
Detection of critical structures in laparoscopic
cholecystectomy using label relaxation and

self-supervision

David Owen1, Maria Grammatikopoulou1, Imanol Luengo1, and Danail
Stoyanov1,2

1 Digital Surgery, a Medtronic company, London, UK
2 Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University

College London, London, UK
david.owen@medtronic.com

Abstract. Laparoscopic cholecystectomy can be subject to complica-
tions such as bile duct injury, which can seriously harm the patient or
even result in death. Computer-assisted interventions have the potential
to prevent such complications by highlighting the critical structures (cys-
tic duct and cystic artery) during surgery, helping the surgeon establish
the Critical View of Safety and avoid structure misidentification.
A method is presented to detect the critical structures, using state of
the art computer vision techniques. The proposed label relaxation dra-
matically improves performance for segmenting critical structures, which
have ambiguous extent and highly variable ground truth labels. We also
demonstrate how pseudo-label self-supervision allows further detection
improvement using unlabelled data.
The system was trained using a dataset of 3,050 labelled and 3,682 un-
labelled laparoscopic cholecystectomy frames. We achieved an IoU of .65
and presence detection F1 score of .75. The model’s outputs were further
evaluated qualitatively by three expert surgeons, providing preliminary
confirmation of our method’s benefits.
This work is among the first to perform detection of critical anatomy dur-
ing laparoscopic cholecystectomy, and demonstrates the great promise of
computer-assisted intervention to improve surgical safety and workflow.
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1 Introduction

Laparoscopic cholecystectomy is a common surgery in which the gallbladder is
removed. This involves exposing the critical structures (cystic duct and artery),
clipping and dividing them, then extracting the gallbladder [7]. Complications
can occur when the structures are misidentified or confused with the common
bile duct, particularly as they may be difficult to distinguish without thorough
dissection. Official guidance has encouraged that surgeons establish “Critical
View of Safety” (CVS) before clipping and division [10]. In CVS, both structures
can clearly and separately be identified, and traced as they enter the gallbladder.



2 Owen et al.

Labelled data: ambiguous, 
difficult to label (blue and 
green both arguably valid) Label relaxation transforms the 

problem to supervised 
heatmap estimation (ours) 

Supervised 
segmentation with 
provided mask (baseline)

Unlabelled data: use label-trained 
model as teacher to provide 
pseudo-labels to train student

Self-supervised 
heatmap (best 
performance)

Self-supervised 
segmentation 
(extended baseline)

Train

Train

Infer

Infer

Train

Train

Fig. 1: Overview of our methods. Segmentation is challenged by ground truth
structures with ambiguous extent (left). Label relaxation transforms the prob-
lem to heatmap estimation with down-weighting of ambiguous regions, which
improves detection performance. Self-supervision feeds in unlabelled data via
pseudo-labels, allowing further improvement.

Computer assistance in achieving CVS has great potential to improve surgical
safety and workflow, but has only recently become possible due to advances in
computer vision [7]. Namazi et al demonstrated a proof of principle approach
using binary CVS classification [9]. Tokuyasu et al developed a bounding box
detection system, focused on anatomical landmarks that included the common
bile duct and cystic duct but not the cystic artery [12]. Most recently, Mascagni
et al used joint segmentation of the hepatobiliary anatomy and classification of
CVS [8], arguably combining the best aspects of prior work. Our work differs
by focusing on the critical structures directly, as these are the structures that
surgeons must identify and divide. This may be beneficial for guiding surgical
workflow, providing visual cues that can help achieve CVS.

We present a novel method for detecting critical structures that outperforms
conventional segmentation, using label relaxation (Section 2.1) to better han-
dle challenging ground truth labels in images where structures are ambiguous.
Subsequently, we incorporated pseudo-label self-supervision (Section 2.2), using
unlabelled data to further improve performance. We trained and evaluated these
methods using 3,050 labelled images from 75 videos and 3,682 unlabelled images
from 90 videos for self-supervision. Finally, we gathered feedback from three ex-
perienced surgeons (Section 3.4), comparing different methods and confirming
our method can improve clinical significance when detecting critical structures.

2 Methods

2.1 Critical structures identification via label relaxation

Our objective was to label the critical structures, here treated as a single fore-
ground class, with the rest of the image considered as background. This is
naturally posed as a binary segmentation problem. Standard segmentation ap-
proaches struggled to perform well in this task, because of the ambiguous and
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subjective nature of critical structures annotation (see Figure 1). This problem
was exacerbated by the use of conventional one-hot encoding: a given pixel is
assigned as either 100% structure or 100% background class. This impairs gen-
eralisation, and led the model to struggle with false negatives.

To overcome this, we developed a technique inspired by related work in sur-
gical tool detection [4]. Rather than segmentation, we trained a network for
heatmap regression, where the ground truth heatmap is derived from the origi-
nal annotations’ Euclidean distance transforms.

Given a binary segmentation ground truth, xk for structure k, we defined the

relaxed label as x
′

k = 1− exp − edt(xk⊕t)
d , where edt(·) is the Euclidean distance

transform, ⊕t represents dilation with a square of t pixels and d is a parameter
to control the relaxation. Each x

′

k is then normalised by its maximum value
to allow use as a probability heatmap. Where heatmaps overlap for different
structures within an image, the maximum value was used.

Consequently, central pixels are assigned high confidence, and more distant
pixels are assigned low confidence as shown in Figure 1. This label relaxation
better reflects the ambiguity of the structure boundaries, and copes better with
variation in annotations. This contrasts with pre-existing work, which largely
focuses on improving segmentation results near object edges, and assumes un-
ambiguously correct edge labels in ground truth data [15, 14].

2.2 Pseudo-label self-supervision

Labelling medical imagery is widely recognised as a bottleneck due to its diffi-
culty, high time cost and compliance challenges [11]. This is particularly true for
surgical video, which generates large amounts of unstructured data. In this work,
we further improved our model by using unlabelled data via self-supervision [1].
Unlike previous work on self-supervision in endoscopic surgery [11], which uses
generative models and consistency-based losses, we propose a simple pseudo-
label approach that requires minimal computational overhead [1].

After training an initial model on labelled data, we used its predictions to
provide pseudo-labels in unlabelled data [1]. This serves as teacher in a teacher-
student architecture, where a newly initialised student model is trained on both
pseudo-labelled images and the original labelled images. Previous work explored
similar methods in segmentation for vehicle imagery [1] and demonstrated that
the student learns a superior distillation of feature space compared to its teacher,
leading to improved segmentation performance. Here we adapted the approach
for heatmap regression by using softmax outputs as the pseudo-labels, rather
than hard segmentation outputs. All models used the same architecture, regu-
larisation and hyperparameters (Section 2.3).

2.3 Implementation

We used convolutional neural networks throughout, with FCN segmentation ar-
chitecture [6] – a common baseline for segmentation. All networks used ResNet101



4 Owen et al.

as a backbone [5]. For the segmentation and self-supervised segmentation models
we trained the FCN with cross-entropy loss. We initially considered using class
frequency weighted cross-entropy loss, in case class imbalance was the cause
for segmentation model under-performance, but results were similar to equally
weighted cross-entropy loss. To assist with comparison, the proposed heatmap
model was kept similar to the segmentation model, simply using softmax to con-
vert raw logits to a heatmap. For our proposed heatmap methods, we used soft
cross-entropy loss and relaxed the ground truth label as discussed in Section 2.1.

All models were implemented in PyTorch 1.5 and optimised using Adam
with learning rate 1e-4 and a “poly” learning rate schedule [1], trained un-
til convergence. During training, models used random image augmentations
(padding, cropping, flipping, blurring, rotation, noising) and model regulari-
sation via dropout. We did not perform extensive hyperparameter tuning for
augmentation, nor for label relaxation parameters t and d (Section 2.1). Per-
formance did not seem sensitive, and we used t = 15 and d = 10 throughout.
For evaluation in each case, the model with lowest validation loss was used. A
supervised model training takes approximately 50 epochs (10 hours) using four
16GB NVIDIA GPUs, with teacher-student self-supervision requiring approxi-
mately twice this time. For self-supervision experiments, the student model is
pre-trained on teacher-generated pseudo-labels for 10 epochs, then fine tuned
on ground truth labels for 50 epochs [13], again using “poly” schedule this time
across the combined 60 epochs. Validation performance was not improved by pre-
training for any longer, perhaps due to the relatively small size of the dataset.
Similarly, we did not iterate the self-supervision as we saw no further benefit [1].

3 Experiments and results

3.1 Data and training

We used 3,050 labelled images from 75 separate laparoscopic cholecystectomy
videos, frames chosen near where CVS is achieved. Frames are sampled at 1fps in
a window of approximately 40s for each video. Most images contain cystic duct
(90%) and/or cystic artery (87%). Labelling was performed by surgical data an-
notators under supervision of an anatomy specialist. Guidelines and tutorials for
annotation were validated by surgeons. Labelled images were separated by video
into train/val/test (60/20/20%) – with the test set held out for final evaluation
of performance. We additionally used 3,682 unlabelled images derived from 90
videos for the self-supervision experiments – all used as training data.

We trained four models: a baseline segmentation method as described in
Section 2.3, a heatmap method as described in Section 2.1, and variants of
both methods using self-supervision to exploit the unlabelled data. We assessed
performance on the validation and test sets, and then provided example model
outputs from the test set for evaluation by surgeons.
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(a) Segmentation (b) Heatmap (c) Heatmap+SS

Fig. 2: Example frames from the test set, with softmax model outputs imposed
in blue-green. Heatmaps generally reduced false negatives e.g in the bottom two
rows, and show some reduction in false positives (top row). Self-supervision led
to further improvements, e.g. the false positive in the top row and false negatives
in bottom three rows.

3.2 Ablation study

Table 1 shows pixel-level metrics, ordered by method (segmentation versus our
proposed heatmap method) and whether self-supervision was used. To accom-
modate edge ambiguity, the evaluation uses VOC-style metrics, in which a 10
pixel margin around each structure is assigned as “ignore” [3] (not used dur-
ing training). Heatmap detection consistently performs better than segmenta-
tion in IoU, regardless of whether self-supervision is used. Comparing with-
out self-supervision, the IoU is higher for our proposed heatmap approach by
9.7pp/11.7pp (val/test). For both segmentation and heatmaps, our proposed
self-supervision seems beneficial: it increased segmentation results by IoU by
1.5pp/0.9pp (val/test); and the IoU of heatmap methods by 3.7pp/3.1pp (val/test).

Notably, although the performance is generally best for our proposed heatmap
method with self-supervision and second-best for heatmaps without self-supervision,
segmentation achieved a higher pixel precision on the test set. This makes sense
in light of the label relaxation, which inevitably assigns some probability mass to
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Table 1: Pixel-level accuracy metrics, by method. Heatmaps typically outper-
formed segmentation, as shown in improvements in IoU and other metrics in val
and test sets. Self-supervision (SS) generally improves models, with the possible
exception of segmentation precision in the test set.

Val Test
Method SS IoU Precision Recall IoU Precision Recall

Segmentation × .547 .764 .658 .501 .869 .542
Segmentation X .562 .807 .649 .512 .849 .563
Heatmap × .644 .836 .750 .618 .811 .721
Heatmap X .681 .867 .761 .649 .823 .755

Table 2: Higher-level presence detection metrics, evaluated with IoU threshold
0.5 to count as a true positive detection. In every metric, heatmaps outperformed
segmentation. Self-supervision (SS) generally improved results.

Val Test
Method SS F1 Precision Recall F1 Precision Recall

Segmentation × .597 .599 .594 .615 .626 .606
Segmentation X .640 .640 .641 .616 .616 .617
Heatmap × .716 .721 .711 .694 .703 .685
Heatmap X .811 .833 .790 .749 .750 .749

non-foreground pixels. Despite this, segmentation IoU (and overall performance)
remains worse due to its much lower recall.

Table 2 shows metrics for frame-level presence detection, where artery and
duct detections must exceed an IoU threshold 0.5 to count as true positives in a
given frame. This means that low IoU detections count as false positives. Such
statistics are conservative, as a lower IoU overlap may nonetheless be fairly ac-
curate given the ambiguity of ground truth annotation extent (see Figure 1).
Nevertheless, results show a similar pattern to the pixel-level performance met-
rics, with our proposed heatmap method outperforming segmentation, and self-
supervision improving models’ performance. Notably, the increased pixel-level
precision of segmentation methods does not translate to structure detection,
where our heatmap method performs better by every metric.

3.3 Qualitative performance across surgery

Figure 3 shows example frames and model outputs from an 11 minute excerpt
of a laparoscopic cholecystectomy video in the test set. The full example video
is included in Supplementary Material. Performance is generally strong. The
model typically does not suffer false detections before structures are visible (3a),
although it can be fooled by similar shapes near a tool tip, particularly if such
shapes are visible near the gallbladder. Even when the structures are heavily
coated by fat, the model tends to recognise them at least partially (3b, 3c).
Manipulation does not usually prevent detection (3d).
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(a) Grasping gallbladder (b) Dissecting fat (c) Dissecting fat

(d) Coagulation (e) Critical View of Safety (f) After division

Fig. 3: Example frames taken across an 11 minute excerpt from a test set video,
using our self-supervised heatmap model. Model detections in blue-green.

Structures often remain detectable after division (3e). Although we were
impressed by the model’s generalisation, this might be undesirable in a practical
implementation. This would be fixable by using surgical phase recognition [16],
which could deactivate detection after division of structures.

3.4 Surgeon preference

Table 3 shows how surgeons ranked the different methods in frames taken from
the test set. Example frames were intentionally chosen to show differences be-
tween the methods, as model outputs were often similar between methods. Set
1 was randomly chosen from frames with greatest differences between segmenta-
tion and heatmap outputs (|IoUseg−IoUheat|). Set 2 was randomly chosen from
frames with greatest differences between supervised and self-supervised heatmap
outputs (|IoUsup − IoUss|). Each set used frames from eight different videos.

Surgeons preferred our heatmap method to segmentation, and preferred heatmaps
with self-supervision to vanilla heatmaps. These preferences failed to show sig-
nificance in Set 1, but did show statistical significance in Set 2 (p < 0.05). We
discuss this further in Section 4.1. Free text feedback was generally positive
where provided (“all pretty good”), although one participant did note that in
one frame common bile duct was detected.

4 Discussion and conclusion

4.1 Heatmaps improve accuracy, but can impair visualisation

Our heatmap models are more accurate than segmentation, as shown in low-
level pixel metrics such as IoU and higher-level presence detection such as F1
score. This is supported by blind ratings from surgeons, where they favoured our
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Table 3: Surgeon preferences (blind) by surgeon and model. Average ranking (1-
3, lower is better) for each method and set, with post hoc Wilcoxon signed-rank
p value, bolded for significance (p < 0.05) after multiple comparison adjustment.
pheat is for difference between heatmap and segmentation, pSS is for difference
between self-supervised and supervised heatmaps.

Set Participant Segm Heat Heat+SS pheat pSS

1

1 2.50 2.50 1.75

.340 .425
2 2.13 2.00 2.00
3 2.50 1.88 2.13

Avg 2.22 2.06 1.97

2

1 2.50 2.25 1.50

5.57e-3 0.0221
2 2.63 1.75 1.88
3 2.63 2.00 1.75

Avg 2.38 1.97 1.63

heatmaps over segmentations in Set 2. Counterintuitively, surgeons did not show
a statistically significant preference in Set 1 – despite this set being selected for
maximum differences between segmentation and heatmap outputs.

We believe this discrepancy was due to visualisation preferences, based on
free text feedback (“I like narrow overlays not zones”). Our heatmap models,
by design, tend to detect larger areas than the segmentation models. When we
selected Set 1 to maximise differences between segmentation and heatmaps, this
selected several frames where the difference is due to the heatmap highlighting
a larger area (see Figure 2, row 1). Conversely, Set 2 was chosen to maximise
differences between supervised and self-supervised models, and did not show this
effect to the same extent. This emphasises the importance of visualisation, and
suggests an important direction for future work.

4.2 Self-supervision particularly helps in difficult videos

Self-supervision improves accuracy in general, but is particularly beneficial for
a few difficult cases. This can be seen in Figure 2. In rows 1, 3 and 4, self-
supervision slightly improved the accuracy, but the overall detection was not
changed significantly, and hence the IoU remains similar. In row 2, however, the
accuracy improvement was much larger as the supervised model entirely misses
the cystic artery, whereas the self-supervised model detected it. This finding is
borne out by per-video IoU: for most videos the IoU difference between methods
is on the order of 0-5pp, but for three videos it is 10pp or greater.

4.3 Conclusion

Our work is among the first to detect the critical structures during laparoscopic
cholecystectomy. When trying to detect structures with ambiguous extent and
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challenging annotations, a novel heatmap-based approach based on label relax-
ation significantly outperformed a segmentation baseline. Self-supervision pro-
vided further improvement by using unlabelled data for additional training. Our
method was validated on held-out test data and surgeon evaluations supported
these findings. We hope to develop the method further by using a greater va-
riety of anatomic classes [8, 12], such as considering the cystic artery and duct
separately, and possibly annotating the common bile duct. Modelling temporal
consistency across frames might also be beneficial [2]. Finally, another impor-
tant advance would be to further validate the method in a large dataset covering
the full range of variability. Automatic detection of critical structures in surgery
has tremendous potential to improve surgical safety, training and workflow and
ultimately patient outcomes. Our work will contribute towards this goal.
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