically. The flat spirals still exist, just not as
the ground state, so we include details about them for completeness. We find that k < 1 for
C0 > −Umin = 0, implying monotonically decreasing solutions. We can express the solution
in terms of a Jacobi elliptic function [35] (choosing the NG mode to be Θ(x0 = 0) = 0) as

sin Θ = −sn
(√

2(C0 +A)x, k
)
, (B.3)

where the Jacobi elliptic function sn(u, k) is defined by sinφ = sn(u, k) as the inverse
function of the integral

u =
∫ φ

0

dϕ√
1− k2 sin2 ϕ

. (B.4)

The period L and the average energy density 〈E〉 of the spiral solution are given as

L = 4√
2(C0 +A)

K(k), (B.5)

〈E〉 = f(C0;A > 0, B = 0)
L

− C0, (B.6)

respectively. The excess energy defined in eq. (4.4) becomes

f(C0;A > 0, B = 0) = −2πκ+ 4
√

2(C0 +A)E(k). (B.7)

The lowest energy flat spiral solution occurs when f(C0;A,B = 0) = 0, giving

A = π2κ2

8

(
k

E(k)

)2
, (B.8)

which determines k in terms of A. Combining with eq. (B.2), we find C0(A) also as a
function of A.
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Figure 13. These are plots of the profile Θ(x) for the lowest energy spiral solution, A given
by eq. (B.8), at several values of k: red k = 98

100 , Orange k = 998
100 , Yellow k = 999998

1000000 , Green
k = 99999998

100000000 , and Blue k = 1. As the modulus k increases Θ(x) tends towards a domain wall
configuration, achieving it for k = 1.

For B 6= 0 but B ≤ 2A the excess energy vanishes when

2πκ =
∫ 2π

0
dΘ
√

2
(
−B cos Θ +A cos2 Θ + B2

4A

)

= 4

√
2A− B2

2A + 2
√

2AB
A

(
π

2 − arccos B

2A

)
. (B.9)

This is not a phase boundary since the spiral is not a ground state, it is merely where the
flat spiral has zero energy. This is the dashed red curve included in figure 6.

Examples of the profile function for different values of the modulus k are given in
figure 13. As can be seen in figure 13, the domain wall solution connects Θ = π

2 at x = −∞
to Θ = −π

2 at x =∞. Since one period of the spiral solution should span ∆Θ = −2π, the
infinite period limit of the one period of spiral solution contains two domain wall solutions.
These are the long and short domain wall configurations of equations (5.3) and (5.5).

One period of the spiral solution (B.3) reduces to the following domain wall solution
in the limit of infinite period k → 1 corresponding to A = (πκ)2

8

Θ = −2 arctan
(
exp(
√

2Ax)
)

+ π

2 ,

~nα =
(
0,− tanh

(√
2Ax

)
, sech

(√
2Ax

))T
.

(B.10)

We note that this is a domain wall solution for any A > 0 with B = 0. The total energy
of the domain wall is zero at A = (πκ)2

8 , positive for A > (πκ)2

8 , and negative in the spiral
phase A < (πκ)2

8 .

B.1.2 Case of negative anisotropy (A < 0)

This is formally the same as the previous case. However, the elliptic modulus is changed
which modifies some of the results. In the case of A < 0, B = 0, we define Θ̂ = Θ + π

2 to
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obtain √
2C0(x− x0) = −

∫ Θ̂(x)

Θ̂(x0)

dΘ̂√
1− k2 sin2 Θ̂

, (B.11)

where the modulus of the elliptic integral k is given by

k =
√
−A
C0

, (B.12)

and the solution is given by means of Jacobi elliptic function as

cos Θ = sin Θ̂ = −sn
(√

2C0x, k
)
, (B.13)

where the NG mode is chosen as Θ(x0 = 0) = π
2 . To find the expressions in this case

simply take the expressions for the Period and energy density in the A > 0 case and
replace C0 + A by C0. Doing this we find that the lowest energy spiral solution occurs
when f(C0;A < 0, B = 0) = 0, giving

A = −π
2κ2

8

(
k

E(k)

)2
. (B.14)

Combining with eq. (4.38), we find C0(A) as a function of A, which determines C0(A)
as a function of A. The minimum energy is given by

〈E〉 = −C0(A). (B.15)

As C0 approaches the lowest allowed value −Umin = A < 0, the period L becomes infi-
nite, f(C0 = 0;A < 0, B = 0) = 0, and the lowest energy spiral solution has the same
average energy density as the homogeneous solution. This phase boundary of spiral and
homogeneous phases occurs at the C0 → A limit of the minimum energy condition (B.14) as

A = −π
2

8 κ
2. (B.16)

The domain wall solution in this case connects Θ = π at x = −∞ to Θ = 0 at x =∞.
Since one period of the spiral solution should span ∆Θ = −2π, the infinite period limit
of one period of the spiral solution contains two domain wall solutions. These are a long
domain wall plus a short domain wall.

B.2 Spiral solutions without anisotropy (A = 0)

Eq. (4.42) is solved using Θ̃ = Θ+π
2√

C0 +B

2 (x− x0) = −
∫ Θ̃(x)

Θ̃(x0)

dΘ̃√
1− k2 sin2 Θ̃

, (B.17)

where the modulus of the elliptic integral k is given by

k =
√

2B
C0 +B

. (B.18)
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We find that k < 1 for C0 > −Umin = B. The monotonically decreasing solutions can be
expressed in terms of a Jacobi elliptic function [35] as

cos Θ
2 = −sn

√C0 +B

2 x, k

 , (B.19)

where the NG mode is chosen such that Θ(x0 = 0) = −π. The period L, the excess energy
f(C0;A = 0, B) in a period, and the average energy density 〈E〉 of the spiral solution are
given as

L = 2
√

2
C0 +B

K(k), (B.20)

f(C0;A = 0, B) = −2πκ+ 4
√

2(C0 +B)E(k), (B.21)

〈E〉 = f(C0, A = 0, B)
L

− C0, (B.22)

respectively. The lowest energy spiral solution occurs when f(C0;A = 0, B) = 0, giving

B = π2κ2

16

(
k

E(k)

)2
, (B.23)

which determines C0(B) as a function of B. The minimum energy is given by

〈E〉 = −C0(B), (B.24)

which is lower than the positively polarized ferromagnetic state with the energy density −B.
As C0 approaches the lowest allowed value −Umin = B, the period L becomes infinite,

f(C0 = −B;A = 0, B) = 0, and the lowest energy spiral solution has the same average
energy density as the ferromagnetic state. This phase boundary of spiral and ferromagnetic
phases occurs at the C0 → −B limit of the minimum energy condition (B.23). Taking
into account the different unit conventions used when writing down the effective energy
density (3.11), our result on the critical magnetic field (B.23) agrees with the previous
result for A = 0 [18]. In figure 14, the profile function Θ(x) given in eq. (B.19) is plotted
for several values of k near the phase transition B = π2κ2

16 .
As can be seen in figure 14, the domain wall solution connects Θ = 0 at x = −∞ to

Θ = −2π at x =∞. The infinite period limit of one period of a spiral solution contains a
single domain wall in this case.
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Figure 14. These are plots of the profile Θ(x) against the dimensionless quantity κx for the lowest
energy spiral configurations with B(k) given by eq. (B.23), for several values of k: red k = 9

10 ,
Orange k = 98

100 , Yellow k = 9998
10000 , Green k = 999998

1000000 , and Blue k = 1. As the parameter k
increases Θ(x) tends towards a sine-Gordon domain wall configuration, achieving it for k = 1.
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