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Abstract

We consider two classes of steady states of the three-dimensional, gravitational
Vlasov-Poisson system: the spherically symmetric Antonov-stable steady states
(including the polytropes and the King model) and their plane symmetric ana-
logues. We completely describe the essential spectrum of the self-adjoint operator
governing the linearized dynamics in the neighborhood of these steady states. We
also show that for the steady states under consideration, there exists a gap in the
spectrum. We then use a version of the Birman-Schwinger principle first used by
Mathur to derive a general criterion for the existence of an eigenvalue inside the first
gap of the essential spectrum, which corresponds to linear oscillations about the
steady state. It follows in particular that no linear Landau damping can occur in the
neighborhood of steady states satisfying our criterion. Verification of this criterion
requires a good understanding of the so-called period function associated with each
steady state. In the plane symmetric case we verify the criterion rigorously, while
in the spherically symmetric case we do so under a natural monotonicity assump-
tion for the associated period function. Our results explain the pulsating behavior
triggered by perturbing such steady states, which has been observed numerically.
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1. Introduction

1.1. The basic set-up and main objective

The three-dimensional gravitational Vlasov-Poisson system is the fundamental
system of equations used in astrophysics to describe galaxies [8]. The basic un-
known is the phase-space density f : R × R

3 × R
3 → [0,∞[ of the stars in the

galaxy; it satisfies the system

∂t f + v · ∇x f − ∇xU · ∇v f = 0, (1.1)

�U = 4πρ, (1.2)

ρ(t, x) =
∫
R3

f (t, x, v) dv. (1.3)

Here ρ = ρ(t, x) and U = U (t, x) denote the macroscopic density of the stars
and the induced gravitational potential at time t ∈ R and position x ∈ R

3, v ∈ R
3

is the momentum or velocity variable, and · denotes the Euclidean scalar product.
Equation (1.1) is the Vlasov equation and (1.2) is the Poisson equation. Isolated
systems are characterized by the boundary condition

lim|x |→∞U (t, x) = 0. (1.4)
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We refer to the system (1.1)–(1.3) as the Vlasov-Poisson system.
This system possesses a plethora of spatially localized steady states which serve

asmodels of stationary galaxies [8,17]. The dynamic stability of such equilibria has
attracted a lot of interest in both the physics and mathematics communities; we will
review some of the corresponding literature below. However, even when a steady
state has been shown to be stable the actual dynamical behavior triggered by a small
perturbation of it is not determined. In a numerical investigation of the Einstein-
Vlasov system, which is the relativistic version of the Vlasov-Poisson system, it
was observed that such perturbations lead to solutions which oscillate about the
steady state [1]. In these oscillations the spatial support of the solutions expands
and contracts in a time-periodic way, i.e., after perturbation the state starts to pulse.
The same behavior was observed numerically for the Vlasov-Poisson system in
[56], and again for the Einstein-Vlasov system in [21].

Such pulsating solutions are classical for the Euler-Poisson system and have
been used to explain the Cepheid variable stars [15,63]; a mathematically rigorous
analysis of these solutions is provided in [31,50].

Some oscillatory behavior in the situation of the Vlasov matter model has been
discussed in [8,46], but very little is rigorously known about the occurrence of such
pulsating solutions in the context of the Vlasov-Poisson system. Themain objective
of the present paper is to address this issue in the linearized setting within natural
symmetry classes. In the next sections of this introduction we outline our paper in
more detail and put it into perspective.

1.2. Symmetry classes

The steady states which are studied in this paper and their perturbations will be
either spherically symmetric or plane symmetric. We need to make precise what
we mean by these symmetries, and we begin with spherical symmetry.

A phase-space density function f is spherically symmetric if

f (t, Ax, Av) = f (t, x, v) for all x, v ∈ R
3 and all rotations A ∈ SO(3). (1.5)

In this case, it is sometimes convenient to use coordinates adapted to spherical
symmetry,

r = |x |, w = x · v

r
, L = |x × v|2, (1.6)

where r is the spatial radius, w is the radial velocity, and L is the modulus of the
angular momentum squared. In these variables the Vlasov-Poisson system takes
the form

∂t f + w ∂r f +
(
L

r3
− m(t, r)

r2

)
∂w f = 0, (1.7)

m(t, r) = 4π
∫ r

0
s2ρ(t, s) ds, (1.8)

ρ(t, r) = π

r2

∫ ∞

−∞

∫ ∞

0
f (t, r, w, L) dL dw; (1.9)



614 M. Hadžić, G. Rein & C. Straub

for the corresponding solution U of the Poisson equation, ∂rU = m/r2.
A phase-space density function f is plane symmetric if

f (t, x, v) = f (t, x1, v) = f (t,−x1,−v1, v̄) for all x, v ∈ R
3, (1.10)

which implies that ρ(t, x) = ρ(t, x1) = ρ(t,−x1) and U can be chosen such
that U (t, x) = U (t, x1) = U (t,−x1). Since in the case of planar symmetry the
effective spatial variable is only x1, we drop the subscript and view x ∈ R in the
planar case, while v = (v1, v̄) ∈ R

3.With this symmetry assumption and notational
convention the Vlasov-Poisson system can be written as

∂t f + v1 ∂x f − ∂xU ∂v1 f = 0, (1.11)

U (t, x) = 2π
∫
R

|x − y| ρ(t, y) dy, (1.12)

ρ(t, x) =
∫
R3

f (t, x, v) dv. (1.13)

The system (1.11)–(1.13) is equivalent to the one-dimensional Vlasov-Poisson sys-
tem, since one can simply integrate out the v̄-dependence, but we prefer to keep to
the above form which appears in the astrophysics literature [3,36], and the stability
analysis of which differs from the purely one-dimensional one. Clearly, within this
symmetry class we cannot require the boundary condition (1.4), but (1.12) implies
that

∂xU (t, x) = 2π
∫
R

sign(x − y) ρ(t, y) dy, (1.14)

and hence limx→−∞ ∂xU (t, x) = − limx→∞ ∂xU (t, x), which is a natural sub-
stitute for (1.4). The additional reflection symmetry which we included in (1.10)
implies that ∂xU (t, 0) = 0 and

∂xU (t, x) = 4π
∫ x

0
ρ(t, y) dy; (1.15)

this identity will be important in what follows.
A short comment on our (ab)use of notation is in order. We will throughout the

paper identify f (t, x, v) = f (t, r, w, L) and analogously for other functions or
variables. However, we will distinguish different representations of the same set—
for example the support of some steady state—in different coordinates. Moreover,
while we do not notationally distinguish between a general, or spherically sym-
metric, or plane symmetric phase space density f , we will notationally distinguish
between function spaces and operators consisting of or acting on spherically sym-
metric, or plane symmetric functions respectively; the latter will be distinguished
by a bar, so A will act on spherically symmetric functions, while Ā will act on
plane symmetric ones.
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1.3. Steady states, linearization, and stability

The most important class of steady states to the Vlasov-Poisson system are iso-
lated, spherically symmetric steady states, which are time-independent solutions of
(1.7)–(1.9) with the boundary condition (1.4). Physically less important but math-
ematically easier to analyze are plane symmetric steady states solving the system
(1.11)–(1.13). The latter have nevertheless been widely used in past investigations
[36,45,51,52,68].

To find a spherically symmetric steady state f0 of the Vlasov-Poisson system
one prescribes a microscopic equation of state ϕ and seeks a solution of the form

f0(r, w, L) = ϕ(E, L), E(r, w, L) = 1

2
w2 + �L(r), (1.16)

where

�L(r) = L

2r2
+U0(r) (1.17)

is the effective potential and U0 is the gravitational potential induced by f0 via
the Poisson equation. Both E and L are preserved by the characteristic flow of the
spherically symmetric Vlasov equation (1.7), so any sufficiently regular f0 of the
form (1.16) is a solution to the Vlasov equation. For a wide range of ϕ one finds
time-independent solutions of the form (1.16) with finite mass and compact support
in phase space [55]. The most representative are the polytropes

ϕ(E, L) = (E0 − E)k+(L − L0)
l+, (1.18)

and the King model

ϕ(E) = (eE0−E − 1)+, (1.19)

which are used extensively in the astrophysics literature [8]. Here, E0 < 0, L0 ≥ 0,
and k, l ∈ R are suitably chosen parameters, see the discussion in the paragraph
after (2.3) in Sect. 2.1. If not stated explicitly otherwise we employ the following
notational convention throughout the paper: for t, k ∈ R,

tk+:=
{
tk, t > 0,
0, t ≤ 0.

(1.20)

In the planar case, the ansatz

f0(x, v) = ϕ(E, v̄), E(x, v) = 1

2
v21 +U0(x), (x, v) ∈ R × R

3 (1.21)

leads to a solution of the Vlasov equation (1.11), since E and v̄ = (v2, v3) are
conserved quantities of the characteristic flow. Analogously to the radial situation,
there exist plane symmetric steady states of polytropic form

ϕ(E, v̄) = (E0 − E)k+ β(v̄), (1.22)
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and of King type

ϕ(E, v̄) = (eE0−E − 1)+ β(v̄). (1.23)

For the discussion of the range of exponents k in (1.22), the choice of E0 as well as
the v̄-dependency β, see Sect. 2.2. We refer to the above steady states as the plane
symmetric polytropes and the plane symmetric King solution respectively. All of
the following can be done for a much larger class of steady states, but for the sake
of clarity we limit the discussion to these classical models.

We now linearize the system (1.7)–(1.9) about a fixed radial steady state f0 with
potential U0, i.e., we substitute f = f0 + δ f into the system and drop all terms
which are of higher than linear order in the perturbation δ f . For this to be justified
δ f must be small compared to f0, in particular δ f must vanish outside the support
of f0. Thus even if one finds an oscillatory solution δ f of the linearized system,
this does not explain the pulsations discussed above, since f is always supported in
the support of f0. However, if we linearize the Vlasov-Poisson system not starting
from the Eulerian picture as above, but in suitable mass-Lagrange coordinates, then
the corresponding linearized analysis does indeed capture the pulsating behavior
which was observed numerically. These different linearization schemes lead to
(essentially) the same linear equation of the form

∂2t h + Ah = 0, (1.24)

where h = h(x, v) is odd in v and the Antonov or linearized operatorA is given as

A:= − D2 − B, (1.25)

where B is a bounded, symmetric operator, and

D := v · ∇x − ∇xU0 · ∇v (1.26)

is the transport operator associated with the characteristic flow of the steady state,
whose functional analytical properties have been investigated in [23,42] and re-
cently in [61]. In Sect. 3 we carry out these linearization schemes and the derivation
of the operator A in more detail. A similar analysis around the plane symmetric
steady states (1.22)–(1.23) leads to the linearization analogous to (1.24) with the
Antonov operator A replaced by a related operator Ā; see Sect. 3.

The basic criterion for spectral stability is the absence of growing modes. Start-
ing in the 1960’s, a simple criterion for linear stability was proposed and formally
derived in the astrophysics literature [2,14,35]: if

ϕ′(E, L):=∂Eϕ(E, L) < 0, (1.27)

then the corresponding steady state f0 is linearly stable. An important tool is the
quadratic form

〈Ag, g〉H , (1.28)

where H is a suitable Hilbert space consisting of spherically symmetric functions
on the support of the steady state which are square-integrable with respect to a
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certain weight; the latter is chosen such thatA is symmetric on H , see Sect. 4. The
condition (1.27) implies that (1.28) is non-negative. This Antonov coercivity plays
an important role in our analysis, cf. Proposition 7.1. The equilibria satisfying (1.27)
are called Antonov-stable or linearly stable. If (1.27) is not satisfied the steady state
may in fact be linearly unstable, i.e., there exist growingmodes, cf. [23,67].Aplanar
analogue of Antonov’s coercivity bound has been shown in [36] and is proven in
Proposition 7.7 using the techniques from [26,42]. The stability of planar steady
states is e.g. discussed in [51].

In the mathematics literature a lot of effort went into the rigorous non-linear
stability analysis, see [23,25,26,42,43,60] and the references there. In particular,
Lemou, Méhats, and Raphaël [43] showed non-linear orbital stability against gen-
eral perturbations for a wide range of spherically symmetric, isotropic steady states.
But beyond the stability assertion, very little is known about the long time behavior
of perturbations of Antonov-stable steady states of the form (1.16).

1.4. Main results

In this section we focus on the spherically symmetric situation, but emphasize
that similar results are obtained in the planar setting as well.

Oscillation modes correspond to the positive eigenvalues ofA with eigenfunc-
tion odd in v—a detailed discussion on the meaning of the linearization is given
in Sects. 3.1–3.2. An eigenvalue λ > 0 of A is related to the period P of the
corresponding oscillation via

P = 2π√
λ

. (1.29)

In Sect. 3.3 we establish the so-called Eddington-Ritter relation Pρ(0)1/2 = const
cf. [15,50,63] for the Vlasov-Poisson system, which was observed numerically in
[56] at the non-linear level.

The essential spectrum.We provide a sharp description of the essential spec-
trumofA. ByTheorem5.9,B is relatively compact toD2, and therefore the essential
spectrum of A = −(D2 + B) coincides with the essential spectrum of −D2. A
fundamental ingredient in our analysis are action-angle variables. For any choice
of energy level E and angular momentum L , the corresponding particle motion in
the gravitational well defined by the effective potential �L , cf. (1.17), is periodic,
and the action variable θ ∈ S

1 parametrizes the phase of the oscillation along the
particle orbit. The radial particle periods are given by the period function

T (E, L):=√
2
∫ r+(E,L)

r−(E,L)

1√
E − �L(r)

dr, (1.30)

where r−(E, L) < r+(E, L) solve �L(r±(E, L)) = E , see Lemma 2.1; the prop-
erties of T are analyzed in detail in Appendix B. The corresponding change of
phase space variables

(r, w, L) �→ (θ, E, L)
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is not volume preserving as it would be in the case of true action-angle variables [4,
41,49], but we use this terminology anyway. In action-angle variables the transport
operator D takes the particularly simple form

D = 1

T (E, L)
∂θ (1.31)

(see Lemmas 5.1 and 5.2), and therefore the Antonov operator (1.25) can be rewrit-
ten as

A = − 1

T (E, L)2
∂2θ − B. (1.32)

It is tempting to express the gravitational “response” operatorB in the new variables
as well, but the resulting expression does not lead to any insights. This antagonism
between transport and gravity is well explained in Lynden-Bell’s notes [49] and
also mentioned in [8]. Using (1.31), we prove in Theorems 5.7 and 5.9 that

σess(A) = σess(−D2) =
(

2πN0

T (̊EL
0 )

)2
=
{

4π2k2

T 2(E, L)

∣∣∣ k ∈ N0, (E, L) ∈ ̊EL
0

}
,

(1.33)

where ̊EL
0 is the interior of the (E, L)-support of the steady state. Related results

regarding the essential spectrum ofD instead of −D2 were stated previously in the
physics literature, see e.g. [52]. By Proposition B.1, the period function (E, L) �→
T (E, L) is bounded from above and bounded away from zero on the support of
the steady state (which is due, among other things, to the finite extent of the steady
state), and thus (1.33) in particular shows that the essential spectrum has a gap
between the 0-eigenvalue and the value 4π2

sup2(T )
. Following Mathur [52], we refer

to this gap as the principal gap and denote it by

G:=
⎤
⎦0, 4π2

sup2
̊EL
0

(T )

⎡
⎣ . (1.34)

We see that the structure of the essential spectrum is entirely encoded in the prop-
erties of the period function T (E, L). Another simple consequence of (1.33) is
that further gaps in the spectrum are possible depending on the relative size of the
maximum and the minimum of the period function on the steady state support, see
Remark 5.10. The gap structure is also mentioned in the physics literature, see [8]
and references therein. In the plasma-physics context, action-angle variables have
been recently used in the important work of Guo and Lin [24], see also [54].

The gap in the spectrum. We next look for eigenvalues in the principal gap
G. One obvious attempt is to obtain such an eigenvalue via a variational principle,
more precisely, to minimize the quadratic form (1.28) over the set of g orthogonal
to ker(A) satisfying ‖g‖H = 1. Antonov’s coercivity bound—as stated in Propo-
sition 7.1—yields a complete characterization of the null-space of A; it coincides
with the null-space of D. Due to Jeans’ theorem, ker(D) consists of all functions
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of E and L that belong to H [5,26,61,65], a statement which also follows from the
formula (1.31). However, this minimization problem is in general hard. In Theo-
rem 7.5 we show that

inf
g∈ker(A)⊥\{0}

〈Ag, g〉H
‖g‖2H

(1.35)

is positive by considering an intermediate variational problem, cf. Proposition 7.4.
The positivity of (1.35) follows immediately fromAntonov’s coercivity bound (7.1)
in the case of an isotropic model, but is harder to obtain for polytropic steady states
with an inner vacuum region. This proves the existence of a gap at the origin in the
spectrum of A and shows that no point spectrum can accumulate at 0 ∈ σess(A).
In addition, the positivity of (1.35) is a useful tool employed in the following part.

The Birman-Schwinger principle and the existence of oscillatingmodes. To
address the existence of eigenvalues we resort to a version of the Birman-Schwinger
principle in Sect. 8. The latter has typically been used to prove the existence of
bound states below the essential spectrum of Schrödinger operators [44]. We adapt
an approach used by Mathur [52] to find normal modes for the linearized Vlasov-
Poisson system, which the author in [52] used in the presence of a fixed external
potential.

We restrict the operators to Hodd—the subspace of H consisting of functions
odd in v (i.e. w)—since only spherically symmetric, odd-in-v eigenfunctions yield
the existence of an oscillating mode. It is easily checked that λ ∈ G is an eigenvalue
of A if and only if 1 is an eigenvalue of the operator

Qλ = B
(
−D2 − λ

)−1 : Hodd → Hodd .

Lemmas 8.1 and 8.2 further show that the existence of some λ ∈ G such that Qλ

possesses an eigenvalue in [1,∞[ implies thatA has an eigenvalue in the principal
gap G. The operator Qλ is not easy to analyze directly, but the fact that B maps
onto functions of the form |ϕ′(E, L)| w F(r) allows us to switch to an operator

Mλ : F → F , (1.36)

where the Hilbert space F consists of functions of the radial variable r and any
eigenvalue of Mλ gives an eigenvalue of Qλ, cf. Lemma 8.10. We refer to Mλ

as the Mathur operator, cf. Definition 8.5. Furthermore, Proposition 8.6 yields an
integral kernel representation of the Mathur operator first proposed in [52], and we
show thatMλ is indeed a symmetric Hilbert-Schmidt operator—when considered
on the “right” function space—and that its spectrum is non-negative. Thus, the
largest element in the spectrum of the Mathur operator is given by

Mλ = ‖Mλ‖F1→F1 = sup
{〈G,MλG〉F1 | G ∈ F1, ‖G‖F1 = 1

}
(1.37)

for a suitably chosen function space F1, and Mλ is an eigenvalue of Mλ. We
therefore arrive at the next key result of this work: The linearized operatorA has an
eigenvalue in the principal gap G if and only if there exists λ ∈ G such that Mλ > 1,
cf. Theorem 8.11.
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Examples of steady stateswith linearlyoscillating solutions. InTheorem8.13
we prove that there exist classes of planar steady states such that the associated lin-
earized operator has an eigenvalue in the principal gap. Secondly, in Theorem 8.15,
assuming that the maximal value of the period function on the steady state support
is attained at the maximal energy and minimal angular momentum, i.e.,

sup
̊EL
0

(T ) = T (E0, L0), (1.38)

and that T is sufficiently regular (8.43), we show that there are classes of spherically
symmetric steady states with an eigenvalue in the principal gap of the associated
linearized operator. The assumption (1.38) is implied by the stronger monotonicity
assumptions

∂ET ≥ 0 and ∂LT ≤ 0 on ̊EL
0 , (1.39)

which are expected to hold for a wide class of steady states studied in this paper.
The assumption (1.39) and therefore (1.38) has been verified numerically, and it
will be rigorously established in future work. In general, monotonicity properties
of the period function are an important topic in dynamical systems, especially in
connection to bifurcation theory for Hamiltonian dynamical systems [11,12,27].
Monotonicity of the period function plays an important role for phase mixing (see
e.g. [62]). However, to verify the criterion of Theorem 8.11, it is used in an entirely
different way—and for the opposite purpose.

1.5. Oscillations and damping; other related work and future perspectives

We recall that the numerical investigations [1,21,56] show that oscillations are
possible and consist of periodically repeated expansions and contractions of the
configuration in (phase) space. It is important to realize that there exists a one
parameter-family of explicit solutions to the non-linear Vlasov-Poisson system,
which exhibit exactly this pulsating behavior, the so-called Kurth solutions [39];
for a particular parameter the solution becomes stationary. In Sect. 6 we remind the
reader of these spherically symmetric solutions and introduce a new class of plane
symmetric Kurth-type solutions. In view of the spectral analysis from Sect. 5 (and
neglecting various regularity issues), the Kurth steady state is distinguished by the
fact that the particle period is constant on the steady state support. Comparing the
oscillation period of time-periodic Kurth solutions close to the Kurth steady state
with the essential spectrum, we see that these solutions correspond to an eigenvalue
in the principal gap.

In the linear regime and from an astrophysics point of view oscillating modes
are discussed in [8, Chapter 5], see also [17,33,34,45,52,66,68,69].

A natural question in this context is whether a small perturbation of a stable
steady state can lead to a damped mode, oscillatory or not. To discuss this, we first
consider the plasma physics case of the Vlasov-Poisson system with a fixed, ho-
mogeneous ion background. This system allows for spatially homogeneous steady
states where both the spatial net charge density and the electrostatic field vanish and
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the electrons are freely streaming. In [40] Landau observed that at the linearized
level and despite the absence of dissipation, small perturbations of such steady
states can lead to solutions where the spatial net charge density and the electro-
static field both decay back to their steady state value zero. This process is referred
to as Landau damping. It was shown to hold nonlinearly by Mouhot and Villani
[53], see also [7,20]. On the other hand, Glassey and Schaeffer [19] showed that
small perturbations of a spatially homogeneous steady state are not damped if the
steady state has compact velocity support. Close to the homogeneous state one can
find spatially periodic steady states, the so-called BGK waves. Guo and Lin [24]
showed that at the linearized level small perturbations of certain BGKwaves lead to
time-periodic, oscillatory modes which again are not damped. The corresponding
spectral analysis strongly relies on the fact that the corresponding BGK waves are
close to the homogeneous state so that the particle flow is close to free streaming.

By contrast, galaxies are modeled by compactly supported steady states of
the gravitational Vlasov-Poisson system, which are far from being spatially ho-
mogeneous and have a non-trivial particle flow; in our case all the particle mo-
tions are trapped. The linearized dynamics about such a state must combine the
phase-mixing effects due to the particle flow with the gravitational response of
the background. This can be viewed as the interaction between the operators D2

and B in the definition (1.25) of A. In the astrophysical literature, phase-mixing
in connection to damping phenomena has for example been used by Lynden-Bell
[47,48] and Antonov [2], see also the textbook by Binney and Tremaine [8] for
an overview. More recently, Rioseco and Sarbach [62] studied phase-mixing for
Vlasov equations in a given external potential using action-angle variables.

In light of this discussion, our results in Sect. 8 imply that on the linear level
no damping occurs around a large class of plane symmetric steady states, and
the same conclusion holds in the spherically symmetric case under the additional
assumption (1.38) on the period function. This does not mean that such modes
are not damped at the non-linear level, but such non-linear damping will work on
time scales which are much longer than the oscillation periods. It must involve new
mechanisms—the original Landau damping is already present at the linear level—
and it should be a challenging topic for future work. Furthermore, as stated above,
numerical simulations [1,21] indicate that the pulsating behavior is also present
in the context of the asymptotically flat Einstein-Vlasov system and many of our
methods extend to this case [22].

Before we proceed we wish to bring the reader’s attention to the recent book
[38] by M. Kunze. While working on our project we became aware—by personal
communication [37]—of the impending publication of [38], but our investigation
was completed before [38] became accessible, cf. [28]. Comparing [38] to our
work, we think that the emphasis of the former is more on developing the Birman-
Schwinger principle as an abstract tool in galactic dynamics, while our emphasis
is on the application of this tool to the specific question of possible oscillations
of galaxies. While there is a considerable overlap in the spectral theoretic aspects
of the two works, these aspects play a stronger role in [38]. Kunze also obtains
further properties of the period function and a connection between the Antonov
operator and related operators, but he gives no examples to which his criterion for
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the existence of oscillatory modes applies, and his analysis is limited to radial,
isotropic steady states of the form f0(r, w, L) = ϕ(E). By contrast, we do provide
classes of plane symmetric and (under the assumptions discussed above) radial,
non-isotropic steady states for which our abstract criterion applies. In the radial
setting, the non-isotropy is crucial for our method of verifying the criterion, which
is why we put considerable effort in including this case.

2. Steady States

2.1. Spherically symmetric steady states

We consider steady states of the three-dimensional Vlasov-Poisson system
(1.1)–(1.3) with boundary condition (1.4) of the form

f0 = ϕ(E, L),

where ϕ : R × R → [0,∞[ is a suitable ansatz function, E is the particle energy
induced by the stationary potential U0 = U0(x) of the steady state, i.e.,

E = E(x, v) = 1

2
|v|2 +U0(x)

as above, and L is the modulus of the angular momentum squared defined in (1.6).
The particle energy E is conserved along characteristics of the Vlasov equation,
providedU0 is time-independent, while L is conserved, providedU0 is spherically
symmetric. The stationary Vlasov-Poisson system is then reduced to the following
equation for the potential:

�U0(x) = 4π
∫
R3

ϕ

(
1

2
|v|2 +U0(x), |x × v|2

)
dv for x ∈ R

3,

lim|x |→∞U0(x) = 0. (2.1)

In the isotropic case where by definition ϕ depends only on the particle energy E ,
every solution U0 ∈ C2(R3) of this equation is spherically symmetric, cf. [18],
while this symmetry must be assumed a-priori when ϕ depends also on L .

As for the ansatz function, we focus on the polytropes

ϕ(E, L) = (E0 − E)k+(L − L0)
l+, (2.2)

and the King model

ϕ(E, L) = ϕ(E) = (eE0−E − 1)+, (2.3)

both of which play a prominent role in the astrophysics literature, cf. [8]; we re-
call (1.20). In both cases, E0 < 0 is a cut-off energy, which is necessary in order
that the resulting steady state has compact support and finite mass. In the polytropic
case, L0 ≥ 0 gives a lower bound for the angular momentum. In particular, L0 > 0
leads to a steady state with a vacuum region at the center. In this case the parameters
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k > 0 and l > −1 have to be chosen such that k < l+ 7
2 in order for a steady state to

exist and have finite mass and compact support, and we also require k + l + 1
2 ≥ 0.

In the case of no vacuum region, i.e., L0 = 0, we restrict ourselves to l = 0, i.e.,
L-independent isotropic models; we use the convention 00 = 1 in (2.2) in this case.
Again, 0 < k < 7

2 . For the existence of steady states under the above (and more
general) assumptions we refer to [55] and the references there.

Now let

0:={(x, v) ∈ R
3 × R

3 | f0(x, v) > 0}
be the (interior of the) support of the steady state in (x, v)-coordinates. For the
steady states mentioned above0 is open and bounded; by R0:= sup{|x | | (x, v) ∈
0} ∈]0,∞[ we denote the maximal occurring radius in the steady state support.
We add an upper index when expressing this set in different coordinates:

r
0:={(r, w, L) ∈ R

3 | ∃(x, v) ∈ 0 : r = |x |, w = x · v

r
, L = L(x, v)},

EL
0 :={(E, L) ∈ R

2 | ∃(x, v) ∈ 0 : E = E(x, v), L = L(x, v)}.
The derivative ϕ′:=∂Eϕ exists on ̊EL

0 with

ϕ′ < 0 on ̊EL
0 , (2.4)

which is the usual condition for linear or non-linear stability of the steady state,
encountered both in the astrophysics and in the mathematics literature, cf. [8,60]
and the references there. Here, ̊EL

0 denotes the interior of the set EL
0 .

All of the following can be done for a much larger class of steady states. In
fact, it is only essential that the ansatz function satisfies the conditions of the ex-
istence theory [55] and that the steady state satisfies the stability condition (2.4).
Furthermore, for the spectral analysis we require that∫

R3
|ϕ′(E(x, v), L(x, v))| dv ≤ C (2.5)

for some C > 0 independent of x , where we extend ϕ′ = ∂Eϕ by 0 to the whole
space. The assumption (2.5) however is of mere technical nature and it is expected
that it can be relaxed. In the case of an isotropic steady state, i.e., ϕ(E, L) = ϕ(E),
(2.5) follows if

∫ E0

U0(0)
|ϕ′(E)| dE < ∞, (2.6)

cf. [6]. For polytropic ansatz functions, our choice of parameters also yields (2.5),
since
∫
R3

|ϕ′(E(x, v), L(x, v))| dv = ck,l r
2l
(
E0 −U0(r) − L0

2r2

)k+l+ 1
2

+
(2.7)

for x ∈ R
3 \ {0} and r = |x |, where ck,l > 0 is some constant depending on k and

l.
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An important quantity for the analysis of spherically symmetric steady states
of the Vlasov-Poisson system is the effective potential

�L : ]0,∞[→ R, �L(r):=U0(r) + L

2r2
, (2.8)

where L > 0 and we identified U0(x) = U0(|x |). We claim the following proper-
ties:

Lemma 2.1. (a) For any L > 0 there exists a unique rL > 0 such that

min]0,∞[(�L) = �L(rL) < 0.

Moreover, the mapping ]0,∞[� L �→ rL is continuously differentiable.
(b) For any L > 0 and E ∈]�L(rL), 0[ there exist two unique radii r±(E, L)

satisfying

0 < r−(E, L) < rL < r+(E, L) < ∞
and such that �L(r±(E, L)) = E. In addition, the functions

{(E, L) ∈] − ∞, 0[×]0,∞[| �L(rL) < E} � (E, L) �→ r±(E, L)

are continuously differentiable.
(c) For any L > 0 and E ∈]�L(rL), 0[,

r+(E, L) < −M0

E
, (2.9)

where M0 := ‖ f0‖1 ∈ ]0,∞[ denotes the total mass of the steady state.
(d) For any L > 0, E ∈]�L(rL), 0[ and r ∈ [r−(E, L), r+(E, L)

]
the following

estimate holds:

E − �L(r) ≥ L
(r+(E, L) − r) (r − r−(E, L))

2r2r−(E, L)r+(E, L)
. (2.10)

Proof. We refer to [26,42] or more recently, [61,65]. In these references, similar
and further properties have been shown for other classes of steady states. However,
the proofs only depend on the properties of the stationary potential U0 and can
therefore be adapted word by word.

The effective potential appears in theparticle energywhenexpressed in (r, w, L)-
coordinates:

E = E(r, w, L) = 1

2
w2 + L

2r2
+U0(r) = 1

2
w2 + �L(r).

Therefore, for fixed L > 0, the particle trajectories of the steady state f0 are
governed by the characteristic system

ṙ = w, ẇ = −� ′
L(r).
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Let R � t �→ (r(t), w(t), L) be an arbitrary global solution of this system. Since
the particle energy is conserved along these characteristics, there exists E ∈ R

such that E = E(r(t), w(t), L) for all t ∈ R. We assume that the solution satisfies
�L(rL) < E < 0, otherwise it is not of interest. For any t ∈ R we then have

�L(rL) ≤ �L(r(t)) ≤ 1

2
w2(t) + �L(r(t)) = E

and thus r−(E, L) ≤ r(t) ≤ r+(E, L). Furthermore, solving for w yields

ṙ(t) = w(t) = ±√2E − 2�L(r(t))

for t ∈ R. Therefore, r oscillates between r−(E, L) and r+(E, L), where ṙ = 0 is
equivalent to r = r±(E, L) and ṙ always switches its signwhen reaching r±(E, L).
By applying the inverse function theorem and integrating, we obtain that the period
of the r -motion, i.e., the time needed for r to travel from r−(E, L) to r+(E, L) and
back to r−(E, L), is given by following expression:

Definition 2.2. For L > 0 and �L(rL) < E < 0 let

T (E, L):=2
∫ r+(E,L)

r−(E,L)

dr√
2E − 2�L(r)

, (2.11)

which is referred to as the period function of the steady state.

Using Lemma 2.1 (c), (d), it can be shown that the above integral is finite with

T (E, L) ≤ 2π
M2

0

E2
√
L

, (2.12)

see [61,65] for a detailed proof. We only consider T on the interior of EL
0 , since

the boundary may contain points with E = �L(rL), i.e., r± may not be defined
there. However, it is easy to see that ∂EL

0 is a set of measure zero and therefore
not of interest later on.

2.2. Plane symmetric steady states

In the plane symmetric case, we look for stationary solutions of the Vlasov-
Poisson system in the form (1.11)–(1.13), and we recall that for this symmetry
class, x ∈ R and v = (v1, v̄) ∈ R

3, cf. Sect. 1.2.
The conserved quantities associated with the characteristic flow are v2, v3, and

the energy

E(x, v1) = 1

2
v21 +U0(x), (2.13)

where U0 : R → R is the stationary potential. We seek steady states of the form

f0(x, v) = ϕ(E, v̄) = α(E) β(v̄), (x, v) ∈ R × R
3. (2.14)
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This ansatz turns the mass density into a functional of the potential U0,

ρ0(x):=
∫
R3

ϕ

(
1

2
v21 +U0(x), v̄

)
dv

= 2
∫
R2

β(v̄) dv̄
∫ ∞

U0(x)

α(E)√
2E − 2U0(x)

dE=:h(U0(x)), x ∈ R, (2.15)

and the stationary Vlasov-Poisson system is reduced to the equation

U ′′
0 = 4πh(U0) on R. (2.16)

Solutions of this equation resulting in steady states with compact support and finite
mass are much easier to obtain than in the spherically symmetric setting, and we
briefly outline the arguments. The only requirement on the ansatz function is that
the resulting function h in (2.15) is C1, vanishes on [E0,∞[ and is positive and
decreasing on ] − ∞, E0[, where E0 is some cut-off energy. We assume β to be
continuous with compact support and

∫
R2

β(v̄) dv̄ = 1, (2.17)

and for the sake of definiteness and simplicity we require α to be either polytropic

α(E) = (E0 − E)k+ (2.18)

for some k > 1
2 or of King-type, i.e.,

α(E) =
(
eE0−E − 1

)
+ . (2.19)

Again, (. . .)+ denotes the positive part. As in [55], it is convenient to reformulate
the problem in terms of y:=E0 − U0. Let �(η):=α(E0 − η), i.e., η = E0 − E .
Then y solves

y′′ = −4π h̃(y), (2.20)

where

h̃(z):=2
∫ z

0

�(η)√
2z − 2η

dη, z ∈ R. (2.21)

In order to see the required regularity of h̃ we rewrite it, using integration by parts:

h̃(z) = −2
∫ z

0
�(η) ∂η

[√
2z − 2η

]
dη = 2

∫ z

0
�′(η)
√
2z − 2η dη, z > 0.

(2.22)

Now h̃ has the same form as in the spherically symmetric case (cf. [55]), with
the sole difference that the microscopic equation of state � contains a derivative
under the integral sign. For our two examples (2.18) and (2.19), h̃ ∈ C1(R), h̃ is



On the Existence of Linearly Oscillating Galaxies 627

strictly increasing on [0,∞[ and h̃ = 0 on ]−∞, 0]; for the polytropic case (2.18),
h̃(z) = ckz

k+1/2
+ . We define

H(z):=4π
∫ z

0
h̃(s) ds

and observe that

1

2
(y′)2 + H(y) (2.23)

is a conserved quantity for the autonomous, planar system corresponding to (2.20)
in the (y, y′)-plane. The form of the level sets of this conserved quantity implies
immediately that any non-trivial solution y to (2.20) exists globally on R, and
there exists a unique x∗ ∈ R such that y′(x∗) = 0 and y(x∗) > 0; in accordance
with the reflection symmetry contained in (1.10) we take x∗ = 0. Since y(−·) is
a solution of (2.20) with the same data at x = 0 it follows that y(−x) = y(x);
y is even in x as required by (1.10). The form of the level sets of the conserved
quantity (2.23) implies that the limits limx→∞ y′(x) = − limx→−∞ y′(x) exist,
and limx→±∞ y(x) = −∞. Hence there exists R0 > 0 such that ρ0:=h̃(y) has
compact support [−R0, R0], and

lim
x→∞ y′(x) =

∫ ∞

0
y′′(x) dx = −4π

∫ ∞

0
ρ0(x) dx=: − 2πM0;

the non-trivial solutions of (2.20) can be uniquely parametrized by themassM0 > 0
of the resulting steady state. It remains to recoverU0 from y. At this point we recall
that in the plane symmetric case the usual boundary condition (1.4) at spatial infinity
makes no sense, and instead,U0 is to obey (1.12). If we take (1.12) as the definition
ofU0—notice thatρ0 is already defined—, then limx→∞ U ′

0(x) = − limx→∞ y′(x)
so that U ′

0 + y′ = 0 and U0 + y = const . If we evaluate this identity at x = R0, it
follows that the proper choice of the cut-off energy is given by

E0:=U0(R0) = 2π
∫ R0

−R0

(R0 − y)ρ0(y) dy = 2πR0M0.

With this choice, (2.15) holds, and all together we have proven the following:

Proposition 2.3. Let an ansatz of the form (2.14)with (2.18) or (2.19) be fixed. Then
for each M0 > 0 there exists a unique corresponding steady state ( f0,U0, ρ0)

of the plane symmetric Vlasov-Poisson system (1.11)–(1.13) with the following
properties:

(a) M0 = ∫
R

ρ0(x) dx is the mass of the steady state.
(b) ρ0 ∈ C1(R) has compact support [−R0, R0] and is strictly decreasing on

[0, R0].
(c) U0 is convex on R and strictly increasing on [0,∞[, U0(x) = 2πM0x for

x ≥ R0, and U0(x) = −2πM0x for x ≤ R0.
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As in the spherically symmetric setting, let

̄0:={(x, v) ∈ R × R
3 | f0(x, v) �= 0} = {(x, v1) ∈ R

2 | E(x, v1) < E0} × {β �= 0}
be the (interior of the) support of the steady state in (x, v)-coordinates. The finite
cut-off energy ensures that ̄0 is bounded and ̄0 is open for the above ansatz
functions. We again add an upper index when expressing this set in different coor-
dinates:

̄E v̄
0 :={(E(x, v), v̄) | (x, v) ∈ ̄0} = [U0(0), E0[×{β �= 0}

Next, note that ϕ′:=∂Eϕ exists on int(̄E v̄
0 ) with

ϕ′ < 0 on int(̄E v̄
0 ). (2.24)

Here, int(. . .) denotes the interior of a set. Condition (2.24) is the analogue of the
monotonicity assumption (2.4) in the radial case. In viewof a linear stability analysis
it leads to anAntonov-type coercivity bound (proved later in Proposition 7.7) which
implies linear stability against perturbations which do not exhibit any dependence
on x2 or x3. For the linear stability analysis against general perturbations see [36].

Before proceeding, we note that we also have an analogue of (2.5) in the plane
symmetric setting, more precisely, there exists C > 0 such that for all x ∈ R∫

R3
|ϕ′(E(x, v), v̄)| dv ≤ C. (2.25)

The assumption (2.25) however is of mere technical nature and it is expected that
it can be relaxed. While (2.25) is obvious in the King case, a straight-forward
computation yields
∫
R3

|ϕ′(E(x, v), v̄)| dv = 2k
∫ E0

U0(x)

(E0 − E)k−1

√
2E − 2U0(x)

dE = ck(E0 −U0(x))
k− 1

2

in the polytropic case ifU0(x) < E0, where ck > 0 is some constant depending on
k > 1

2 .
We now consider the characteristic system corresponding to the steady state,

i.e.,

ẋ = v1, v̇1 = −U ′
0(x). (2.26)

We left out the trivial v2 and v3 equations. To analyze the solutions of this system
we first introduce the following notation similar to Lemma 2.1:

Lemma 2.4. For all E > U0(0) = min(U0) there exist unique x−(E) < 0 <

x+(E) satisfying U0(x±(E)) = E. x± have the following properties:

(a) U0(x) < E is equivalent to x−(E) < x < x+(E).
(b) x± are continuously differentiable on ]U0(0),∞[ with

x ′±(E) = 1

U ′
0(x±(E))

, E > U0(0).
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(c) x+ = −x−.
(d) x+ is strictly increasing on ]U0(0),∞[, x− strictly decreasing.
(e) limE→U0(0) x±(E) = 0, which is why we set x±(U0(0)):=0.

Now consider a global solution R � t �→ (x(t), v1(t)) of (2.26). Since E
is a conserved quantity of the system, there exists E ≥ U0(0) such that E =
E(x(t), v1(t)) for all t ∈ R. Solving for v1 yields

v1(t) = ±√2E − 2U0(x(t)),

i.e., the solution (x, v) is periodic and x oscillates between x−(E) and x+(E).

Definition 2.5. For E > U0(0) define

T (E):=2
∫ x+(E)

x−(E)

dx√
2E − 2U0(x)

= 4
∫ x+(E)

0

dx√
2E − 2U0(x)

. (2.27)

Then T (E) is the period of any solution of (2.26) having energy E , i.e., the
time needed for the x-component of the solution to travel from x−(E) to x+(E)

and back to x−(E), see [8]. Since U ′
0(x) > 0 for x > 0, the integral (2.27) exists

for every E > U0(0).
We shall see in Sect. 5.2 that the properties of T are strongly related to the

spectrum of the planar Antonov operator. In fact, the period functions of systems
like (2.26) have widely been studied, see [9,11,12,64]. A question of particular
interest, which is also crucial for the existence of oscillating modes in Sect. 8, is
whether or not the period function is monotone as a function of the energy. To study
this monotonicity we first compute the derivative of T :

Lemma 2.6. T is continuously differentiable on ]U0(0),∞[ with

T ′(E) = 2

E −U0(0)

∫ x+(E)

0

(
U ′
0(x)
)2 − 2(U0(x) −U0(0))U ′′

0 (x)(
U ′
0(x)
)2

dx√
2E − 2U0(x)

for E > U0(0).

For details on how to calculate this derivative we refer to [12, Theorem 2.1].
The continuity of T ′ follows by a straight-forward application of the dominated
convergence theorem; note that the fraction in the integral above is bounded for
x → 0. Now let

G(x):= (U ′
0(x)
)2 − 2(U0(x) −U0(0))U

′′
0 (x), x ∈ R. (2.28)

Obviously, the non-negativity of G will instantly imply the monotonicity of T . The
former is easy to verify in the planar case, since G(0) = 0 and

G ′(x) = −2(U0(x) −U0(0))U
′′′
0 (x) = −8π(U0(x) −U0(0))ρ

′
0(x) for x ∈ R,

i.e., G is strictly increasing on [0, R0] and constant on [R0,∞[. Thus,
Proposition 2.7. T is strictly increasing on ]U0(0),∞[.
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From the monotonicity we easily obtain the boundedness of T on the energy-
support of the steady state:

Proposition 2.8. For all E ∈]U0(0), E0[,

0 <
2π√
U ′′
0 (0)

=
√

π

ρ0(0)
=:T (U0(0)) < T (E) < T (E0) < ∞.

Proof. The monotonicity of T immediately gives the upper bound. For the lower
bound it remains to show that

lim
E→U0(0)

T (E) = 2π√
U ′′
0 (0)

.

First, we change variables via η = U0(x) to rewrite T (E) for fixed E > U0(0) as
follows:

T (E) = 2
√
2
∫ E

U0(0)

dη√
E − η U ′

0 (x+(η))
,

note that x+ inverts U0 : [0, x+(E)] → [U0(0), E]. Next, observe that for every
η ∈]U0(0), E[ there exists s = s(η) ∈]0, x+(η)[ such that

(
U ′
0 (x+(η))

)2
η

= 2U ′′
0 (s)U ′

0(s)

U ′
0(s)

by the extended mean value theorem, and hence

U ′
0 (x+(η)) =

√
2ηU ′′

0 (s).

As E → U0(0), we also have U ′′
0 (s) → U ′′

0 (0) > 0 uniformly in η ∈]U0(0), E[,
and therefore

T (E) → 2√
U ′′
0 (0)

∫ E

U0(0)

dη√
(E − η)η

= 2π√
U ′′
0 (0)

.

We note that the finite extent of the steady state (i.e., the existence of the cut-off
energy E0) causes the period to be bounded from above. Conversely, the steady state
having a “smooth core” (i.e., U ′′

0 (0) = 4πρ0(0) < ∞) implies that T is bounded
away from zero. These interpretations can also be found in the physics literature,
cf. [8].
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3. Linearization

In this section we consider two different methods to linearize the Vlasov-
Poisson systemabout some steady state ( f0, ρ0,U0) and to derive the corresponding
Antonov operator A. The different approaches yield (essentially) the same oper-
ator A, but each allows for a different interpretation of oscillatory modes of A.
We carry out the computations for three dimensional, spherically symmetric steady
states and only state the results for the case of planar symmetry, since the arguments
are analogous and somewhat simpler in that case.

Our purpose is to arrive at the operator A by some convincing, but not nec-
essarily rigorous, manipulations; a rigorous derivation would only be necessary
for deducing results for the non-linear Vlasov-Poisson system from the linearized
spectral analysis. Hence for this section we dispense with rigor and formulate our
findings not in the form of theorems and such.

In Sect. 3.3we derive anEddington-Ritter type relation for the oscillation period
in the case of spherically symmetric, polytropic steady states.

3.1. The Eulerian picture

In the literature [23,25,26,30,43] the Vlasov-Poisson system is usually lin-
earized in Eulerian variables, starting with the formal expansion of the form f =
f0 + εδ f + O(ε2). After linearizing the system, we follow Antonov [2] and split
δ f in its even and odd part in v, given by

δ f±(t, x, v) = 1

2
(δ f (t, x, v) ± δ f (t, x,−v)) , (3.1)

to arrive at the following second order equation for δ f−:

∂2t δ f− − D2δ f− + ∇Udiv jδ f− · ∇v f0 = 0,

where we recall the definition (1.26) of the transport operator D and introduce

ρg(x):=
∫
R3

g(x, v) dv, jg(x):=
∫
R3

v g(x, v) dv, Ug(x):= − 1

| · | ∗ ρg.

(3.2)

For the latter equation to be of the form (1.24), we define the Antonov operator A
as A:= − D2 − B, where

(Bg)(x, v) = −∇v f0(x, v) ·
∫
R3

x − y

|x − y|3 div jg(y) dy. (3.3)

For g = g(r, w, L), Bg is spherically symmetric as well and takes on the form

(Bg)(r, w, L) = −4πw ϕ′(E, L) jg(r)

= −4π2

r2
w ϕ′(E, L)

∫
R

∫ ∞

0
w̃ g(r, w̃, L̃) dL̃ dw̃, (3.4)
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where ϕ′(E, L) = ∂Eϕ(E, L) < 0 and E = E(r, w, L) = 1
2w

2 + �L(r).
The same arguments as above can be applied to the plane symmetric case,

resulting in

(B̄g)(x, v) = −4π v1 ϕ′(E, v̄)

∫
R3

ṽ1 g(x, ṽ) dṽ; (3.5)

here we recall that the reflection symmetry included in the definition (1.10) of
planar symmetry implies the formula (1.15) for the potential induced by g.

We now examine whether the spectral properties of A obtained in the Eule-
rian linearization can explain the oscillations about the steady state which were
observed numerically in [56]. Assume that we have an eigenvalue λ > 0 ofA with
spherically symmetric, real-valued, odd in v eigenfunction g−. Let ω:=√

λ. Then
δ f− = cos(ωt)g− is a solution of the linearized equation ∂2t δ f− + Aδ f− = 0; the
corresponding even in v part is given by

δ f+ = − 1

ω
sin(ωt)Dg−.

Then the kinetic and potential energies—see e.g. [60, Section 1.5] for the definitions
of the energies—of f0 + δ f oscillate about the respective energies of the steady
state with period 2π/ω up to higher order terms in ε, more precisely

Ekin( f0 + εδ f (t)) = Ekin( f0) − ε

ω
sin(ωt)

∫
R3

∇U0 · jg− dx,

Epot( f0 + εδ f (t)) = Epot( f0) + ε

ω
sin(ωt)

∫
R3

∇U0 · jg− dx + O(ε2).

However, as discussed in the introduction, the expansion and contraction of the
spatial support cannot be seen in the present, Eulerian linearized picture.

3.2. Mass-Lagrange coordinates

The following derivation is based on the so-calledmass-Lagrangian coordinates
which are often used in spherical symmetry for the Euler-Poisson system, cf. [32,
50]. We restrict ourselves from the start to the spherically symmetric situation,
cf. Sect. 1.2.

We fix a steady state ( f0,U0, ρ0) which for the sake of simplicity we take
isotropic, i.e., f0 = ϕ(E). We consider a spherically symmetric solution to the
Vlasov-Poisson system with data which are dynamically accessible from f0 so that
in particular the solution f (t) has the same mass M > 0 as the steady state, and
we assume that {r > 0 | ρ(t, r) > 0} =]0, R(t)[. Then the mapping

[0, R(t)] � r �→ m(t, r) ∈ [0, M] (3.6)

is one-to-one, since ∂rm = 4πr2ρ > 0 on ]0, R(t)[. Let
[0, M] � m �→ r̃(t,m) ∈ [0, R(t)] (3.7)
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denote its inverse. We introduce the new dependent variables

f̃ (t,m, w, L) = f (t, r, w, L), ρ̃(t,m) = ρ(t, r).

For a function g = g(·, w, L) we introduce the abbreviations

R(g):=
∫ ∞

−∞

∫ ∞

0
g(·, w, L) dL dw, J (g):=

∫ ∞

−∞

∫ ∞

0
w g(·, w, L) dL dw

(3.8)

so that

ρ(t) = π

r2
R( f (t)), ρ̃(t) = π

r̃2
R( f̃ (t)).

In order to rewrite the Vlasov-Poisson system in terms of (m, w, L) we compute

∂tm(t, r) = 4π
∫ r

0
s2∂tρ(t, s) ds

= −4π2
∫ r

0
∂r

∫ ∞

−∞

∫ ∞

0
w f (t, r, w, L) dL dw ds

= −4π2J ( f (t))(r).

Hence

∂t f = ∂t f̃ + ∂m f̃ ∂tm = ∂t f̃ − 4π2J ( f̃ (t)) ∂m f̃ ,

∂r f = ∂m f̃ ∂rm = 4π2R( f̃ (t)) ∂m f̃ ,

and the Vlasov equation (1.7) takes the form

∂t f̃ + 4π2
(
wR( f̃ (t)) − J ( f̃ (t))

)
∂m f̃

+
(
L

r̃3
− m

r̃2

)
∂w f̃ = 0. (3.9)

It needs to be supplemented with the relation between the function r̃(t,m) and ρ̃

respectively f̃ . Since

∂mr̃ = 1

4π r̃2ρ̃
= 1

4π2R( f̃ )
,

it follows that

r̃(t,m) = 1

4π2

∫ m

0

dη

R( f̃ (t))(η)
, (3.10)

and (3.9), (3.10) constitute the spherically symmetric Vlasov-Poisson system in
the coordinates (m, w, L), where we need to recall the abbreviations introduced in
(3.8).
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We notice that r̃(t,m) is the radius of the ball about the origin in which mass
m of the solution f (t) is contained. In a second change of variables we relate this
to the steady state configuration as follows. The map

[0, R0] � r �→ m0(r) = 4π
∫ r

0
s2ρ0(s) ds ∈ [0, M]

is again one-to-one, and

[0, M] � m �→ r0(m) ∈ [0, R0]
denotes its inverse; R0 > 0 is the radius of the spatial support of the steady state.
Now we introduce a new radial variable via

[0, M] � m �→ r̄ := r0(m) ∈ [0, R0],
and new dependent variables

f̂ (t, r̄ , w, L) = f̃ (t,m, w, L) = f (t, r, w, L), ρ̂(t, r̄) = ρ̃(t,m) = ρ(t, r).

If we let r̂(t, r̄) = r̃(t,m0(r̄)), the spherically symmetric Vlasov-Poisson system
becomes

∂t f̂ +
(

w
R( f̂ (t))

R( f0)
− J ( f̂ (t))

R( f0)

)
∂r̄ f̂ +
(
L

r̂3
− m0(r̄)

r̂2

)
∂w f̂ = 0, (3.11)

r̂(t, r̄) =
∫ r̄

0

R( f0)

R( f̂ (t))
ds; (3.12)

notice that ∂m/∂ r̄ = 4π2R( f0) and (3.12) is obtained from (3.10) via the change
of variables s �→ η = m0(s). The ball of radius r̂(t, r̄) about the origin contains
for the time dependent solution f (t) the same amount of mass as the ball of radius
r̄ does for the steady state. In this way the steady state mass distribution is used
as the reference frame for describing the mass distribution of the time dependent
solution. In particular, should r̂(t, r̄) on the linearized level oscillate about r̄ , this
would exactly explain the pulsating behavior of the perturbed steady state which
was observed numerically.

In order to linearize (3.11), (3.12) about the steady state we write

f̂ = f0 + εδ f̂ + O(ε2), ρ̂ = ρ0 + εδρ̂ + O(ε2)

and

r̂(t, r̄) = r̄ + εδr̂(t, r̄) + O(ε2), (3.13)

and expand (3.11), (3.12) to the first order. When doing so we observe that the
transport operator D along the characteristic flow of the steady state now takes the
form

D f = w ∂r̄ f +
(
L

r̄3
− m0(r̄)

r̄2

)
∂w f.
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This implies that

∂tδ f̂ + Dδ f̂ +
(

w
R(δ f̂ )

R( f0)
− J (δ f̂ )

R( f0)

)
∂r̄ f0 + δr̂

(
2m0(r̄)

r̄3
− 3L

r̄4

)
∂w f0 = 0,

(3.14)

δr̂(t, r̄) = −
∫ r̄

0

R(δ f̂ (t))

R( f0)
ds. (3.15)

Before we turn this system into a second order one for the odd-in-w part of δ f̂
to obtain the corresponding Antonov operator we compute the time derivative of
δr̂(t, r̄). Using the linearized Vlasov equation (3.14) a short computation shows
that

∂tR(δ f̂ ) = −R( f0)∂r̄

(
J (δ f̂ )

R( f0)

)
(3.16)

and hence

∂tδr̂ = J (δ f̂ )

R( f0)
. (3.17)

Now we again split δ f̂ = δ f̂+ + δ f̂− into its even and the odd part with respect to
w. They satisfy the following linear system:

∂tδ f̂+ + Dδ f̂− − J (δ f̂−)

R( f0)
∂r̄ f0 = 0, (3.18)

∂tδ f̂− + Dδ f̂+ + w
R(δ f̂+)

R( f0)
∂r̄ f0 + δr̂

(
2m0(r̄)

r̄3
− 3L

r̄4

)
∂w f0 = 0, (3.19)

δr̂(t, r̄) = −
∫ r̄

0

R(δ f̂+(t))

R( f0)
ds. (3.20)

In order to differentiate (3.19) with respect to t we observe from (3.16) and (3.17)
that

∂tR(δ f̂+) = −R( f0) ∂r̄

(
J (δ f̂−)

R( f0)

)
, ∂tδr̂ = J (δ f̂−)

R( f0)
.

Thus

0 = ∂2t δ f̂− − D2δ f̂− + D
(
J (δ f̂−)

R( f0)
∂r̄ f0

)
− w ∂r̄

(
J (δ f̂−)

R( f0)

)
∂r̄ f0

+
(
2m0(r̄)

r̄3
− 3L

r̄4

) J (δ f̂−)

R( f0)
∂w f0

= ∂2t δ f̂− − D2δ f̂− − Bδ f̂−, (3.21)
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where

Bg = −D
( J (g)

R( f0)
∂r̄ f0

)
+ w ∂r̄

( J (g)

R( f0)

)
∂r̄ f0 −

(
2m0(r̄)

r̄3
− 3L

r̄4

) J (g)

R( f0)
∂w f0

= ϕ′(E)

[
−D
( J (g)

R( f0)
∂r̄ E

)
+ w∂r̄

( J (g)

R( f0)

)
∂r̄ E − w

(
2m0(r̄)

r̄3
− 3L

r̄4

) J (g)

R( f0)

]

= ϕ′(E)

[
−w

J (g)

R( f0)
∂2r̄ E − w

(
2m0(r̄)

r̄3
− 3L

r̄4

) J (g)

R( f0)

]

= −4π2ϕ′(E)
w

r̄2
J (g);

for the last identity we have used the fact that

∂2r̄ E = ∂2r̄

(
1

2
w2 + L

2r̄2
+U0(r̄)

)
= 3L

r̄4
− 2m0(r̄)

r̄3
+ 4πρ0(r̄).

We have therefore shown that the linearized dynamics in what we refer to as mass-
Lagrange coordinates is governed by (3.21), and hence by an equation of the form
(1.24) where the corresponding Antonov operatorA is exactly the same as obtained
in the Eulerian picture under the assumption of spherical symmetry, cf. (3.4). The
analogous arguments imply the analogous result for the plane symmetric case.

Assume now that we have an eigenvalue λ > 0 and a corresponding, spherically
symmetric eigenfunction g−, which must be odd in w. Then δ f̂ = cos(ωt)g− with
ω = √

λ solves the above linearizeddynamics inmass-Lagrange coordinates (3.21).
In view of (3.13) and (3.17) it follows that to linear order,

r̂(t, r̄) = r̄ + ε

ω
sin(ωt)

J (g−)

R( f0)
. (3.22)

Hence to linear order the radius of the ball containing a certain mass m oscillates
with period 2π/ω about the corresponding radius for the steady state. Of course
the details of this oscillation—like which portions of the configuration take part in
it—depend on the actual eigenfunction, but (3.22) nicely explains the numerically
observed pulsation behavior. Notice that while the even part of the solution to the
linearized dynamics governs the oscillation of the kinetic and potential energies as
seen at the end of the previous subsection, its odd part governs the oscillation of
the spatial support here.

3.3. An Eddington-Ritter type relation

TheEddington-Ritter relation connects the period of the pulsation of a perturbed
steady state to its central density in the context of the Euler-Poisson system, cf.
[15,50,63]. In this section we establish its analogue for the case of the Vlasov-
Poisson system. To this end we consider a spherically symmetric, polytropic steady
state ( f0,U0, ρ0) with ansatz function of the form

ϕ(E, L) = (E0 − E)k+Ll ,
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with k and l fixed. Then the function y(r) = E0 −U0(r) satisfies the equation

1

r2
(r2y′(r))′ = −4πck,l r

2l y(r)k+l+3/2
+ (3.23)

with ck,l > 0 determined by k and l; this is the spherically symmetric, semilinear
Poisson equation (2.1), rewritten in terms of y. Its solutions are uniquely determined
by their value y(0) > 0 at the origin, and the induced spatial density is given by

ρ0(r) = ck,lr
2l y(r)k+l+3/2

+ .

If y solves (3.23), then for any σ > 0 the rescaled function

σ−2y(σ− 2(k+l)+1
2l+2 r)

solves (3.23) as well. This implies that if f ∗
0 is the steady state induced by taking

y∗(0) = 1, then all other steady stateswith the same ansatz function can be obtained
via

f0(x, v) = σ− 2k+l
l+1 f ∗

0 (σ− 2(k+l)+1
2l+2 x, σv)

and

y(r) = σ−2y∗(σ− 2(k+l)+1
2l+2 r),

in particular, σ = y(0)−1/2.
Let A∗ denote the Antonov operator corresponding to the steady state y∗, and

let λ∗ > 0 denote its smallest, positive eigenvalue so that

A∗h = λ∗h

for some eigenfunction h; the central aim of the present paper is to establish the
existence of this eigenvalue. We want to rescale this eigenvalue equation in such
a way that it becomes the eigenvalue equation for a general steady state obtained
from y∗ by the rescaling above, which results in the function y and the induced
operators A and B. First we note that

E∗(σ− 2(k+l)+1
2l+2 x, σv) = σ 2E(x, v),

w(σ− 2(k+l)+1
2l+2 x, σv) = σw(x, v),

L(σ− 2(k+l)+1
2l+2 x, σv) = σ− 2k−1

l+1 L(x, v);
the local energy E∗ corresponds to y∗, and E corresponds to the general steady
state y. A lengthy computation shows that

(B∗h)(σ− 2(k+l)+1
2l+2 x, σv) = σ

2k+4l+3
l+1 (Bhresc)(x, v)

where

hresc(x, v) = h(σ− 2(k+l)+1
2l+2 x, σv).



638 M. Hadžić, G. Rein & C. Straub

The same scaling law is true for the operator D2. Hence we find that

Ahresc = σ− 2k+4l+3
l+1 (A∗h)resc = σ− 2k+4l+3

l+1 λ∗hresc

so that

λ = σ− 2k+4l+3
l+1 λ∗

is the smallest, positive eigenvalue of A; it has to be the smallest since the scaling
preserves order. Let P denote the period corresponding to the eigenvalue λ. Then
P = 2π/

√
λ and expressing σ by y(0) we find that

Py(0)
k+2l+3/2

2l+2 = const;
this relation was observed numerically in [56]. If we consider the special case l = 0
and recall that then ρ(0) = c y(0)k+3/2 we find that

Pρ(0)1/2 = const,

which is the Eddington-Ritter relation known from the Euler-Poisson case.

4. The Antonov Operators

We now give a precise definition of the Antonov operators in the spherically
symmetric and in the plane symmetric case which have been derived in the previous
section, including the function spaces they act on and some first properties. As
explained in Sect. 3, their eigenvalues, if they exist, correspond to linearized galaxy
oscillations.

4.1. The radial Antonov operator

The operator will be defined on a suitable subspace of the weighted, real-valued
L2-space

L2
1

|ϕ′ |
(0):={g : 0 → R measurable | ‖g‖ 1

|ϕ′ |
< ∞},

where

‖g‖21
|ϕ′ |

:=
∫

0

1

|ϕ′(E, L)| |g(x, v)|2 d(x, v);

recall ϕ′ = ∂Eϕ < 0 on the steady state support. The scalar product 〈·, ·〉 1
|ϕ′ |

is

defined accordingly. Later, we work on the radial subspace

L2
1

|ϕ′ | ,r
(0):={g ∈ L2

1
|ϕ′ |

(0) | g is spherically symmetric a.e. on 0}

and with odd functions

L2,odd
1

|ϕ′ | ,r
(0):={g ∈ L2

1
|ϕ′ | ,r

(0) | g is odd in v a.e. on 0}.



On the Existence of Linearly Oscillating Galaxies 639

Spherical symmetry on 0 is defined similarly to (1.5); note that the set 0 is
spherically symmetric. We will always use a lower index r when restricting some
function space to its radial subspace. For an a.e. spherically symmetric function
g : 0 → R, we write g(x, v) = g(r, w, L) with slight abuse of notation; recall
(1.6). Similarly to [61] we use the abbreviations

H :=L2
1

|ϕ′ | ,r
(0), ‖ · ‖H :=‖ · ‖ 1

|ϕ′ |
, Hodd :=L2,odd

1
|ϕ′ | ,r

(0). (4.1)

The first part of the linearized operator consists of the squared transport operator
which we define in a weak sense similar to [61,65]. For a smooth function g ∈
C1(0),

Dg(x, v):=v · ∂x g(x, v) − ∂xU0(x) · ∂vg(x, v), (x, v) ∈ 0.

Definition 4.1. For a spherically symmetric function g ∈ L1
loc(0), Dg exists

weakly if there exists some spherically symmetric μ ∈ L1
loc(0) such that for

every test function ξ ∈ C1
c,r (0),∫

0

1

|ϕ′(E, L)| g Dξ d(x, v) = −
∫

0

1

|ϕ′(E, L)| μ ξ d(x, v). (4.2)

In this case, Dg:=μ weakly. The domain of D is defined as

D(D):={g ∈ H | Dg exists weakly and Dg ∈ H}. (4.3)

Obviously, the weak definition of D extends the classical one on C1
c,r (0).

Furthermore, the resulting operator D : D(D) → H has the following properties:

Proposition 4.2. (a) D : D(D) → H is skew-adjoint as a densely defined operator
on H, i.e., D∗ = −D.

(b) The kernel of D is given by

ker(D) = {g ∈ H | ∃ f : R2 → R s.t. g(x, v) = f (E(x, v), L(x, v))

for a.e. (x, v) ∈ 0}.
(c) Let

D(D2):={g ∈ D(D) | Dg ∈ D(D)}.
Then D2 : D(D2) → H is self-adjoint as a densely defined operator on H.

(d) The restricted operatorD2 : D(D2)∩Hodd → Hodd is self-adjoint as a densely
defined operator on Hodd .

Proof. For parts (a) and (b) cf. [61,65]; the same proofs work for the present steady
states.

Part (c) follows by von Neumann’s theorem [57, Theorem X.25] since D2 =
−D∗D and D(D2) = {g ∈ D(D) | Dg ∈ D(D∗)} by (a).

For (d), note that D2 preserves v parity, meaning that the operator restricted to
Hodd is well-defined. Its self-adjointness follows with part (c) by decomposing all
functions involved into their even and odd parts in v.
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We offer a more intuitive characterization of the domains D(D) and D(D2) in
Sect. 5.1. The use of action-angle type variables in Sect. 5.1 also offers alternate
ways to prove the skew-adjointness and the representation of the kernel.

We now get to the second part of the linearized operator. For g ∈ H let

(Bg) (r, w, L):=4π2|ϕ′(E, L)| w

r2
J (g)(r) (4.4)

for a.e. (r, w, L) ∈ r
0, where

J (g)(r):=
∫ ∞

0

∫
R

w g(r, w, L) dw dL , a.e. r > 0,

g is extended by 0 to R3 × R
3, and we used the abbreviation E = E(r, w, L).

Lemma 4.3. The operator B : H → H is well-defined, linear, continuous, and
symmetric.

Proof. For g ∈ H we have

‖Bg‖2H = (2π)6
∫ ∞

0
|J (g)(r)|2 1

r4

∫ ∞

0

∫
R

w2|ϕ′(E, L)| dw dL dr

≤ C
∫ ∞

0

1

r2
|J (g)(r)|2 dr

≤ C
∫ ∞

0

1

r2

(∫ ∞

0

∫
R

w2|ϕ′(E, L)| dw dL

)

×
(∫ ∞

0

∫
R

|g(r, w, L)|2
|ϕ′(E, L)| dw dL

)
dr

≤ C‖g‖2H .

Here, C > 0 changed from line to line, but depends only on the fixed steady state
f0. In the first and third inequality, we used that

π

r2

∫ ∞

0

∫
R

w2|ϕ′(E, L)| dw dL = − π

r2

∫ ∞

0

∫
R

w ∂w [ϕ(E, L)] dw dL

= π

r2

∫ ∞

0

∫
R

ϕ(E, L) dw dL =
∫
R3

ϕ(E, L) dv = ρ0(r) (4.5)

for r > 0 and that ρ0 is bounded on the support of the steady state. The symmetry
of B follows by

〈Bg, h〉H = (2π)4
∫ ∞

0

1

r2
J (g)(r) J (h)(r) dr

and the symmetry of the latter expression for g, h ∈ H .
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Obviously, Bg is odd in v for every g ∈ H , which implies that the restriction
B : Hodd → Hodd onto odd function also has the properties from above.

Equation (A.2) from the appendix yields the following alternate representation
of Bg in the case g ∈ D(D):

(Bg) (r, w, L) = |ϕ′(E, L)| w U ′
Dg(r), a.e. (r, w, L) ∈ r

0. (4.6)

We are now in the position to define the Antonov operator.

Definition 4.4. Let

A : D(D2) → H, A:= − D2 − B.

For g ∈ D(D2),

〈Ag, g〉H = ‖Dg‖2H − (2π)4
∫ ∞

0

1

r2
(J (g)(r))2 dr

= ‖Dg‖2H −
∫ ∞

0
r2
(
U ′
Dg(r)
)2

dr

= ‖Dg‖2H − 1

4π
‖∂xUDg‖22.

The latter expression is also defined on D(D) which motivates the definition

〈Ag, g〉H :=‖Dg‖2H − 1

4π
‖∂xUDg‖22 for g ∈ D(D).

Up to some factor, the quadratic form of A equals the second order variation
of an important energy-Casimir functional (see [26]), also known [23,42] as the
Antonov functional. This is why we call A the Antonov operator or the linearized
operator.

Before proceeding we observe thatA inherits the self-adjointness ofD2 and B:
Lemma 4.5. The operator A : D(D2) → H is self-adjoint as a densely defined
operator on H. Its restrictionA : D(D2) ∩ Hodd → Hodd to odd functions is also
self-adjoint as a densely defined operator on Hodd .

Proof. This follows by the self-adjointness of D2 on D(D2) and D(D2) ∩ Hodd ,
see Proposition 4.2, together with the Kato-Rellich theorem [29, Chapter 13] and
Lemma 4.3.

4.2. The planar Antonov operator

The function spaces and operators in the plane symmetric setting are defined
similarly to the spherically symmetric case, i.e.,

H̄ :={g : ̄0 → R measurable | ‖g‖H̄ < ∞},
where

‖g‖2
H̄

:=
∫

̄0

1

|ϕ′(E, v̄)| |g(x, v)|2 d(x, v).
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The scalar product 〈·, ·〉H̄ is defined accordingly. Functions in H̄ are in general not
plane symmetric in the sense of (1.10), but for the sake of generality we consider
the operators on H̄ too. Eqn. (1.10) is valid for functions in

H̄:={g ∈ H̄ | g is odd in v1 and x a.e. on ̄0}
= {g ∈ H̄ | for a.e. (x, v) ∈ ̄0 : g(x, v) = −g(−x, v) = −g(x,−v1, v̄)}.

(4.7)

Observe that oddness in x and v1 is stronger than the symmetry required in (1.10).
However, imposing the above symmetry condition simplifies the following analysis,
and, as we shall see in Sect. 8, we obtain eigenvalues of A in H̄ nonetheless.

As to the operators, we again start by defining the planar transport operator in
a weak sense similarly to the spherically symmetric setting in the previous section.
For g ∈ C1(̄0),

D̄g(x, v):=v1 ∂x g(x, v) −U ′
0(x) ∂v1g(x, v), (x, v) ∈ ̄0.

Definition 4.6. For g ∈ L1
loc(̄0), D̄g exists weakly if there exists some μ ∈

L1
loc(̄0) such that for every test function ξ ∈ C1

c (̄0),

∫
̄0

1

|ϕ′(E, v̄)|g D̄ξ d(x, v) = −
∫

̄0

1

|ϕ′(E, v̄)|μ ξ d(x, v). (4.8)

In this case, D̄g:=μ weakly. The domain of D̄ is defined as

D(D̄):={g ∈ H̄ | D̄g exists weakly and D̄g ∈ H̄}. (4.9)

The resulting operator again extends D̄ for smooth functions and has the fol-
lowing further properties:

Proposition 4.7. (a) D̄ : D(D̄) → H̄ is skew-adjoint as a densely defined operator
on H̄ , i.e., D̄∗ = −D̄.

(b) The kernel of D̄ is given by

ker(D̄) = {g ∈ H̄ | ∃ f : R3 → R s.t. g(x, v) = f (E(x, v1), v̄)

for a.e. (x, v) ∈ ̄0}.

(c) Let

D(D̄2):={g ∈ D(D̄) | D̄g ∈ D(D̄)}.

Then D̄2 : D(D̄2) → H̄ is self-adjoint as a densely defined operator on H̄ .
(d) D̄ reverses v1-parity and x-parity respectively, i.e., D̄2 preserves these parities.

Furthermore, the restricted operator D̄2 : D(D̄2) ∩ H̄ → H̄ is self-adjoint as
well.
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All of the above statements can be proven similarly to the spherically symmetric
setting, see Proposition 4.2. The plane symmetric case however is not covered in
[61,65]. The use of action-angle type variables in Sect. 5.2 offers alternative and
more direct proofs, see Proposition 5.15.

The second part of the linearized operator is given by
(B̄g) (x, v):=4π |ϕ′(E, v̄)| v1 J̄ (g)(x) (4.10)

for g ∈ H̄ and a.e. (x, v) ∈ ̄0, where

J̄ (g)(x):=
∫
R3

v1 g(x, v) dv, a.e. x ∈ R, (4.11)

and g is extended by 0 toR×R
3. The resulting operator has the following properties:

Lemma 4.8. B̄ : H̄ → H̄ is well-defined, linear, continuous, and symmetric.

Proof. For g ∈ H̄ ,

‖B̄g‖2
H̄

= 16π2
∫
R

|J̄ (g)(x)|2
∫
R3

|ϕ′(E, v̄)| v21 dv dx

≤ C
∫
R

|J̄ (g)(x)|2 dx = C
∫
R

(∫
R3

v1 g(x, v) dv

)2
dx

≤ C
∫
R

(∫
R3

v21 |ϕ′(E, v̄)| dv
)(∫

R3

|g(x, v)|2
|ϕ′(E, v̄)| dv

)
dx ≤ C‖g‖2

H̄
,

where in the first and third inequality we used that
∫
R3

v21 |ϕ′(E(x, v1), v̄)| dv = −
∫
R

v21 α′(E(x, v1)) dv1

= −
∫
R

v1 ∂v1 [α(E(x, v1))] dv1

=
∫
R

α(E(x, v1)) dv1 = ρ0(x), x ∈ R, (4.12)

together with the fact that ρ0 is bounded by ρ0(0) < ∞. The symmetry of B̄ follows
by

〈B̄g, h〉H̄ = 4π
∫

̄0

v1 J̄ (g)(x) h(x, v) d(x, v) = 4π
∫
R

J̄ (g)(x) J̄ (h)(x) dx

and the symmetry of the latter expression for g, h ∈ H̄ .

Since B̄ preserves x-parity and the image of B̄ is always an odd function in v1,
the restricted operator B̄ : H̄ → H̄ has the analogous properties.

Eqn. (A.4) yields the following alternative representation of B̄g in the case
g ∈ D(D̄):

(B̄g) (x, v) = |ϕ′(E, v̄)| v1 U
′̄
Dg

(x) (4.13)
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for a.e. (x, v) ∈ ̄0. We refer to Sect. A.2 in the appendix for a short discussion of
the potentials induced by images of the planar transport operator.

We are now in the position to define the linearized operator in the planar setting:

Definition 4.9. Let

Ā : D(D̄2) → H̄ , Ā:= − D̄2 − B̄.

For g ∈ D(D̄2),

〈Āg, g〉H̄ = ‖D̄g‖2
H̄

− 1

4π
‖U ′̄

Dg
‖22.

The latter expression is also defined for g ∈ D(D̄). Ā is the (planar) Antonov or
linearized operator.

We again have the following properties:

Lemma 4.10. The operator Ā : D(D̄2) → H̄ is self-adjoint as a densely defined
operator on H̄ . Its restriction Ā : D(D̄2) ∩ H̄ → H̄ to odd functions is also self-
adjoint.

Proof. We use the self-adjointness of D̄2 from Proposition 4.7 and the symmetry
and boundedness of B̄ from Lemma 4.8.

5. The Essential Spectra of the Antonov Operators

5.1. The essential spectrum of the radial Antonov operator

Let A denote the self-adjoint operator A : D(D) → H introduced in Defini-
tion 4.4; most of the results below also hold true for its restriction to odd functions.

We will see in Theorem 5.9 that the essential spectrum of A = −(D2 + B)

is solely determined by the one of −D2. This is why we first analyze the squared
transport operator. We do this by introducing one of the key tools in our work, the
action-angle variables.

For fixed (r, w, L) ∈ r
0 let R � t �→ (R,W )(t, r, w, L) be the unique global

solution to the characteristic system

Ṙ = W, Ẇ = −� ′
L(R) (5.1)

satisfying the initial condition (R,W )(0, r, w, L) = (r, w). As discussed in Sect.
2.1, (R,W )(·, r, w, L) is periodic with period T (E, L), where E = E(r, w, L) =
1
2w

2 + �L(r). We now use the variables θ ∈ [0, 1], (E, L) ∈ EL
0 given by

(r, w, L) = ((R,W )(θT (E, L), r−(E, L), 0, L), L) .

For functions g ∈ H we write

g(θ, E, L) = g ((R,W )(θT (E, L), r−(E, L), 0, L), L)
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for a.e. (θ, E, L) ∈ θ
0:=[0, 1]×EL

0 by slight abuse of notation. Integrals change
via

dx dv = 4π2T (E, L) dθ dE dL; (5.2)

note that the mapping [0, 1
2 ] � θ �→ R(θT (E, L), r−(E, L), 0, L) ∈ [r−(E, L),

r+(E, L)] is bijective for (E, L) ∈ ̊EL
0 with inverse given by

θ(r, E, L):= 1

T (E, L)

∫ r

r−(E,L)

ds√
2E − 2�L(s)

, (5.3)

r−(E, L) ≤ r ≤ r+(E, L). In particular, the transformation (x, v) �→ (θ, E, L) is
not measure preserving as it would be in the case of “true” action-angle variables,
see [4,41,49]. However, (θ, E, L) have the same interpretation as action-angle
variables, since (E, L) fix a trajectory of the stationary characteristic system and
θ ∈ [0, 1[ gives the position along the characteristic flow. Actual action-angle
variables have been used in [23] without the restriction to spherically symmetric
functions.

Using the chain rule we see that D corresponds to a θ -derivative in (θ, E, L)-
variables.

Lemma 5.1. For every g ∈ C1
r (0),

(Dg) (θ, E, L) = 1

T (E, L)
(∂θg)(θ, E, L), 0 ≤ θ ≤ 1, (E, L) ∈ ̊EL

0 . (5.4)

Similarly, for g ∈ C2
r (0),

(
D2g
)

(θ, E, L) = 1

T (E, L)2
(∂2θ g)(θ, E, L), 0 ≤ θ ≤ 1, (E, L) ∈ ̊EL

0 .

To analyze−D2 and its spectrum, we need a formula similar to the ones derived
inLemma5.1 for all functions inD(D) (seeDefinition 4.1) andD(D2).We therefore
define

H1
θ :=
{
y ∈ H1(]0, 1[) | y(0) = y(1)

}
; (5.5)

note that H1(]0, 1[) ↪→ C([0, 1]), i.e., the boundary condition is imposed for the
continuous representative.

Lemma 5.2. It holds that

D(D) = {g ∈ H | for a.e. (E, L) ∈ EL
0 , g(·, E, L) ∈ H1

θ ,

and
∫

EL
0

T (E, L)−1

|ϕ′(E, L)|
∫ 1

0
|∂θg(θ, E, L)|2 dθ d(E, L) < ∞}.

If g ∈ D(D),

(Dg) (θ, E, L) = 1

T (E, L)
(∂θg)(θ, E, L)

for a.e. (θ, E, L) ∈ θ
0 .
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Proof. First, consider g ∈ D(D). By theweak definition ofD, a change of variables
and Lemma 5.1, we obtain the following for every test function ξ ∈ C1

c,r (0):

4π2
∫

EL
0

1

|ϕ′(E, L)|
∫ 1

0
∂θ ξ(θ, E, L) g(θ, E, L) dθ d(E, L)

=
∫

0

1

|ϕ′(E, L)|Dξ g d(x, v) = −
∫

0

1

|ϕ′(E, L)|ξ Dg d(x, v)

= −4π2
∫

EL
0

T (E, L)

|ϕ′(E, L)|
∫ 1

0
ξ(θ, E, L) (Dg)(θ, E, L) dθ d(E, L).

We now choose ξ to be factorized in θ and (E, L), i.e., ξ(θ, E, L) = ζ(θ) χ(E, L)

for (θ, E, L) ∈ θ
0, where ζ ∈ C∞

c (]0, 1[) and χ ∈ C∞
c (̊EL

0 ). Note that every
such choice of ζ and χ induces some ξ in C1

c,r (0). Inserting this into the above
calculation yields

∫
EL
0

χ(E, L)
1

|ϕ′(E, L)|
∫ 1

0
ζ̇ (θ) g(θ, E, L) dθ d(E, L)

= −
∫

EL
0

χ(E, L)
T (E, L)

|ϕ′(E, L)|
∫ 1

0
ζ(θ) (Dg)(θ, E, L) dθ d(E, L).

Since this holds true for every χ ∈ C∞
c (̊EL

0 ), it follows that

∫ 1

0
ζ̇ (θ) g(θ, E, L) dθ = −T (E, L)

∫ 1

0
ζ(θ) (Dg)(θ, E, L) dθ (5.6)

for a.e. (E, L) ∈ EL
0 .1 Since ζ ∈ C∞

c (]0, 1[) is arbitrary, this means that
g(·, E, L) is weakly differentiable with ∂θg(·, E, L) = T (E, L) (Dg)(·, E, L).
In addition,

4π2
∫

EL
0

T (E, L)−1

|ϕ′(E, L)|
∫ 1

0
|∂θg(θ, E, L)|2 dθ d(E, L) = ‖Dg‖2H < ∞,

in particular, ∂θg(·, E, L) ∈ L2(]0, 1[) for a.e. (E, L) ∈ EL
0 . What remains to

show is the boundary condition g(0, E, L) = g(1, E, L). Observe that (5.6) also
holds true for ζ(θ):=1, 0 ≤ θ ≤ 1, since this still leads to ξ ∈ C1

c,r (0). Therefore,
integrating by parts yields

0 = 1

T (E, L)

∫ 1

0
ζ̇ (θ) g(θ, E, L) dθ = −

∫ 1

0
ζ(θ) ∂θg(θ, E, L) dθ

=
∫ 1

0
ζ̇ (θ) g(θ, E, L) dθ − ζ(θ)g(θ, E, L)

∣∣∣θ=1

θ=0
= g(0, E, L) − g(1, E, L)

1 The set ofmeasure zero can be chosen independently of the test function ζ ∈ C∞
c (]0, 1[)

by considering a countable subset ofC∞
c (]0, 1[)which is dense with respect to ‖·‖H1(]0,1[).
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for a.e. (E, L) ∈ EL
0 , i.e., g(·, E, L) ∈ H1

θ and we have proven the first implica-
tion.

Conversely, let g ∈ H be such that g(·, E, L) ∈ H1
θ for a.e. (E, L) ∈ EL

0 and

∫
EL
0

T (E, L)−1

|ϕ′(E, L)|
∫ 1

0
|∂θg(θ, E, L)|2 dθ d(E, L) < ∞. (5.7)

For any test function ξ ∈ C1
c,r (0) and (E, L) ∈ ̊EL

0 weobviously have ξ(·, E, L) ∈
C1([0, 1]) with ξ(0, E, L) = ξ(1, E, L). Thus,∫

0

1

|ϕ′(E, L)|g Dξ d(x, v) = 4π2
∫

EL
0

1

|ϕ′(E, L)|

×
∫ 1

0
g(θ, E, L) ∂θ ξ(θ, E, L) dθ d(E, L)

= −
∫

0

1

|ϕ′(E, L)|
(∂θg)

T (E, L)
ξ d(x, v),

where we again used Lemma 5.1 and integrated by parts. By the weak definition
of D, the above means that Dg exists weakly and

(Dg)(θ, E, L) = 1

T (E, L)
∂θg(θ, E, L)

for a.e. (θ, E, L) ∈ θ
0. Eqn. (5.7) then also shows Dg ∈ H , i.e., g ∈ D(D).

Remark 5.3. (Oddness-in-v) Recall the definition (4.1) of the space Hodd of odd-
in-v functions in H . It is of interest to describe the oddness with respect to the
v-coordinate in the action-angle coordinates. To that end let

L2,odd(]0, 1[):={y ∈ L2(]0, 1[) | y(θ) = −y(1 − θ) for a.e. θ ∈]0, 1[}.
It is then easy to check that for every g ∈ H ,

g ∈ Hodd ⇔ g(·, E, L) ∈ L2,odd(]0, 1[) for a.e. (E, L) ∈ EL
0 .

To obtain a representation of the domain of D2 similar to Lemma 5.2, let

H2
θ :=
{
y ∈ H2(]0, 1[) | y(0) = y(1) and ẏ(0) = ẏ(1)

}
=
{
y ∈ H1

θ | ẏ ∈ H1
θ

}
;

(5.8)

note H2(]0, 1[) ↪→ C1([0, 1]), i.e., the boundary conditions are imposed for the
continuously differentiable representative. Then, by applying Lemma 5.2 we obtain

Corollary 5.4. It holds that

D(D2) = {g ∈ H | for a.e. (E, L) ∈ EL
0 , g(·, E, L) ∈ H2

θ ,

and
2∑
j=1

∫
EL
0

T (E, L)1−2 j

|ϕ′(E, L)|
∫ 1

0
|∂ j

θ g(θ, E, L)|2 dθ d(E, L) < ∞}.
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Furthermore, if g ∈ D(D2),

(
D2g
)

(θ, E, L) = 1

T (E, L)2
(∂2θ g)(θ, E, L)

for a.e. (θ, E, L) ∈ θ
0 .

We next apply Lemma 5.2 to obtain the following useful lemma, which partic-
ularly implies that the range of D is closed, cf. [10, Theorem 2.19].

Lemma 5.5. For every h ∈ H with h ⊥ ker(D) there exists g ∈ D(D) such that
Dg = h. In particular,

ker(D)⊥ = im(D). (5.9)

Proof. We define the spherically symmetric function g : 0 → R via

g(θ, E, L):=T (E, L)

∫ θ

0
h(s, E, L) ds for a.e. (θ, E, L) ∈ θ

0

and apply Lemma 5.2 to verify the claimed properties of g. First, g(·, E, L) is
weakly differentiable for a.e. (E, L) ∈ EL

0 with ∂θg(·, E, L) = T (E, L)

h(·, E, L). In addition,

|g(θ, E, L)|2 ≤ T (E, L)2
∫ 1

0
|h(s, E, L)|2 ds,

i.e., g(·, E, L) ∈ L2(]0, 1[) for a.e. (E, L) ∈ EL
0 and g ∈ H , since

‖g‖2H ≤ 4π2
∫

EL
0

T (E, L)3

|ϕ′(E, L)|
∫ 1

0
|h(s, E, L)|2 ds d(E, L) ≤ sup

̊EL
0

2(T ) ‖h‖2H ;

note that T is bounded by Proposition B.1. Furthermore, ∂θg(·, E, L) ∈ L2(]0, 1[),
i.e., g(·, E, L) ∈ H1(]0, 1[) for a.e. (E, L) ∈ EL

0 . Moreover,

g(1, E, L) =
∫ 1

0
h(s, E, L) ds = 0 = g(0, E, L),

for a.e. (E, L) ∈ EL
0 , since h ⊥ ker(D). Lastly,

4π2
∫

EL
0

T (E, L)−1

|ϕ′(E, L)|
∫ 1

0
|∂θg(θ, E, L)|2 dθ d(E, L) = ‖h‖2H < ∞.

We now turn our attention to the one-dimensional Laplacian as an operator on
H2

θ :
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Lemma 5.6. The operator

−∂2θ : H2
θ → L2(]0, 1[), y �→ −ÿ

is self-adjoint as a densely defined operator on the Hilbert space L2(]0, 1[). Its
spectrum is given by

σ(−∂2θ ) = (2πN0)
2:={(2πk)2 | k ∈ N0}.

In particular, every element of the spectrum is an eigenvalue. The eigenspace of
the eigenvalue 0 consists of all constant functions. For k ∈ N, the eigenspace of
(2πk)2 is {c1 cos(2πk·) + c2 sin(2πk·) | c1, c2 ∈ R}.
Proof. It is straight forward to verify that−∂2θ is self-adjoint; note that the boundary
conditions built into H2

θ cause all boundary terms to vanish when integrating by
parts.

Using basic ODE theory, it can be easily verified that the set of proper eigenval-
ues of−∂2θ equals (2πN0)

2.What remains to show is that the spectrum of−∂2θ does
not contain any other elements. This can be done by explicitly deriving the resolvent
operator for λ /∈ (2πN0)

2 by expanding all functions involved into their Fourier
series; these techniques are related to the ones used for Riesz-spectral operators
[13, Theorem 2.3.5].

Similar to the above Lemma one can also show that the operator

−∂2θ : H2
θ ∩ L2,odd(]0, 1[) → L2,odd(]0, 1[), y �→ −ÿ

is self-adjoint as a densely defined operator on the Hilbert space L2,odd(]0, 1[) and
that its spectrum is (2πN)2; note that non-zero constant functions are not part of
H2

θ ∩ L2,odd(]0, 1[).
Combining Corollary 5.4, i.e., “−D2 = − 1

T (E,L)2
∂2θ ”, and Lemma 5.6, i.e.,

“σ(−∂2θ ) = (2πN0)
2”, allows us to explicitly determine the spectrum of −D2:

Theorem 5.7. The spectrum of the self-adjoint operator −D2 : D(D2) → H is

σ(−D2) =
(

2πN0

T (̊EL
0 )

)2
:=
{(

2πk

T (E, L)

)2 ∣∣∣ k ∈ N0, (E, L) ∈ ̊EL
0

}
.

Furthermore, the spectrum is purely essential, i.e.,

σess(−D2) = σ(−D2).

Proof. We first show
(
2πk T (E∗, L∗)−1

)2 ∈ σess(−D2) for fixed k ∈ N and
(E∗, L∗) ∈ ̊EL

0 . The idea is that

(θ, E, L) �→ δ(E∗,L∗)(E, L) sin(2πkθ)

defines an “eigendistribution” of
(
2πk T (E∗, L∗)−1

)2
(where δ denotes Dirac’s

delta distribution) and that by approximating,wecan show that
(
2πk T (E∗, L∗)−1

)2
is indeed an approximate eigenvalue.
We therefore prove

(
2πk T (E∗, L∗)−1

)2 ∈ σess(−D2) by verifying Weyl’s crite-
rion [29, Theorem 7.2], i.e., we construct a sequence (g j ) j∈N ⊂ D(D2) with
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(i) ‖g j‖H = 1 for every j ∈ N,

(ii)

∥∥∥∥−D2g j −
(
2πk T (E∗, L∗)−1

)2
g j

∥∥∥∥
H

→ 0 as j → ∞,

(iii) g j ⇀ 0 in H as j → ∞.

To construct such a Weyl sequence, we approximate the Dirac distribution as fol-
lows: For j ∈ N let χ j : R2 → R be such that

(α) supp (χ j ) ⊂ ̊EL
0 ∩ B 1

j
(E∗, L∗),

(β)

∫
EL
0

χ2
j (E, L) d(E, L) = 1

2π2 .

Such χ j can e.g. be explicitly defined using a rescaling scheme. For j ∈ Nwe now
define the spherically symmetric function g j : 0 → R by

g j (θ, E, L):=
√

|ϕ′(E, L)|
T (E, L)

χ j (E, L) sin(2πkθ), (θ, E, L) ∈ θ
0.

Then (g j ) j∈N is indeed a Weyl sequence. First, g j ∈ D(D2) for j ∈ N by Corol-
lary 5.4, note that T > 0 is continuous on ̊EL

0 by Lemma B.7 and therefore 1
T is

bounded on the support of χ j . Now to properties (i)–(iii):

(i) For every j ∈ N a straight forward calculation using (β) yields ‖g j‖H = 1.
(ii) It follows from Corollary 5.4 that

(−D2g j )(θ, E, L) =
(

2πk

T (E, L)

)2
g j (θ, E, L) for a.e. (θ, E, L) ∈ θ

0.

Thus,
∥∥− D2g j −

(
2πk T (E∗, L∗)−1

)2
g j
∥∥2
H

= 4π2
∫

EL
0

T (E, L)

|ϕ′(E, L)|

∣∣∣∣∣
(

2πk

T (E, L)

)2
−
(

2πk

T (E∗, L∗)

)2∣∣∣∣∣
2

×
∫ 1

0

∣∣g j (θ, E, L)
∣∣2 dθ d(E, L)

= 25π6k4
∫

EL
0

χ2
j (E, L)

∣∣∣∣ 1

T (E, L)2
− 1

T (E∗, L∗)2

∣∣∣∣
2

d(E, L).

SinceT > 0 is continuouson ̊EL
0 byLemmaB.7,

∣∣T (E, L)−2 − T (E∗, L∗)−2
∣∣

tends to zero for (E, L) ∈ supp (χ j ) as j → ∞ by (α). Together with (β) this
implies (ii).

(iii) For every h ∈ H the Cauchy-Schwarz inequality yields

∣∣〈g j , h〉H
∣∣ ≤ ‖g j‖H

(
4π2
∫
supp (χ j )

T (E, L)

|ϕ′(E, L)|
∫ 1

0
|h(θ, E, L)|2 dθ d(E, L)

) 1
2

,

with ‖g j‖H = 1 and the right integral tending to zero as j → ∞. Due to the
Riesz representation theorem we obtain (iii).
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By a completely similar proof—where we just have to replace sin(2πkθ) in the
definition of g j by a non-zero, constant function—we also get 0 ∈ σess(D2). Since
the spectrum of an operator is always closed and the boundary values being non-
isolated, we obtain

(
2πN0

T (̊EL
0 )

)2
⊂ σess(−D2) ⊂ σ(−D2).

It remains to show that

σ(−D2) ⊂
(

2πN0

T (̊EL
0 )

)2
.

Fix an arbitrary λ ∈ R \
(

2πN0

T (̊EL
0 )

)2
; note σ(−D2) ⊂ R. Due to the radial particle

period T being bounded away from zero by Proposition B.1, there exists c > 0
such that

dist
(
λ T (E, L)2, (2πN0)

2
)

≥ c for every (E, L) ∈ ̊EL
0 . (5.10)

Since (2πN0)
2 = σ(−∂2θ ), we then obtain the following estimate for the one-

dimensional resolvent operator
(−∂2θ − λ T (E, L)2

)−1 : L2(]0, 1[) → H2
θ by

(5.10):∥∥∥∥
(
−∂2θ − λ T (E, L)2

)−1
y

∥∥∥∥
2

≤ 1

c
‖y‖2 for y ∈ L2(]0, 1[), (E, L) ∈ ̊EL

0 ,

see for example [29, Theorem5.8]. Therefore, inserting y = (−∂2θ − λ T (E, L)2
)
z

in the above estimate yields

‖z‖2 ≤ 1

c

∥∥∥
(
−∂2θ − λ T (E, L)2

)
z
∥∥∥
2

for z ∈ H2
θ , (E, L) ∈ ̊EL

0 . (5.11)

Now, suppose λ ∈ σ(−D2). Then, by a weaker version ofWeyl’s criterion (see [29,
Theorem 5.10]), there exists a sequence (g j ) j∈N ⊂ D(D2) such that ‖g j‖H = 1
for j ∈ N and

∥∥−D2g j − λg j
∥∥
H → 0 as j → ∞. However,

∥∥−D2g j − λg j
∥∥2
H

= 4π2
∫

EL
0

T (E, L)−3

|ϕ′(E, L)|
∫ 1

0

∣∣−∂2θ g j (θ, E, L) − λ T (E, L)2g j (θ, E, L)
∣∣2 dθ d(E, L)

by Corollary 5.4. Then, applying (5.11) to g j (·, E, L) ∈ H2
θ for a.e. (E, L) ∈ EL

0
yields

∥∥− D2g j − λg j
∥∥2
H ≥ 4π2c2

∫
EL
0

T (E, L)−3

|ϕ′(E, L)|
∫ 1

0

∣∣g j (θ, E, L)
∣∣2 dθ d(E, L)

≥ c2

sup4
̊EL
0

(T )
> 0,

and therefore the desired contradiction.
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In particular, we obtain the following estimate:

Corollary 5.8. (A Poincaré inequality) For every g ∈ D(D) with g ⊥ ker(D) we
have

‖Dg‖2H ≥ 4π2

sup2
̊EL
0

(T )
‖g‖2H .

Proof. The statement on D(D2) follows by the skew-adjointness of D together
with the spectral properties of −D2 stated in the above theorem, see e.g. [29,
Proposition 5.12].

Mollifying extends this estimate to D(D). One way to do this is to express g
in (θ, E, L)-coordinates and mollify the θ -function for a.e. (E, L) ∈ ̊EL

0 , for
example by using Fourier partial series. Note that the mollification has to preserve
the property g ⊥ ker(D).

Alternatively, an estimate as above can also be shown by more fundamental
techniques without determining the spectrum of −D2, see e.g. [61, proof of Theo-
rem 2.3].

We now use the representation of σess(−D2) from Theorem 5.7 to explicitly
determine σess(A) as well. In fact, the key property of the essential spectrum is that
it is stable under certain types of perturbations. In our situation, this means that the
essential spectrum of A = − (D2 + B) (see (4.4) for the definition of B) is equal
to the one of −D2:

Theorem 5.9. The operator (−B) is relatively (−D2)-compact, cf. [29, Definition
14.1]. Therefore, by the Weyl theorem [29, Theorem 14.6],

σess(A) = σess(−D2).

Thus, by Theorem 5.7,

σess(A) =
(

2πN0

T (̊EL
0 )

)2
, (5.12)

where A denotes the unrestricted operator A : D(D2) → H. Similarly,

σess(A
∣∣
Hodd ) =

(
2πN

T (̊EL
0 )

)2
. (5.13)

Here, we use the convention min(N) = 1, N0 = N ∪ {0}.
Proof. By Lemma 4.3, −B is continuous on H , i.e., relatively (−D2)-bounded
with relative bound 0. Furthermore, (−D2) is self-adjoint and ρ(−D2) �= ∅. In
this situation, the relative (−D2)-compactness of−B is equivalent to the following
(see for example [16, III Definition 2.15 and III Exercise 2.18(1)]):

−B :
(
D(D2), ‖D2 · ‖H + ‖ · ‖H

)
→ H is compact;
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the domain of −B in this statement is D(D2), equipped with the graph norm of
(−D2).

To prove this statement, let (gk)k∈N ⊂ D(D2) be such that (gk)k∈N,

(D2gk)k∈N ⊂ H are bounded. Corollary 5.8—note Dgk ∈ im(D) ⊂ ker(D)⊥
for k ∈ N—then yields that (Dgk)k∈N ⊂ H is bounded as well. Thus, by (A.1),
(UDgk )k∈N ⊂ C ∩ H2(R3) is bounded in H2(R3). In addition, (A.2) yields
supp (∂xUDgk ) ⊂ BR0(0) for every k ∈ N. By the compact embedding
H2(BR0(0)) � H1(BR0(0)), (∂xUDgk )k∈N is strongly convergent in L2(R3;R3),
at least after extracting a subsequence. Representing Bgk as in (4.6) and rewriting∫

w2|ϕ′(E, L)| d(w, L) as in (4.5), it follows that (Bgk)k∈N is a Cauchy sequence
in H , and thus strongly convergent in H .

The analogous relative compactness result also holds true when we restrict all
operators to Hodd , i.e., functions odd in v. In addition, it can be shown similarly to
Theorem 5.7 that the spectrum of the restricted squared transport operator is given
by

σess(−D2
∣∣
Hodd ) =

(
2πN

T (̊EL
0 )

)2
, (5.14)

since sin(2πk·) ∈ H2
θ ∩L2,odd(]0, 1[) for k ∈ N, but non-zero constant functions—

which correspond to the eigenvalue 0—are not in L2,odd(]0, 1[).
The sets (5.12), (5.13) may look qualitatively different for different steady state

models depending on the behavior of the period function T :

Remark 5.10. If sup
̊EL
0

(T ) ≥ 2 inf
̊EL
0

(T ),

σess(A) = {0} ∪
⎡
⎣ 4π2

sup2
̊EL
0

(T )
,∞
⎡
⎣ .

Otherwise, i.e., sup
̊EL
0

(T ) < 2 inf
̊EL
0

(T ), there may appear further gaps in the es-
sential spectrum. In general, the number of gaps in the essential spectrum (including
the one at zero) is given by

1 + sup

⎧⎨
⎩k ∈ N0 | (k + 1) inf

̊EL
0

(T ) > k sup
̊EL
0

(T )

⎫⎬
⎭ .

Note that we have infinitely many gaps iff T is constant on ̊EL
0 .

In any case, the essential spectrum of A possesses a gap

G:= ]0,min (σess(A) \ {0})[ =
⎤
⎦0, 4π2

sup2
̊EL
0

(T )

⎡
⎣

at the origin since T is bounded fromabove, see Sect. B.1 in the appendix. Following
Mathur [52], we call this the principal gap of the essential spectrum; although in
[52] this term is used for the gap of the spectrum of −i D around the origin.
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5.2. The essential spectrum of the planar Antonov operator

We now show the analogues of the above results for the planar linearized op-
erator Ā introduced in Definition 4.9. Since most of the proofs are similar to the
radial setting, see Sect. 5.1, we shall skip some of the details. We again start by
analyzing the squared transport operator D̄2 using action-angle variables.

For fixed (x, v1) ∈ R
2 let R � t �→ (X, V1)(t, x, v1) be the unique global

solution to the characteristic system

Ẋ = V1, V̇1 = −U ′
0(X) (5.15)

satisfying the initial condition (X, V1)(0, x, v1) = (x, v1). As derived in Sect. 2.2,
(X, V1)(·, x, v1) is periodic with period T (E), where E ≡ E((X, V1)(t, x, v1)) for
t ∈ R. We now use the variable θ ∈ [0, 1] given by

(x, v1) = (X, V1)(θT (E), x−(E), 0) (5.16)

together with E ∈ [U0(0), E0[ and v̄ on the steady state support. The major benefit
of the plane symmetric case compared to the spherically symmetric setting is that
the (x, v1)-motion can be described by one angle θ and only one conserved quantity
E ; it is independent of the other integrals v̄. For functions g : ̄0 → R we write

g(θ, E, v̄):=g((X, V1)(θT (E), x−(E), 0), v̄)

for (θ, E, v̄) ∈ ̄θ
0:=[0, 1]×̄E v̄

0 = [0, 1]×[U0(0), E0[×{β �= 0} by slight abuse
of notation. As in the spherically symmetric case the transformation (x, v) �→
(θ, E, v̄) is not measure preserving, since

dx dv = T (E) dθ dE dv̄. (5.17)

Regarding the latter statement, we observe that the mapping [0, 1
2 ] � θ �→

X (θT (E), x−(E), 0) ∈ [x−(E), x+(E)] is bijective for E > U0(0) and its in-
verse is given by

θ(x, E) = 1

T (E)

∫ x

x−(E)

1√
2E − 2U0(y)

dy. (5.18)

Related planar action-angle coordinates are also used for the study of BGK waves
for the one-dimensional Vlasov-Poisson system in the plasma case [24].

Using the chain rule we see that D̄ can be written as a θ -derivative.

Lemma 5.11. For g ∈ C1(̄0) and (θ, E, v̄) ∈ ̄θ
0 ,

(D̄g)(θ, E, v̄) = 1

T (E)
(∂θg)(θ, E, v̄).

Similarly, for g ∈ C2(̄0),

(D̄2g)(θ, E, v̄) = 1

T (E)2
(∂2θ g)(θ, E, v̄).
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Next we generalize the above lemma onto theweak extension of D̄—introduced
in Definition 4.6—and give an alternate representation of D(D̄) analogous to
Lemma 5.2:

Lemma 5.12. It holds that

D(D̄) = {g ∈ H̄ | for a.e. (E, v̄) ∈ ̄E v̄
0 , g(·, E, v̄) ∈ H1

θ ,

and
∫

̄E v̄
0

T (E)−1

|ϕ′(E, v̄)|
∫ 1

0
|∂θg(θ, E, v̄)|2 dθ d(E, v̄) < ∞},

where H1
θ is given by (5.5). If g ∈ D(D̄),

(D̄g
)
(θ, E, v̄) = 1

T (E)
(∂θg)(θ, E, v̄)

for a.e. (θ, E, v̄) ∈ ̄θ
0 .

The proof is completely analogous to the one of Lemma 5.2. The v1-parity and
x-parity can also be translated into (θ, E, v̄)-coordinates:

Remark 5.13. Consider g : ̄0 → R. Then

(a) g is odd in v1 if and only if g(θ, E, v̄) = −g(1 − θ, E, v̄) for (θ, E, v̄) ∈ ̄θ
0.

(b) g is odd in x if and only if g(θ, E, v̄) = −g( 12 − θ, E, v̄) as well as g(1 −
θ, E, v̄) = −g(θ + 1

2 , E, v̄) for 0 ≤ θ ≤ 1
2 and (E, v̄) ∈ ̄E v̄

0 .

Applying Lemma 5.12 yields the following for the squared transport operator
in the plane symmetric setting:

Corollary 5.14. With H2
θ as defined in (5.8),

D(D̄2) = {g ∈ H̄ | for a.e. (E, v̄) ∈ ̄E v̄
0 , g(·, E, v̄) ∈ H2

θ ,

and
2∑
j=1

∫
̄E v̄
0

T (E)1−2 j

|ϕ′(E, v̄)|
∫ 1

0
|∂ j

θ g(θ, E, v̄)|2 dθ d(E, v̄) < ∞}.

The above results allow us to conclude the following fundamental properties of
the transport operator and its squarewhich have partly been stated in Proposition 4.7
before:

Proposition 5.15. (a) D̄ : D(D̄) → H̄ is skew-adjoint and D̄2 : D(D̄2) → H̄ is
self-adjoint. The restrictions to H̄ are skew-adjoint respectively self-adjoint as
well.

(b) The kernel of D̄ consists of all functions depending solely on E and v̄ a.e..
(c) For every h ∈ H̄ with h ⊥ ker(D̄) there exists g ∈ D(D̄) such that D̄g = h. In

particular,

ker(D̄)⊥ = im(D̄). (5.19)
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Proof. Interpreting D̄ as a θ -derivative, we integrate by parts in the θ -integral to
obtain the skew-symmetry of D̄ and the symmetry of D̄2. From there we easily
obtain the skew-adjointness and self-adjointness respectively.

Part (b) follows since the kernel of ∂θ : H1
θ → L2(]0, 1[) consists of all func-

tions which are constant a.e..
As to the last part, we define g : ̄0 → R via

g(θ, E, v̄):=T (E)

∫ θ

0
h(s, E, v̄) ds for a.e. (θ, E, v̄) ∈ ̄θ

0.

It is then straight-forward to verify that g ∈ H̄ with ‖g‖2
H̄

≤ T (E0)
2 ‖h‖2

H̄
and

g(·, E, v̄) ∈ H1
θ for a.e. (E, v̄) ∈ ̄E v̄

0 , in particular g(0, E, v̄) = 0 = g(1, E, v̄)

since h ⊥ ker(D). In addition, D̄g = h as required. For more details we refer to
the proof of Lemma 5.5 in the spherically symmetric setting.

Finally we combine Corollary 5.14 and the spectral properties of −∂2θ : H2
θ →

L2(]0, 1[) from Lemma 5.6 to explicitly determine the spectrum of −D̄2.

Theorem 5.16. The spectrum of the self-adjoint operator −D̄2 : D(D̄2) → H̄ is

σ(−D̄2) =
(

2πN0

T ([U0(0), E0])
)2

:=
{(

2πk

T (E)

)2 ∣∣∣ k ∈ N0, U0(0) ≤ E ≤ E0

}
.

Furthermore, the spectrum is purely essential, i.e.,

σess(−D̄2) = σ(−D̄2).

Proof. Since the proof is very similar to the one of Theorem 5.7, we only outline
it for the plane symmetric setting. For fixed E∗ ∈]U0(0), E0[ and k ∈ N we show(
2πk T (E∗)−1

)2 ∈ σess(−D̄2) by constructing approximate eigenfunctions to the
eigendistribution

(θ, E, v̄) �→ δE∗(E) sin(2πkθ), (5.20)

i.e., a “Weyl-sequence” (g j ) j∈N ⊂ D(D̄2) satisfying

(i) ‖g j‖H̄ = 1 for every j ∈ N,

(ii)

∥∥∥∥−D̄2g j −
(
2πk T (E∗)−1

)2
g j

∥∥∥∥
H̄

→ 0 as j → ∞,

(iii) g j ⇀ 0 in H̄ as j → ∞.

To this end chooseχ j : R → R such that supp (χ j ) ⊂]E∗− 1
j , E

∗+ 1
j [∩]U0(0), E0[

and ∫ E0

U0(0)
χ2
j (E) dE = 2

for j ∈ N. Then

g j (θ, E, v̄):=
√

|ϕ′(E, v̄)|
T (E)

χ j (E)
√

β(v̄) sin(2πkθ), (θ, E, v̄) ∈ ̄θ
0, j ∈ N,
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defines a Weyl-sequence with the three properties claimed above. In particular,
g j ∈ D(D̄2) for j ∈ N by Corollary 5.14 since T is bounded away from zero,
see Proposition 2.8. Furthermore,

∥∥− D̄2g j −
(
2πk T (E∗)−1

)2
g j
∥∥
H̄

= 23(πk)4
∫ E0

U0(0)
χ2
j (E)

∣∣∣∣ 1

T (E)2
− 1

T (E∗)2

∣∣∣∣
2

dE → 0

as j → ∞ by the continuity of T > 0 on ]U0(0), E0[, see Lemma 2.6. In addition,
the essential spectrum contains 0 (since the kernel of D̄ is an eigenspace of infinite
multiplicity) and is closed, which means that we have shown

(
2πN0

T ([U0(0), E0])
)2

⊂ σess(−D̄2) ⊂ σ(−D̄2).

Conversely, for fixed λ ∈ R \
(

2πN0
T ([U0(0),E0])

)2
there exists c > 0 such that

dist
(
λ T (E)2, (2πN0)

2
)

≥ c for every E ∈ [U0(0), E0]

due to the boundedness of T away from zero, see Proposition 2.8. Since (2πN0)
2

equals the spectrum of −∂2θ : H2
θ → L2(]0, 1[),

‖z‖2 ≤ 1

c

∥∥∥
(
−∂2θ − λ T (E)2

)
z
∥∥∥
2

for z ∈ H2
θ , E ∈ [U0(0), E0],

see [29,Theorem5.8].However, this rules out the existenceof a sequence (g j ) j∈N ⊂
D(D̄2) such that ‖g j‖H̄ = 1 for j ∈ N and

∥∥−D̄2g j − λg j
∥∥
H̄ → 0 as j → ∞,

since in that case,
∥∥∥−D̄2g j − λg j

∥∥∥2
H̄

=
∫

̄E v̄
0

T (E)−3

|ϕ′(E, v̄)|
∫ 1

0
| − ∂2θ g j (θ, E, v̄)

− λ T (E)2g j (θ, E, v̄)|2 dθ d(E, v̄)

≥ c2

T (E)4

∫
̄E v̄
0

T (E)

|ϕ′(E, v̄)|
∫ 1

0
|g j (θ, E, v̄)|2 dθ d(E, v̄)

= c2

T (E)4
> 0

for j ∈ N. Therefore, by a weak version of Weyl’s criterion [29, Theorem 5.10] we
conclude λ /∈ σ(−D̄2).

A simple consequence of the spectral properties of −D̄2 is the following esti-
mate:

Corollary 5.17. (A Poincaré inequality) For every g ∈ D(D̄) with g ⊥ ker(D̄),

‖D̄g‖2
H̄

≥ 4π2

T (E0)2
‖g‖2

H̄
.
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While the above estimate for g ∈ D(D̄2) follows immediately from Theo-
rem 5.16 and the skew-symmetry of D̄, we have to mollify an element of D(D̄) in
some way to get the result there as well. This approximation will be useful later on
as well.

Remark 5.18. Let g ∈ D(D̄). To approximate g by smooth functions while keeping
D̄g under control, we expand g in its θ -Fourier series, i.e.,

g(θ, E, v̄) =
∞∑
k=0

ak(E, v̄) cos(2kπθ) +
∞∑
k=1

bk(E, v̄) sin(2πkθ), (5.21)

where the coefficients ak , bk are given by

a0(E, v̄):=
∫ 1

0
g(θ, E, v̄) dθ,

ak(E, v̄):=2
∫ 1

0
g(θ, E, v̄) cos(2πkθ) dθ,

bk(E, v̄):=2
∫ 1

0
g(θ, E, v̄) sin(2πkθ) dθ,

for k ∈ N and (E, v̄) ∈ ̄E v̄
0 . Furthermore, by Lemma 5.12,

D̄g(θ, E, v̄) = − 2π

T (E)

∞∑
k=1

k ak(E, v̄) sin(2kπθ)

+ 2π

T (E)

∞∑
k=1

k bk(E, v̄) cos(2πkθ). (5.22)

Eqns. (5.21) and (5.22) both hold as limits in H̄ . Thus we may assume g to be of
the form

g(θ, E, v̄) =
K∑

k=0

ak(E, v̄) cos(2kπθ) +
K∑

k=1

bk(E, v̄) sin(2πkθ) (5.23)

for some K ∈ N. Observe that g ⊥ ker(D̄) is equivalent to a0 = 0 on ̄E v̄
0 .

Similarly, g being odd in v1 is equivalent to ak = 0 for k ∈ N0 and g being odd in
x is equivalent to a2k = 0 = b2k+1 for k ∈ N0, i.e., these properties carry over too.

To achieve g ∈ D(D̄2), we have to mollify g in the (E, v̄)-direction as well.
More precisely, we replace ak, bk by approximations ãk, b̃k ∈ C∞

c (int(̄E v̄
0 )) in

(5.23) such that the resulting function g̃ is in C2
c (̄0). Then g̃ and D̄g̃ approximate

g and D̄g respectively. In particular, by requiring ãk = 0 or b̃k = 0 if ak = 0 or
bk = 0 respectively, the possible parity properties of g carry over to g̃.

We use Theorem 5.16 to determine the spectrum of Ā = −(D̄2+B̄) by showing
that adding B̄ does not change the essential spectrum; see (4.10) for the definition
of B̄.
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Theorem 5.19. (−B̄) is relatively (−D̄2)-compact. Therefore, by theWeyl theorem,

σess(Ā) = σess(−D̄2).

Together with Theorem 5.16, this implies that

σess(Ā) =
(

2πN0

T ([U0(0), E0])
)2

= 4π2
(

N0

T ([U0(0), E0])
)2

, (5.24)

where Ā denotes the operator on the whole spaceD(D̄2) with no symmetry restric-
tions. In addition,

σess(Ā
∣∣H̄) = 4π2

(
2N

T ([U0(0), E0])
)2

; (5.25)

recall that H̄ denotes the functions in H̄ which are odd in v1 and x. Here,min(N) =
1, N0 = N ∪ {0}.
Proof. Since B̄ is continuous on H̄ and D̄2 is self-adjoint with non-empty resolvent
set, the claimed relative compactness is equivalent to the operator

−B̄ :
(
D(D̄2), ‖D̄2 · ‖H̄ + ‖ · ‖H̄

)
→ H̄ (5.26)

being compact; we refer to the proof of Theorem5.9 formore details. Let (gk)k∈N ⊂
D(D̄2) be such that (gk)k∈N and (D̄2gk)k∈N are bounded in H̄ . Then (D̄gk)k∈N ⊂ H̄
is also bounded, see Corollary 5.17. Thus, (U ′̄

Dgk
)k∈N and (U ′′̄

Dgk
)k∈N are bounded

in L2(R) due to (A.3), and supp (U ′̄
Dgk

), supp (U ′′̄
Dgk

) ⊂ [−R0, R0] for k ∈ N.

Therefore, the compact embedding H1([−R0, R0]) � L2([−R0, R0]) yields that
(U ′̄

Dgk
)k∈N converges strongly in L2(R), at least after extracting a subsequence.

Representing B̄ as in (4.13) and rewriting the v-integral as in (4.12) then gives
‖B̄gk − B̄gl‖2H̄ → 0 as k, l → ∞. We therefore conclude that (B̄gk)k∈N is strongly

convergent in H̄ .
Translating oddness in v1 or x into the θ -coordinate allows us to conclude the

statements for the restriction of Ā onto H̄.

As in the spherically symmetric case, these sets contain a finite number of gaps
iff T is non-constant. The precise formof the sets depends on the steady state and the
behavior of the period function T ; see Remark 5.10. In any case, the boundedness
of T from above (Proposition 2.8) again yields the existence of a gap in the essential
spectrum of Ā at the origin which we refer to as the principal gap.

6. Kurth Solutions

In this sectionwepresent two families of semi-explicit, timedependent solutions
which are exactly time-periodic and arise by a suitable perturbation of a correspond-
ing steady state. The first family solves the spherically symmetric Vlasov-Poisson
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system and was introduced by R. Kurth [39]. The second family is the analogue
for the plane symmetric case. We are in particular interested in the relation of the
period of the time-periodic solutions close to the corresponding steady state and
the orbital period(s) of the particles in the steady state configuration itself. The
latter will give us a first intuition of where the eigenvalue of the linearized operator
corresponding to the aforementioned oscillations can be positioned relative to the
essential spectrum.

6.1. The spherically symmetric Kurth family

Following Kurth [39] we define, in the spherically symmetric situation,

f0(x, v):= 3

4π3

⎧⎨
⎩
(
1 − |x |2 − |v|2 + |x × v|2)−1/2

, where (. . .) > 0
and |x × v| < 1,

0 , else;
see also [60, Section 1.3]. An easy calculation shows that f0 is a stationary solution
of the radial Vlasov-Poisson system corresponding to the ansatz function

ϕ(E, L) = 3

4π3

{
(−2 − 2E + L)−1/2 , where (. . .) > 0 and L < 1,

0 , else;
we emphasize the fact that f0 is singular at the boundary of its support. Setting

f (t, x, v):= f0

(
x

R(t)
, R(t)v − Ṙ(t)x

)
(6.1)

embeds this steady state into a family of time-periodic solutions, with spatial mass
density

ρ(t) = 3

4π

1

R3(t)
1BR(t) ,

provided the function R(t) solves the differential equation

R̈ − 1

R3 + 1

R2 = 0. (6.2)

We supplement this equation with initial data

R(0) = 1, Ṙ(0) = γ. (6.3)

For γ = 0 we find that R(t) = 1 is constant and recover the steady state f0. For
0 < |γ | < 1, the solution is time-periodic, which can be seen as follows. The
equation has the conserved quantity

1

2
Ṙ2 + 1

2R2 − 1

R
= const = 1

2
γ 2 − 1

2
=:Eγ .
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The behavior of the corresponding potential 1
2R2 − 1

R implies that energy levels

− 1
2 < Eγ < 0, i.e., 0 < |γ | < 1, correspond to closed orbits and non-trivial,

time-periodic solutions of (6.2). Their periods are given by

P(γ ) = 2
∫ R+(γ )

R−(γ )

dr√
2Eγ + 2

r − 1
r2

= 2√−2Eγ

∫ R+(γ )

R−(γ )

r dr√
(R+(γ ) − r)(r − R−(γ ))

, (6.4)

where 0 < R−(γ ) < R+(γ ) are the two positive roots of the polynomial 2Eγ r2 +
2r − 1. In the integral in (6.4), R−(γ ) ≤ r ≤ R+(γ ), and the remaining integral is
equal to π . Hence the fact that these roots converge to 1 as γ → 0 implies that

lim
γ→0

P(γ ) = 2π.

On the other hand, a straight-forward calculation shows that the radial particle
period of all the particles in the steady state equals π , i.e.,

T (E, L) = π, (E, L) ∈ ̊EL
0 .

In view of the spectral considerations of the previous section, this means that the
eigenvalue corresponding to the limiting period 2π lies in the principal gap of the
essential spectrum of the linearized operator. Note that the Kurth steady state does
not satisfy our general assumptions, but the results from Sect. 5.1 are still expected
to hold true in the Kurth setting. However, the discrepancy between the limiting
period and the period of the particle trajectories is only present when restricting
the latter to the radial motion. When the particle trajectories are considered in
(x, v)-coordinates, all particles have period 2π , caused by an azimuthal period of
2π . This illustrates that the restriction to the spherically symmetric setting may
be important when searching for isolated eigenvalues in the principal gap of the
essential spectrum.

6.2. A planar Kurth-type family

Let

f0(x, v):= 1

4π2

(
1 − x2 − v21

)−1/2

+ β(v̄)

for (x, v) ∈ R × R
3, where β is as specified in Sect. 2.2, in particular

∫
R2 β = 1;

also recall (1.20). Then f0(x, v) = 0 if |x | ≥ 1, and for |x | < 1 the induced spatial
density becomes

ρ0(x) =
∫
R3

f0(x, v) dv = 1

4π2

∫
v21<1−x2

(
1 − x2 − v21

)−1/2
dv1

= 1

4π2

∫ 1

x2

dη√
1 − η
√

η − x2
= 1

4π
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so that

ρ0 = 1

4π
1]−1,1[.

This density induces the potential

U0(x) = 2π
∫
R

|x − y| ρ0(y) dy =
⎧⎨
⎩

x , x ≥ 1,
1
2

(
1 + x2
)

, −1 < x < 1,
−x , x ≤ −1,

and

U ′
0(x) =

⎧⎨
⎩

1 , x ≥ 1,
x , −1 < x < 1,

−1 , x ≤ −1.

On the support of f0 the particle energy E takes the form

E(x, v1) = 1

2
v21 +U0(x) = 1

2

(
1 + x2 + v21

)
,

i.e., f0 only depends on the conserved quantities E and v̄ via the ansatz function

ϕ(E, v̄) = 1

4
√
2π2

(1 − E)
−1/2
+ β(v̄).

With the exception of the factor (4
√
2π2)−1, which we inserted to make f0 look

similar to the radial case, ϕ is exactly of the polytropic form (2.18) with index
k = − 1

2 . In particular, f0 indeed induces a stationary solution of the planar Vlasov-
Poisson system (1.11)–(1.13).

As in the spherically symmetric setting, we embed this steady state into a family
of time-periodic solutions

f (t, x, v):= f0

(
x

R(t)
, R(t)v1 − Ṙ(t)x, v̄

)
,

where the function R(t) still needs to be determined. This phase space density
induces the spatial density

ρ(t, x) = 1

R(t)
ρ0

(
x

R(t)

)

and potential

U (t, x) = R(t)U0

(
x

R(t)

)
,

so that

U ′(t, x) = U ′
0

(
x

R(t)

)
.
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Substituting all this into the Vlasov equation and observing that f0 satisfies the
stationary Vlasov equation with potential U0 we see that f satisfies the Vlasov
equation with its induced potential U , iff

R̈ − 1

R3 + 1 = 0. (6.5)

We again supplement this with the initial data (6.3); the choice γ = 0 recovers the
steady state f0. For γ �= 0 the solution is time-periodic, which can be seen similarly
to the radial setting. Along solutions of (6.5) the following quantity is conserved:

1

2
Ṙ2 + 1

2R2 + R = const = 1

2
γ 2 + 3

2
=: Eγ . (6.6)

The corresponding potential 1
2R2 +R has a unique, strict, global minimum at R = 1

and becomes infinite both for R → 0 and R → ∞. Hence every level set of the
energy (6.6) with Eγ > 3

2 , i.e., γ �= 0, corresponds to a closed orbit and a non-
trivial, time-periodic solution of (6.5) with data (6.3).

We now want to determine the period of the above time-periodic solutions in
the limit γ → 0 and compare it to the periods of the particle trajectories in the
steady state. As to the latter, they are given as the solutions to

ẍ = −x,

i.e.,

T (E) = 2π,
1

2
< E ≤ 1.

The period of the time-periodic solution depends on γ and is given as

P(γ ) = 2
∫ R+(γ )

R−(γ )

dr√
2Eγ − 2r − 1/r2

= 2
∫ R+(γ )

R−(γ )

r dr√
2Eγ r2 − 2r3 − 1

.

Here 0 < R−(γ ) < R+(γ ) are the two positive roots of the cubic polynomial

pγ (r) = 2Eγ r
2 − 2r3 − 1;

notice that p′
γ (r) = 0 for r = 0 and r = 2

3 Eγ and pγ ( 23 Eγ ) > 0 if Eγ > 3
2 ,

i.e., γ �= 0. If we denote the third, negative root of pγ by r∗(γ ), we can factor the
polynomial pγ and conclude that

r∗(γ ) = − 1

2R+(γ )R−(γ )
.

Hence,

P(γ ) = √
2
∫ R+(γ )

R−(γ )

r dr√
(R+(γ ) − r)(r − R−(γ ))(r − r∗(γ ))

.



664 M. Hadžić, G. Rein & C. Straub

Now we observe that
∫ R+(γ )

R−(γ )

dr√
(R+(γ ) − r)(r − R−(γ ))

= π.

Using the fact that the function r/
√
r − r∗(γ ) is strictly increasing on [0,∞[, we

obtain the estimate

√
2π

R−(γ )√
R−(γ ) − r∗(γ )

< P(γ ) <
√
2π

R+(γ )√
R+(γ ) − r∗(γ )

.

For γ → 0, both R+(γ ) → 1 and R−(γ ) → 1, and thus

lim
γ→0

P(γ ) = 2π√
3
.

In contrast to the radial case, the limiting period is strictly smaller than the period
of the particle trajectories. In the light of the spectral analysis this means that the
eigenvalue corresponding to the limiting period 2π/

√
3 is not in the principal gap

of the planar linearized operator—again assuming that the results from Sect. 5.2
also apply to the plane symmetric Kurth steady state. However, when restricting Ā
to the space of functions being odd in v1 and x , the aforementioned eigenvalue lies
in the principal gap since the non-zero bottom of the essential spectrum quadruples,
see (5.25). This shows that assuming oddness in v1 and x can be beneficial in the
search for eigenvalues; note that such symmetries are needed for a function to be
plane symmetric in the sense of (1.10) anyway.

7. The Spectral Gap

We show that the spectra of A and Ā are contained in [0,∞[ (Corollaries 7.2
and 7.8) and then characterize the respective nullspaces (Corollary 7.3 andTheorem
7.9). In particular, we show that the whole spectra posses a gap at the origin; in the
plane symmetric case we restrict the linearized operator Ā appropriately to obtain
the latter results.

In both the radial and planar setting, the above results are all based on certain
forms of Antonov’s coercivity bound.

7.1. Spherically symmetric case

Let A denote the self-adjoint Antonov operator on H with domain D(D2);
similar statements hold true for its restriction to Hodd . First, we restate Antonov’s
coercivity bound:

Proposition 7.1. For g ∈ C2
c,r (0) odd in v,

〈Ag, g〉H ≥
∫

0

1

|ϕ′(E, L)|
U ′
0(r)

r
|g(x, v)|2 d(x, v). (7.1)



On the Existence of Linearly Oscillating Galaxies 665

An estimate of the above type was first shown by V. A. Antonov [2]. For recent
proofs we refer the reader to [26, Lemma 1.1] or [42, (4.6)]. In the former reference
the result is only proven for isotropic steady states, but the same proof can also be
applied to show the coercivity bound for general linearly stable models and then
provides a sharper estimate than the one stated above. We use (7.1) to deduce the
following two corollaries:

Corollary 7.2. The quadratic form associated with A is non-negative on D(D).
Thus, σ(A) ⊂ [0,∞[.
Proof. We split g ∈ D(D) into its even and odd part in v as in (3.1) and use an
approximation argument to extend Antonov’s coercivity bound to D(D) (see for
example [61, Proposition 2]) to obtain 〈A(g−), g−〉H ≥ 0. On the other hand,
B(g+) = 0, and therefore 〈A(g+), g+〉H ≥ 0. Since the odd and even subspaces
are orthogonal to each other and A(g±) = (Ag)± since D2 preserves v-parity, we
conclude that

〈Ag, g〉H = 〈A(g+), g+〉H + 〈A(g−), g−〉H ≥ 0.

For the equivalence of the non-negativity of the quadratic form of A and σ(A) ⊂
[0,∞[ we refer to [29, Proposition 5.12].

Corollary 7.3. ker(A) = ker(D).

Proof. The representation (4.6) of B immediately yields ker(D) ⊂ ker(A).
Conversely, if Ag = 0 for some g ∈ D(D2), we split g into its even and odd

part w.r.t. v as in (3.1) to obtain

0 = (Ag)+ = −D2(g+), (7.2)

0 = (Ag)− = −D2(g−) − B(g−). (7.3)

We then extend Proposition 7.1 to D(D2) by approximation to obtain g− = 0. For

the approximation process, note that the weight
U ′
0(r)
r is positive and bounded on

the radial support, in particular limr→0
U ′
0(r)
r = U ′′

0 (0) = 4π
3 ρ0(0) < ∞ if the

steady state does not have an inner radial vacuum region.
On the other hand, (7.2) implies ‖D(g+)‖2H = 0 and therefore g+ ∈ ker(D),

i.e., overall we conclude that g ∈ ker(D).

One approach to get a positive eigenvalue of A restricted to Hodd is to show
that

λ1:= inf
g∈D(D)\{0}
g⊥ker(D)

〈Ag, g〉H
‖g‖2H

(7.4)

is positive, i.e., λ1 > 0, and that the infimum is obtained by some odd-in-v function.
While the existence of eigenvalues will be approached in Sect. 8 by a different

method, we next show λ1 > 0; the positivity of λ1 however is a useful tool for
Sect. 8. First, we consider the following intermediate variational problem:
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Proposition 7.4. Let

λ̃:= inf
g∈D(D)
g /∈ker(D)

〈Ag, g〉H
‖Dg‖2H

= inf
g∈D(D)
g /∈ker(D)

1 − ‖∂xUDg‖22
4π‖Dg‖2H

.

Then 0 < λ̃ < 1 and the infimum is obtained by a minimizer.

Proof. Let (gk)k∈N ⊂ D(D) be a minimizing sequence, i.e., ‖Dgk‖2H = 1 for
k ∈ N and 〈Agk, gk〉H → λ̃ as k → ∞.
Convergence of the potentials. Due to Sect. A.1 in the appendix, UDgk ∈ C ∩
H2(R3) for k ∈ N and (UDgk )k∈N is bounded in H2(R3) by (A.1). Letψ ∈ H2(R3)

be such that UDgk ⇀ ψ in H2(R3) as k → ∞ after extracting a subsequence.
(A.2) yields supp (∂xUDgk ) ⊂ BR0(0) for every k ∈ N, and therefore

supp (∇ψ) ⊂ BR0(0). Together with the compact embedding H2(BR0(0)) �
H1(BR0(0)) we obtain

∂xUDgk → ∇ψ in L2(R3;R3), k → ∞.

Convergence of (Dgk)k∈N. (Dgk)k∈N is bounded in H . Thus, there exists h ∈ H
such that Dgk ⇀ h in H as k → ∞, again after extracting a subsequence.
The connection between the above limits. Using (2.5), it follows from the above
step that

∫
R3

Dgk(·, v) dv = ρDgk ⇀

∫
R3

h(·, v) dv in L2(R3), k → ∞.

As before, we extend all functions by 0. Since �UDgk = 4πρDgk , the uniqueness
of weak limits in L2(R3) then yields

�ψ =
∫
R3

h(·, v) dv in L2(R3).

From this equality it follows thatψ = Uh , whereUh :=− 1
|·| ∗ρh is the gravitational

potential induced by ρh :=
∫
R3 h(·, v) dv. To see this, first note ρh ∈ L1 ∩ L2(R3)

since supp (ρh) ⊂ BR0(0). Then basic potential theory yieldsUh ∈ L6(R3). On the
other hand, ψ ∈ L6(R3) by the embedding H1(R3) ↪→ L6(R3). Thus, u:=Uh −
ψ ∈ L6(R3) and u is harmonic. The mean value property of harmonic functions
then yields u = 0, i.e., ψ = Uh .
The minimizer. Since Dgk ∈ im(D) ⊂ ker(D)⊥ for every k ∈ N by the skew-
adjointness of D, we also have h ⊥ ker(D). By Lemma 5.5 there exists g ∈ D(D)

such that Dg = h. Then the above convergences imply that

1 − 1

4π
‖∂xUDg‖22 = 1 − 1

4π
‖∇ψ‖22 = lim

k→∞

(
1 − 1

4π
‖∂xUDgk‖22

)
= λ̃.

If ‖∂xUDg‖22 = 0 we would instantly get λ̃ = 1. However, this contradicts the fact
that we can easily choose some f ∈ D(D) \ ker(D) such that ∂xUD f �= 0.
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Thus, ‖∂xUDg‖22 > 0, in particular, Dg �= 0. This means that g can be taken
as a test function in the infimum λ̃, leading to

1 − 1

4π
‖∂xUDg‖22 = λ̃ ≤ 1 − ‖∂xUDg‖22

4π‖Dg‖2H
,

i.e., ‖Dg‖2H ≥ 1. On the other hand, the weak lower semicontinuity of L2-norms
yields

‖Dg‖2H ≤ lim inf
k→∞ ‖Dgk‖2H = 1.

Overall, ‖Dg‖2H = 1 and therefore

λ̃ = 1 − 1

4π
‖∂xUDg‖22 = 〈Ag, g〉H = 〈Ag, g〉H

‖Dg‖2H
,

i.e., g is the desired minimizer.

The techniques we employed in the above proof are similar to the ones used
for Schrödinger type operators [44, Chapter 11] and for the Guo-Lin operator, see
[23, Lemma 3.1] and [65, Proposition 4.8].

We now apply Proposition 7.4 togetherwith the Poincaré inequality fromCorol-
lary 5.8 to estimate λ1.

Theorem 7.5. The constant λ1 defined in (7.4) is strictly positive. In particular,

σ(A) \ {0} ⊂ [λ1,∞[ , (7.5)

i.e, there is a gap in the spectrum of A.

Proof. Combining Proposition 7.4 and Corollary 5.8 yields

〈Ag, g〉H ≥ λ̃‖Dg‖2H ≥ 4π2

sup2
̊EL
0

(T )
λ̃ ‖g‖2H (7.6)

for every g ∈ D(D) with g ⊥ ker(D). Therefore

λ1 ≥ λ̃
4π2

sup2
̊EL
0

(T )
> 0.

To conclude (7.5), recall thatwe have explicitly characterized the essential spectrum
ofA in Theorem 5.9. In particular, every element of σ(A) within the principal gap
G has to be an eigenvalue. SinceA is self-adjoint, eigenfunctions corresponding to
different eigenvalues are orthogonal to each other and the eigenspace of the eigen-
value 0 equals ker(D), see Corollary 7.3. Thus, applying (7.6) to an eigenfunction
of a non-zero eigenvalue indeed yields (7.5).

Remark 7.6. (a) Since Hodd ⊂ ker(D)⊥, the spectrum of the restricted operator
A : Hodd ∩ D(D2) → Hodd is bounded from below by λ1 > 0.

(b) A non-zero, odd-in-v function where equality holds in (7.6) also constitutes
a minimizer to the variational problem (7.4). However, (7.6) contains the two
separate variational problems Theorem 5.9 and Proposition 7.4 with differing
minimizers, which is why we do not pursue this approach any further.
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7.2. Plane symmetric case

We now turn our attention to the planar linearized operator Ā : D(D̄2) → H̄ ,
see Definition 4.9. First, we prove a coercivity bound analogous to Proposition 7.1
in the radial setting.

Proposition 7.7. Let g ∈ C2
c (̄0) be odd in v1.

(a) 〈Āg, g〉H̄ ≥ 0.
(b) If g is also odd in x,

〈Āg, g〉H̄ ≥ 3
∫

̄0

1

|ϕ′(E, v̄)|
U ′
0(x)

x
|g(x, v)|2 d(x, v). (7.7)

Proof. We proceed similarly to [26, Proof of Lemma 1.1]: For every g ∈ C2
c (̄0),

〈B̄g, g〉H̄ = 4π
∫
R

(∫
R3

v1 g(x, v) dv

)2
dx

≤ 4π
∫
R

(∫
R3

v21 |ϕ′(E, v̄)| dv
)(∫

R3

|g(x, v)|2
|ϕ′(E, v̄)| dv

)
dx

= 4π
∫

̄0

ρ0(x)
|g(x, v)|2
|ϕ′(E, v̄)| d(x, v),

where we used (4.12) for the last equality. Thus,

〈Āg, g〉H̄ ≥
∫

̄0

1

|ϕ′(E, v̄)|
(
|D̄g(x, v)|2 − 4πρ0(x) |g(x, v)|2

)
d(x, v). (7.8)

For (a) consider

μ(x, v):= 1

v1
g(x, v), (x, v) ∈ ̄0.

Since g is odd in v1, we obtain μ ∈ C2
c (̄0). Furthermore, D̄g = v1D̄μ + μ D̄v1

and therefore

|D̄g|2 = v21 |D̄μ|2 + v1D̄
(
μ2
)
D̄v1 + μ2|D̄v1|2

= v21 |D̄μ|2 + D̄
(
v1μ

2D̄v1

)
+ 4πg2ρ0.

Thus,

〈Āg, g〉H̄ ≥
∫

̄0

1

|ϕ′(E, v̄)| v21 |D̄μ(x, v)|2 d(x, v) ≥ 0;

note that there are no boundary terms when we integrate by parts to obtain
∫

̄0

1

|ϕ′(E, v̄)| D̄
(
v1μ

2D̄v1

)
d(x, v) = 0. (7.9)
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For part (b) we consider

μ(x, v):= 1

v1 x
g(x, v), (x, v) ∈ ̄0;

μ ∈ C2
c (̄0), since g is odd in x and v1. As in the first part, D̄g = v1x D̄μ +

μ D̄ (v1x) and hence

|D̄g|2 = v21x
2|D̄μ|2 + D̄

(
v1x μ2D̄ (v1x)

)
− v1x μ2D̄2(v1x)

= v21x
2|D̄μ|2 + D̄

(
v1x μ2D̄ (v1x)

)
+ 4πg2ρ0 + 3g2

U ′
0

x
.

Thus,

〈Āg, g〉H̄ ≥
∫

̄0

1

|ϕ′(E, v̄)|
(

v21x
2 |D̄μ(x, v)|2 + 3

U ′
0(x)

x
|g(x, v)|2

)
d(x, v),

where we again integrated by parts similarly to (7.9); note that the boundary terms
at x = 0 vanish since g is odd in x .

We again obtain the positivity of Ā:

Corollary 7.8. The quadratic form associated with Ā is non-negative on D(D̄).
Thus, σ(Ā) ⊂ [0,∞[.

Proof. We split g ∈ D(D̄) into its even and odd part g± in v1 analogously to (3.1).
Then 〈Ā(g+), g+〉H̄ ≥ 0 since B̄(g+) = 0. On the other hand, an approximation
argument (as in Remark 5.18) allows us to extend Proposition 7.7 (a) onto functions
in D(D̄) which are odd in v1, i.e., 〈A(g−), g−〉H̄ ≥ 0.

Theorem 7.9. There exists c > 0 such that for all g ∈ D(D̄) ∩ H̄,

〈Āg, g〉H̄ ≥ c‖g‖2
H̄

.

In particular, the kernel of Ā : D(D̄2) ∩ H̄ → H̄ is trivial.

Proof. Approximating as in Remark 5.18 allows us to extend the coercivity

bound (7.7) to D(D̄) ∩ H̄; note that the weight
U ′
0(x)
x is bounded on R, since

limx→0
U ′
0(x)
x = U ′′

0 (0) = 4πρ0(0) < ∞. Furthermore,
U ′
0(x)
x is bounded away

from zero on the support of the steady state since ρ0(0) > 0, which implies the
above estimate.

In particular, the spectrum of Ā : D(D̄) ∩ H̄ → H̄ is bounded away from zero,
cf. [29, Proposition 5.12]. The proof of this result in the plane symmetric setting is
easier than in the radial case since ρ0(0) > 0 here.



670 M. Hadžić, G. Rein & C. Straub

8. Existence of Eigenvalues

As explained in the introduction, S. Mathur [52] used a version of the Birman-
Schwinger principle to show the existence of periodic solutions to the linearized
Vlasov-Poisson system in the presence of an external potential. In this section
we use this approach to derive a criterion for the existence of periodic oscillations
without such an external potential.More precisely, we are interested in the existence
of eigenfunctions for the operatorsA and Ā, seeDefinitions 4.4 and 4.9 respectively.
In the radial case, we seek an eigenfunction which is odd in v/w, in the planar case
the eigenfunction has to be plane symmetric in the sense of (1.10). This is why we
always restrict A to odd functions in this section, i.e., by A we denote

A = A∣∣Hodd : D(D2) ∩ Hodd → Hodd ,

D2 andB are restricted accordingly; seeSect. 4.1 for the definitions of these function
spaces and operators.

In the planar setting we restrict the linearized operator Ā onto the functions
which are odd in v1 and x , i.e., by Ā we denote

Ā = Ā∣∣H̄ : D(D̄2) ∩ H̄ → H̄,

D̄2 and B̄ are restricted accordingly; the function spaces and operators are defined
in Sect. 4.2, see in particular (4.7) for the definition of H̄.

8.1. Mathur’s argument and a criterion for the existence of eigenvalues

We reformulate the eigenvalue problem using a Birman-Schwinger type argu-
ment. For g ∈ Hodd ∩ D(D2) and λ /∈ σess(A) let

h:=
(
−D2 − λ

)
g ∈ Hodd .

Since σess(A) = σess(−D2) = σ(−D2), the resolvent operator

R−D2(λ):=
(
−D2 − λ

)−1 : Hodd → Hodd

is bounded and we can recover g from h via g = R−D2(λ)h. It is clear that g is an
eigenfunction of A with eigenvalue λ if and only if

(−D2 − λ
)
g = Bg, i.e.,

h = Bg = BR−D2(λ)h.

In the planar case, we conclude similarly that g ∈ D(D̄2)∩H̄ is an eigenfunction of
Ā with eigenvalue λ /∈ σess(Ā) if and only if

(−D̄2 − λ
)
g = B̄g, or equivalently

h = B̄R−D̄2(λ)h with h = (−D̄2 − λ
)
g. It is therefore natural to introduce the

λ-parametrized families of operators

Qλ:=BR−D2(λ) : Hodd → Hodd , (8.1)

Q̄λ:=B̄R−D̄2(λ) : H̄ → H̄. (8.2)
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Before proving some general properties of these operators in Lemma 8.3 we first
discuss the connection between their eigenvalues and the ones ofA and Ā respec-
tively. We have shown above that λ is an eigenvalue of A (Ā) if and only if 1 is an
eigenvalue of Qλ (Q̄λ). In fact, it is easy to see that the following lemma holds.

Lemma 8.1. Let λ /∈ σess(A) (λ /∈ σess(Ā)) and μ ≥ 1. Then λ is an eigenvalue
of −D2 − 1

μ
B (−D̄2 − 1

μ
B̄) if and only if μ is an eigenvalue of Qλ (Q̄λ).

Lemma 8.1 is simply a version of the Birman-Schwinger principle [44]. The
spectral properties of the Antonov operators derived in the previous sections yield
the following connection between eigenvalues in the principal gap of −D2 − 1

μ
B

(−D̄2 − 1
μ
B̄) and A (Ā) .

Lemma 8.2. (a) If there existsμ ≥ 1 such that−D2− 1
μ
B possesses an eigenvalue

in the principal gap

G =
⎤
⎦0, 4π2

sup2
̊EL
0

(T )

⎡
⎣ , (8.3)

then A also has an eigenvalue in G.
(b) If there exists μ ≥ 1 such that −D̄2 − 1

μ
B̄ possesses an eigenvalue in the

principal gap

Ḡ :=
]
0, 4

4π2

T 2(E0)

[
, (8.4)

then Ā also has an eigenvalue in Ḡ.
Proof. For part (a), B ≥ 0 (in the sense of quadratic forms, see [29, Definition
5.11]) and 1

μ
≤ 1 yield −D2 − 1

μ
B ≥ A. Note that −D2 − 1

μ
B is self-adjoint since

D2 is self-adjoint and B is bounded and symmetric. By assuming the existence of
an eigenvalue of −D2 − 1

μ
B in the principal gap, we have −D2 − 1

μ
B < 4π2

sup2(T )
id,

where < is defined as �≥. Thus, transitivity yieldsA < 4π2

sup2(T )
id, which means that

σ(A) �⊂
⎡
⎣ 4π2

sup2
̊EL
0

(T )
,∞
⎡
⎣ ,

cf. [29]. Since A is restricted to functions odd in v here, Theorem 7.5 (see also
Remark 7.6 (a)) implies σ(A) ⊂]0,∞[, i.e., we obtain σ(A) ∩ G �= ∅. By Theo-
rem 5.9 every element of the spectrum ofA within G has to be an eigenvalue ofA;
see also [58, Theorem XIII.1].

The proof of part (b) is analogous; the positivity of the resulting eigenvalue
is ensured by Theorem 7.9. Recall however that we have restricted the operators
onto H̄ in the planar setting and the essential spectrum of Ā is given by (5.25). In
particular, the bottom of the essential spectrum is 4 4π2

T 2(E0)
.



672 M. Hadžić, G. Rein & C. Straub

We now investigate the properties of Qλ and Q̄λ for fixed λ ∈ ρ(−D2) and
λ ∈ ρ(−D̄2) respectively. As usual, ρ:=C \ σ denotes the resolvent set. Since all
involved operators are self-adjoint, we always restrict ourselves to real λ.

Lemma 8.3. The operators Qλ : Hodd → Hodd and Q̄λ : H̄ → H̄ are both linear,
continuous, and compact.

Proof. We only prove the claim for Qλ as the claim for Q̄λ follows analogously.
Linearity is obvious, continuity follows by Lemma 4.3 together with the bounded-
ness of the resolvent operator R−D2(λ) in the case λ ∈ ρ(−D2). The compactness
of Qλ is equivalent to the relative (−D2)-compactness of B, see Theorem 5.9 (and
[29, Definition 14.1]).

Since im(Qλ) ⊂ im(B), it is of interest to characterize measurable functions
G : [0,∞[→ R such that g(r, w, L) = |ϕ′(E, L)| w G(r) ∈ H ; recall the defini-
tion of B in (4.4).

Lemma 8.4. (a) If a spherically symmetric g : 0 → R is of the form g(r, w, L) =
|ϕ′(E, L)| w G(r), then

g ∈ H ⇔
∫ ∞

0
r2 ρ0(r)G

2(r) dr < ∞.

In particular, by the boundedness of ρ0,
∫∞
0 r2 G2(r) dr < ∞ implies g ∈ H.

(b) If g : ̄0 → R is of the form g(x, v) = |ϕ′(E, v̄)| v1 G(x), then

g ∈ H̄ ⇔
∫
R

ρ0(x)G
2(x) dx < ∞.

In particular, by the boundedness of ρ0,
∫
R
G2(x) dx < ∞ implies g ∈ H̄ .

Furthermore, g is odd in x if and only if G is odd in x.

Proof. As to part (a), Fubini’s theorem shows that g ∈ H is equivalent to

∞ > ‖g‖2H = 4π2
∫ ∞

0
G2(r)
∫ ∞

0

∫
R

w2 |ϕ′(E, L)| dw dL dr

= 4π
∫ ∞

0
r2 ρ0(r)G

2(r) dr,

where we used (4.5) for the last equality.
Similarly, for g : ̄0 → R,

‖g‖2
H̄

=
∫
R

G2(x)
∫
R3

v21 |ϕ′(E, v̄)| dv dx =
∫
R

ρ0(x)G
2(x) dx

by (4.12), and part (b) follows.
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Let

S:= {r ≥ 0 | ρ0(r) �= 0} ⊂ [0, R0[, (8.5)

S̄:= {x ∈ R | ρ0(x) �= 0} =] − R0, R0[, (8.6)

denote the spatial support of the respective steady states. Based on the previous
lemma, it is natural to introduce the spaces

F :=
{
G : S → R measurable |

∫
S
r2 ρ0(r)G

2(r) dr < ∞
}

, (8.7)

F1:=
{
G : S → R measurable |

∫
S
r2 G2(r) dr < ∞

}
⊂ F , (8.8)

and similarly

F̄ :=
{
G : S̄ → R measurable and odd |

∫
S̄
ρ0(x)G

2(x) dx < ∞
}

, (8.9)

F̄1:=
{
G : S̄ → R measurable and odd |

∫
S̄
G2(x) dx < ∞

}
⊂ F̄ . (8.10)

We treat F ,F1, F̄ , F̄1 as (subsets of weighted) L2-spaces, i.e., we identify func-
tions which are equal a.e. on S or S̄ respectively. Their norms ‖ · ‖F , ‖ · ‖F1 , ‖ · ‖F̄ ,
‖ · ‖F̄1

and scalar products 〈·, ·〉F , 〈·, ·〉F1 , 〈·, ·〉F̄ , 〈·, ·〉F̄1
are defined accordingly.

Definition & Remark 8.5. (The Mathur operators)

(a) Let G ∈ F and define g(r, w, L):=|ϕ′(E, L)| w G(r). Then by Lemma 8.4,
g ∈ Hodd . Since Qλg ∈ im(B), there exists F ∈ F such that (Qλg)(r, w, L) =
|ϕ′(E, L)| w F(r) for a.e. (r, w, L) ∈ r

0, and F is uniquely determined by G.
This defines a map

Mλ : F → F , G �→ F.

(b) Let G ∈ F̄ and define g(x, v):=|ϕ′(E, v̄)| v1 G(x). Then by Lemma 8.4, g ∈ H̄.
Since Q̄λg ∈ im(B̄), there exists a unique F ∈ F̄ such that (Q̄λg)(x, v) =
|ϕ′(E, v̄)| v1 F(x) for a.e. (x, v) ∈ ̄0. This defines a map

M̄λ : F̄ → F̄ , G �→ F.

These operators were introduced by Mathur [52], and we refer toMλ (M̄λ) as
the (planar) Mathur operator. The following key integral kernel representation of
Mλ is essentially also contained in [52].

Proposition 8.6. For any G ∈ F ,

(MλG)(r) =
∫
S
Kλ(r, σ )G(σ ) dσ (8.11)
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for a.e. r ∈ S, where

Kλ(r, σ ):=32π2

r2

∞∑
k=1

∫
EL
0 (r)∩EL

0 (σ )

|ϕ′(E, L)|
T (E, L)

× sin(2πkθ(r, E, L)) sin(2πkθ(σ, E, L))

4π2

T (E,L)2
k2 − λ

d(E, L) (8.12)

for r, σ > 0,

EL
0 (r):=

{
(E, L) ∈ ̊EL

0 | r−(E, L) < r < r+(E, L)
}

, r > 0,

and θ is defined in (5.3). Moreover, the map ]0,∞[2� (r, σ ) �→ Kλ(r, σ ) ∈ R is
continuous.

Proof. To apply Qλ on g ∈ Hodd defined by g(r, w, L) = |ϕ′(E, L)| w G(r), we
first have to apply the resolvent operator R−D2(λ). For this purpose we expand g
in its θ -Fourier series (recall that g is odd w.r.t. v):

g(θ, E, L) =
∞∑
k=1

bk(E, L) sin(2πkθ), (8.13)

where

bk(E, L):=2
∫ 1

0
g(θ, E, L) sin(2πkθ) dθ, (E, L) ∈ ̊EL

0 . (8.14)

Using (8.13)—which holds as a limit in H—now allows us to apply the resolvent
operator:

(
R−D2(λ)g

)
(θ, E, L) =

∞∑
k=1

1
4π2

T (E,L)2
k2 − λ

bk(E, L) sin(2πkθ) (8.15)

as a limit in H ; the representation (8.15) of the resolvent follows by Corollary 5.4.
To apply B, we change variables via (5.3) and get

bk(E, L) = 4
∫ 1

2

0
g(θ, E, L) sin(2πkθ) dθ

= 4
|ϕ′(E, L)|
T (E, L)

∫ r+(E,L)

r−(E,L)

G(r) sin(2πkθ(r, E, L)) dr. (8.16)

As for B, observe that for every f ∈ Hodd ,

(B f ) (r, w, L) = 8π2|ϕ′(E, L)| w
r2

∫
EL
0 (r)

f (r,
√
2Ẽ − 2�L̃(r), L̃) d(Ẽ, L̃).

(8.17)
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Inserting f = R−D2(λ)g yields the following for the integral in (8.17) for r > 0:∫
EL
0 (r)

(
R−D2(λ)g

)
(θ(r, E, L), E, L) d(E, L)

= 4
∫

EL
0 (r)

∞∑
k=1

|ϕ′(E, L)|
T (E, L)

sin(2πkθ(r, E, L))

4π2

T (E,L)2
k2 − λ

×
∫ r+(E,L)

r−(E,L)

G(σ ) sin(2πkθ(σ, E, L)) dσ d(E, L)

= 4
∫ ∞

0
G(σ )

∞∑
k=1

∫
EL
0 (r)∩EL

0 (σ )

|ϕ′(E, L)|
T (E, L)

× sin(2πkθ(r, E, L)) sin(2πkθ(σ, E, L))

4π2

T (E,L)2
k2 − λ

d(E, L) dσ, (8.18)

where we used (8.15), (8.16), and Fubini’s theorem. Note that we switched the
infinite sumwith the σ -integral and thenwith the (E, L)-integral in the last equality.
Switching with the σ -integral is verified by fixing (E, L) ∈ EL

0 (r) and observing
that the weight r2ρ0(r) is bounded away from 0 on [r−(E, L), r+(E, L)] if L > 0,
i.e.,G is integrable over [r−(E, L), r+(E, L)]. Furthermore, recall that the distance
of λ to the essential spectrum of−D2 is positive. The second switch will be justified
below. Together with (8.17) we get the desired representation (8.11) of MλG.

To prove the continuity of (r, σ ) �→ Kλ(r, σ ) we first extend the mapping θ

from (5.3) by setting

θ(r, E, L):=0 for r > 0, (E, L) ∈ ̊EL
0 \ EL

0 (r). (8.19)

Then

(r, σ ) �→ |ϕ′(E, L)|
T (E, L)

sin(2πkθ(r, E, L)) sin(2πkθ(σ, E, L))

4π2

T (E,L)2
k2 − λ

(8.20)

is continuous on ]0,∞[2 for every k ∈ N and (E, L) ∈ ̊EL
0 . Moreover, there

exists a constant C > 0 depending only on λ such that∣∣∣∣∣∣
n∑

k=1

|ϕ′(E, L)|
T (E, L)

sin(2πkθ(r, E, L)) sin(2πkθ(σ, E, L))

4π2

T (E,L)2
k2 − λ

∣∣∣∣∣∣
≤ |ϕ′(E, L)|

inf
̊EL
0

(T )
C

n∑
k=1

1

k2
≤ |ϕ′(E, L)|

inf
̊EL
0

(T )
C

π2

6
(8.21)

for r, σ > 0, (E, L) ∈ ̊EL
0 and n ∈ N; note inf

̊EL
0

(T ) > 0 by Proposition B.1.

This shows that for fixed (E, L) ∈ ̊EL
0 the limit

∞∑
k=1

|ϕ′(E, L)|
T (E, L)

sin(2πkθ(r, E, L)) sin(2πkθ(σ, E, L))

4π2

T (E,L)2
k2 − λ

(8.22)
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exists uniformly in r, σ > 0 and (8.22) defines a continuous function in (r, σ ).
Moreover, since |ϕ′| is integrable over EL

0 by (2.5) (after changing variables via
(5.2)), we conclude that
∫

EL
0

∞∑
k=1

|ϕ′(E, L)|
T (E, L)

sin(2πkθ(r, E, L)) sin(2πkθ(σ, E, L))

4π2

T (E,L)2
k2 − λ

d(E, L) (8.23)

is also continuous in r, σ > 0. The dominated convergence theorem and (8.21)
yield that we can switch the order of the integral and the infinite sum in (8.23), i.e.,
it follows that the kernel Kλ is indeed continuous on ]0,∞[2.

In the planar case, we can prove an analogous statement by exactly the same
method.

Proposition 8.7. For any G ∈ F̄ ,

M̄λ(G)(x) =
∫
S̄
K̄λ(x, y)G(y) dy (8.24)

for a.e. x ∈ S̄, where

K̄λ(x, y):=32π
∞∑
k=1

∫
̄E
0 (x)∩̄E

0 (y)

|α′(E)|
T (E)

sin(4πkθ(x, E)) sin(4πkθ(y, E))

4π2

T (E)2
(2k)2 − λ

dE

(8.25)

for x, y ∈ R,

̄E
0 (x):= {E ∈]U0(0), E0[ | x−(E) < x < x+(E)} , x ∈ R,

and θ is defined in (5.18). Moreover, R2 � (x, y) �→ K̄λ(x, y) ∈ R is a bounded
continuous function. Here α is the microscopic equation of state related to f0
via (2.14).

Proof. Except for obvious changes the proof is almost identical to the one of
Proposition 8.6. The resolvent operator reads

(
R−D̄2(λ)g

)
(θ, E, v̄) =

∞∑
k=1

1
4π2

T (E)2
(2k)2 − λ

bk(E, v̄) sin(4πkθ), (8.26)

where

bk(E, v̄):=2
∫ 1

0
g(θ, E, v̄) sin(4πkθ) dθ and

g(θ, E, v̄) =
∞∑
k=1

bk(E, v̄) sin(4πkθ) (8.27)

is the θ -Fourier series expansion of g ∈ H̄ defined by g(x, v) = |ϕ′(E, v̄)| v1 G(x).
Recall that g is odd in x and v1, so the Fourier series does not contain any cos-terms
nor sin(2πk·)-terms with odd k, see also Remark 5.18. We then follow the proof
above and note that the v̄-integral can be computed explicitly since ϕ′(E, v̄) =
α′(E) β(v̄).
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For the spectral analysis it is beneficial to treat Mλ (M̄λ) as an operator on
F1 (F̄1) instead of F (F̄), since the Mathur operators are symmetric on the former
spaces.

Lemma 8.8. Define Mλ : F1 → F1 and M̄λ : F̄1 → F̄1 by (8.11) and (8.24)
respectively. These operators are well-defined, linear, bounded, and self-adjoint.
Furthermore, they are Hilbert-Schmidt operators and therefore compact, see e.g.
[59, Theorems VI.22 and VI.23].

Proof. For all the claimed properties except of the self-adjointness, it suffices to
show that the integrals

∫
S

∫
S

r2

σ 2 K
2
λ(r, σ ) dσ dr,

∫
S̄

∫
S̄
K̄ 2

λ(x, y) dy dx (8.28)

are finite, since for G ∈ F1 we have by Cauchy-Schwarz

‖MλG‖2F1
=
∫
S
r2
(∫

S
Kλ(r, σ )G(σ ) dσ

)2
dr

≤ ‖G‖2F1

∫
S

∫
S

r2

σ 2 K
2
λ(r, σ ) dσ dr;

a similar estimate holds in the planar case.

If the spherically symmetric steady state is of polytropic form (2.2)with L0 > 0,
then the spatial support is bounded away from 0 due to the presence of an inner
vacuum region. In this case (8.28) is obviously finite since the integrand is bounded
on S2. In the planar setting, the finiteness of the second integral in (8.28) follows
similarly by the boundedness of the integrand as there are no singular terms in (8.25).
The finiteness of the first integral in (8.28) for the remaining radial steady states is
more challenging but will be shown below. Before that, observe that the symmetry
of Mλ : F1 → F1 follows from

〈MλG, F〉F =
∫
S

∫
S
r2Kλ(r, σ )G(σ ) F(r) dσ dr

and the symmetry of r2Kλ(r, σ ) in (r, σ ). The planar case is obvious.

Now consider a radial steady state of King type (2.3) or a polytrope (2.2) with
L0 = 0. In particular, ϕ(E, L) = ϕ(E) in both cases, i.e., the steady state is
isotropic. For every f ∈ L2(S × S),
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∣∣∣∣
∫
S

∫
S

r

σ
Kλ(r, σ ) f (r, σ ) dσ dr

∣∣∣∣
≤ 32π2

∞∑
k=1

∫
EL
0

|ϕ′(E)|
T (E, L)

1
4π2

T (E,L)2
k2 − λ

×
∫ r+(E,L)

r−(E,L)

∫ r+(E,L)

r−(E,L)

∣∣∣∣ sin(2πkθ(r, E, L))

r

sin(2πkθ(σ, E, L))

σ
f (r, σ )

∣∣∣∣ dσ dr d(E, L)

≤ 32π2‖ f ‖L2(S×S)

∞∑
k=1

∫
EL
0

|ϕ′(E)|
T (E, L)

× 1
4π2

T (E,L)2
k2 − λ

∫ r+(E,L)

r−(E,L)

sin2(2πkθ(r, E, L))

r2
dr d(E, L)

by inserting (8.12); the following calculations will show that we can switch the
infinite sum with the integrals. Thus,

∫
S

∫
S

r2

σ 2 K
2
λ(r, σ ) dσ dr

≤ 32π2
∞∑
k=1

∫
EL
0

|ϕ′(E)|
T (E, L)

1
4π2

T (E,L)2
k2 − λ

×
∫ r+(E,L)

r−(E,L)

sin2(2πkθ(r, E, L))

r2
dr d(E, L)

≤ 32π2

inf
̊EL
0

(T )

∞∑
k=1

∫
EL
0

|ϕ′(E)|
4π2

T (E,L)2
k2 − λ

∫ r+(E,L)

r−(E,L)

dr

r2
d(E, L)

≤ C
∫

EL
0

|ϕ′(E)|
r−(E, L)

d(E, L)

for some constantC > 0 depending on the steady state andλ; note that T is bounded
away from 0 by Proposition B.1 and that the distance between λ and the spectrum
of −D2 is positive. To show that the latter integral is finite, recall that r−(E, L) is
defined in Lemma 2.1 as a solution of

E = �L(r−(E, L)) = U0(r−(E, L)) + L

2r2−(E, L)
,

which implies

1

r−(E, L)
=
√
2E − 2U0(r−(E, L))√

L
≤ √

2

√
E0 −U0(0)√

L
.

Thus,
∫

EL
0

|ϕ′(E)|
r−(E, L)

d(E, L) ≤ √2E0 − 2U0(0)
∫ Lmax

0

dL√
L

∫ E0

U0(0)
|ϕ′(E)| dE < ∞,
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where Lmax ∈]0,∞[ is the maximal L-value in the steady state support and the
finiteness of the latter integral follows since k > 0 in the polytropic case. We
therefore conclude that the first integral in (8.28) is indeed finite.

In the next lemma we show thatMλ (M̄λ) map F (F̄) into the smaller spaces
F1 (F̄1).

Lemma 8.9. Mλ(F) ⊂ F1 and M̄λ(F̄) ⊂ F̄1.

Proof. Let F ∈ Mλ(F), i.e., there exists G ∈ F such thatMλG = F . Define the
spherically symmetric functions f, g : 0 → R by

f (r, w, L) = |ϕ′(E, L)| w F(r),

g(r, w, L) = |ϕ′(E, L)| w G(r), (r, w, L) ∈ r
0.

Lemma 8.4 yields f, g ∈ Hodd , and Qλg = f by the definition of Mλ, see
Definition 8.5. In other words,

f (r, w, L) = Bh(r, w, L) = 4π2|ϕ′(E, L)| w

r2∫ ∞

0

∫
R

w̃ h(r, w̃, L̃) dw̃ dL̃, (r, w, L) ∈ r
0,

where h:=R−D2(λ)g ∈ D(D2)∩ Hodd . Using the representation of F provided by
the formula above, we arrive at

‖F‖2F1
=
∫
S
r2 F2(r) dr = 16π4

∫
S

1

r2

(∫ ∞

0

∫
R

w h(r, w, L) dw dL

)2
dr

≤ 16π4
∫
S

1

r2

(∫ ∞

0

∫
R

w2 |ϕ′(E, L)| dw dL

)

×
(∫ ∞

0

∫
R

h2(r, w, L)

|ϕ′(E, L)| dw dL

)
dr

≤ C‖h‖2H ,

where we used (4.5) and the boundedness of ρ0 in the last inequality. In the planar
setting the proof is analogous; apply (4.12) instead of (4.5) for the last step.

We are now in the position to show the equivalence of the eigenvalues of Qλ

(Q̄λ) and the ones of the Mathur operator Mλ (M̄λ):

Lemma 8.10. Let μ ∈ R \ {0}.
(a) μ is an eigenvalue of Qλ if and only if μ is an eigenvalue of Mλ. Here, Mλ

can be seen as an operator F → F or F1 → F1.
(b) μ is an eigenvalue of Q̄λ if and only if μ is an eigenvalue of M̄λ, where M̄λ

can be seen as an operator F̄ → F̄ or F̄1 → F̄1.
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Proof. We only prove part (a), similar arguments apply in the planar setting.
If there exists g ∈ Hodd with Qλg = μg, then g ∈ im(B) since μ �= 0. Thus,

there exists G : S → R such that g is of the form g(r, w, L) = |ϕ′(E, L)| w G(r),
and G ∈ F by Lemma 8.4. Using Definition 8.5, the eigenvalue equation becomes

|ϕ′(E, L)| wMλG(r) = μ |ϕ′(E, L)| w G(r), (r, w, L) ∈ r
0. (8.29)

Hence, MλG = μG. In particular, G ∈ F1 by Lemma 8.9.
Conversely, let G ∈ F (recall F1 ⊂ F) be such that MλG = μG and define

g(r, w, L) = |ϕ′(E, L)| w G(r). Then g ∈ Hodd and (8.29) holds true.

Since Mλ : F1 → F1 (M̄λ : F̄1 → F̄1) is a symmetric and compact Hilbert-
Schmidt operator by Lemma 8.8, the spectrum ofMλ is real and its largest element
is given by

Mλ:= sup
{〈G,MλG〉F1 | G ∈ F1, ‖G‖F1 = 1

}
. (8.30)

Similarly, the largest element in the spectrum of M̄λ is

M̄λ:= sup
{
〈G,M̄λG〉F̄1

| G ∈ F̄1, ‖G‖F̄1
= 1
}

. (8.31)

Furthermore, if Mλ �= 0 (M̄λ �= 0), then Mλ (M̄λ) is actually an eigenvalue ofMλ

(M̄λ).

Theorem 8.11. (Criterion for the existence of oscillating modes)

(a) Let f0 be a radial steady state of the form (2.2) or (2.3). Then the linearized
operator A possesses an eigenvalue in the principal gap G—defined in (8.3)—
with associated eigenfunction odd in v if and only if there exists a λ ∈ G such
that

Mλ ≥ 1. (8.32)

(b) Let f0 be a planar steady state as specified in Sect. 2.2. Then the linearized
operator Ā possesses an eigenvalue in the principal gap Ḡ—defined in (8.4)—
with associated eigenfunction odd in v1 and x if and only if there exists a λ ∈ Ḡ
such that

M̄λ ≥ 1. (8.33)

Proof of part (a). If λ ∈ G is an eigenvalue ofA (restricted to Hodd , i.e., functions
in the spherically symmetric, weighted L2-space H which are odd in v), then 1
is an eigenvalue of Qλ by Lemma 8.1. Thus, Lemma 8.10 yields that 1 is also an
eigenvalue of Mλ : F1 → F1, which implies Mλ ≥ 1.

Conversely, if there exists λ ∈ G such that Mλ ≥ 1, thenMλ has an eigenvalue
μ ≥ 1. Lemma 8.10 implies that μ is also an eigenvalue of Qλ, and therefore λ is
an eigenvalue of −D2 − 1

μ
B by Lemma 8.1. Using Lemma 8.2, we conclude that

A indeed has an eigenvalue in the principal gap G.
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Proof of part (b). The proof is analogous to the radial setting and uses the planar
statements of Lemmas 8.1, 8.2, and 8.10. However, recall that we restricted Ā to
H̄, i.e., functions odd in v1 and x , in the planar setting, which causes the top of the
principal gap Ḡ to quadruple, see (8.4) and also Theorem 5.19.

Before verifying these criteria for selected steady states, we state some proper-
ties of Mλ and M̄λ.

Remark 8.12. (Criterion for the existence of eigenvalues in the principal gap) Using
the kernel representation of the radial Mathur operator provided by Proposition 8.6,
the associated quadratic form can be rewritten as

〈G,MλG〉F1 =
∫
S

∫
S
r2 Kλ(r, σ )G(r)G(σ ) dσ dr

= 32π2
∞∑
k=1

∫
EL
0

|ϕ′(E, L)|
T (E, L)

1
4π2k2

T (E,L)2
− λ

(∫ r+(E,L)

r−(E,L)

sin(2πkθ(r, E, L))G(r)

dr)2 d(E, L) (8.34)

for G ∈ F1. Since λ is in the principal gap, the latter integral is obviously non-
negative, i.e., the spectrum of the Mathur operator is non-negative as well.

Hence Mλ coincides with the operator norm of Mλ, cf. [29, Theorem 5.14].
Furthermore, Mλ increases in λ, which can for example be seen in the integral
(8.34). Theorem 8.11 now allows us to translate the existence of an oscillating
mode corresponding to an eigenvalue of A in the principal gap into a condition on
the size of

M := sup
λ∈G

Mλ = sup
λ∈G

‖Mλ‖F1→F1 : (8.35)

(a) If M > 1, then A possesses at least one eigenvalue in the principal gap.
(b) If M < 1, then A has no eigenvalues in the principal gap.
(c) In the case M = 1, the existence of an eigenvalue of A in the principal gap

depends on whether or not the supremum (8.35) is attained.

Similar statements hold true in the plane symmetric setting. In particular, the
spectrum of M̄λ : F̄1 → F̄1 is non-negative, and

M̄ := sup
λ∈Ḡ

M̄λ = sup
λ∈Ḡ

‖M̄λ‖F̄1→F̄1
(8.36)

being larger (smaller) than 1 implies the existence one (no) eigenvalue(s) of Ā in
the principal gap.

8.2. Examples of linear oscillations

We now apply Theorem 8.11 to give a class of examples of steady states which
allow for pulsating modes. A particularly simple-minded approach is to identify
steady states for which Mλ (M̄λ) tends to infinity as λ approaches the top of the
principal gap.
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8.2.1. Linear oscillations in the planar case In the plane symmetric setting we
are able to analytically show the existence of linearly pulsating modes for a large
class of steady state models by pursuing the approach discussed above.

Theorem 8.13. Let f0 be a planar steady state of polytropic form (2.18) with 1
2 <

k ≤ 1 or of King type (2.19). Then the associated linearized operator Ā—restricted
to H̄, i.e., functions in H̄ which are odd in v1 and x—possesses an eigenvalue in

the principal gap Ḡ =]0, 4 4π2

T 2(E0)
[.

Proof. For G ∈ F̄1, the quadratic form in (8.31) is

〈G,M̄λG〉F̄1
=
∫
S̄

∫
S̄
K̄λ(x, y)G(x)G(y) dx dy

= 32π
∞∑
k=1

∫
S̄

∫
S̄

∫
̄E
0 (x)∩̄E

0 (y)

× |α′(E)|
T (E)

sin(4πkθ(x, E)) sin(4πkθ(y, E))

4π2

T (E)2
(2k)2 − λ

dE G(x)G(y) dx dy

= 32π
∞∑
k=1

∫ E0

U0(0)

|α′(E)|
T (E)

1
4π2

T (E)2
(2k)2 − λ

×
(∫ x+(E)

x−(E)

sin(4πkθ(x, E))G(x) dx

)2
dE, (8.37)

see Proposition 8.7 for the definition of K̄λ. Note that the exchange of the infinite
sum and the integration can be justified similarly to the radial case, see for example
a related argument in the proof of Proposition 8.6. In particular, for any λ in the
principal gap, i.e., 0 < λ < 4 4π2

T 2(E0)
, we conclude that for all non-zero G ∈ F̄1,

M̄λ ≥ 〈G,M̄λG〉F̄1

‖G‖2F̄1

≥ 32π

‖G‖2F̄1

∫ E0

U0(0)

|α′(E)|
T (E)

1
16π2

T (E)2
− λ

(∫ x+(E)

x−(E)

sin(4πθ(x, E))G(x) dx

)2
dE .

(8.38)

Consider a neighborhood N̄η:=[E0 − η, E0] of the cut-off energy E0 for some
sufficiently small parameter 0 < η < E0 −U0(0). By an easy continuity argument
we can choose a closed interval Ī ⊂]x−(E0), 0[=] − R0, 0[ such that

sin(4πθ(x, E)) ≥ 1

2
for E ∈ N̄η, x ∈ Ī , (8.39)
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if η > 0 is sufficiently small, in particular, Ī ⊂]x−(E), 0[ for E ∈ N̄η. Now let

G : S̄ → R, G(x):=

⎧⎪⎨
⎪⎩
1, x ∈ Ī ,

−1, −x ∈ Ī ,

0, else.

(8.40)

Clearly, G is odd and G ∈ F̄1 with ‖G‖2F̄1
= 2| Ī |. Moreover,

∫ x+(E)

x−(E)

sin(4πθ(x, E))G(x) dx ≥ | Ī |

for any E ∈ N̄η; observe that the symmetry of U0 implies 4πθ([x−(E), 0], E) =
[0, π ] and 4πθ([0, x+(E)], E) = [π, 2π ] as well as θ(x, E) + θ(−x, E) = 1

2 for
x ∈ [x−(E), 0], recall the definition (5.18) of θ . Plugging G into (8.38) yields

M̄λ ≥ 16π | Ī |
∫
N̄η

|α′(E)|
T (E)

1
16π2

T (E)2
− λ

dE .

We now let λ → sup Ḡ = 16π2

T (E0)2
—notice that Ī is independent of λ—and conclude

by the monotone convergence theorem that

lim sup
λ→ 16π2

T (E0)2

M̄λ ≥ 16π | Ī |
∫
N̄η

|α′(E)|
T (E)

1
16π2

T (E)2
− 16π2

T (E0)2

dE

= | Ī |
π

∫
N̄η

|α′(E)|
T (E0) − T (E)

T (E) T (E0)
2

T (E) + T (E0)
dE

≥ C
∫
N̄η

|α′(E)|
T (E0) − T (E)

dE (8.41)

for some C > 0; recall that T is bounded and bounded away from 0 on [U0(0), E0[
by Proposition 2.8. To show that the latter integral is infinite, we expand the denom-
inator of its integrand. By the mean value theorem, for each E ∈ N̄η there exists
E∗ ∈ N̄η such that T (E0) − T (E) = T ′(E∗) (E0 − E). Since T ′ is continuous by
Lemma 2.6, we obtain T (E0)−T (E) ≤ C (E0−E) for E ∈ N̄η and some constant
C > 0 depending on the steady state and η. Inserting this estimate in (8.41) then
yields

lim sup
λ→ 16π2

T (E0)2

M̄λ ≥ C
∫
N̄η

|α′(E)|
E0 − E

dE

= C

{
k
∫ E0
E0−η (E0 − E)k−2 dE, α is polytropic with 1

2 < k ≤ 1∫ E0
E0−η

eE0−E

E0−E dE, α is of King type

= ∞.

The claim now follows by part (b) of Theorem 8.11.
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Remark 8.14. (a) Since T ′ > 0 on ]U0(0),∞[, we can not expect to show that the
integral (8.41) is infinite for polytropes with exponent k > 1 by expanding T
to higher order.

(c) For the above proof—and everything in the preceding sections—the exact poly-
tropic (2.18) orKing type (2.19) structure ofα is not essential. Only the behavior
of α near the cut-off energy E0 matters for our argument.

8.2.2. Linear oscillations in the radial case In order to apply the same idea
as in the proof of Theorem 8.13 we need to know where the period function
̊EL

0 � (E, L) �→ T (E, L) attains itsmaximal values. This is an involved technical
question about the behavior of solutions to semi-linear radial ODEs of Lane-Emden
type, which will be rigorously addressed in future work. However, numerical cal-
culations conclusively show that for a wide range of steady states of the form (2.2)–
(2.3) the period function has the property that

sup
̊EL
0

(T ) = T (E0, L0), (8.42)

where L0 ≥ 0 is the lowest occurring L-value in the steady state support. Note
that T (E0, L0) may formally not be defined by Definition 2.2, but T can easily be
extended to L = 0 by replacing �L with U0 in the definition.

In order to Taylor-expand T near its maximal value similar to the planar setting,
we further require that

T is differentiable and ∂ET, ∂LT are bounded near (E0, L0). (8.43)

The latter can be shown by explicitly computing the derivatives of T with respect
to E and L , but we choose to leave out the proof of this rather technical statement.

One way to validate (8.42) is to show

∂ET (E, L) ≥ 0, ∂LT (E, L) ≤ 0, for (E, L) ∈ ̊EL
0 , (8.44)

and numerical computations indicate that (8.44) is indeed true for a wide range of
steady states. We discuss this matter in more detail at the end of Sect. B.3 in the
appendix, and give explicit parameters of a steady state for which (8.42) and (8.44)
have been verified numerically in Remark 8.16.

Theorem 8.15. Let f0 be a radial steady state of polytropic form (2.2) with param-
eters k, l, L0 satisfying

L0 > 0, k > 0, l > −1, k < l + 7

2
, k + l + 1

2
≥ 0, k + l ≤ 0. (8.45)

Assume further that the assumptions (8.42) and (8.43) hold. Then the associated
linearized operator A—restricted to Hodd , i.e., functions in H which are odd in

v—possesses an eigenvalue in the principal gap G =]0, 4π2

sup2(T )
[.
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Proof. Just like in the proof of Theorem 8.13 we can show that

Mλ ≥ 32π2

‖G‖2F1

∫
EL
0

|ϕ′(E, L)|
T (E, L)

1
4π2

T (E,L)2
− λ

×
(∫ r+(E,L)

r−(E,L)

sin(2πkθ(r, E, L))G(r) dr

)2
d(E, L) (8.46)

for any G ∈ F1 \ {0} and λ ∈ G. Letting λ → 4π2

sup2(T )
= 4π2

T (E0,L0)2
, using the

monotone convergence theorem, and the boundedness of T from above and away
from zero (see Proposition B.1), we conclude that

lim sup
λ→ 4π2

sup2(T )

Mλ ≥ C

‖G‖2F1

∫
EL
0

|ϕ′(E, L)|
T (E0, L0) − T (E, L)

(∫ r+(E,L)

r−(E,L)

sin(2πθ(r, E, L))G(r) dr

)2
d(E, L)

for some constant C > 0 depending on the steady state.
Consider a closed neighborhood Nη of the T -maximizer (E0, L0) of the form

Nη:=[E0 − η, E0] × [L0, L0 + η]
for a sufficiently small η > 0 such that N̊η ⊂ EL

0 . Next, choose a non-empty,
closed interval I ⊂ S such that

sin(2πθ(r, E, L)) ≥ 1

2
for (E, L) ∈ Nη, r ∈ I. (8.47)

Now let G:=1I ∈ F1. Analogously to (8.41) we conclude that

lim sup
λ→ 4π2

T (E0,L0)2

Mλ ≥ C
∫ E0

E0−η

∫ L0+η

L0

|ϕ′(E, L)|
T (E0, L0) − T (E, L)

dL dE . (8.48)

Taylor-expanding the denominator in this integral gives

T (E0, L0) − T (E, L) = cE (E0 − E) − cL (L − L0)

+ o(E,L)→(E0,L0) (|(E, L) − (E0, L0)|) , (8.49)

where we denote cE :=∂ET (E0, L0), cL :=∂LT (E0, L0) < ∞; recall the assump-
tion (8.43). Thus, after choosing a possibly smaller η, we use (8.48) and the poly-
tropic structure (2.2) of the steady state model to obtain

lim sup
λ→ 4π2

T (E0,L0)2

Mλ ≥ C
∫ E0

E0−η

∫ L0+η

L0

(E0 − E)k−1(L − L0)
l

E0 − E + L − L0
dL dE

= C
∫ η

0

∫ η

0

xk−1yl

x + y
dy dx, (8.50)
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where we used the obvious change of variables x = E0 − E and y = L − L0.
The latter integral is infinite precisely when k + l ≤ 0. Together with part (a) of
Theorem 8.11 this concludes the proof.

Remark 8.16. The steady state parameter conditions (8.45) are for example satisfied
with

k = 1

2
, l = −1

2
, L0 > 0 arbitrary, (8.51)

and numerical computations—e.g. with L0 = 1
10 and E0 − U0(0) = 1—clearly

show that in this case the monotonicity assumptions (8.44) are valid.
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A. Auxiliary Results on Potentials

In this section we discuss the properties of potentials induced by functions of the form Dg
for g ∈ D(D) and D̄g for g ∈ D(D̄) respectively.

A.1. Potentials in the spherically symmetric case

For g ∈ D(D), let

ρ = ρDg :=
∫
R3

Dg(·, v) dv.

We extend all functions by 0 on R3 × R
3. Using (2.5) yields

‖ρ‖22 =
∫
R3

(∫
R3

Dg(x, v) dv

)2
dx ≤ C

∫
R3

∫
R3

|Dg(x, v)|2
|ϕ′(E, L)| dv dx = C‖Dg‖2H ,

and supp (ρ) ⊂ BR0 (0), i.e., ρ ∈ L1 ∩ L2(R3). Furthermore, the integral of ρ vanishes,
since ∫

R3
ρ(x) dx = 〈|ϕ′(E, L)|,Dg〉H

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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and |ϕ′(E, L)| ∈ ker(D) ⊂ H by (2.5) as well as Dg ∈ im(D) ⊥ ker(D) by the skew-
adjointness of D.
Now let U :=Uρ = UDg be the gravitational potential induced by Dg, i.e.,

U (x) = −
∫
R3

ρ(y)

|x − y| dy, x ∈ R
3.

Since ρ ∈ L1 ∩ L2(R3), basic potential theory yields U ∈ C(R3) with
lim|x |→∞ U (x) = 0 and ‖U‖∞ ≤ C‖ρ‖2 as well as ∂xU ∈ L2(R3) with

‖∂xU‖2 ≤ C‖ρ‖ 6
5

≤ C‖ρ‖2,

and obviously �U = 4πρ ∈ L2(R3). In particular, all derivatives exist in the weak sense.
Furthermore, for all x ∈ R

3 with |x | ≥ 2R0 the vanishing integral of ρ implies that

|U (x)| =
∣∣∣∣
∫
R3

ρ(y)

|x − y| dy
∣∣∣∣ =
∣∣∣∣∣
∫
BR0 (0)

ρ(y)

|x − y| dy −
∫
BR0 (0)

ρ(y)

|x | dy

∣∣∣∣∣
≤
∫
BR0 (0)

|ρ(y)| ||x | − |x − y||
|x | · |x − y| dy ≤

∫
BR0 (0)

|ρ(y)|2R0|x |2 dy = 2R0‖ρ‖1
|x |2 .

Thus,
∫
|x |≥2R0

|U (x)|2 dx ≤ 4R2
0‖ρ‖21
∫
|x |≥2R0

dx

|x |4 = 8πR0‖ρ‖21 ≤ C‖ρ‖22.

Overall we obtain U ∈ H2(R3) with

‖U‖H2(R3) ≤ C‖ρ‖2 ≤ C‖Dg‖H , (A.1)

where C > 0 only depends on the fixed steady state f0. Related arguments have also been
used in the proof of Theorem 1.1 in [23].
Lastly, U inherits the symmetry of ρ, Dg and g, i.e., we can write U (x) = U (|x |). Then,

U ′
Dg(r) = U ′(r) = 4π2

r2
J (g)(r) = 4π2

r2

∫ ∞
0

∫
R

w g(r, w, L) dw dL (A.2)

for a.e. r > 0. For g ∈ C∞
c,r (0) this follows by integrating the radial Poisson equation,

since

ρ(r) = π

r2

∫ ∞
0

∫
R

Dg(r, w, L) dw dL = π

r2
∂r

(∫ ∞
0

∫
R

w g(r, w, L) dw dL

)
.

(A.2) can be extended to D(D) by using the approximation scheme from [61,65] together
with (4.5).

A.2. Potentials in the plane symmetric case

In the plane symmetric case, we let g ∈ D(D̄) and

ρ(x) = ρD̄g(x):=
∫
R3

D̄g(x, v) dv, x ∈ R,

where we again extend all functions by 0 to R × R
3. By (2.25), ‖ρ‖2 ≤ C‖D̄g‖H̄ with

some constantC > 0 depending only on the steady state. Obviously, supp(ρ) ⊂ [−R0, R0],
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i.e., ρ ∈ L1 ∩ L2(R). As in the spherically symmetric case,
∫
R

ρ = 〈|ϕ′(E, v̄)|, D̄g〉H̄ = 0
by the skew-adjointness of D̄.
Now let U = Uρ = UD̄g be the potential induced by D̄g, cf. (1.12). Since ρ vanishes

outside of [−R0, R0] and
∫
R

ρ = 0, (1.14) implies that

U ′(x) = 2π
∫ R0

−R0

sign(x − y) ρ(y) dy = 4π
∫ x

−R0

ρ(y) dy,

and U ′(x) = 0 for x ∈ R \ [−R0, R0]. Hence

‖U ′‖22 =
∫ R0

−R0

|U ′(x)|2 dx ≤ 16π2R2
0 ‖ρ‖22.

Altogether,

‖U ′‖2 + ‖U ′′‖2 ≤ C‖ρ‖2 ≤ C‖D̄g‖2
H̄

. (A.3)

Lastly, we obtain the representation

U ′
D̄g

(x) = 4π
∫ x

−R0

∫
R3

D̄g(y, v) dv dy = 4π
∫
R3

v1 g(x, v) dv, x ∈ R (A.4)

for smooth g, which once again can be extended onto D(D̄) by approximation, for example
as in Remark 5.18, using the bound (4.12).

B. Properties of the Radial Period Function

This appendix is devoted to the properties of the period function T in the case of a spherically
symmetric equilibrium, since it gives the essential spectrum of the linearized operatorA and
is a crucial quantity for the existence of oscillating modes. Recall the definition (2.11) of
T (E, L) for L > 0 and �L (rL ) < E < 0. In the two upcoming sections we prove the
following result:

Proposition B.1. There exist c,C > 0 such that c ≤ T (E, L) ≤ C for (E, L) ∈ ̊EL
0 .

Afterwards we discuss the regularity and potential monotonicity of the period function.

B.1. An upper bound on T

First we recall the bound (2.12), i.e.,

T (E, L) ≤ 2π
‖ f0‖21
E2

√
L

for L > 0 and �L (rL ) < E < 0. This estimate has earlier been used in [61,65], where the
reader may also find a rather straight-forward proof. In particular, it shows that in the case
of a polytropic shell steady state, i.e., the ansatz function is of the form (2.2) with L0 > 0,
T is bounded from above on the whole set ̊EL

0 .
Unfortunately, the boundedness from above is harder to show in the case where no inner
vacuum region exists, for example in the case of isotropic steady states. In order to handle
these models we use the maximum principle to estimate T as follows:
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Lemma B.2. Consider an isotropic steady state, i.e., ϕ is of the form (2.3) or (2.2) with
L0 = 0 = l, in particular supp (ρ0) = [0, R0] and ρ0(0) > 0. Suppose that there exist
S, c > 0 such that ρ0 ≥ c on [0, S] ⊂ [0, R0]. Then

E − �L (r) ≥ 2π

3
c
(r+(E, L) − r)(r − r−(E, L))(r + r+(E, L) + r−(E, L))

r
(B.1)

for (E, L) ∈ ̊EL
0 and r > 0 such that 0 < r−(E, L) ≤ r ≤ r+(E, L) ≤ S. This leads to

T (E, L) ≤
√
3π

c
(B.2)

for (E, L) ∈ ̊EL
0 satisfying r+(E, L) ≤ S.

Proof. Fix (E, L) ∈ ̊EL
0 with r+(E, L) ≤ S and let

Uc(r):= − 2π

3
c
(r+(E, L) − r)(r − r−(E, L))(r + r+(E, L) + r−(E, L))

r

= 2π

3
c

(
r2 − (r+ − r−)2 + r−r+ + 1

r
r−r+(r+ + r+)

)

for r ∈ [r−(E, L), r+(E, L)], where we used the abbreviation r± = r±(E, L). Obviously,

Uc(r±(E, L)) = 0 = E−�L (r±(E, L)).Applying the (radial) Laplacian� =
(
∂2r + 2

r ∂r

)
yields

�Uc(r) = 4πc,

��L (r) = �U0(r) + L

r4
= 4πρ0(r) + L

r4

for r ∈ [r−(E, L), r+(E, L)]. Thus, by the choice of c,
� (Uc + E − �L ) < 0 on [r−(E, L), r+(E, L)].

By the maximum principle we therefore conclude that

Uc + E − �L > 0 on ]r−(E, L), r+(E, L)[,
which shows (B.1). Inserting this into the definition of T yields

T (E, L) ≤
√

3

cπ

∫ r+(E,L)

r−(E,L)

dr√
(r+(E, L) − r)(r − r−(E, L))

=
√
3π

c
.

The bound (2.12) shows that for any choice of L1 > 0 the period function T is bounded
on the set L ≥ L1. For any choice of U0(0) < E1 < E0 orbits corresponding to (E, L)
with E ≤ E1 are radially restricted to some interval [0, R1] with R1 < R0. For an isotropic
steady state, ρ0 is bounded away from zero on such an interval, and the previous lemma
shows that the period function T is bounded on the set E ≤ E1. The next lemma closes the
remaining gap.

Lemma B.3. Consider a steady state of the form (2.3) or (2.2) with L0 = 0 = l, in particular
supp (ρ0) = [0, R0]. Then there exist U0(0) < E1 < E0 and L1 > 0 and a constant C > 0
such that

T (E, L) ≤ C for E1 ≤ E ≤ E0, 0 < L ≤ L1.

In particular, L1 and E1 can be chosen such that �L (rL ) < E for E1 ≤ E ≤ E0, 0 <
L ≤ L1, i.e., T is well-defined for points as above.
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Proof. For L > 0 let EL :=�L (rL ) < E ≤ E0 and ε > 0 such that E − ε > EL ; ε will be
specified more precisely below. Then

r−(E, L) < r−(E − ε, L) < r+(E − ε, L) < r+(E, L).

Step 1.We estimate the time a particle takes to travel from r−(E, L) to r−(E − ε, L). To do
so we first show that �L is convex on the interval ]0, rL ], which contains the radii specified
above. This follows from

� ′′
L (r) = 4πρ0(r) − 2

r
U ′
0(r) + 3

L

r4

and the fact that by definition of rL ,

� ′
L (r) = U ′

0(r) − L

r3
< 0

on ]0, rL [. For any r ∈ [r−(E, L), r−(E − ε, L)] we let

α := r − r−(E, L)

r−(E − ε, L) − r−(E, L)
.

Then

�L (r) ≤ (1 − α)�L (r−(E, L)) + α�L (r−(E − ε, L)) = E − αε.

Hence
∫ r−(E−ε,L)

r−(E,L)

dr√
E − �L (r)

≤
√
r−(E − ε, L) − r−(E, L)√

ε

∫ r−(E−ε,L)

r−(E,L)

dr√
r − r−(E, L)

= 2
r−(E − ε, L) − r−(E, L)√

ε
.

Step 2.Herewe estimate the time a particle takes to travel from r−(E−ε, L) to r+(E−ε, L).
On this interval, �L (r) ≤ E − ε, and hence

∫ r+(E−ε,L)

r−(E−ε,L)

dr√
E − �L (r)

= r+(E − ε, L) − r−(E − ε, L)√
ε

.

Step 3. Here we estimate the time a particle takes to travel from r+(E − ε, L) to r+(E, L),
which is the crucial part. Let

μ := min{� ′
L (r) | r ∈ [r+(E − ε, L), r+(E, L)]}.

Clearly, �L (r) ≤ E − μ (r+(E, L) − r) for r ∈ [r+(E − ε, L), r+(E, L)]. Since μ > 0
this implies that

∫ r+(E,L)

r+(E−ε,L)

dr√
E − �L (r)

≤
∫ r+(E,L)

r+(E−ε,L)

dr√
μ(r+(E, L) − r)

= 2

√
r+(E, L) − r+(E − ε, L)√

μ
,

so it remains to estimate μ independently of E and L .
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We observe that r+(E, L) → R0 > 0 as (E, L) → (E0, 0), and rL → 0 as L → 0. Hence
there exist U0(0) < Ẽ1 < E0 and L1 > 0 such that

r+(E, L) > r2L1 > rL1 ≥ rL

as well as EL < E for all Ẽ1 ≤ E ≤ E0 and 0 < L ≤ L1. We define

ε:= E0 − Ẽ1
2

, E1:= E0 + Ẽ1
2

Consider any E1 ≤ E ≤ E0 and 0 < L ≤ L1. Then E−ε ≥ Ẽ1, and hence r+(E−ε, L) >
r2L1 and for r ∈ [r+(E − ε, L), r+(E, L)],

� ′
L (r) = U ′

0(r) − L

r3
≥ U ′

0(r) − L1
r3

= � ′
L1

(r)

≥ min{� ′
L1

(s) | s ∈ [r2L1 , R0]} > 0.

The latter constant depends only on the given steady state and the parameter L1 and provides
the required lower bound on μ.
All three steps together yield the desired estimate for T (E, L), where we note that also ε,
which enters in the estimates from the first two steps, has now been chosen to depend only
on the parameters L1 and Ẽ1 = 2E1 − E0.

B.2. A lower bound on T

Lemma B.4. For all (E, L) ∈ ̊EL
0 ,

T (E, L) ≥
(
4π‖ρ0‖∞ + 3

L

r4L

)− 1
2

.

Proof. First,

T (E, L) ≥ √
2
r+(E, L) − r−(E, L)√

E − �L (rL )
≥ √

2
r+(E, L) − rL√
E − �L (rL )

.

We now apply the mean value theorem to the mapping ]�L (rL ), 0[� η �→ r+(η, L), contin-
uously extended by r+(�L (rL ), L):=rL . Note that r+(·, L) is differentiable on ]�L (rL ), 0[
with

∂r+
∂E

(η, L) = 1

� ′
L (r+(η, L))

, η ∈]�L (rL ), 0[

by the inverse function theorem. Hence there exists η ∈]�L (rL ), E[ such that

r+(E, L) − rL = E − �L (rL )

� ′
L (r+(η, L))

.

Thus,

T (E, L) ≥ √
2

√
E − �L (rL )

� ′
L (r+(η, L))

≥ √
2

√
η − �L (rL )

� ′
L (r+(η, L))

= √
2

(
�L (r+(η, L)) − �L (rL )

(� ′
L )2(r+(η, L)) − (� ′

L )2(rL )

) 1
2

,
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where we used � ′
L (rL ) = 0 and � ′

L (r+(η, L)) > 0 in the last equality. By the (extended)
mean value theorem, there exists s ∈]rL , r+(η, L)[ such that

2� ′
L(s)� ′′

L(s) (�L(r+(η, L)) − �L(rL)) = � ′
L(s)
(
(� ′

L)2(r+(η, L)) − (� ′
L)2(rL)

)
.

We therefore conclude that

T (E, L) ≥ √
2

(
� ′
L (s)

2� ′
L (s)� ′′

L (s)

) 1
2

= 1√
� ′′
L (s)

,

note that � ′
L > 0 on ]rL ,∞[ and the above equality yields � ′′

L (s) > 0. Moreover,

� ′′
L (s) = U ′′

0 (s) + 3
L

s4
= −2

m0(s)

s3
+ 4πρ0(s) + 3

L

s4
≤ 4π‖ρ0‖∞ + 3

L

s4
,

and

T (E, L) ≥
(
4π‖ρ0‖∞ + 3

L

s4

)− 1
2 ≥
(
4π‖ρ0‖∞ + 3

L

r4L

)− 1
2

.

In order to obtain the boundedness of T away from zero when arbitrary small Ls are in the
steady state support, we have to ensure that the continuous function ]0,∞[� L �→ L

r4L
is

bounded for L → 0; note that rL → 0 as L → 0.

Lemma B.5. It holds that

lim
L→0

L

r4L
= 4π

3
ρ0(0).

Proof. Recall that rL is the unique solution of the equation rm0(r) = L . By the implicit
function theorem, the mapping ]0, ∞[� L �→ rL is differentiable with

∂rL
∂L

(L) = 1

m0(rL ) + 4πr3Lρ0(rL )
, L > 0.

Therefore, by l’Hospital’s rule,

lim
L→0

L

r4L
= lim

L→0

m0(rL ) + 4πr3Lρ0(rL )

4r3L
= lim

L→0

m0(rL )

4r3L
+ πρ0(0).

Applying l’Hospital’s rule once again we arrive at

lim
L→0

m0(rL )

4r3L
= lim

r→0

m0(r)

4r3
= lim

r→0

4πr2ρ0(r)

12r2
= π

3
ρ0(0).

Since ρ0(0) < ∞ if the steady state possesses no inner vacuum region, the previous two
lemmata yield the boundedness of the period function T away from zero on ̊EL .

Remark B.6. Another approach to bound the period function T from below and above is to
extend it continuously onto the boundary of ̊EL

0 .
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B.3. Regularity & monotonicity of T

Lemma B.7. T is continuous on {(E, L) ∈] − ∞, 0[×]0, ∞[| �L (rL ) < E}.
Proof. The change of variables r = s (r+(E, L) − r−(E, L)) + r−(E, L) yields

T (E, L) = √
2 (r+(E, L) − r−(E, L))

× ·
∫ 1

0

ds√
E − �L

[
s (r+(E, L) − r−(E, L)) + r−(E, L)

] .

Since r± are continuous by Lemma 2.1, it remains to show that the latter integral is also
continuous. This can be seen by the dominated convergence theorem, since

1√
E − �L

[
s (r+(E, L) − r−(E, L)) + r−(E, L)

]

≤
√
2M2

0√
L E2

0

1

(r+(E, L) − r−(E, L))
√
s(1 − s)

for (E, L) ∈] − ∞, 0[×]0, ∞[ with �L (rL ) < E and 0 ≤ s ≤ 1 by Lemma 2.1. Note that
(r+ − r−)−1 is locally bounded and

∫ 1
0

ds√
s(1−s)

= π < ∞.

In fact, one can show that T is even differentiable. The E-derivative can be computed
similarly to the plane symmetric case (see Proposition 2.6), the L-derivative can be computed
by related techniques. Unfortunately, the non-negativity of ∂ET is harder to show in the
spherically symmetric case than in the planar setting.
Nonetheless, numerical simulations clearly indicate ∂ET ≥ 0 and ∂LT ≤ 0 for a wide
range of steady states, including the ones satisfying the assumptions of Theorem 8.15, see
Remark 8.16 for an explicit example.
We again emphasize that whether period functions as the one above are monotonous is an
involved question and has been widely studied [9,64], especially in the context of bifurcation
theory for Hamiltonian ODEs [11,12,27]. The rigorous monotonicity properties of T will
be treated in future work.
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M. Hadžić University College London,
London
UK.

e-mail: m.hadzic@ucl.ac.uk

and

G. Rein · C. Straub
University of Bayreuth,

Bayreuth
Germany.

e-mail: gerhard.rein@uni-bayreuth.de
e-mail: christopher.straub@uni-bayreuth.de

(Received March 23, 2021 / Accepted November 19, 2021)
Published online December 29, 2021

© The Author(s) (2021)


	On the Existence of Linearly Oscillating Galaxies
	Abstract
	1 Introduction
	1.1 The basic set-up and main objective
	1.2 Symmetry classes
	1.3 Steady states, linearization, and stability
	1.4 Main results
	1.5 Oscillations and damping; other related work and future perspectives
	2 Steady States
	2.1 Spherically symmetric steady states
	2.2 Plane symmetric steady states
	3 Linearization
	3.1 The Eulerian picture
	3.2 Mass-Lagrange coordinates
	3.3 An Eddington-Ritter type relation

	4 The Antonov Operators
	4.1 The radial Antonov operator
	4.2 The planar Antonov operator

	5 The Essential Spectra of the Antonov Operators
	5.1 The essential spectrum of the radial Antonov operator
	5.2 The essential spectrum of the planar Antonov operator


	6 Kurth Solutions
	6.1 The spherically symmetric Kurth family
	6.2 A planar Kurth-type family


	7 The Spectral Gap
	7.1 Spherically symmetric case
	7.2 Plane symmetric case

	8 Existence of Eigenvalues
	8.1 Mathur's argument and a criterion for the existence of eigenvalues
	8.2 Examples of linear oscillations
	8.2.1 Linear oscillations in the planar case
	8.2.2 Linear oscillations in the radial case


	Acknowledgements.
	A Auxiliary Results on Potentials
	A.1 Potentials in the spherically symmetric case
	A.2 Potentials in the plane symmetric case
	B Properties of the Radial Period Function
	B.1 An upper bound on T
	B.2 A lower bound on T
	B.3 Regularity & monotonicity of T
	References






