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Abstract

The main focus of this thesis was to use quantum dynamics techniques to

probe the process of a charge transfer in a dye-semiconductor complex. The use

of photovoltaic cells in solar electricity relies strongly on these types of charge

transfer systems, and therefore an increased knowledge on this process can help to

increase efficiency of these cells, and lead to better design of photovoltaic cells.

In order to achieve this goal, firstly, the charge transfer along the radically

cationic state of allene was investigated, as a precursor to the more complicated

dye-semiconductor system. The populations of the charge donor and acceptor

states were analysed, and the photoelectron spectrum was calculated and com-

pared to experimental data to verify the results. These computations were calcu-

lated using a vibronic coupling Hamiltonian coupled with the multi-configuration

time-dependent Hartree (MCTDH) method, as well as with multilayer form (ML-

MCTDH).

Following on from allene, a dye-semiconductor system was investigated, using a

Coumarin-343-TiO2 complex. The model used for this process was akin to a donor-

acceptor system, comprising of the S1 state of the dye molecule as the donor state,

and the conduction band of the semiconductor as a continuum of acceptor states.

In order to represent the conduction band of the semiconductor, the band was

discretised and coupled to the donor state. The couplings between the donor and

acceptor states were approached from two different angles, with varying results of

success. Again, employing a vibronic Hamiltonian, the main vibrational modes of

the dye were included in the dynamics. Using the multilayer multi-configurational

time-dependent Hartree (ML-MCTDH) method, the wavepacket dynamics were

analysed and the population of the donor state was investigated.

Whilst the calculations performed so far has been done at 0 Kelvin, this is

not an accurate model of the charge transfer that occurs inside a solar cell. Solar



cells often have normal working temperatures of over 300 K. Therefore, the next

step was to see if a new model can be employed which can study this quantum

behaviour at temperatures >0 K. Using the molecule Salicylaldimine as a smaller

test model, a ground state proton transfer was probed at various temperatures.

This was done using density matrices. Using the ML-MCTDH formalism of a den-

sity matrix is a previously unexplored method, the results of which are presented

in this thesis. This new approach to studying the quantum behaviour of larger

systems at temperatures above 0 K offers a promising avenue to investigating the

dye-semiconductor system further.



Impact Statement

Quantum effects play an important role in many biological and technological

systems. One area that this thesis focused on is their role in photovoltaic cells,

specifically dye-sensitised solar cells. A key step in the conversion of solar energy

to electrical energy in these type of cells is an electron transfer process occurring

from a dye molecule into the conduction band of the semiconductor it is adsorbed

to. Understanding the quantum dynamics of this process allows the development

and production of more efficient and more commercially viable solar cells.

The current most commercially viable solar cells are silicon based, and have

efficiencies of around 25%. However, they are expensive to manufacture, thus

creating a block in the commercial process. These dye-sensitised solar cells offer

a photovoltaic which is cheaper to manufacture, but the currently available dye-

sensitised solar cells only reach around 12% efficiency. Theoretical studies have

shown that the maximum efficiency is over 20%. Only by fully understanding the

key process in the production of electricity of dye-sensitised solar cells can they

be improved to reach their maximum efficiency, thus allowing them to become a

more viable option.

This thesis looked at solving the time dependent Schrödinger equation to pre-

dict the quantum dynamics of this system. The method used was the Multi Layer

Multi-Configuration Time Dependent Hartree method (ML-MCTDH). In order to

accurately represent a dye attached to the surface of a semiconductor, multiple

models were considered. Although the final model considered the system as a

simple 1-dimensional chain, it is able to be easily extended to allow for both 2-

dimensional slabs and a 3-dimensional bulk. This will allow a more realistic model

representing a dye attached to a bulk semiconductor to be considered, including

all the relevant coupling terms within the solid. The model can also be easily

adapted to represent any dye molecule and any semiconductor, allowing this to be



a versatile method to study the quantum dynamics of many types of dye-sensitised

solar cell systems.

In order to make the model a more realistic representation of a dye-sensitised

solar cell, the ML-MCTDH method was also extended, to using density matri-

ces combined with the Ml-MCTDH. This novel approach allowed the prediction

of quantum dynamic behaviour of systems which also include environmental ef-

fects. This could include solvent effects or temperature effects. Being able to

predict quantum effects at temperatures above 0 Kelvin is not non-trivial, and

this method allows a much more realistic solar cell environment to be simulated.

Due to previous contrasting research into the effect on temperature on the effi-

ciency of dye-sensitised solar cells, the ability to study the quantum behaviours of

these systems at non-zero temperatures is essential.

The work presented in this thesis thus provides a foundation for future research

into electron transfer processes at semi-conductor surfaces using realistic models

combined with full quantum dynamics simulations.
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Chapter 1

Introduction

Experimental data can be crucially important in determining the behaviour of

chemical systems, and analysis of the data obtained through spectroscopy and

reaction cross-sections is one key example of this. However, to be able to fully

explain why and how a lot of the observed behaviours occur, the system must also

be studied computationally. Although classical mechanics is often sufficient to

explain the dynamics in simple ground state chemical systems, explaining obser-

vations such as the quantisation of nuclear motion observed in many experimental

spectra, as well as tunnelling and various aspects of chemical bonding can only be

explained by considering the quantum effects on the system. Gaining this insight

into the quantum behaviour of chemical systems is imperative in understanding

why these systems behave the way they do. In order to to determine the quantum

dynamics of a system, i.e. the time evolution of a set of quantum particles, one

must solve the Time Dependent Schrödinger Equation (TDSE),

i~Ψ̇(R, r, t) = ĤΨ(R, r, t). (1.1)

This equation shows how the system, Ψ, evolves over time according to the

Hamiltonian operator, Ĥ. Ψ̇ represents the time derivative of Ψ, ∂Ψ
∂t

, i is the

imaginary unit, where i =
√
−1, and ~ is the reduced Planck’s constant, where

~ = h
2π

. The Born-Oppenheimer approximation (BOA) stipulates that the full

wavefunction, Ψ, can be separated into nuclear and electronic motion, and is the
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1.0 Introduction

first step in solving this TDSE. This results in a nuclear wavepacket moving in

time over a stationary electronic energy surface. This derivation, along with what

happens when this approximation breaks down in non-adiabatic systems, can be

found in chapter 2.

However, the key problem, and what the whole field of dynamics is built on,

is that the TDSE can only be solved exactly for very simple molecules. This is

due to the computational effort required, which scales exponentially by N f , where

N is the number of grid points, an f is the number of degrees of freedom. It

has therefore been necessary to develop methods which can best approximate the

solution to the TDSE. There is a vast range of methods which have been developed

for this purpose, which range from classical, to semi-classical and lastly to complete

quantum methods. An overview of some of these methods are discussed in more

detail in chapter 3. The focus of this thesis is primarily on using full quantum

methods to solve the TDSE, namely the Multi-Configurational Time Dependent

Hartree method (MCTDH). This method expands the nuclear wavefunction into a

set of time dependent basis functions, called single particle functions, SPFs, and is

widely regarded as the most robust method to solve the TDSE in a full quantum

manner. This method, despite accurately simulating dynamics of small molecules,

scales computationally to nf , where n is the number of SPFs and f is the number

of degrees of freedom, DOF. This exponential scaling means that this method, as

with all quantum methods, is limited with regards to the size of the system.

An advancement on this method, which allows one to partially circumvent this

issue, is the development of the Multi-Layer MCTDH method (ML-MCTDH). The

basic principle of this method is that each SPF of the standard MCTDH ansatz

can be itself expanded in the same way. This cascading approach allows very large

systems to be treated in a quantum way. This method, and its limitations, is

discussed further in chapter 3. In this thesis, the flexibility of the ML-MCTDH
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approach will be shown, especially when coupled with a vibronic coupling Hamil-

tonian, which includes the non-adiabatic effect of the coupling between nuclear

motion and the electronic energy surfaces, and just three examples of how this ex-

tremely powerful method can be implemented will be shown in chapters 4, 5 and 6.

Chapter 4 will show how quantum dynamics can be used to accurately predict

spectra, specifically in this case, the photoelectron spectrum of Allene. The ground

electronic state of cationic Allene is doubly degenerate, shown in figure 1.1. The

molecule in this state undergoes a Jahn-Teller distortion so, despite its small size,

it is not a simple molecule to model computationally. The ML-MCTDH approach

Figure 1.1: The doubly degenerate cationic ground state of Allene, showing a Jahn-Teller
conical intersection at the Franck-Condon point.

allows all 15 DOF of Allene to be easily included in the calculations, which is at the

limits of the standard MCTDH approach, as well as for other quantum methods.

The ability to predict and explain the spectra of molecules this way has several

obvious advantages. Computationally resolving spectrum means that any experi-
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mental difficulty, be that equipment limitations, safety hazards or time concerns,

are completely by-passed. Along with the ability to systematically rationalise the

peaks in the spectra and the ability to study unstable molecules means that this

is an essential tool in understanding molecular energetics.

Chapter 5 will show that the ML-MCTDH approach can not only be applied

to small molecules like Allene, but is also robust enough to simulate dynamics

in large systems, in this example, an electron transfer from the dye molecule,

Coumarin-343, C343, into a TiO2 semiconductor.

Semiconductors are very important materials, and are used in a wide range of

applications from household electronics to being essential in the development of

sustainable energy sources. They are important as components in solar cells due

to their unique electronic behaviour. By coupling the semiconductor to a suitable

molecule, as seen in figure 1.2, an electron transfer between the donor molecule

and the semiconductor can be observed. This system involves an electron being

transferred from an excited donor state of the dye molecule into the conduction

band of the semiconductor.

However, the pathway of this excitation, and especially the recombination

mechanism is still not well understood. In order for more efficient solar cells

to be developed, it is key that this process is better understood. The development

of these more efficient solar cells will be discussed further in 2.7.2.

The final application of the ML-MCTDH method which will be demonstrated

in this thesis in chapter 6 is the ability to propagate density matrices instead of

wavefunctions in order to simulate quantum dynamics at temperatures greater

than zero Kelvin. The system that this method is demonstrated on is a ground

state intramolecular proton transfer in salicylaldimine. This system has a double

well potential energy surface along the reaction coordinate, with the height of the

barrier equating to ∼ 1500 Kelvin.
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Figure 1.2: (a)A Coumarin-343 dye molecule attached to the surface of TiO2 semicon-
ductor and (b) the corresponding energy levels. Vg denotes the ground state of the dye
molecule, Vdd the donor state, which corresponds to the excited state of the dye molecule,
and Vkk denotes the acceptor states, which correspond to the discretised conduction band
of the semiconductor . The process of the ground state wavepacket being excited into
the donor state is also shown, which is the initial step of the electron transfer process
[1].

Probing the dynamics of systems which use heat to overcome an activation

barrier is something that cannot be easily done using the MCTDH approach alone,

as these methods have been designed to be performed on closed systems, at zero

Kelvin. There are adaptions to this method which account for temperature, but it

still excludes some important coherence effects. Using density matrices allows one

to not only probe systems at a finite temperature, but also allows open systems to

be investigated in a quantum manner. This means that environmental effects, such

as solvents, can also be included in this method. Previous implementations of this

method have coupled the standard MCTDH approach with density matrices with a

great degree of success. However, where the standard MCTDH approach represents

the nuclear wavefunction as a vector, the density matrix method represents the
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Figure 1.3: Salicylaldimine exhibits an intramolecular hydrogen transfer from the oxygen
to the nitrogen.

nuclear wavefunction as a matrix. Therefore, as the computational effort is that

of MCTDH squared, this method quickly becomes, once again, size restrictive.

This thesis explores the ides of coupling the ML-MCTDH approach with density

matrices, in order to allow larger systems to be investigated. This novel approach

has the potential to be an excellent tool in the investigation of several types of

important biological and chemical systems, where temperature and environment

play a significant role.

Introduction 6



Chapter 2

Background and Theory

2.1 Introduction

The Born-Oppenheimer approximation [2] is the starting point for the determina-

tion of the dynamics of most chemical processes. Due to the nuclei being much

heavier than the fast-moving, low mass electrons, the BOA assumes that the dy-

namics of a system are dominated by a single electronic energy surface [3], with

the nuclei moving over the electronic potential energy surface. While this sim-

plification of a chemical process is sufficient to explain a wide range of processes,

such as in simple absorption and photoelectron spectroscopy [4], it often breaks

down for more complicated processes and leads to some unpredictable outcomes.

This break down of the BOA arises due to the coupling between the electronic

motion and the nuclear motion (called vibronic coupling), and is most significant

in systems where there are two or more electronic states which are close in energy.

This will be discussed further in section 2.4. When the energy of these states

become degenerate, the coupling becomes infinitely large, the BOA completely

breaks down and a conical intersection is formed, an example of which can be seen

in figure 2.1.

These conical intersections are essential phenomena in many photo-excited

chemical processes and allow interstate crossing on femtosecond timescales [5, 6].

These intersections can be classed depending on their relative energies and how
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2.2 The Schrödinger Equation

they arise, and are discussed more in depth in section 2.6. These principles of

quantum dynamics can be applied to electron transfer schemes, which are of im-

portance in several chemical processes, including being a key step in the use of

semiconductors as solar cells, which is discussed in depth in chapter 2.7.
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Figure 2.1: An example of a conical intersection. This is a ’Mexican hat’ potential
surface showing the crossing point of the adiabatic doubly degenerate ground electronic
state of the Allene cation along the ν5 (torsion) and ν11 (C-C asymmetric stretch) modes

2.2 The Schrödinger Equation

To predict the dynamics of any system, one must start with the fundamentals of

the BOA. The assumption that the BOA implements is that the the nuclear and

electronic motion can be separated [5], and the dynamics of the system can be

described by a nuclear wavepacket evolving in time over an adiabatic, static PES.

The evolution of the nuclear wavepacket is described by the solution to the TDSE,
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2.2 The Schrödinger Equation

i~
∂

∂t
Ψ(R, r, t) = ĤΨ(R, r, t), (2.1)

where Ĥ is the molecular Hamiltonian operator, i =
√
−1, ~ is the reduced Planck’s

constant where ~ = h
2π

, Ψ is the full wavefunction, and (R,r,t) are the nuclear,

electronic and time coordinates respectively.

The static PES are determined by solving the time independent Schrödinger

equation, TISE,

ĤΨ = EΨ, (2.2)

where the Hamiltonian operator, Ĥ, acts upon wavefunction Ψ.

The molecular Hamiltonian operator has been derived from the classical Hamil-

tonian function,

H = T + V, (2.3)

where T is the classical kinetic energy, T = p2

2m
and V is the classical potential

energy, V = V (q). Here, p and m are the the momentum and mass of the par-

ticle respectively, and q is the spatial coordinates. In quantum mechanics, the

Hamiltonian becomes an operator, with the kinetic and potential terms becoming

operators also, thus being written as,

Ĥ(R, r) = T̂n(R) + Ĥel(r, R), (2.4)

where Hel is the electronic Hamiltonian and contains all the potential operator

terms and T̂n is the nuclear kinetic operator.

T̂n(R) = −
∑
i

~2

2mi

∇2
i , (2.5)

where m is the mass of nucleus i. The full equation can thus be expanded as,
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2.3 Density Matrices

Ĥ(R, r) = −
∑
i

~2

2mi

∇2
i + T̂el(r) + V̂ee(r) + V̂ne(r, R) + V̂nn(R). (2.6)

Ĥel is dependent on both nuclear and electronic coordinates. This is also known

as the clamped-nucleus Hamiltonian as it is derived by setting the nuclear kinetic

energy to zero,

Ĥel(R, r) = T̂el(r) + V̂ (R, r), (2.7)

where V̂ (R, r) contains all the potential operators shown above in equation 2.6.

2.3 Density Matrices

Thus far, all the nuclear wavefunctions discussed in this chapter have been repre-

sented as vectors, and can be described as pure states, i.e. the initial state of the

time evolution of the system is well-defined. When the initial state is no longer

pure, but an incoherent mixture of states, using density matrices can move beyond

this pure wavepacket picture. This statistical mixture can be written using the

density operator, ρ [7],

ρ =
∑
n

Pn|Ψn〉〈Ψn|, (2.8)

where 0 ≤ Pn ≤ 1 is the probability of being in state |Ψn〉. The time evolution of

a mixed state system can no longer be described using the TDSE, but instead is

described using the Liouville-von Neumann equation, LVNE,

iρ̇ = L (ρ), (2.9)

where L is the Liouvillian superoperator. This can be shown to be the equivalent

of the TDSE if the initial wavefunction is pure. The density matrix of a pure

quantum state, |Ψ〉, can be written as,
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ρ = |Ψ〉〈Ψ|. (2.10)

The time derivative of this equation, following the product rule, can be written as,

d

dt
ρ =

d

dt
(|Ψ〉〈Ψ|) =

(
d

dt
|Ψ〉
)
· 〈Ψ|+ |Ψ〉 ·

(
d

dt
〈Ψ|
)
. (2.11)

The TDSE equation, i~ ˙|Ψ〉 = Ĥ|Ψ〉, can be written as,

d

dt
|Ψ〉 = − i

~
Ĥ|Ψ〉. (2.12)

The complex conjugate of which is,

d

dt
〈Ψ| = +

i

~
〈ψ|Ĥ. (2.13)

Substituting this into the time derivative of the density operator equation,

equation 2.11, and setting ~ to atomic units so that ~ = 1, one can derive,

d

dt
ρ = −iĤ|Ψ〉〈Ψ|+ i|Ψ〉〈Ψ|Ĥ, (2.14)

d

dt
ρ = −iĤρ+ iρĤ, (2.15)

d

dt
ρ = −i[Ĥ, ρ]. (2.16)

Therefore, for closed systems the LVNE can be simplified to that in equation 2.9,

where

L (ρ) = [Ĥ, ρ] (2.17)

For open systems, there are several approaches for defining L , especially to

account for environment effects. Three of the most prominent approaches include

the Lindblad [8], the Redfield [9], and the Caldeira and Leggett [10, 11] approaches.

Approaches as to how the density matrix can be developed within the MCTDH

formalism will be discussed in chapter 3, and an example of how these methods

can be used on thermalised systems will be shown in chapter 6.
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2.4 The Born-Oppenheimer Approximation

2.4 The Born-Oppenheimer Approximation

The BOA asserts that as the mass of a nucleus is so much greater than that of

an electron, that the electron’s motion is instantaneous compared to that of the

nucleus. This basic assumption means that effectively the nuclei move on a static

energy surface, and that the full wavefunction can be separated into the electronic

and nuclear components,

Ψ(R, r, t) =
∑
i

χi(R, t)ψi(r;R), (2.18)

where i is the electronic state, χi(R, t) is the time dependent nuclear wavefunc-

tion in the ith electronic state, acting as expansion coefficients in equation 2.18

and ψ is the electronic wavefunction. The electronic wavefunction is not time

dependent and can be obtained independently by solving the electronic time in-

dependent Schrödinger equation, TISE, at various nuclear geometries to form the

PES over which the nuclear wavefunction will move. Equation 2.18 is known as

the Born-Huang representation [12], or Born representation, and is formally exact

if an infinite number of electronic states are included. This linear combination

of electronic wavefunctions representing the full molecular wavefunction allows

non-adiabatic effects to be incorporated.

In atomic units, the TDSE can be written in the simplified form shown below,

iΨ̇ = ĤΨ, (2.19)

where Ψ̇ is the partial derivative of Ψ with respect to time. Substituting in the

full wavefunction expressed in equation 2.18, and knowing that the molecular

Hamiltonian can be written as a combination of kinetic and potential operators,

as shown in 2.4, one can obtain the following,
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2.4 The Born-Oppenheimer Approximation

i
∑
i

χ̇iψi = (T̂n + Ĥel)
∑
i

χiψi. (2.20)

If we left multiply by a complex conjugate of one electronic wavefunction,

ψj(r;R), and integrate over the electronic coordinates, it results in a form in

which all coupling terms are included. This process is shown below,

i

∫
ψ∗j
∑
i

χ̇iψidr =

∫
ψ∗j (T̂n + Ĥel)

∑
i

χiψidr. (2.21)

Due to the orthonormality of the electronic wavefunctions, all 〈ψj|ψi〉 terms

disappear, except when j = i, resulting in equation,

iχ̇j =
∑
i

∫
ψ∗j T̂nχiψidr︸ ︷︷ ︸

1

+
∑
i

∫
ψ∗j Ĥelψiχidr︸ ︷︷ ︸

2

.
(2.22)

Part 2 of equation 2.22 can be easily simplified, as shown in the following,

∑
i

∫
ψ∗j Ĥelψiχidr = Ĥel

∫
ψ∗jψidrχi,

= Ej

∫
ψ∗jψidrχi,

= Ejχj,

(2.23)

where ĤelΨj = EjΨj is the electronic Hamiltonian operating on the jth electronic

state.

If we make the assumption that the electronic wavefunctions ψi and ψj are

completely free of any dependency on the nuclear kinetic energy, as per the BOA,

then part 1 of equation 2.22 can also be similarly simplified,

∑
i

∫
ψ∗jψidrT̂nχi = T̂nχj. (2.24)

These simplifications lead to the adiabatic Born-Oppenheimer approximation,

iχ̇j = (T̂n + Ej)χj. (2.25)
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2.4 The Born-Oppenheimer Approximation

However, the assumption that the electronic state is not dependent on the

nuclear kinetic energy is only an approximation. Therefore, the resulting equation

shown in equation 2.24 is an oversimplification. To correct for this, we must add

in coupling terms by having the kinetic energy operator acting on the electronic

wavefunctions, rather than being separated from them, shown below.

[
− 1

2M

∫
ψ∗j

∂2

∂R2
ψidr

]
χi. (2.26)

This equation comes about by taking the kinetic operator from the Hamilto-

nian, shown in equation 2.6 and substituting into equation 2.24 [Atomic units are

taken, so ~ = 1].

After applying the product rule, and simplifying, part 1 of equation 2.22 can

be written as,

− 1

2M

∫
ψ∗jψidr∇2︸ ︷︷ ︸
T̂n

− 1

2M

∫
2ψ∗j∇ψi︸ ︷︷ ︸

Fji

dr∇− 1

2M

∫
ψ∗j∇2ψidr︸ ︷︷ ︸

Gji

χi, (2.27)

where ∇ and ∇2 are the first and second partial derivatives with respect to nuclear

coordinates, δ
δR

and δ2

δR2 , respectively. The first term in equation 2.27 is simply

the nuclear kinetic energy, as shown in equation 2.24, and thus can be written as

such. Thus equation 2.22, the TDSE, can be written as follows,

iχ̇j =
(
T̂n + Ej

)
χj +

(∑
i

Λji

)
χj, (2.28)

where Λji is the non-adiabatic coupling matrix which is as follows,

Λji = − 1

2M
(2Fji∇+Gji) . (2.29)

Gji are the scalar derivative couplings, a matrix of numbers, and Fji are the

derivative non-adiabatic coupling vectors. These terms couple the electronic and
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2.4 The Born-Oppenheimer Approximation

nuclear motion. It is clear that as the mass increases, the coupling terms become

diminishingly small, and can eventually be ignored completely.

The introduction of these correction terms means that equation 2.28 is a com-

plete solution of the TDSE. This is the diabatic picture.

Although the TDSE obtained using the BOA, equation 2.25, is sufficient to

explain many chemical processes, it has been shown that as the method is ap-

plied to more complex situations, for example probing excited state chemistry in

polyatomic molecules, this adiabatic approximation breaks down [13, 14]. This

break down of the BOA is due to coupling of the electronic motion and the nu-

clear motion (called vibronic coupling) in areas where two or more potential energy

surfaces become close in energy to each other, which is inevitable in systems with

many degrees of freedom (DOF) [5]. This break down of the BOA arises due to

the non-diagonal coupling term mentioned above, Fji. These can be determined

by using the product rule on the Hellmann-Feynman theorem [15],

∇〈ψi|Ĥel|ψj〉 =
〈
∇ψi|Ĥel|ψj

〉
+
〈
ψi|Ĥel|∇ψj

〉
+
〈
ψi|∇Ĥel|ψj

〉
. (2.30)

Due to the fact that the electronic wavefunctions are eigenvalues of Ĥel, equa-

tion 2.30 can be reduced to,

∇〈ψi|Ĥel|ψj〉 = 〈∇ψi|ψj〉Ej + Ei 〈ψi|∇ψj〉+
〈
ψi|∇Ĥel|ψj

〉
. (2.31)

As the partial derivative operator, ∇, is anti-Hermitian, this above equation

can be rearranged, and set to zero.

∇〈ψi|Ĥel|ψj〉 = 〈ψi|∇ψj〉 (Ei − Ej) +
〈
ψi|∇Ĥel|ψj

〉
= 0. (2.32)

Substituting Fji into equation 2.32, one obtains the following expression,
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2.5 Beyond the Born-Oppenheimer Approximation

Fij = 〈ψi|∇ψj〉 =
〈ψi|Ĥel|ψj〉
Ej − Ei

. (2.33)

It can be seen from equation 2.33 that as two electronic surfaces become close

in energy, the Fij coupling term becomes infinitely large as the difference in energy

of two electronic states tends to zero. When these energies become degenerate, and

the denominator becomes 0, there is a complete breakdown of this approximation.

Regions of degenerate energies are called conical intersections, and are discussed

in further detail in section 2.6.

A special case of this coupling is known as the Jahn-Teller (JT) effect. The

JT effect states that ”In an electronically degenerate state, a nonlinear molecule

undergoes distortion to remove the degeneracy by lowering the symmetry and

thus by lowering the energy..” [16] This is a spontaneous breaking of symmetry

to remove degeneracy in molecules with high symmetry. This effect is driven by

energetics, and that this distortion lowers the overall energy of the system. There

have been several early studies on small systems exhibiting the JT effect, which

were optimal systems to investigate due to the high symmetry in relatively small

molecules allowing simple models to be easily applied [17, 18, 19]. This will be

discussed further in section 2.6.1

2.5 Beyond the Born-Oppenheimer Approxima-

tion

Due to the break down of the adiabatic picture when electronic states are degen-

erate in energy, one can gain more information about the crossing point if a switch

to the diabatic picture is made. In the diabatic picture, the electronic states are

grouped in terms of chemical character, such as a bond stretch or a torsion angle,

rather than in magnitude of energy. This leads to crossing of states, as in figure

2.2, rather than avoided crossings as in the adiabatic picture.
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2.5 Beyond the Born-Oppenheimer Approximation

Figure 2.2: The same system shown in both the adiabatic picture (left) and the diabatic
picture (right) These are the potential energy surfaces of the lowest three energy states
of butatriene [20].

In order to transform into the diabatic picture, firstly, removing the Gji term

in equation 2.28 simplifies the equation. This can be achieved by considering the

expansion of,∑
i

(∇+ Fji)
2 =

∑
i

(∇+ Fji)(∇+ Fji)

=
∑
i

∇2 + (∇ · Fji) + (Fji · ∇) +
∑
k

(Fjk · Fki),
(2.34)

where
∑
k

(Fjk · Fki) is the matrix product. This expansion and rearrangement due

to the anti-Hermitian nature of the Fji = −F ∗ij term leads to,

∑
k

(Fjk · Fki) = 〈ψj|∇ψk〉〈ψk|∇ψi〉

= −〈∇ψj|ψi〉
(2.35)

The (∇ · Fji) term above in equation 2.34 can be expanded as,

(∇ · Fki) = 〈∇ψj|∇ψi〉+ 〈ψj|∇2ψi〉+ 〈ψj|∇ψi〉∇

= 〈∇ψj|∇ψi〉+Gji + Fji · ∇.
(2.36)

Therefore, equation 2.28 can be rewritten in terms of Fji only, so the whole

equation can be written,

iχ̇i =

[
− 1

2M
(∇+ Fij)

2 + Ej

]
χj. (2.37)
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2.5 Beyond the Born-Oppenheimer Approximation

As the Fji term here still includes a singularity at degenerate energies, this term

needs to be eliminated. Changing to the diabatic representation in these situations

is the obvious choice, as these problematic non-adiabatic terms are removed from

the TDSE. The Schrödinger equation can be expressed in the diabatic form,

i ˜̇χi =
∑
j

(
− 1

2M
∇2 +Wij

)
χ̃j, (2.38)

where χ̃ is the diabatic representation of the nuclear wavefunction and all cou-

pling terms are now included in the non-diagonal Wij potential matrix, with the

adiabatic potential energies, Ej, as the eigenfunctions of matrix Wij,

Wij = 〈ψi|Ĥel|ψj〉, (2.39)

where ψα is adiabatic state α.

Changing to the diabatic form can be done by a unitary transformation of

the adiabatic wavefunctions into diabatic wavefunctions using an undetermined

unitary matrix S [21]. The adiabatic and diabatic wavefunctions are related to

each other by ψ̃a =
∑
i

Saiψi ; where S is the unitary matrix and
∑
a

SiaS
†
aj = δij.

There is an assumption that the relationship ∇S = −FS is met for this trans-

formation, where F is the non-adiabatic coupling term described earlier. Also,

the matrix S is specified at a point where the adiabatic and diabatic states are

equivalent. This is typically the Frank-Condon point. For example, for the trans-

formation of a 2-state system at a fixed nuclear geometry,

(
ψ1

ψ2

)
=

(
cos α sin α
− sin α cos α

)(
ψ̃1

ψ̃2

)
, (2.40)

where α is the mixing angle between adiabatic states ψ1 and ψ2. Using this equa-

tion in equation 2.39, one gets the following equations for both the on- and off-

diagonal elements,

Background and Theory 18



2.6 Conical Intersections

W11 = 〈ψ1|Ĥel|ψ1〉 = E1 cos2 α + E2 sin2 α, (2.41)

W22 = 〈ψ2|Ĥel|ψ2〉 = E1 sin2 α + E2 cos2 α, (2.42)

W12 = 〈ψ1|Ĥel|ψ2〉 = (E1 − E2) cos α sin α, (2.43)

where Ei is the adiabatic potential energy of state i, Wii are the diabatic potential

energy matrix elements, and Wij are the off-diagonal coupling elements between

the electronic states.

2.6 Conical Intersections

As mentioned in the previous section, conical intersections occur when the energy

of two electronic states become degenerate. This results in a surface where the

electronic and nuclear motion can no longer be approximated to be separable, see

figure 2.1 for an example of this point.

Conical intersections can be differentiated into different classes and topogra-

phies. They can be classified by the role of the point group symmetry in their

existence [22]. There are three types of intersections: symmetry required, acci-

dental symmetry allowed and accidental no symmetry intersections [23]. For a

two-state conical intersection, two conditions are needed. When the electronic

Hamiltonian is built in a diabatic basis, the following is obtained,

Hel =

[
H11 H12

H21 H22

]
. (2.44)

For the eigenvalues of the two states to become degenerate, and therefore in-

tersect, then H11 = H22, and H12 = H21 = 0.

The non-crossing rule, first posited in 1929 [7], states that these two conditions

cannot both be met in system with 6 2 degrees of freedom and thus form an

avoided crossing, as in figure 2.3.
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2.6 Conical Intersections

Figure 2.3: An example of several highlighted avoided crossings in a 4 adiabatic state
system, adapted from reference [24].

As the dimensionality of these crossings is N-2, where N is the number of atoms

in the system, for these diatomic molecules, there is only one internal coordinate-

the interatomic distance, so the non-crossing rule can be applied. However, after

many years of computations and experiments, it was proven not only that same

symmetry crossings are ubiquitous in polyatomic molecules [23, 25, 26, 27], but

they often play a crucial role in many chemical processes.

If the states involved in the intersection are of degenerate symmetry, such as

those belonging to E or T representations, then both the conditions mentioned at

the start of this section are met due to symmetry, and thus, these can be referred to

as symmetry-required intersections. This type of intersection is also known as the

Jahn-Teller effect and will be discussed further in section 2.6.1. If two or more non-

degenerate states cross, then the resulting conical intersection can be classed as an

accidental symmetry-allowed intersection or accidental no symmetry intersection.

For the symmetry allowed intersection, it is assumed that for states with different
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2.6 Conical Intersections

symmetry, the second condition mentioned above, H12 = H21 = 0, can be satisfied.

However, the on-diagonal conditions only maybe meet at particular points R and

so meets this condition accidentally. The final class is the accidental no symmetry

intersections, where the conditions are met through no result of symmetry at all,

and are purely accidental. These types of conical intersections are, therefore,

difficult to locate and their significance has only been investigated properly in the

last few years.

Conical intersections can also be categorised by their topology. They can be

either peaked intersections, where the energy minimum of the higher energy level

is also the point where the systems cross, as in part (a) in figure 2.4 They can

also be sloped intersections, where the energy minimum is lower than the conical

intersection, as in part (b) in figure 2.4. In the latter case, quantum tunnelling

can be observed.

2.6.1 Jahn-Teller Systems

The Jahn-Teller effect refers to the degenerate states induced by symmetry, and

have been extensively studied throughout the years. The Jahn-Teller theory states

that a symmetrical molecule in a degenerate state will geometrically distort to lift

the degeneracy in order to stabilise the state [16]. The vibrational modes which

can break the degeneracy of the states is dependent on their symmetry. In general,

degeneracy can be broken if the direct product of the two electronic states contains

the symmetry element of the vibrational mode, i.e. the direct product of the two

electronic states and the vibrational mode must include the totally symmetric

mode, as shown in 2.45. These vibrational modes are said to be Jahn-Teller active.

Γi � Γj � Γα ⊂ A1, (2.45)

where Γi and Γj are the electronic states, and Γα is the vibrational mode.
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Figure 2.4: An schematic of (a) a peaked conical intersection and (b) a sloped intersection
[28].The excited wavepacket moves towards the conical intersection (red arrows) where
in (a) the wavepacket passes through the intersection and continues on the lower energy
level, and in (b) the momentum of the excited wavepacket causes the wavepacket to
move to an area of energy higher than the intersection on the lower surface. This is the
tunnelling, where the wavepacket moves to an area on the surface but does not have the
energy to cross the energy barrier. The wavepacket then bifurcates in this example, as
2 possible pathways are available.

In a Jahn-Teller system, i = j, and so the product of Γi�Γj will always contain

the totally symmetric symmetry group.

A common Jahn-Teller problem is the E � e effect. This is the case where a

doubly degenerate mode of symmetry e lifts the degeneracy of a doubly degenerate

electronic state, E [29, 30], and has been researched in many different systems

[31, 32]. This is due to E � E ⊃ E + A in most non-Abelian point groups. As

the totally symmetric representation cannot lift the degeneracy of the state, then

vibrational modes which can couple and break degeneracy are the degenerate e

modes, hence E � e.

Another less common Jahn-Teller problem is the E � b effect. The direct

product of the doubly degenerate E electronic state of certain symmetries do not

reproduce the E representation, but instead result in the totally symmetric A
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2.7 Semiconductors and Solar Cells

and the B irreducible representations, resulting in the E � b effect, where the

degeneracy is lifted by pair of vibrations with b symmetries.

There has been research into this effect on molecules such as Allene [33, 34, 35]

and pentatetraene [36]. These molecules are ideal systems to probe this E � b

Jahn-Teller effect as they both belong to D2d group, which shows this type of

effect, and only have 15 and 21 DOF respectively. Therefore, due to the small

size, the effects are easily modelled for all DOF in the system. The Jahn-Teller

effect in Allene will be discussed further in chapter 4.

2.7 Semiconductors and Solar Cells

2.7.1 Why are semiconductors important?

The ultimate aim of this thesis was to simulate an electron transfer from a dye into

a semiconductor. Semiconductors are materials which are only conductive under

certain conditions. This arises due to the small energy gap between the valence

and conduction bands of the solid material, meaning that a small input in energy

is enough to promote electrons from the full valence band into the empty con-

duction band, allowing a free flow of electrons and thus behaving as an electrical

conductor, as shown in figure 2.5.
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Figure 2.5: A schematic which shows the band structure of a metal, a semiconductor,
and an insulator. One can see that with enough energy, the electrons in a semiconductor
can be promoted into the conduction band and the material behaves as a metal.

Due to this property, semiconductors are very important materials and are

used in a wide range of applications, from being an essential component in house-

hold electronics, to the advancement of semiconductor lasers [37], to the use in

photovoltaic cells [38].

2.7.2 Solar Cells

Due to the fight against climate change and the search for more sustainable en-

ergy resources, there has been a growing interest in recent years in alternative,

cleaner energy sources. One avenue of this research is using semiconductors to

convert energy from the sun into electrical energy, in a photovoltaic cell. The sun

emits energy in the infrared, visible and ultra-violet range, meaning that the band

gap of a useful semiconductor should correspond to this energy, i.e. 0.5-5 eV. A

large problem with semiconductors is that the efficiency of energy conversion is

dependent on the width of the band gap, Eg. Too large a band gap, and only
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photons with high energy will be able to promote electrons into the conduction

band. However, too small an energy gap means that a large proportion of the

energy from the photon is converted into thermal energy, which will decrease ef-

ficiency. There have been theoretical investigations which show that for a single

P-N junction semiconductor, a band gap of 1.34 eV is the optimum width in order

to reach the maximum efficiency with respect to the spectral energy distribution

of the sun, the so-called Shockley-Queisser limit, after the initial paper on this

calculation [39], see figure 2.6. Following on from this initial finding, early research

Figure 2.6: The Shockley-Queisser limit for a solar cell at 298.15 K. The efficiencies
for energy conversion of different types of semiconductor are shown. Homo- and hetero-
junctions are shown as green circles and red squares respectively, with indirect and direct
band gaps shown as unfilled and filled symbols respectively. The AM1.5G refers to the
spectral irradiance, corresponding to sunlight on the earth’s surface which has been
scattered by the atmosphere. Taken from [40]

in the field of photovoltaics focused on semiconductors with band gaps close to this

optimum, which is why the first commercially used solar cells were silicon based,

which has an energy gap of 1.1 eV. These first generation solar cells are still the
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most widely used cells due to their high efficiency [41], and abundancy of silicon.

The cost of production of these first generation solar cells drove the development

of second generation technologies, also known as thin-film solar cells. These solar

cells are only a few micrometers thick and so are viable at a lower cost, although

have a much lower efficiency [42] than first generation cells. The manufacturing

problems associated with these second generation cells, such as availability or tox-

icity of materials, has lead to the inspiration of third generation solar cells. Unlike

the previous generations, which rely on a P-N junction design, these solar cells

incorporate new materials into the semiconductor to make them more efficient by

capturing a wider range of solar energy. One example of this is a dye-sensitised so-

lar cell (DSSC), which are also referred to as the Grätzel cell, as they were invented

in 1991 by Grätzel and O’Regan [43]. DSSCs consist of dye molecules attached

to the surface of a nanocrystalline semiconductor film, with the photoexcitation

of the dye molecule resulting in an electron transfer into the conduction band of

the semiconductor . The dye molecule is then reduced by the electrolyte [44]. A

scheme for this process is shown in figure 2.7.

2.7.3 How can the efficiency of solar cells be improved?

Although these DSSCs are comparatively low cost to make when compared to

silicon based semiconductors , their current low efficiency means that there needs

to be further development before they have commercial viability. Currently, the

efficiency of DSSCs has reached 12% [46], which is far lower than first and second

generation cells, where efficiencies of up to 46% have been achieved for a multi-

junction first generation solar cell [47]. The theoretical efficiency of DSSCs has

been shown to be over 20% [48], and therefore there has been extensive research

over recent years to try and increase the efficiency of these cells. There are many

factors when considering the efficiency of these cells, including the charge recom-

bination rate, and subsequent dissipation of energy. One key step that determines
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Figure 2.7: A schematic showing the energy levels and charge transfer in a DSSC, with
TiO2 as the semiconductor . Figure adapted from [45].

the efficiency is the initial electron injection process from the dye into the semi-

conductor, which is why it is this process that is the main focus of this thesis. This

will be discussed further in chapter 5. By understanding this step in more detail, it

opens the door for designing more efficient, and more commercially viable DSSCs.
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Chapter 3

Methodology

3.1 Introduction

Development of methods based on the BOA to solve the time independent Schrödinger

equation received much attention for many decades [49, 50, 51], but the thought

of solving the time dependent Schrödinger equation was mostly ignored. Heller’s

seminal work in the 1970’s on Gaussian wavepackets sparked the interest in finding

solutions to the TDSE [52]. This paper led to a significant increase in popularity

of finding numerically exact solutions to the nuclear wavefunction found in the

TDSE and has led to wide breadth of methods by which this can be achieved.

This equation mentioned in the previous chapter is repeated here,

i~Ψ̇(R, r, t) = ĤΨ(R, r, t). (3.1)

The Hamiltonian operator, Ĥ can be either in the diabatic or adiabatic form, as

described in section 2.5. The Hamiltonian itself is split into a kinetic and potential

operator acting upon the system.

Firstly, in order to determine the potential operator, or potential energy sur-

faces of the system (PES), the time independent Schrödinger equation, TISE must

be solved for the electronic structure. Two main categories of these so-called ab ini-

tio methods are molecular orbital theory based wavefunction methods [53, 54, 55],

and density functional theory based methods [56, 57]. These will be discussed
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further in section 3.2.

The methods for which the TDSE can be solved also falls into two main cat-

egories, and depend on whether the nuclei are treated classically or as quantum

particles [5], and are labelled as approximate methods or exact methods, respec-

tively. In the classical approach, the particles in the system are treated as classical

objects with classical trajectories and properties. Quantum mechanical approaches

treat the nuclei as a wavefunction, instead of the classical particle, and propagate

the nuclear wavefunction using a propagation scheme [58], and include all quan-

tum effects. This wavefunction propagating over an electronic surface is called

a wavepacket - a superposition of eigenstates. By representing the operator and

expanding the nuclear wavefunction in a time independent product basis set, the

TDSE can be solved using a variational principle. These exact quantum methods

will be discussed in more detail in section 3.5.1. As previously mentioned, these

exact methods represent the system as a wavefunction. However, if we want to

move beyond this wavepacket picture, and represent an incoherent mixture of pure

states in an exact manner which includes all quantum interferences, one must use

density matrices. These density matrices allow environmental and thermal effects

to be easily included in the quantum system. The derivation and dynamics of

these density matrices, and their potential, will be discussed in section 3.6 and

chapter 6, respectively.

3.2 Electronic Structure

For solving the TDSE, it is necessary to pre-compute the potential energy surfaces,

PES, i.e. solve the TISE, as in the previous section shown in it’s simplest form,

ĤelΨel = EelΨel, (3.2)

where the electronic Hamiltonian, under the BOA, can be written as follows
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Hel = Te(r) + VeN(r, R) + Vee(r) + VNN(R) (3.3)

where Te is the electronic kinetic energy operator, and VeN , VNN and Vee are

the interactions for the electron-nuclei, nuclei-nuclei and electron-electron, respec-

tively. The separation of nuclear and electronic motion under the BOA means the

TISE can be solved at a specific nuclear configuration, R.

Determining Eel at different R configurations will give us the PES of the system

of interest. This is achieved using electronic structure, or ab initio, methods.

Two main categories of electronic structure methods that this thesis will cover are

molecular orbital theory approaches [59], and density functional theory approaches

[60].

3.3 Molecular Orbital Theory

For the methods discussed in this section, it is approximated that a system con-

taining N-electrons can be expressed as a product of N one-electron basis functions

called the Hartree product,

Ψel(x1, . . . , xN) = ψ1(x1)ψ2(x2) . . . ψN(xN), (3.4)

where Ψel is the total electronic wavefunction with spatial and spin coordinates

(xi), where (xi) = (R,ωi). ψi is the one-electron wavefunction, or orbital, contain-

ing the ith electron at coordinate xi. However, this Hartree product fails to satisfy

the antisymmetry principle. This antisymmetry principle states that electronic

wavefunctions must be antisymmetric under the exchange of any 2 electrons,

Ψ(x1, x2) = −Ψ(x2, x1), (3.5)

where this example is a wavefunction consisting of 2 electrons with spatial and

spin coordinates of x1 and x2. In this 2 electron example, the Hartree product can
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be written for both electron configurations,

Ψ(x1, x2) = ψ1(x1)ψ2(x2), (3.6)

Ψ(x2, x1) = ψ1(x2)ψ2(x1). (3.7)

The problem can be clearly seen by the fact that Ψ(x1, x2) 6= −Ψ(x2, x1). This

failing of the antisymmetry principle is the core reasoning behind the development

of Hartree-Fock, HF, theory.

3.3.1 Hartree Fock Theory

In order to satisfy the antisymmetry principle, Ψel can be written using a Slater

determinant [53],

Ψel(x1, . . . xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) . . . ψN(x1)
ψ1(x2) ψ2(x2) . . . ψN(x2)
. . . .
. . . .

ψ1(xN) ψ2(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣
, (3.8)

where ψM(xN) is the M th single electron orbital containing the N th electron.

Therefore, one could write the previously mentioned 2 electron example system

shown equation 3.5 as,

Ψ(x1, x2) =
1√
2

[ψ1(x1)ψ2(x2)− ψ2(x1)ψ1(x2)] , (3.9)

where ψ1(x1) is electron 1 in spin orbital 1, and ψ2(x1) is electron 1 in spin orbital

2, and so on.

The ground state energy of the system is given as,

Eel = 〈Ψel|Ĥ|Ψel〉, (3.10)
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and corresponds to the lowest energy Slater determinant, where electron 1 occupies

spin orbital 1, and electron 2 occupies spin orbital 2, and so on until the N th

electron occupies the N th spin orbital, according to the Aufbau principle.

The electronic Hamiltonian,

Ĥel =
N∑
i=1

−1

2
∇2
i −

N∑
i=1

M∑
A=1

zA
riA

+
N∑
i=1

N∑
j=i+1

1

rij
, (3.11)

can be separated into the one-electron part - the kinetic energy and the Coulomb

interactions of electrons with the nuclei - and the two-electron part, the electron-

electron Coulomb interaction,

Ĥel =
N∑
i=1

ĥ1(xi) +
N∑
i=1

N∑
j=i+1

1

rij
. (3.12)

where
N∑
i=1

ĥ1(xi) contains all the one-electron terms. The electron-electron Coulomb

interaction cannot be exactly solved, and therefore one must resort to approximate

methods.

The approximation that HF theory makes is to average the interaction of an

electron with all other electrons by a mean field comprised of Coulomb and ex-

change terms. By representing the electron-electron interaction in this way, one

arrives at the Hartree-Fock equation,

f̂(x1) = ĥ(x1) + V̂ HF (x1), (3.13)

where f̂(x1) is the Fock operator, ĥ(x1) is the one-electron Hamiltonian described

above, and V̂ HF is the HF mean field operator. This mean field operator means

that electron i feels the effect of all other N − 1 electrons. In the case of closed

shell HF, this gives rise to the equation,

f̂(r1)φi(r1) = εiφi(r1), (3.14)
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where the Fock operator is acting on spatial orbital φi with spatial coordinates r1

to give the orbital energy, εi. This switch from spin to spatial orbitals arises due

to separation of the spin orbital into its spin and spatial functions. As the one-

electron Hamiltonian does not depend on spin, the spin functions can be factored

out,

〈ψi|ĥ(r1)|ψj〉 = δσiσj(φi|ĥ(r1)|φj) (3.15)

where where the spin functions σi and σj are orthonormal and so reduce to a

Kronecker delta function. The now spatial functions of the orbitals are represented

in brackets, as opposed to the bra-ket notation, to represent that they are spatial

coordinates. This switch from spin to spatial orbitals, and subsequent derivations,

are well documented in literature [53, 54, 61].

Solving equation 3.14, however, is non-trivial for molecular systems. A proce-

dure developed by Roothaan [62] suggests that this can be solved by expanding

each orbital φi into a linear combination of atomic orbitals, ϕj, each with their

own set of atomic orbital coefficients, cji, using a basis set comprising of K basis

functions, (LCAO),

φi =
K∑
j=1

cjiϕj. (3.16)

This sum of atomic orbitals, or basis functions, makes up a basis set which

describes molecular orbital φi.

The Roothaan equations provide a form for the wavefunction that can now

be optimised by finding appropriate values for the LCAO expansion coefficients.

This optimisation can be done by applying the variational principle to a trial

wavefunction, Ψ̃el. This ensures that the energy of this wavefunction must be

greater than or equal to the exact ground state energy solution,
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E =
〈Ψ̃el|Ĥel|Ψ̃el〉
〈Ψ̃el|Ψ̃el〉

> Eel, (3.17)

where the calculated energy, E is greater than or equal to the true ground state

energy, Eel. By adjusting the initial guess wavefunction, and minimising equation

3.17 with respect to the choice of spin orbitals, the wavefunction with the lowest

energy, and thus the most true, can be determined.

However, even if an infinite number of basis functions could be included, one

would still not arrive at the exact wavefunction solution, as the lack of electron

correlation is still present. This is the Hartree-Fock limit. In order for the exact

wavefunction to be determined, one moves to the full configuration interaction

(full CI) picture,

Ψ = C0φ0 +
∑

Cr
a
φr
a

+
∑

Cr,s
a,b
φr,s
a,b

+ . . . , (3.18)

where the electron correlation is added to the HF Slater determinant, φ0, by in-

cluding all the possible excitation determinants. These are the single excitation

determinants, φr
a
, double excitation determinants, φr,s

a,b
, and so on until all pos-

sible excitations are included. These determinants are called configuration state

functions, CSFs.

An infinite number of basis functions to describe an infinite number of CSFs

would allow the exact electronic wavefunction to be determined, and thus an exact

solution of the TISE to be calculated, but this is clearly not possible for any systems

bigger than diatomic molecules. Choosing the right basis set which sufficiently

describes all the molecular orbitals in the system is key and requires both chemical

knowledge and intuition.

As already mentioned at the beginning of this section, the Hartree-Fock ap-

proach assumes that the electrons in the system do not correlate with each other.

This assumption becomes less and less valid as the size of the system, and thus
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number of electrons, increases, and correlation effects become more prominent.

Without accounting for these electron correlations, then the PES cannot be ac-

curately calculated for anything but the simplest of systems. There are many

methods which can correct for this missing correlation, and are termed post-HF

methods. They will be briefly mentioned here, but not discussed in detail.

The Møller-Plesset perturbation theory partitions the electronic Hamiltonian

into the Fock operator and a perturbation operator [63]. The complete active space

self-consistent field method, CASSCF [55], divides the molecular orbitals into in-

active and active orbitals. The active orbitals consist of a subset of the system’s

orbitals and electrons, whilst the inactive orbitals consist of the occupied core and

the remaining unoccupied virtual orbitals. CASSCF then variationally solves the

TISE for the active space orbitals, building configurations with all the possible

electron excitations within the active space orbitals. This allows a complete set of

Slater determinants for a truncated set of orbitals to be described accurately, ef-

fectively solving the electronic wavefunction exactly for a set of truncated orbitals.

The active space of the CASSCF method consists of choosing which orbitals are

most significant to the process of interest and requires careful consideration to

ensure that the balance between accuracy and efficiency is achieved. Choosing a

large number of orbitals to describe the system brings the method closer to the full

configuration interaction method (full CI). Although this will give more accurate

results, it is very inefficient.

One can also combine the two previously mentioned methods, termed the com-

plete active space perturbation theory second order, CASPT2 [64]. This extension

not only improves accuracy, but can also be used on excited states, unlike the MP2

method.
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3.3.2 Electron Propagator Theory

The final method that will be discussed here can be used to calculate the energy of

ionised states is electron propagator theory, EPT. This method is based on Koop-

man’s theorem, which states that the ionisation energy is equal to the negative of

the energy of the highest occupied molecular orbital (HOMO) [65].

EPT calculates the properties of cationic states from single-particle Green func-

tion equations. As only the HF orbitals of the ground state are required in building

these Green functions, the wavefunction for the cationic state is not explicitly con-

structed. As the exact form of these one-particle Green functions are unknown, it

is necessary to use a perturbation expansion on powers of the correlation potential.

This correlation potential is contained within the self-energy matrix, Σ(E). This

gives rise to the eigenequation [66],

[F̂ + Σ(E)]ϕp(x) = εpϕp(x). (3.19)

where F̂ is the Fock operator acting on the eigenfunction Dyson orbital, ϕp(x).

The eigenvalue, εp is the ionisation potential [67]. This equation must be solved

iteratively by adapting the self-energy matrix. Which perturbation order is used

to approximate the ground state wavefunction determines what this is. A zeroth-

order perturbation is equivalent to Koopman’s ionisation potential. One perturba-

tion function that will be used in this thesis is the Outer Valence Green’s function

(OVGF) - a so-called diagonal approach [68]. Diagonal approaches take the Dyson

orbitals to be proportional to the HF orbitals, and thus any off-diagonal terms

in the self-energy matrix are neglected [69]. OVGF includes 2nd and 3rd order

perturbation terms, and has been shown to be a useful method for up-to medium

sized molecules, with small relaxation effects.
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3.4 Density Functional Theory, DFT

As discussed in the previous section, there are many complications associated with

the molecular orbital based wavefunction approach to solving the TISE, namely

how to account for the electron correlation interaction. The density functional

approach replaces this electronic wavefunction with an electron density. Post-HF

wavefunction methods become very computationally expensive for large systems,

especially the size of systems that are the primary focus of this thesis, as each

electron has the 4 coordinates of space and spin. DFT is efficient, simple and is

easily combined with nuclear dynamics, with all the information of the system con-

tained within the electron density, which can be described by a simple 3 coordinate

function.

The central quantity in DFT is the density, not the wavefunction, where ρ(r)

is a functional of the wavefunction, Ψ,

ρ[Ψ(r)] = N

∫
· · ·
∫

Ψ(r, x2, . . . , xN)Ψ∗(r, x2, . . . , xN)dx2, . . . , dxN , (3.20)

where the electron density, ρ[(r), is the number of electrons per unit volume in a

given state, and N is the total number of electrons.

The electron density offers all the necessary information needed for the Hamil-

tonian operator, which is the position and atomic charge of the nuclei, and the

total number of electrons. The total number of electrons is obtained by integrating

the density, ρ over all space,

N =

∫
ρ(r)dr. (3.21)

The position of the nuclei is observed through the electron density maxima,

and their atomic charge can be determined through calculating the rate of change

in electron density with distance from the nuclei.
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Underpinning DFT lies the Hohenberg-Kohn theorems [56]. The first of these

states that the ground state electron density, ρ0(x1, x2, . . . , xN), can uniquely de-

termine the atomic positions, or the external potentials.

From this, one can write the density form of the energy as,

Eel = Tel[ρ(r)] + Vel[ρ(r)], (3.22)

where Tel is the kinetic energy functional of the electrons, and Vel is a functional

containing all the potential interactions,

Vel[ρ(r)] = Vee[ρ(r)] + VNe[ρ(r)]. (3.23)

However, there is no simple formalism to determine the density of a system.

This leads on to the second theorem which states that DFT obeys the variational

principle, and that by choosing different electron densities, those which produce

the lower energy are the most correct.

The problem that arises from this now is that the form of these functionals

shown above are largely unknown. Without knowing the exact forms of these

functionals, applying a variational principle means that the resulting energy may

be lower than the real energy of the system. It is for these reasons that a great

deal of care must be taken using these methods. To determine the form of these

functionals is the real difficulty in DFT.

The Kohn-Sham theory [60] considers a non-interacting reference system that

has exactly the same electron density as the real, interacting electron system. The

non-interacting electrons are described using a Slater determinant built using a

single electron Hamiltonian, very similar to that of HF theory. Partitioning the

electrons in this way, the overall energy of the system can now be expressed in

terms of the independent particle kinetic energy, Ts[ρ(r)], the Coulomb energy,

J [ρ(r)], and a new functional which contains all the unknown forms of electron

interactions, Vxc[ρ(r)], called the exchange correlation potential,
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E[ρ] = Ts[ρ(r)] + J [ρ(r)] + Vxc[ρ(r)], (3.24)

where J [ρ(r)] contains the Coulombic interactions of Vee[ρ(r)] + VNe[ρ(r)]. The

exchange correlation potential makes up for all the errors introduced by the previ-

ously mentioned approximations, the assumption of non-interacting electrons and

the over estimation of electron repulsion energy. DFT rests on finding the best

approximation to this exchange correlation functional. Some methods that will be

briefly mentioned here which can approximate this functional is the local density

approximation (LDA), which approximates Vxc[ρ(r)] as a uniform electron gas.

This approximation works well for systems with slow changing electron densities,

such as in bulk solids. An extension of this are generalised gradient approximation

(GGA) functionals, which include the gradient of the electron density to allow

for inhomogeneity of the electron gas. Commonly used GGA functionals include

BLYP, and PBE, to name but a few. There are also hybrid functionals which

combine HF and DFT approaches by replacing a portion of the electron density

exchange correlation with a molecular orbital HF exchange energy. These hybrid

functionals have had great success and are widely used, with B3LYP the perhaps

most prolifically used.

These functionals are semi-empirical, and are all benchmarked against tests

on small systems. This means that although DFT is formally exact, it is not

technically an ab initio method in practice. In fact, HF theory can be thought

of as an approximate theory with an exact solution, and DFT as an exact theory

with approximate solutions.
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3.5 Solving the time dependent Schrödinger equa-

tion for the nuclear wavefunction

Touched upon in the introduction of this chapter, solving the TDSE falls into two

main categories, classical and quantum exact methods. The first full quantum

mechanically exact simulation of the dynamics of a system was first introduced in

1969 [70], and then the development of grid-based methods such as the discrete

variable representation (DVR) [57] and the fast-Fourier transform (FFT) [71] led

to the efficient calculations known as the standard method.

However, the development of semi-classical methods for much larger systems,

such as large biological systems involving environmental effects, have gained in

popularity in recent years, such as exact factorisation [72, 73], where the nuclear

wavefunction moves over a single time dependent energy surface, and path integral

methods [74].

An early example of an approximate method is the Ehrenfest method, first put

forward in 1927 [75]. This method describes the motion of the nuclear wavepacket

using a classical trajectory using Newton’s equations of motion, which evolves in

time over a single, mean-field PES [76]. The single-configurational approach of this

method means that it is not flexible enough to fully describe a quantum system

[77]. Recently, the Ehrenfest approach has been adapted to the multi-configuration

Ehrenfest (MCE) approach which aim to overcome the lack of correlations in

quantum systems, potentially opening up this method to the study of quantum

behaviour [78].

Another method which uses classical trajectories is Tully’s trajectory surface

hopping technique [79], which instead of using one point-like trajectory, uses a

swarm of trajectories to describe the nuclear wavepacket, each behaving indepen-

dently [24]. This method has been developed to include an algorithm in which

the non-adiabatic coupling can induce hops between electronic surfaces, as well as
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many other variants upon this surface hopping technique [80]. Just a few examples

of surface hopping techniques with different switching mechanisms include fewest

switches surface hopping (FSSH) [81] and more recently, fragment orbital-based

surface hopping (FOB-SH) [82]. These surface hopping approaches have been

shown to be extremely useful in the potential for, e.g. predicting charge transfers

in large biological molecules [80].

As these approximate methods are able to treat systems with a larger number

of DOF efficiently, and on much longer time-scales, they are crucial methods for

simulating dynamics in systems such as protein biochemistry [83], or for systems

involving many solvent molecules [84]. However, these trajectory methods break

down when certain quantum effects come into play, such as decoherence and tun-

neling, and are not able to sufficiently describe such processes. There has been

several advances in these methods to overcome such limitations, which starts to

create a category of its own of semi-classical hybrid methods [85], such as quantum

trajectory methods [86] and the emergence of Gaussian wavepacket approximations

[87], where the wavepacket is constrained to a Gaussian function.

3.5.1 Multi-configuration time dependent Hartree method

Grid-based methods expand the wavepacket in a time independent product basis

[88, 89]. Therefore the nuclear wavefunction with f degrees of freedom, for a

particular electronic state, can be written as follows;

Ψ(q1 . . . qf , t) =

N1∑
j1=1

· · ·
Nf∑
jf=1

Cj1...jf (t)χ
1
j1(q1) . . . χfjf (qf ), (3.25)

where there are Nk time independent basis functions for the kth degree of freedom

(DOF) nuclear coordinates qk. Cj1...jf are the time dependent expansion coeffi-

cients, for which the equations of motion can be derived, and solved, using the

Dirac-Frenkel variational principle [90], in equation 3.26.
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〈
∂Ψ|Ĥ − i∂t|Ψ

〉
= 0 (3.26)

which, when using atomic units ~ = 1. leads to,

i
d

dt
Cj1...jf =

∑
`1...`f

〈
χ

(1)
j1
. . . χ

(f)
jf
|Ĥ|χ(1)

`1
. . . χ

(f)
`f

〉
C`1...`f . (3.27)

These are the equations of motion (EOM) for the system [91]. Both the mem-

ory demand and computational time for this method increases exponentially with

number of DOF, and becomes unfeasible for any systems with > 4 DOF.

Due to this scaling issue, approximate methods must be employed to allow

lager systems to be treated. The most easily implemented approximate method is

the time dependent Hartree method (TDH), also referred to a the time dependent

self-consistent field method (TDSCF). The TDH approach assumes the total wave-

function can be written as a Hartree product of one-dimensional, time dependent

functions [92],

Ψ(q1 . . . qf ) = a(t)ϕ1(q1, t) . . . ϕ
f (qf , t). (3.28)

As this is not a uniquely defined representation, the following constraints are

enforced to derive unique EOM,

i
〈
ϕk|ϕ̇k

〉
= gk(t). (3.29)

The constraint gk(t) is given a suitable value so that the EOM are derived using the

Dirac-Frenkel variational principle for the coefficients and basis functions, shown

below,

iȧ = a

(
〈H〉 −

f∑
k=1

g(k)

)
, (3.30)
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iϕ̇(k) = H(k)ϕ(k) +
(
g(k) − 〈H〉

)
ϕ(k), (3.31)

where 〈H〉 is the expectation value of the Hamiltonian , and H is the mean field

operator. This method turns a f-dimensional problem into an f number of one-

dimensional problems, simplifying the calculations and allowing systems of over

100 DOF to be treated.

As the TDH method is a mean-field method, the results are often poor [93].

This has led to improvements on this method by taking several configurations into

account, giving rise to the blanket term of multi-configurational time dependent

self-consistent field (MC-TDSCF) methods. These methods were pioneered in the

1980s by Kosloff et al [87] and Makri and Miller [94]. Arguably the most efficient

of these methods to emerge is the multi-configurational time dependent Hartree

method (MCTDH), first published by Meyer et al in 1990 [95].

The MCTDH approach expands the wavefunction of a given state where each

DOF, f , in a system can be represented as a direct-product expansion of p sets of

basis functions, ϕ(p), or single particle functions (SPFs),

Ψ(q1 . . . qp, t) =

n1∑
j1=1

· · ·
np∑
jp=1

Aj1...jp(t)

p∏
k=1

ϕkjk(qk, t), (3.32)

where p is the number of DOF in the system, Ψ is the full nuclear wavefunction

from the Born-Huang equation in the previous chapter, with nuclear coordinates qp.

Ajk are the time dependent expansion coefficients, and ϕkjk are the time dependent

SPFs for the kth DOF. Expanding the wavefunction in this way allows the results

to be converged to the exact results by expanding the basis set. Equation 3.32 can

be written more simply as components of the Hartree product and a composite of

the expansion coefficients,
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Ψ(q1 . . . qp, t) =
∑
J

AJΦJ , (3.33)

where ΦJ is a p dimensional Hartree product of the SPFs, and AJ are the expansion

coefficients. J is a multi-index subscript J = j1, . . . , jp.

The SPFs themselves are expanded as a linear combination of static primitive

basis functions, with time independent coefficients. These static basis functions

often take the form of a discrete variable representation, DVR. Applying the Dirac-

Frenkel variational principle, equation 3.26, two coupled EOM can be derived from

equation 3.33, one representing the coefficients,

iȦJ =
∑
L

〈ΦJ |H|ΦL〉AL, (3.34)

where the Hamiltonian, H takes the diabatic form from equation 2.38 in the pre-

vious chapter. The EOM for the SPFs is as follows ,

iϕ̇j
(k) = (1− P k)

∑
k,l

ρkj,l
−1〈Ĥ〉kk,lϕkl , (3.35)

where P is the projection operator, defined as,

P k =

nk∑
j=1

|ϕkj 〉〈ϕkj |, (3.36)

and ρkj,l is the density operator defined as,

ρkj,l = 〈Ψk
j |Ψk

l 〉, (3.37)

where Ψk
j is a ”single-hole” wavefunction and 〈Ψk

j |Ψk
l 〉 is an integration over all

the DOF except the kth. 〈Ĥ〉 is the mean-field operator acting on the SPFs,

〈Ĥ〉kjl = 〈Ψk
j |Ĥ|Ψk

l 〉. (3.38)

The algorithm for MCTDH can be used with many DOF, and with many sets

of basis functions per DOF, allowing this method to range from the limiting case
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of TDH, where nk = 1 up to numerically exact standard method, where nk = Nk

[93].

Although the MCTDH approach is able to treat larger systems when compared

with the standard approach, it still has limitations in regards to memory and

computational efficiency [91].

One way which this method can be adapted to help increase efficiency is mode

combination. The SPFs do not need to consist of only 1 mode each, but one can

group together several DOF into one combined mode, termed the multi-mode [96].

For example, the multi-mode Q may be an amalgamation of several modes,

Q = q1 + q2 + q3... (3.39)

This multi-mode is then expanded in the normal MCTDH format.

Another method which has been developed to overcome the limitations of

MCTDH is the multilayer-MCTDH (ML-MCTDH), which can expand one or sev-

eral SPFs themselves in terms of another set of SPFs and so on [97, 98], and is a

powerful extension of the MCTDH method. An example of a ML-MCTDH expan-

sion is shown in the following set of equations, where nuclear wavefunction Ψ is

expanded into a set of SPFs, ϕ. One of these SPFs is itself expanded into another

set of SPFs, χ, one of which is expanded again into a set of SPFs, φ,

Ψ(q1 . . . qp, t) =

n1∑
j1=1

· · ·
np∑
jp=1

Aj1...jp(t)

p∏
k=1

ϕkjk(qk, t), (3.40)

ϕ(q1 . . . qp, t) =

n1∑
j1=1

· · ·
np∑
jp=1

Bj1...jp(t)

p∏
k=1

χkjk(qk, t), (3.41)

χ(q1 . . . qp, t) =

n1∑
j1=1

· · ·
np∑
jp=1

Cj1...jp(t)

p∏
k=1

φkjk(qk, t). (3.42)

This gives rise to the possible corresponding ML-tree schematic shown below,
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Figure 3.1: An example of a multi-layer tree structure

where each expansion (the circles on diagram 3.1) are called ”nodes”, with each

node terminating in another node or the standard primitive basis expansion of the

SPFs. Expressing the nuclear wavefunction in this layered way is very flexible,

and can be many layers deep [99].

Within each layer of the tree, as in MCTDH, all coefficients and SPFs have

their own EOM. The top layer EOM are identical to standard MCTDH - where the

standard MCTDH can be thought of the special case where the ML tree consists

of just one layer. In fact, the EOM for the SPFs are formally the same for all

layers [100], shown in equation 3.35. The difference lies in the construction of the

density matrix. For the ML-MCTDH approach it reads,

ρz,klij =

nz−1
kl−1∑
a,b=1

ρ
z−1,kl−1

ab

∑
Jkl

Az∗
a;Jkl

,iA
z
b;Jkl

,j , (3.43)

where the reduced density matrix ρz,klij for node z and mode kl requires the ex-

pansion of the coefficients for the current node as well as the layer above. The

ML-MCTDH approach seems more complicated than standard MCTDH, and for
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smaller systems it is much less efficient [99]. However, as the system size increases,

the efficiency of propagating both the SPFs and their coefficients decreases us-

ing the standard MCTDH method. ML-MCTDH combines modes into smaller

groups, now with a new layer of more manageable coefficients. Further reading

on the intricacies of the EOM for the ML-MCTDH method is widely available in

the literature, Wang et al [98, 100, 101], and Meyer et al [99, 102, 103, 104] in

particular have well explained derivations.

The MCTDH equations shown in this section are general solutions to the

TDSE. In order to make them applicable to molecular systems one needs a molec-

ular Hamiltonian, comprising of the kinetic energy operators and the potential

energy surfaces. In the work in this thesis, these PES are in the diabatic matrix

form as described in chapter 2, section 2.5. Much of the computational cost of these

grid-based calculations comes from the requirement of pre-calculating the PES of

the system that is being probed. This process is a long, and often impossible

process. Therefore, there will always be a numerical limitation to these grid-based

methods. This has led to the development of direct dynamics, which calculates the

PES on-the-fly [105]. By replacing the SPFs of MCTDH with multidimensional

Gaussian functions, one can run dynamics and calculate the PES on-the-fly. Al-

though the time taken to calculate the PES is side-stepped, for larger systems the

effort needed to compute gradients and Hessians in not insignificant, and is often

the bottle neck to these methods.

3.6 Density Matrices

As discussed in the previous section, a nuclear wavefunction can be expanded in

terms of eigenfunctions. This wavefunction is represented by a pure state vector,

or a quantum superposition of pure state vectors. In order to predict the final

state of these systems after a chemical process has taken place, the initial state
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must be known. However, if the initial state of a system is unknown, such as when

the system is in thermal equilibrium, one can no longer express the system as a

wavefunction. The system exists in a mixed state [106], and is represented by a

density operator,

ρ =
∑
i

Pi|ψi〉〈ψi|, (3.44)

where Pi is the probability that the system is in pure state ψi.

Representing the system using probabilities in this way allows environmental

effects on the system dynamics to be included [107], meaning that open systems

can be described using these density matrices. As mentioned in the previous

chapter, 2.3, instead of solving the Schrödinger equation as one would for a pure

state propagation, the time evolution of the density matrix is now represented as

the following,
ρ̇ = −i[Hρ− ρH],

ρ̇ = L (ρ),
(3.45)

where L is the Liouvillian superoperator.

Within the MCTDH formalism, there are two formalisms of density matrices

depending on the type of basic functions used- type I and type II [107, 108].

3.6.1 Type I Density matrix, ρ-MCTDH(I)

Type I density operators are analogous to the MCTDH scheme for wavefunction

expansion, as in equation 3.32, but instead the density operator is expanded into

single-particle density operators (SPDO),

ρ(Q1, . . . , Qf , Q
′
1, . . . , Q

′
f , t) =

n1∑
τ1=1

· · ·
nf∑
τf=1

Bτ1...τf (t)

f∏
κ=1

σ(κ)
τκ (Qκ, Q

′
κ, t), (3.46)

where Bτ1...τf are the normal MCTDH expansion coefficients, and σ
(κ)
τκ are the

SPDOs.
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As a density operator is Hermitian, the B coefficients must be real and the

SPDOs are also Hermitian. These properties are conserved throughout the prop-

agation [91]. As with the standard wavefunction MCTDH, this representation is

not unique and constraints are necessary to ensure orthonormality. Similar to the

derivation of the EOM for MCTDH, equations 3.36, 3.37 and 3.38, if the MCTDH

density matrix is defined as,

Dkµν =
k∑
τ

B∗τkµBτkν
, (3.47)

note the change in notation for this density matrix from that of the MCTDH case,

so as to avoid confusion. The projector operator is defined as,

P k =

nk∑
ν=1

|σkν〉〉〈〈σkν |, (3.48)

and the mean field Liouvillian superoperator is defined as,

〈L − G〉kµν = 〈〈Πk
µ|(L − G)Πk

ν〉〉, (3.49)

where G contain the aforementioned constraints on the system. The double brack-

ets in the above equations refer to the differences in this approach to the standard

wavefunction approach. The integration takes place in Liouville space, rather than

the Hilbert space, taking the trace of the product of matrices rather than a vector

product.

Given these definitions, the EOM for coefficients, and the SPDOs, of the Type

I density matrix operator can be defined as [107],

iḂτ =
∑
τ ′

〈〈Ωτ |(L − G)Ωτ ′〉, 〉Bτ ′ (3.50)

where Ωτ is the Hartree product of the SPDOs. The SPDOs EOM,

iσ̇k = Gkσk + (1− P k)(Dk)−1〈L − G〉kσk. (3.51)
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The computational effort for this type I formalism lies in the number of SPDOs.

3.6.2 Type II density matrix, ρ-MCTDH(II)

These SPDOs can be further expanded using SPFs as used in the MCTDH method

for wavefunctions,

ρ(Q1, . . . , Qf , Q
′
1, . . . , Q

′
f , t) =

n1∑
τ1=1

· · ·
nf∑
τf=1

Bτ1...τf (t)

f∏
κ=1

|ψ(κ)
jκ

(Qκ, t)〉〈ψ(κ)
lκ

(Q′κ, t)|.

(3.52)

This is known as the type II density operator. The EOM for the coefficients for

the Type II density matrices is as follows [107],

iḂJ,L = 〈ΦJ |(L − G)(ρ)|ΦL〉, (3.53)

and for the SPFs of the density matrix,

iψ̇k = gkϕk + (1− P k)Tr{(L − G)(ρ)ρ}k(D2,k)−1ϕk, (3.54)

where D is the single particle reduced density matrix. The computational effort

scales in this formalism with the coefficients.

As a consequence of adhering to the Dirac-Frenkel variational principle, the

MCTDH wavefunction conserves both total probability and energy. However, these

quantities are not conserved for density matrices, although the energy becomes

increasingly preserved with convergence.

An exciting development of this method is using the ML-MCTDH formalism

of the density matrix, ρ-ML-MCTDH, as there is very little, if any, data published

using this method. The ρ-ML-MCTDH method is analogous to the ρ-MCTDH,

as the ML-MCTDH is to the MCTDH method. The SPDOs which the full wave-

function can be expanded into in the ρ-MCTDH approach, equation 3.46 in this

section, can be further expanded upon as in the ML-MCTDH expansion. These
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3.6 Density Matrices

have analogous EOM as the ML-MCTDH SPFs and coefficients, but the Hamilto-

nian operator is replaced with the Liouvillian operator. This novel technique can

open the door to treating larger systems in an exact way, whilst also including

temperature and solvent effects.
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Chapter 4

Allene

4.1 Introduction

Allene, C3H4, is an interesting molecule as it is the smallest in the cummulene

series, as well as having D2d symmetry. As mentioned briefly in 2.6, when in the

radical cationic form it exhibits an E⊗b Jahn-Teller conical intersection, where the

doubly degenerate ground state can couple to vibrational modes with symmetry b.

This doubly degenerate electronic state arises due to the possibility of the positive

charge lying at either end of the molecule, figure 4.1. It therefore provides a suitable

challenge to simulate a electron transfer process, with the added challenge that

the conical intersection is directly at the Franck-Condon point. This means that

there is strong vibronic coupling immediately after ionisation [109].

Using the data published in Woywod and Domcke’s paper [35] as an initial

reference for a comparison to the experimental data, this chapter will analyse

the dynamics of the allene molecule, after removing an electron, using the vi-

bronic Hamiltonian coupled with Multi-Layer Multi-Congurational Time Depen-

dent Hartree method, ML-MCTDH. The ground state configuration of allene is as

follows (ignoring the core-shell),

(3a1)2(2b2)2(4a1)2(3b2)2(1e)4(2e)4

Removing an electron from the HOMO results in the double degenerate ground
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Figure 4.1: On the left: The PES of the diabatic ground state along normal mode 4. This
curve was obtained from a Taylor expansion around the neutral ground state of allene,
at Q=0. Mode 4 corresponds to the torsional mode of b1 symmetry. This is the mode
that drives the charge transfer along the molecule. On the right: The allene molecule
showing the two most significant vibrational modes, v4 and v6, of b1 and b2 symmetry.
These correspond to the torsional mode and the asymmetric stretch, respectively.

state of the cation, the X̃2E state, whose main progression in the photoelectron

spectrum arises due to the torsional mode, ν4.

A vibronic coupling Hamiltonian was set up, incorporating up to second order

coupling terms in order to reproduce the experimental photoelectron spectrum.

This Hamiltonian is constructed in a basis of diabatic states, meaning that the

Hamiltonian may be written as,

H = TN1 + W, (4.1)

where TN1 is the kinetic energy operator acting on the identity matrix. This

operator uses mass-frequency scaled normal coordinates, and the kinetic energy

operator takes the following form,

TN = −ω
2

∂2

∂Q2
, (4.2)

where Q is the normal mode, with corresponding frequency ω. W is a Taylor
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series of diabatic potentials of coupling matrices expanded around the equilibrium

geometry of the ground state of neutral allene,

W = W
(0)
ij + W

(1)
ij + W

(2)
ij + . . .. (4.3)

The zeroth-order potential energy matrix can be expressed as the simple har-

monic approximation of the ground state potential energy surface (PES) of neutral

allene. This term is on-diagonal, and is expressed,

W
(0)
ii =

∑
α

1

2
ωαQ

2
α + E(i), (4.4)

where E(i) is the energy of state, i, with the vibrational frequency, ωα of the mass-

frequency scaled normal mode Qα. In the 2 state cationic allene model, E(1) = E(2)

and is the vertical ionisation energy.

The first-order linear coupling elements are written as,

W
(1)
ii =

∑
α

κiαQα, (4.5)

W
(1)
ij =

∑
α

λijαQα, (4.6)

where κiQ and λijQ are the first derivatives with respect to the coordinates, either

on-diagonal or off-diagonal respectively. These are defined as,

κiα =
∂

∂Qα

〈φi|Hel|φi〉 =
∂Vi
∂Qα

, (4.7)

λijα =
∂

∂Qα

〈φj|Hel|φi〉 , (4.8)

where φ are the diabatic electronic states obtained from the transformation from

adiabatic to diabatic states described in chapter 2, and λij is the off-diagonal,

non-adiabatic coupling between diabatic states φi and φj. These terms are only

non-zero if certain symmetry requirements are met. As the ground state of allene in
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the cationic radical form is of the 2E type, the direct product of this representation

is,

[E × E] = A1 +B1 +B2. (4.9)

D2d A1 A2 B1 B1 E
A1 A1 A2 B1 B2 E
A2 A2 A1 B2 B1 E
B1 B1 B2 A1 A2 E
B2 B2 B1 A2 A1 E
E E E E E A1+[A2]+B1+B2

Table 4.1: The irreducible representation product table for D2d symmetry

For vibrational mode, α, to linearly couple the electronic states, i and j, the

condition Γi�Γj�Γα ⊂ A1 must be satisfied. Therefore, it is clear from the direct

product, equation 4.9, and the product table, table 4.1, that only modes of A1, B1

and B2 symmetry have non-zero linear coupling elements, with the torsional B1

mode on the off-diagonal.

Allene, C3H4, has 15 normal modes which have the following irreducible rep-

resentation:

Γ = 3A1 +B1 + 3B2 + 4E (4.10)

In the linear vibronic coupling model, therefore, it can be seen that there are

three A1 and B2 modes which contribute a linear coupling parameter and one

B1 mode. The symmetry of the Jahn-Teller problem means that for A1 modes,

κ1 = κ2, while for b2 modes, κ1 = −κ2 [5]. The overall Hamiltonian using first

order coupling is constructed in full,
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H =
15∑
i=1

ωi
2

(
− ∂2

∂Q2
i

+Q2
i

)
1 +

[
EE 0
0 EE

]
+

3∑
i=1

κiQi +
7∑
i=5

κiQi λ4Q4

λ4Q4

3∑
i=1

κiQi −
7∑
i=5

κiQi

 ,
(4.11)

where the modes refer to the labels given in table 4.2. This is the first order

coupling, as it only takes into account the modes which couple most strongly, i.e.

a linear Q term.

The parameters for this Hamiltonian were determined using VCHam program-

the Vibronic Coupling HAMiltonian package implemented within the Quantics

software. This program fits a polynomial to the ab initio data points, and these

polynomial fittings give the parameters for the Hamiltonian, where the linear co-

efficients for the polynomials give the λ/κ values, the second order coefficients give

γ parameters, and so on and so forth. For fitting the PES for allene, up to fourth

order terms have been included. This is discussed more in the next section.

4.2 Electronic Structure Calculations

4.2.1 Vibrational Mode Analysis

Firstly, a geometry optimisation of the ground state of the neutral allene molecule

was performed using Møller-Plesset second order perturbation theory (MP2), with

a Pople basis set of 6-31G(d). Following this, a vibrational analysis of the molecule

was performed using MP2, with a basis set of 6-311++G(2d,2p). These frequencies

are calculated by determining the second derivatives of the energy with respect to

the nuclear coordinates. These results are listed in table 4.2, and are compared to

the experimental results reported by Mahapatra et al, [33].

In order to calculate the coupling constants, i.e. the κ and λ values, the VCHam
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Mode
Label

Symmetry Description ω (eV)
ω Expt.
(eV) [33]

Deviation

ν1 A1
in-sync HCH
sym. stretch

0.39796 0.3738 +6.46%

ν2 A1
in-sync HCH

bend
0.18687 0.1789 +4.46%

ν3 A1
CCC sym.

stretch
0.13966 0.1330 +5.01%

ν4 B1 Torsion 0.10974 0.1072 +2.37%

ν5 B2
out-of-sync sym.

HCH stretch
0.39794 0.4224 -5.79%

ν6 B2
CCC asym.

stretch
0.26051 0.2426 +7.38%

ν7 B2
out-of-sync
HCH bend

0.17960 0.1733 +3.64%

ν8 E
HCH asym.

stretch
0.40902 0.4322 -5.36%

ν9 E
in-plane HCH

wag
0.12638 0.1238 -1.85%

ν10 E
out-of-plane
HCH wag

0.10296 0.1043 -1.28%

ν11 E CCC bend 0.03795 0.0440 -13.75%

Table 4.2: Vibrational frequencies of normal modes of ground state neutral allene taken
with MP2/6-311++G(2d,2p) level of theory. All vibrations were calculated using Gaus-
sian 09 program.

program was used to fit the potential energy surfaces, which were calculated using

both Electron Propagator Theory (EPT) and the Complete Active Space SCF

method, CASSCF, using a (3,4) active space. This active space means that there

were 3 electrons in 4 active orbitals. This configuration is shown in figure 4.2. This

Figure 4.2: The (3,4) active space of allene. It consists of the occupied degenerate
HOMO π orbitals, and the unoccupied degenerate LUMO π∗ orbitals.
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active space was chosen as previous work [110] had shown that a (3,2) active space

for allene produced good results, and using a (3,4) active space seemed chemically

sensible as it included the additional 2 π∗ valence orbitals in the active space.

The results of the ionisation potentials calculated for each of these methods is

shown in table 4.3.

Method Vertical Ionisation potential (eV)

EPT 10.184
CASSCF 8.233

Experiment [111] 10.305

Table 4.3: The ionisation potentials for allene calculated using EPT and CAS(3,4) com-
pared to the experimental values

It is clear from the results of this that the EPT method to calculate the ionisa-

tion potential is much more accurate than the CASSCF method. Therefore, the

calculations in this chapter were continued using the results obtained using the

EPT method, and a more thorough mapping of the CAS active space was deemed

unnecessary.

In order to calculate the diabatic surfaces of allene, the software VCHam imple-

mented in Quantics was used. The VCHam program works by deriving a realistic

model of the vibronically coupled Hamiltonian when given a set of ab initio data

points of the PES surfaces of interest at a given geometry along nuclear coordi-

nate, Q. Using a least squares fit algorithm using a conjugate gradient optimisation

scheme, each parameter is optimised. This approach allows fully parameterized

models to be generated easily. The linear coupling constants are determined ini-

tially by finding the gradient of the potential energy surface following a displace-

ment from the neutral ground state geometry, Q0. The higher order coupling

parameters are built upon this. The parameterized surfaces calculated are shown

in the diagram in figure 4.3.

The A1 symmetry v1 and v3 modes were best represented as Morse potentials:
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QQ0

V

Figure 4.3: A sketch of a PES along some normal mode, Q, to show how kappa values
are calculated for each normal mode

to be expected from a symmetric stretch mode. This Morse potential is of the

form,

V = D0(1− e−α(Q−Q0))2 + E0, (4.12)

The remaining modes were described using either simple quadratic harmonic

potentials or quartic harmonic potentials of the form,

V =
1

24
εQ4 +

1

2
γQ2 + κQ+

1

2
ωQ2, (4.13)

.

where the second quadratic term, 1
2
ωQ2, is simply the harmonic frequency of the

neutral ground state. The energy surfaces of each mode can be seen in figure 4.4,

with all the fitting parameters given in table 4.4. Since the e modes do not couple

on the first order, and therefore the plots do not give significant insight, they have

been omitted from figure 4.4.

A list of the calculated coupling constants for the X̃2E state of the allene rad-

ical cation can be seen in table 4.5. The coupling strength, κ/ω or λ/ω, factor in

the vibration of the mode and therefore gives a true assessment on how displaced
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Harmonic Oscillator Potentials
Symmetry Mode Frequency State κ γ ε

a1 2 0.1868 1,2 -0.0500 0.0013 0.0001
b1 4 0.1097 1,2 ±0.2819 0.0389 0.0105

b2 5 0.3979
1 0.0287 0.0047 0.0320
2 -0.0027 0.0047 0.0470

b2 6 0.2605 1,2 ±0.3129 - -
b2 7 0.1796 1,2 ±0.0124 - -

e 8 0.4090
1 - 0.1133 0.6918
2 - 0.1107 0.0687

e 9 0.0.1264
1 - 0.0380 -
2 - -0.0218 -

e 10 0.1030
1 - 0.1198 -
2 - 0.0766 -

e 11 0.0379
1 - 0.0400 0.0144
2 - 0.0328 0.0171

Morse Potentials
Symmetry Mode State D0 α Q0 E0

a1 1
1 29.174 0.0853 0.1888 -0.0077
2 26.659 0.0892 0.1888 -0.0077

a1 3 1,2 39.711 0.0423 0.3757 -0.0102

Table 4.4: A table showing all the fitting parameters of the polynomials used to fit
against the ab initio points calculated in VCHam using EPT.

the mode is, and thus how significant it is to the process of interest. For deter-

mining the coupling strength of the Morse potential modes, v1 and v3, they were

approximated to a harmonic oscillator to obtain the κ values.

Mode Frequency (eV) κ/λ (eV) κ/ω or λ/ω

ν1(a1) 0.3979 -0.0827 0.2078
ν2(a1) 0.1868 -0.0500 0.2676
ν3(a1) 0.1396 -0.0689 0.4935
ν4(b1) 0.1097 0.2819 2.2306
ν5(b2) 0.3979 ±0.0287 0.0721
ν6(b2) 0.2605 ±0.3129 1.2011
ν7(b2) 0.1796 ±0.0124 0.0690

Table 4.5: The calculated coupling constants for the X̃2E state of allene radical cation,
where the off-diagonal λ value refers to the ν4 mode. The identical frequency of modes
ν1 and ν5 is purely coincidental.
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Figure 4.4: The calculated adiabatic X̃2E state along the dimensionless nuclear coor-
dinate, Q, of (a) ν1, (b) ν2, (c) ν3, (d) ν4, (e) ν5, (f) ν6, and (g) ν7 modes, calculated
using EPT, and fitted using VCHam.

It can be seen from table 4.5 and the plots in figure 4.4, that modes ν4 and

ν6, the torsional mode and C-C anti symmetric stretch respectively, are strongly

Jahn-Teller active in this state and both lead to a large splitting of this degenerate

ground state. Upon calculating the spectrum, it was discovered that it is essential

to include the ν3 mode to get full detail in the spectrum. This is not unexpected,

given the relatively high coupling parameter of ν3.

The parameters of these 2 most significant modes were also calculated using

the CASSCF results, as a comparison. The table of parameters and the plots of
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Method Mode κ γ ε

EPT
ν4 0.2819 0.0389 0.0105
ν6 0.3129 - -

CASSCF
ν4 0.2882 0.0122 0.0169
ν6 0.3108 0.0396 -

Table 4.6: A table showing the fitting parameters of the polynomials for the significant
ν4 and ν6 modes used to fit against the ab initio points calculated in VCHam using
CASSCF.

modes ν4 and ν6 are shown in table 4.6 and figure 4.5, respectively.

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

-6 -4 -2 0 2 4 6

e
n

e
rg

y 
[e

V
]

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

-6 -4 -2 0 2 4 6

e
n

e
rg

y 
[e

V
]

state 1
state 2

state 1
state 2(a) (b)

Q4 Q6

Figure 4.5: The calculated adiabatic X̃2E state along the significant (a) ν4 and (b) ν6

modes, calculated using CASSCF, and fitted using VCHam.

Despite the incorrect energy determination of the CASSCF method, the overall

PES of the significant modes look very similar. This can be verified by looking
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at the close polynomial fitting parameters in table 4.6. The similarity in the PES

calculated using the two different methods allows us to have confidence that EPT

has correctly calculated the PES of the system.

4.3 Calculating the Spectrum

4.3.1 The Theory

The quantum dynamics were performed using the Quantics software package [112],

which uses a wavepacket propagation using the MCTDH method. All 15 normal

modes were included in the final calculation, but the first step was to test the limits

of the standard MCTDH method. A simple 3 mode calculation, which included

ν4, ν6 and ν3, was performed. The number of SPFs and primitive basis functions

for each of these modes are shown in table 4.7.

Mode Number of SPFs Primitive basis functions

ν3(A1) 16 21
ν4(B1) 12 43
ν6(B2) 12 15

Table 4.7: Number of SPFs and primitive basis functions for the modes involved in a 3d
calculation for Allene

The set of primitive basis functions in which the single particle functions can

be represented was chosen to be a harmonic oscillator DVR.

To first test the limits of the MCTDH method, the full system was reduced

to 7 modes, which served as a good intermediary between what MCTDH can

feasibly do and an easy test for the ML-MCTDH. This includes all the modes

with a linear coupling parameter, κ. These were described using the combination

modes shown in table 4.8, along with the number of SPFs required for convergence.

Convergence was judged by looking at the natural orbital populations at the end

of the propagation which should ideally be <10−3, as well as if the spectra changed

significantly by adding more SPFs.
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Mode Number of SPFs

Q1(ν4+ν6) 14
ν3 12

Q3(ν7+ν5) 12
Q4(ν1+ν2) 12

Table 4.8: The number of SPFs used for the modes involved in a 7d calculation for
Allene

As the full system consists of 15 modes, in order to calculate the spectrum of

this full system it was necessary to use the multilayer approach, as discussed in

section 3.5.

The multilayer approach (ML-MCTDH) is a hierarchical form of the wave-

function used from the standard MCTDH [113], and is highly flexible and can be

applied to systems with many 100s of atoms. For a quick summary, ML-MCTDH

works off the premise that the basis functions, or single particle functions (SPFs),

that the nuclear wavefunction can be expanded into, using the standard MCTDH

method, can themselves be expanded further into another set of SPFs, which may

also be further expanded, and so on and so forth,

Ψ(Q1 . . . Qp, t) =

n1∑
j1=1

· · ·
np∑
jp=1

A1
j1...jp

(t) ϕ1
j1︸︷︷︸(Q1, t) . . . ϕ

p
jp

(Qp, t),

ϕ(Q1 . . . Qκ, t) =

n1∑
j1=1

· · ·
nκ∑
jκ=1

A2
j1...jκ

(t) χ1
j1︸︷︷︸(Q1, t) . . . χ

κ
jκ(Qκ, t),

χ(Q1 . . . Qf , t) = . . .

(4.14)

Through these expansions, the result can be expressed as a tree diagram (ML-

tree) to conveniently illustrate the structure of the wavefunction. The ML-tree

used for the final calculations performed on allene is shown in figure 4.6, showing

the number of basis functions for each branch of the tree required.

The groupings chosen for the calculation were based on the strength of the

coupling constants, and how significant they are in predicting the spectrum. The

ν4, ν6 and ν3 were most important, necessary in fact, in predicting the spectrum
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Figure 4.6: The ML-tree used to construct the nuclear wavefunction for 15D allene. The
first layer separates the vibrational degrees of freedom (DOF) from the electronic DOF.
The number of SPFs used are shown, as well as showing the number of primitive basis
sets used to represent the SPFs in the deepest layer, shown here in blue.

of allene and are therefore grouped together. The remaining B2 and A1 modes,

ν5, ν7, ν1 and ν2 are grouped together as these modes couple with the electronic

states most strongly , i.e. on the first order. These are then further separated

into B2 and A1 groups. Finally, all the E modes are grouped together, and further

separated out according to their coupling strengths. The number of SPFs in each

layer of the ML-tree were increased until the results were converged, with respect

to the photoelectron spectrum.
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4.3.2 The Photoelectron Spectrum

Using the QUANTICS package [112], the vibronic Hamiltonian was set up in the

operator file using all calculated parameters. All calculations were propagated

for 100 fs, with an output calculated every 1 fs. This seemed like a reasonable

propagation time which found the balance between efficiency and accuracy. As an

example, shown below in figure 4.7 are the 3D spectra obtained by running the

propagation for different lengths. The propagation was run for 30, 50, 100 and

200 fs.
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Figure 4.7: The X̃2E band of the photoelectron spectrum of allene including 3 modes
for a propagation run for 30 fs (red), 50 fs (green) and 100 fs (blue). The calculation
was also run for 200 fs, bus as it exactly overlays the 100 fs spectrum, it has not been
included.

There is no additional detail observed in the spectrum by running the propa-

gation for 200 fs compared to that obtained by a 100 fs propagation, and therefore

a propagation time of 100 fs was chosen.

The photoelectron spectrum is calculated by performing the Fourier transform
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of the autocorrelation function, which is a measure of overlap between the initial

and final wavefunction. Figure 4.8 shows the autocorrelation function for the 3D

spectrum obtained using a 100 fs propagation time before the Fourier transform.
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Figure 4.8: The autocorrelation function of the 3D propagation run for 100 fs)

The timings of the calculations are shown in table 4.9.

DOF MCTDH ML-MCTDH

3 2 mins -
7 16 mins -
15 493.5 hrs 4.8 hrs

Table 4.9: The timings of the propagation of allene to calculate the photoelectron spec-
trum, using MCTDH and ML-MCTDH, comparing a system containing 3, 7 and 15
DOF.

It should be noted that even after 493 hours, the MCTDH 15 mode calculation

stll had not reached convergence. It is clearly visible from table 4.9 the exponential

scaling of the MCTDH method, and how the use of the ML-MCTDH approach

makes treating larger systems quantum dynamically much more feasible.
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The relative energy of the plotted spectra in this chapter were shifted to account

for 2 factors - the zero-point energy, and also to ensure the adiabatic ionisation

peak was in accordance with the experimental peak. Zero-point energy is given by

the formula,

Z.P.E =
i∑
1

ωi
2

(4.15)

The spectrum was first calculated including only the three most significant

modes, ν4, ν6 and ν3, in order to verify that the parameters calculated were correct,

and to ensure that the vibronic coupling Hamiltonian was a suitable choice for

predicting these spectra. It can be seen from this calculated spectrum, figure

4.9(a), that the progression is dominated by the ν4 mode, confirming the high

coupling parameters calculated for this mode. The vibronic structure of the low

energy part of the spectrum is well reproduced, as well as the overall width of the

peak, but the broadness of the vibronic structure of the high energy part of the

spectrum is less well reproduced. This may be due to the exclusion of the rest of

the normal modes, or because only coupling terms up to second order are included.

Also, the structure of the spectrum is also very sensitive to the frequency and kappa

parameters, and therefore, these parameters may not yet be fully optimised.

The spectrum was calculated for the 7D system next, to test the limits of the

MCTDH method, and to investigate whether the full spectrum could be repro-

duced by only including the linear couplings, without the need to go to higher

order vibronic coupling, i.e. including the E modes. The results of this are shown

in figure 4.9(b). This spectrum, again predicts the low energy part of the spectrum

well, accurately predicting the first and second peaks. Including these other first

order modes, compared to the previous 3D model, this can much more accurately

predict the high energy end of the spectrum. It correctly predicts the position of

many of the peaks, as well as replicating the correct intensity trail off.

The full 15-dimensional spectrum, which includes all the vibrational modes,
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was then calculated. The results of this are shown in figure 4.9(c). As can be

seen, the width of the peak envelope is accurately well reproduced, as well as the

relative positions of most of the vibrational peaks. The high energy end of the

spectrum is arguably more accurately replicated than in the spectrum that only

contains 3 DOFs. However, the low energy part loses some of its characteristic

peaks, due to interference from the additional modes, although the adiabatic peak

remains well replicated. As these dynamics are run over energy surfaces which are

parameterised polynomials, these energy surfaces are not completely accurately

calculated. Therefore, as the number of vibrational modes included increases, the

errors accumulate. As previously mentioned, the calculation is very sensitive to

the frequency and kappa input values, and a more extensive convergence of these

parameters would result in a more accurate photoelectron spectrum.

The final spectrum presented here will use the parameters calculated using

CASSCF. This is the 3D system, using the same modes as previously used for this

sized system, ν4, ν6 and ν3. This spectrum is shown in figure 4.10, comparing the

experimental spectrum to the one obtain using Quantics.

It can be seen from figure 4.10 that whilst the fitting parameters calculated using

CASSCF were similar to those using EPT, the spectrum obtained is not nearly as

good a comparison to the experimental spectrum. Comparing figure 4.10 to figure

4.9(a), the CASSCF spectrum is noisy, predicts peaks where there are no peaks,

and fails to predict the first peak in the spectrum completely.

4.3.3 The state populations

The PESs plotted in figure 4.4 are the adiabatic state representations, where the

states are ordered by energy. Looking at the populations of these states over

the course of the propagation gives insight into when the wavepacket reaches the

conical intersection. However, in this particular system, as the propagation starts

at the conical intersection, the diabatic representations of the states give more
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Figure 4.9: The X̃2E band of the photoelectron spectrum of allene. The experimental
spectrum [111] is plotted in black on each graph along with the results using (a) 3 modes
(red plot). The vibrational frequencies of these modes are also shown in the inlay. (b)
7 modes (blue plot), and (c) the full 15 mode system (green plot). All calculated plots
have been shifted to overlap the adiabatic peak to that in the experimental spectrum.

Allene 70



4.3 Calculating the Spectrum

Energy, eV

 9.6  9.8  10  10.2  10.4  10.6  10.8  11  11.2

R
e
la

ti
v
e
 I
n
te

n
si

ty

Figure 4.10: The X̃2E band of the photoelectron spectrum of allene using the CASSCF
parameters. The experimental spectrum [111] is plotted in black, with the calculated
spectrum in red.

information about the charge transfer. Diabatic states are ordered by chemical

character and cross at conical intersections. As an example, the diabatic PES

along ν4 is shown in figure 4.11.
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Figure 4.11: The diabatic X̃2E state along ν4
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The diabatic state populations for the 3 propagations were also calculated, and

are shown in figure 4.12.

The wavepacket starts the propagation fully in state 2. It only takes 15 fs for

the wavepacket to have equally populated the two states in all 3 system sizes. The

wavepacket oscillates back and forth between the two states. In the larger systems,

7D and 15D, the wavepacket energy is quenched by the additional vibronic motion,

and the wavepacket stabilises more quickly. In the 7D system, it stabilises into

equally populating the 2 states by 70 fs. In the full 15D system, the system

stabilises with the majority of population in state 2 after just 40 fs.

One can also gain insight into the behaviour of the three most active modes,

ν4, ν6 and ν3, by plotting the mode expectation values for each of the systems

studied. This shows how much each mode gets excited by the charge transfer by

determining the position of the centre of the wavepacket along the PES of the

mode and state of interest. The results of this are shown in figure 4.13.

Mode ν6 and ν3 show that they are excited by the charge transfer as seen by the

increased oscillatory movement of the expectation value of the wavepacket along

those modes.

Due to the symmetry of the torsional motion, to see the effect of the charge

transfer on the coupling mode ν4 we need to calculate the expectation value of the

step function at Q=0, i.e a torsion angle of 90°. This is a Heaviside step function,

where the expectation value measures the proportion of the wavepacket which is

to the right hand side to the function placed at Q=0. These results are shown in

figure 4.14.

In the 3D ad 7D, charge transfer leads to a closing up of the torsion, whereas in

the 15D calculation the torsion returns to its initial value of 90°.
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Figure 4.12: The diabatic state populations in the (a) 3D, (b) 7D, and (c) 15D system.
The system begins the propagation in state 2.
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Figure 4.13: The mode expectation values of (a) ν6, and (b) the ν3 in state 2 of the 3D,
7D and 15D systems
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Figure 4.14: The expectation value of the step function along the torsional ν4 in the (a)
3D, (b) 7D, and (c) 15D system.
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4.4 Summary

From looking at the calculated photoelectron spectra for allene, as well as pre-

vious studies on various other systems [114, 115, 116], it can be shown that the

vibronic Hamiltonian is a robust way to predict the photoelectron spectrum, and,

especially when coupled to a ML-MCTDH calculation, the vibronic Hamiltonian

can provide an efficient method to investigate larger, more complicated systems

quantum dynamically. The main bottleneck to this method, as with all of these

types of grid based methods, is that the PESs needed to be calculated before any

quantum dynamics calculations can take place. In order to fully parameterise and

optimise the potential surface of allene, a molecule with just 7 atoms, could po-

tentially take years, and thus becomes the biggest hurdle to these methods. The

most obvious way to overcome this problem would be to choose a method which re-

moves the need to pre-calculate these energy surfaces. Direct dynamical methods,

as mentioned in chapter 3, are able to calculate the PESs on-the-fly, and therefore

offer a promising method to expand this research.
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Chapter 5

Coumarin-343 - TiO2

5.1 Introduction

The photoinduced electron transfer at dye-semiconductor interface has been ex-

tensively studied experimentally [117, 118, 119, 120], in particular the electron in-

jection process. This is where the electron in the excited state of the dye molecule

is injected into the conduction band of the semiconductor, and is a crucial step

in the efficiency of dye-sensitised solar cells, as described in 2.7.2. This electron

injection process is ultra-fast, with some injection times recorded as fast as 6 fs,

such as for an alizarin dye molecule adsorbed on TiO2 [120]. In this chapter, the

electron injection process of an electron in the excited state of Coumarin-343 (C-

343) into the conduction band of TiO2 was investigated, taking into account the

couplings to nuclear motions. This injection process has been recorded to take

several tens of femtoseconds, meaning that there must be vibronic coupling affect-

ing the process [121]. Therefore, a simple decay function is not sufficient enough

to explain the decay of the donor state population, and a quantum dynamical

approach which includes the vibrations of the system is required to fully explain

the dynamics of this process. Due to the fact that the continuum of acceptor

states representing the conduction band of the semiconductor has to be taken into

account, this dye-semiconductor interface is not as well studied theoretically as

it is experimentally, with questions as to how the continuum couples to the dye
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molecule, as well as any solvent environment. Data published in a series of studies

by Thoss et al [122, 123, 124], where the injection time of an electron from an

excited Coumarin dye molecule to the conduction band of TiO2 was modelled,

was used as a benchmark for these results. The first step in simulating the dy-

namics of this process was to determine the optimised structure of C-343, as well

as the vibrational frequencies. These calculations, described in section 5.2, were

performed using density functional theory (DFT), with a B3LYP functional and

a cc-pVTZ basis set, using the Gaussian 09 [125] software package. The dynamics

of the dye-semiconductor system were initially described using a Anderson-Newns

type Hamiltonian [126],

H = T + |φg〉Vg〈φg|+ |φd〉Vd〈φd|+
∑
k

|φk〉Vk〈φk|+∑
k

(|φd〉Vdk〈φk|+ |φk〉Vkd〈φd|),
(5.1)

where Vg is the ground state PES, and Vd and Vk are the potential energy elements

of the diabatic matrix of the donor state |φd〉, and the discretised continuum of

acceptor states, |φk〉, respectively. The details and results of these calculations can

be found in section 5.8. As in allene, the potential energy surfaces (PES) of the

donor and acceptor states are Taylor expansions around the equilibrium geometry

of the ground state of the dye molecule at the Franck-Condon point.

With time, it became apparent that this model has been misinterpreted and

that it is, in fact, an unsuitable method to describe this electron injection process.

This is due to the incorrect description of how the electronic state coupling terms,

Vdk, are determined. The failings of this method are discussed further in section

5.8. A change of approach was needed, and the model system was changed from

a donor-acceptor Hamiltonian based on PES to an atomistic Hamiltonian, where

the donor state energy is that of the HOMO of the first excited state of C-343

relative to the bottom of the conduction band of TiO2 , and the acceptor states
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are formed by a representation of the binding site energies of the semiconductor,

the parameters of which are based on the previous tight-binding approach. The

details and results of this new method can be found in section 5.9. This new model

is able to give electron transfer rates which include the effects of vibronic coupling.

5.2 Electronic Structure

All the following calculations were performed using Gaussian-09 [125], unless stated

otherwise. Firstly, the geometry of C-343 was optimised and the vibrational modes

calculated in the ground state. As the dye attaches onto the semiconductor surface

in the deprotonated from, this was repeated for both protonated and deprotonated

C-343. Following the determination of the vibrational modes, it was decided which

of these modes were of most significance to an electron transfer process. Electronic

structure calculations were then performed on a few small TiO2 clusters, of varying

sizes, in order to determine some additional parameters and the geometry of the

C-343-TiO2 complex. The results of these calculations will be discussed in the

following sections.

5.3 Geometry Optimisation

C-343 - C16H15NO4 - can exist in many conformers, both with respect to the

geometry around the nitrogen and geometry of the -COOH group. It has been

shown that the syn- and anti- geometry around the nitrogen play little to no part

in the dynamics of this process [127], and therefore the lower energy syn-C-343

conformer was chosen. With respect to the conformation of the -COOH group,

there are three possible geometries, shown in figure 5.1.

Despite the energy of the arbitrarily named Geometry-1 conformer is the lowest,

due to the formation of an intermolecular hydrogen bond creating a 6-membered

ring, a further vibrational analysis showed that the conformer used in the Thoss et
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Figure 5.1: The top panel shows the optimised structure of Coumarin-343, in Geometry-
1. Labelled below are the possible conformers of the -COOH group. For clarity, only
the acid part of C-343 has been shown.

al series [128], to which the results shown here were benchmarked, was Geometry-

3. Therefore, the vertical excitation and ionisation energy calculations, and the

resulting force parameters, on the isolated dye molecule proceeded using Geometry-

3. The choice of this conformer ultimately should not greatly affect the results

as when the dye is attached to the surface of the semiconductor , the hydrogen

on the -OH group detaches and migrates to the semiconductor surface, meaning

there is no distinction of these geometries after surface adsorption. The optimised

geometry of the dye molecule in in chosen Geometry-3 can be seen in figure 5.2.

The optimised geometry of the deprotonated dye is shown in figure 5.3.
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Figure 5.2: The optimised geometry of Coumarin-343 used in the following calculations.
The molecule is effectively planar, except for the puckering around the nitrogen. Upon
adsorption to the TiO2 surface, the hydrogen on the hydroxyl group detaches and bonds
to a terminal oxygen in the semiconductor .

Figure 5.3: The optimised geometry of deprotonated form of Coumarin-343. The
molecule has not lost any planarity by losing a proton.

5.4 Normal Mode analysis

Using the optimised protonated structure of C-343 in geometry-3, the vibrational

modes were determined using different levels of theory and compared to other

theoretical values [123], with the results using a B3LYP/cc-pVTZ basis set best
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mirroring these values. These results are shown in table A.1 in the appendix.

From these normal modes, the kappa values were determined as described in

chapter 4. Here, the donor kappa values, (κdi ), refer to the displacement of the

first excited state of the isolated dye molecule, and the acceptor kappa values,

(κai ), refer to the displacement of the ground state of the cationic dye molecule,

both with respect to the ground state of the neutral dye molecule. With 102

normal modes, in order to simulate the dynamics of this process, it was beneficial

for the preliminary propagations to identify the key modes that are important to

this charge transfer. These modes were chosen on the coupling strength. This is

a unit-less parameter which can be determined by the relationship (λi/ωi), where

λi is the reorganisation energy and ωi is the frequency of the normal mode, i. The

reorganisation energies, λαi , were calculated from the relationship shown below and

are associated with transitions from the ground state to the excited state and the

cation of C-343, where α = d or a, respectively,

λαi =
(καi )2

2ωi
. (5.2)

The reorganisation energy of electron transfer is associated with a transition

from the excited state of the dye molecule to the ground cationic state, and is

expressed as,

λETi =
(|κdi − κai |)2

2ωi
, (5.3)

where the λETi refers to the reorganisation energy of electron transfer. A simple

schematic of what these equations represent is shown in figure 5.4.

In order to choose which of the modes of C-343 were significant in the electron

transfer process, a threshold of 0.1 was chosen for the λET coupling parameter.

This allowed 102 modes to be initially reduced to 17 modes, as shown in table 5.1.

These 17 modes contain ∼84% of the total reorganisation energy for the transi-
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Figure 5.4: A schematic showing the reorganisation energy in a three state system along
some normal mode, Q. In all three diagrams, the black state, ψg, represents the ground
state, the blue state, ψd represents the donor state, and the red state, ψa, represents the
acceptor state. (a) shows the donor reorganisation energy, λd. (b) shows the acceptor
reorganisation energy, λa. (c) shows the reorganisation energy of the electron transfer
process, λET .

tion to the electron transfer process, where the total reorganisation energy, shown

in equation 5.4, is the sum of the reorganisation energies. Therefore, using only

these 17 modes is a good approximation of the full system. The 4 most significant

modes alone contain 64% of the total reorganisation energy, and therefore provide
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Mode ω (eV) κd (eV) κa (eV) λET (eV) Coupling Strength

6 0.01579 0.05815 -0.03995 0.30471 19.29622
7 0.01723 0.00455 0.07570 0.14687 8.522713
5 0.01205 -0.00139 -0.01865 0.01236 1.025842
10 0.02812 -0.00031 0.03637 0.02392 0.850690
1 0.00334 0.00200 -0.00191 0.00229 0.686325
15 0.04332 0.01165 -0.03146 0.02145 0.495237
9 0.02704 0.00688 -0.01751 0.01100 0.406751
11 0.03361 0.02104 -0.00523 0.01027 0.305385
17 0.05022 -0.03889 0.00026 0.01526 0.303795
14 0.04072 0.00585 -0.02578 0.01228 0.301544
3 0.00673 0.00168 -0.00319 0.00175 0.260554
19 0.05412 0.00712 -0.02928 0.01224 0.226135
30 0.08521 0.00339 -0.05002 0.01674 0.196431
29 0.07944 -0.03378 0.01269 0.01359 0.171105
86 0.22078 -0.04414 0.06700 0.02797 0.126703
25 0.06939 0.01730 -0.01748 0.00872 0.125653
13 0.03886 -0.00296 0.01599 0.00462 0.118921

Table 5.1: The coupling strengths of the main vibrations in Coumarin-343. All values
are mass-frequency scaled. It is clear from the table that mode 6 is by far the most
significant mode for electron transfer, which is a rocking motion of the carboxyl group.

a good starting point for the preliminary calculations.

λETTot =
∑
i

λETi (5.4)

5.5 TiO2

The choice of TiO2 as the semiconductor was based on the fact that it is one

of the most promising semiconductors for solar applications [129], on top of the

fact that it has already been well studied both experimentally and theoretically

[123, 124, 130]. TiO2 exists in three main polymorphs - anatase, rutile and brookite

[131]. The anatase polymorph has been shown to be the most photoactive of all

three [132], with the most stable, and common, surface having a (101) orientation,

shown in figure 5.5.
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Figure 5.5: A (101) surface of anatase TiO2

In order to find the electronic structural properties of a C-343 dye molecule

attached to a TiO2 surface, firstly, a small (TiO2)8 cluster was optimised. The

starting geometry of this cluster was obtained from experimental data published

by Howard et al. from the x-ray diffraction results [133]. Then the optimised

geometry of a dye molecule adsorbed onto a small (TiO2)2 dimer was performed.

Both these structures are shown in figure 5.6.

(a) (b)

Figure 5.6: The optimised geometry of (a) (TiO2)8(H2O)14 cluster and (b)
(TiO2)2(H2O)5 cluster with the deprotonated C-343 dye molecule attached
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The resulting optimised geometry of the deprotonated dye molecule after this

geometry optimisation was attached to the larger (TiO2)8 cluster, allowing only

the bonds attaching the dye to the TiO2 to optimise. The resulting geometry is

shown in figure 5.7.

Figure 5.7: The optimised geometry of a (TiO2)8(H2O)14 cluster with the deprotonated
C-343 dye molecule attached

Using this optimised geometry, the energy of the molecular orbitals of this

complex were determined.

5.6 Molecular Orbitals

The donor state of the system is the first excited state of C-343. A TDDFT and an

EOM-CCSD calculation on the isolated C-343 molecule agreed that this excited

state arises due to an electron promotion from the HOMO to the LUMO. The

results of these calculations can be found in table 5.2. Both calculations were run

using the same input geometry, using a cc-pVTZ basis set. In both cases, the

orbitals had the same character.
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Excited state Energy (eV) Oscillator strength
EOM-CCSD HOMO � LUMO 4.4376 0.9332

TDDFT HOMO � LUMO 3.3784 0.5935
Expt. [134] - 2.8051 -

Table 5.2: This table shows that the first excited state of C-343 arises from the promotion
of an electron from the HOMO to the LUMO, as confirmed by both EOM-CCSD and
TDDFT. This is compared to the experimental absorption λmax of C343 obtained in
methanol.

The difference in values between the experimental and quantum chemical re-

sults could be attributed to solvent-solvent interaction effects [135], which becomes

more and more prominent in high polar solutions. Experimental studies have

shown that as the polarity of the solvent increases, the absorption λmax decreases,

and the peak in the spectrum becomes broader [135].

Therefore, although the calculated energy gap is too large to be fully efficient

in the visible spectrum and is much larger than has been shown experimentally,

this system is more of a test to check the methods used, rather than as a design

for the best DSSC so therefore we were happy to continue with this system.

The donor state can be thought of as the LUMO of the C-343 dye molecule.

The HOMO and LUMO of C-343 were calculated, and are shown in figure 5.8.

(a) (b)

Figure 5.8: (a) The HOMO of the isolated C-343 dye molecule (b) The LUMO of the
isolated C-343 dye molecule
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5.7 Molecular Orbitals

Since the donor orbital of the isolated dye is known, the next step was to find

the donor orbital of the C-343-TiO2 complex. A MO calculation on the smallest

complex, the dye attached to a (TiO2)2 dimer, was performed. The donor orbitals

of the complex was chosen to best represent the LUMO of the isolated dye molecule.

This was orbital 126, and is shown in figure 5.9.

Figure 5.9: The donor orbital of the dye-semiconductor cluster

These acceptor orbitals were defined as being those which are localised on the

TiO2 cluster only. Looking at the orbital overlap between the donor and acceptor

orbitals could give some insight into the parameters of the model- namely, the

coupling between the dye and the semiconductor. This will be discussed further

in section 5.9.
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5.8 Electron transfer

5.7 Electron transfer

Having determined some electronic structure parameters for both the dye and

semiconductor clusters, as well as the dye-semiconductor complex, in order to

determine the electron transfer time the next step was to run quantum dynamics

simulations starting from the donor state. The propagation of the wavepacket

was performed using the Quantics software package [112]. The MCTDH and ML-

MCTDH method, both of which are discussed in chapter 3, were used to determine

the dynamics. The grouping of vibrational modes using these methods were based

on coupling strength alone, as symmetry could not be used on this system as in

the case of allene. In order to ensure convergence had been reached, the natural

orbital populations were checked as in the previous chapter, as well as checking

whether the state population plots change by adding more SPFs. The tight-binding

Hamiltonian that was used in both the approaches had not been tested before using

this software. It was, therefore, necessary to implement certain aspects of it into

the code. This included setting up the decay width function for the off-diagonal

parameters used in the first method that will be discussed, as well as setting up

the acceptor matrix used for the atomistic approach of the second method. This

will all be expanded upon in more detail in the following sections.

5.8 Dynamics I

5.8.1 The Hamiltonian

The initial model used, inspired by the series of papers published by Thoss et al

[123, 128, 136], was based on an Anderson-Newns type Hamiltonian (shown in

equation 5.5), with a one-dimensional tight binding parameterisation to find the

eigenvalues and eigenfunctions of the semiconductor,
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5.8 Dynamics I

H = T + |φg〉Vg〈φg|+ |φd〉Vd〈φd|+
∑
k

|φk〉Vk〈φk|+∑
k

(|φd〉Vdk〈φk|+ |φk〉Vkd〈φd|),
(5.5)

where Vg, Vd and Vk correspond to the diabatic potential energy surfaces of the

ground state of the dye molecule, the donor state- which refers to the first excited

state of the dye -, and the continuum of acceptor states on the conduction band

of the semiconductor, respectively.

This method is based on modelling the system as a spin-boson type system,

with a donor and acceptor state, except instead of having only one acceptor state,

there is now a continuum of acceptor states. This can be seen in figure 5.10.

Vg

Vd
Vk

Figure 5.10: An illustration of the PES along some coordinate, Q, of the ground, donor
and acceptor states, Vg, Vd and Vk respectively, adapted from [1].

The coupling between the donor and acceptor states is determined by the off-

diagonal coupling matrix elements, Vdk, which can be determined by the energy-

dependent decay width of the donor state,
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5.8 Dynamics I

Γ(E) = 2π
∑
k

|Vkd|2δ(E − εk). (5.6)

The parameterisation of the energy decay function was adapted from the tight-

binding model developed by Petersson et al [136] which describes electron injection

rates from a dye molecule into a semiconductor. This model gives the energy-

dependent decay width as,

Γ(E) =
2v2

0(E − E0)

v2

√
1−

[
(E − E0)− ε2 − 2v2

2v2

]2

. (5.7)

Here, E0 is the mean energy value of the conduction and valence bands of the

semiconductor, ±ε are the on site energies of the atoms in the metal semiconductor,

v is the nearest neighbour coupling matrix element, and v0 is the coupling element

between the semiconductor and the chromophore. The limitation of ε+E0 6 E 6

E0 +
√

4v2 + ε2 was imposed in order to contain the energy values within the width

of the conduction band of TiO2 . The parameters were initially set to E0 as -1.6

eV and ε as 1.6 eV, so that the bottom of the conduction band was at zero. v

was set to 2 eV and v0 to 1 eV. These parameters were found semi empirically by

Petersson et al [136], and are determined to resemble the lower 3d group of the

conduction band of TiO2 .

A simple schematic of this approach can be shown in diagram 5.11.

If only linear coupling terms are taken into account for the donor and acceptor

states, then the following equations for the diabatic PES can be written, in mass-

frequency scaled coordinates as,

Vg(Q) = εg +
1

2

∑
l

ωlQ
2
l , (5.8)

Vd(Q) = εd +
∑
l

κdlQl +
1

2

∑
l

ωlQ
2
l , (5.9)
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5.8 Dynamics I

Figure 5.11: A schematic showing how the 1D tight binding approach was applied to the
dye-semiconductor system. Adapted from [136]. The on-site matrix elements alternate
signs to depict either a titanium site (+ε) or an oxygen site (−ε).

Va(Q) = εk +
∑
l

κalQl +
1

2

∑
l

ωlQ
2
l , (5.10)

where εg, εd and εk are the energies if the ground state, donor state and accep-

tor states at the ground state equilibrium geometry respectively. The kappa, κ,

constants, as in section 4.1, are obtained by calculating the gradients of the donor

or acceptor states at the equilibrium geometry, and contain the information nec-

essary to couple nuclear motion to the electronic states. The matrix form of the

Hamiltonian can be expressed as in matrix 5.11. For simplicity and clarity, in this

example there is only 4 states in the acceptor continuum.



φg φd φk1 φk2 φk3 φk4

φg Vg 0 0 0 0 0
φd 0 Vd Vdk Vdk Vdk Vdk
φk1 0 Vdk εk1 + Va 0 0 0
φk2 0 Vdk 0 εk2 + Va 0 0
φk3 0 Vdk 0 0 εk3 + Va 0
φk4 0 Vdk 0 0 0 εk4 + Va


(5.11)

The on-diagonals of both the whole matrix, and the acceptor sub-matrix, con-
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tain all the electronic and vibrational information. Each acceptor site, φk, couples

vibronically to the donor state, φd, via the off-diagonal Vdk parameter.

The effect of nuclear motion on the dynamics of this electron transfer process

can be considered from two different, but theoretically equivalent, approaches. The

first approach of vibronic coupling, called the normal mode approach, couples all

the vibrational DOF to the electronic states in the same way, and is described by

the Hamiltonian shown below, showing only the vibronic coupling and omitting

the donor-acceptor coupling,

HN = T +
1

2

∑
l

[ωlQ
2
l − |φd〉4clQl〈φd|], (5.12)

where T is the kinetic energy, and Ql is the position of the lth normal mode, of

frequency ωl, and the cl specifies the vibronic coupling term. These vibrational

modes can represent both the intramolecular modes of the dye molecule, as well

as any surrounding solvent or bath modes. The coupling parameters, c, can be

determined by the spectral density,

J(ω) =
π

2

∑
l

c2
l

ωl
δ(ω − ωl). (5.13)

This spectral density describes the response of the solvent polarisation to the

change of the charge distribution upon excitation or ionisation to the excited state

or cationic state, respectively.

However, if all 102 normal modes of the dye were considered, without even

taking the semiconductor into account, this is beyond the ability of the MCTDH

method. Therefore a different approach is needed here.

This leads to the second approach implemented to couple nuclear motion with

the electronic states selects only the few vibrational modes which are most sig-

nificant to the electron transfer process. This is called the reaction coordinate

approach. The remaining ”insignificant” modes can be combined into a harmonic
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bath. The nuclear Hamiltonian for this approach is simplified to,

, HN = HS +HB +HSB (5.14)

where HS is the system Hamiltonian and HB is the bath. The bath-system cou-

pling, HSB, is determined, as in the normal mode approach, by a spectral density.

The system Hamiltonian has a similar form to that used in chapter 4 for allene,

where:

HS = T +
1

2

∑
l

ωlQ
2
l +

∑
l

|φd〉κdlQl〈φd|+
∑
l

∑
k

|φk〉κalQl〈φk|, (5.15)

where the few most significant modes, along coordinates Ql, have vibronic coupling

parameters of κdl and κal , depending on whether the coupling to the donor state

or the continuum of acceptor states is considered, respectively. These vibronic

coupling parameters are related to the reorganisation energy by λl =
(|κdl−κ

a
l |)

2

2ω
.

These parameters have already been discussed in more detail in section 5.4.

The remaining vibrational modes of the dye molecule are represented as a bath

of harmonic oscillators,

HB = T̃ +
1

2

∑
j

ω̃jQ̃
2
j , (5.16)

where ω̃j and Q̃2
j are the frequencies and reaction coordinates of the bath modes,

respectively. The system-bath coupling is characterised by a spectral density,

which is the same as in the previous approach, shown in equation 5.13.

Assuming the wavepacket starts the propagation in the donor state by appli-

cation of an ultra-short laser pulse, the population decay of the donor state can be

calculated and plotted to determine the dynamics of the electron injection process

from the donor state into the conduction band of TiO2 .
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Although I will discuss the results of using this method in this next section, as

research and time progressed it became apparent that this method of modelling

a dye to semiconductor electron injection was incorrect. Therefore, the failings of

this method will be highlighted, and a new method was devised which is discussed

in section 5.9.

5.8.2 Initial Results

Initially using the vibronic coupling constants from the research reported by Kon-

dov et al [123], the Hamiltonian was set up, and the propagation run. With 102

normal modes, it was beneficial for the preliminary propagations to identify the

key modes that are important to this charge transfer. Of all these modes, ν83 and

ν85 were deemed to be the most active. This is due to the conclusion drawn in the

publication mentioned above that only the highest frequency modes will have an

effect on electron dynamics due to the ultrafast electron injection. Of the high-

est frequency modes published in the paper, ν83 and ν85 had the largest coupling

strength, table 5.3.

Mode ω (cm−1) κd (cm−1) κa (cm−1) Coupling Strength

ν83 1534 563 86 0.05
ν85 1612 -863 10 0.15

Table 5.3: Parameters taken from the results reported by Kondov et all [123]. The κ
values were reported in mass-scaled units, thus the κ parameters presented here are not
directly comparable to the κ parameters calculated later on in this chapter.

The primitive basis set was chosen using a harmonic oscillator DVR and the

propagation was converged with respect to the population decay of the donor state.

In order to converge the results, the number of states in the acceptor continuum

was increased until the population decay of the donor state remained stable. If

too few electronic states were included in the calculation, due to the nature of

the grid-based method, the nuclear wavepacket would ”bounce” off the edge of

the electronic grid during the time of the propagation. This means that although
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including more states would not stop the wavepacket ultimately bouncing back, it

would not do so in the time frame of the propagation. The size of this grid is set

by the number of the DVR functions used to describe each DOF. The wavepacket

began the propagation on the donor state at the ground state equilibrium geometry.

It can be seen from figure 5.12 that there was almost complete population transfer

into the continuum of states after 50 fs if 1499 states were included in the acceptor

continuum.

As only two of the vibrational modes are included in this propagation, the

wavepacket oscillates between the two states for the rest of the calculation, due to

the lack of a vibrational bath. If more vibrational modes are introduced into the

Hamiltonian, the energy of the wavepacket would dissipate into the conduction

band acceptor states, and there would be no back charge transfer. This is shown

in figure 5.13.

Again the vibrational modes chosen to be included are based on their coupling

strength to both the donor and acceptor states, listed in table 5.4.

Mode ω (cm−1) κd (cm−1) κa (cm−1) Coupling Parameter

ν7 133 -265 2283 1.17
ν14 312 1289 -4698 0.77
ν21 452 3168 -5017 0. 60
ν35 758 7626 -1459 0.31
ν49 1026 7944 -11211 0.41
ν55 1151 5157 10415 0.10
ν56 1172 11229 3355 0.14
ν66 1321 4616 -17337 0.32
ν72 1360 -12170 9920 0.31
ν83 1534 22051 3368 0.22
ν85 1612 -34649 401 0.38
ν87 1795 16396 -17244 0.31

Table 5.4: All parameters are taken from the results reported by Kondov et all [123].
The κ values here were all reported in mass-scaled units, so have been converted to
mass-frequency scaled units.

These dynamics were run using a contracted multi-set basis, shown in table
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Figure 5.12: The diabatic population of the donor state of the C343-TiO2 system, with
increasing number of states in the acceptor continuum of (a) 101 states (b) 501 states
(c) 1001 states (d) 1499 states. These dynamics were run using 5 SPFs for both ν83 and
ν83 t in both the donor and acceptor state.

5.5.

As mentioned at the start of this section, these calculations were all run using

the vibrational parameters reported by Kondov et al. This was in order to test

the method, and to ensure that the results reported could be replicated. Despite

using all the same parameters, the results in the paper could not be replicated. To

find out why this was, and to investigate the system further, the next step would
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Figure 5.13: The diabatic population of the donor state of the C343-TiO2 system, in-
cluding more vibrational modes into the dynamics of the calculation. (a) 2 modes, as
repeated from figure 5.12, ν83 and ν85 (b) 6 modes, ν7, ν14, ν21, ν83, ν85 and ν87 (c) 12
modes, as shown in table 5.4. This is comapred to the decay plot fom the literature [123]

be to replicate the results using the vibrational frequencies and κ values obtained

via the electronic structure calculations done by us on Coumarin-343 .
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Number of
modes

Contracted
basis set

Number of SPFs
in donor state

Number of SPFs
in acceptor state

2
v83

5 5
v85

6
v7,v14,v21

5 5
v83,v85,v87

12

v7,v14,v21

9 9
v83,v85,v87

v56, v66, v72
v35, v49, v55

Table 5.5: All parameters are taken from the results reported by Kondov et all [123]. The
κ values were reported in mass-scaled units, so have been converted into mass-frequency
scaled units.

5.8.3 Further Investigations

The starting point was to repeat the first calculations of the previous section,

including just 2 DOF. The calculations performed identified a different set of sig-

nificant modes to the electron transfer as Kondov et al did in their paper. This is

due to the difference in κ values obtained from the TDDFT calculations. These

are shown in table 5.1. For these preliminary 2D calculations, ν6 and ν7 were used.

The results of this calculation will not be included as they offer no further informa-

tion and figure 5.12 accurately enough represents the results of this, i.e. including

different modes has no effect on the dynamics. However, when an increased num-

ber of electronic states were added, beyond, 1499, an odd trend was observed.

The assumption was that the results had converged with respect to the population

plot when including 1499 states in the continuum, and that adding more would

not change the dynamics further. This assumption was incorrect. Upon including

more states, 2499 acceptor states, the decay of the donor state became less smooth

again, figure 5.14.

This result was unexpected and in fact, created more questions than it an-

swered. Why should this be? Further investigations showed that only by includ-

ing exactly 1499 states in the acceptor continuum was the decay plot of the donor

Coumarin-343 - TiO2 99



5.8 Dynamics I

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200
Po

p
u
la

ti
o
n

Time, fs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200

Po
p

u
la

ti
o
n

Time, fs

(a) (b)

Figure 5.14: The diabatic population of the donor state of the C343-TiO2 system, with
(a) 1499 states and (b) 2499 states in the acceptor continuum. These dynamics were
run using 8 SPFs for both ν6 and ν7 in both the donor and acceptor state.

state smooth, resembling that of the results published in the reference paper. The

next pertinent question now, of course, was why was 1499 this ”magic number” of

states?

The first thing to check was that it was not the electronic and vibrational

parameters that we had calculated ourselves (table 5.1 in section 5.4), rather than

using those that Kondov et al had published, as in the previous section. However,

adding more states into the continuum, but using Kondov’s parameters, generated

the same pattern - that as more states are added to the continuum beyond 1499,

the decay became ”worse”, or more oscillatory. This showed that there is an

inherent problem with this method, as this should not be the case. The next step

now was trying to identify the issue.

The dynamics were stripped back to just the electronic decay only, remov-

ing any vibronic coupling that was included. This was to exclude the vibronic

Hamiltonian implemented as being the issue here. The same problem as just de-

cried persists with the electronic state only dynamics, with this ”magic number”

of states. Therefore, the issue is with the electronic structure parameters. The
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Hamiltonian of the electronic dynamics is as follows, matrix 5.17. As the wave-

function begins the propagation in the donor state, the ground state does not take

part in the dynamics, and it is omitted from here on, for clarity. As above, for

simplicity, the acceptor is shown here consisting of 4 states in the continuum.


φd φk

φd Ed Vdk

φk Vdk


εk1 + Ea 0 0 0

0 εk2 + Ea 0 0
0 0 εk3 + Ea 0
0 0 0 εk4 + Ea



 (5.17)

The calculated energies of the first excited state and the ground cationic state,

Ed and Ea respectively, are close the literature values [127]. Therefore, it is un-

likely that these parameters are the issue. Likewise, the εk values are just simply

equidistantly spaced energy levels in the conduction band of TiO2 , and so are

fixed values. Therefore, the problem must be the Vdk electronic coupling parame-

ter. This coupling is defined by the decay function

Γ(E) = 2π
∑
k

|Vkd|2δ(E − εk) (5.18)

with

Γ(E) =
2v2

0(E − E0)

v2

√
1−

[
(E − E0)− ε2 − 2v2

2v2

]2

(5.19)

The parameters of this decay function are outlined in a previous section. Of these

parameters, the only parameter which is not specific to TiO2 , and determined by

solid state theory, is the v0 parameter. This determines the coupling between the

donor state and the first acceptor site.

This parameter was currently set at 4000 cm−1, as per the reference paper,

which equates to roughly 0.5 eV. This is a very strong coupling.
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By changing the v0 and determining how this affects the dynamics, the hope

was that this would help identify some issues. Arbitrarily choosing 500 states in

the continuum as a test, the v0 parameter was set to a different values, ranging

from the original 0.5 eV � 0.05 eV. The results of this can be seen in figure 5.15.
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Figure 5.15: The diabatic population of the donor state of the C343-TiO2 system, at
various coupling strengths, with (a) v0 = 0.5 eV (b) v0 = 0.3 eV (c) v0 = 0.1 eV and (d)
v0 = 0.05 eV. These dynamics were run using electronic dynamics only, with 500 states
in the continuum.

The results of this investigation into the effect of changing the v0 parameter

clearly show that the v0 = 0.5 eV set in the paper is much too high, as predicted.

In fact, the v0 parameter must be decreased by a factor of 10 before the population
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decay of the donor state replicates that seen in the Kondov paper.

Due to all the unexpected issues with using this method, the approach as

to how the decay function calculates the vdk values was scrutinised. v0 is the

only parameter which contains information about the dye molecule, as all other

parameters in the decay function are semiconductor specific. The original paper

which devised this decay function [136] sets this value to 1 eV, which is then

already halved for the Kondov et al paper. This already indicates that there is

some inherent problem. Whilst looking at this decay function further, it became

apparent that this function had been misinterpreted, both in our studies, and

in the series of papers by Kondov et al. It was believed to be a function in

which one could input the energy of the donor state, and get out the Vdk coupling

parameters. However, this equation (equation 5.19) is actually a calibration of

donor state energy and electron injection time, i.e. by measuring the time scale of

the electron transfer, one can determine the energy of the donor state. This means

that this method is not suitable for specifying the coupling used when calculating

dynamics. As the research of Kondov et al progressed further, they too ended up

changing their whole approach to calculating the dynamics of the system, adding

further credence that this approach is not the correct way forward.

5.9 Dynamics II

5.9.1 The Hamiltonian

A new approach to determining the electron dynamics of the system was needed.

Taking the previous method as inspiration, the 1-dimensional chain was, once

again, implemented.

This representation is similar to the first method, as shown in figure 5.11 in the

previous section, but with a few key differences. The main difference is the β′

couples the donor state to the first acceptor site only, with the β coupling term
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semiconductor dye

-ε ε -ε ε -ε ε
β β β β β β'

Figure 5.16: A schematic of the dye-semiconductor system, showing the parameters of
the new dynamics method.

coupling the nearest acceptor sites. This is shown below in matrix from, matrix

5.20. As before, only 4 states are shown in the acceptor continuum for simplicity.


φd φk1 φk2 φk3 φk3

φd Ed + κ β′ 0 0 0
φk1 β′ ε+ κ 0 0
φk2 0 β −ε+ κ β 0
φk3 0 0 β ε+ κ β
φk3 0 0 0 β −ε+ κ

 (5.20)

The ε and β parameters, as in the previous method, are taken from the Pe-

tersson et al paper [136], which were derived from solid state theory. These are

set at ε = 1.6 eV, and β = 2 eV. The Ed represents the energy of the donor state,

with respect to the bottom of the conduction band, and is set at 3.2 eV. If the

acceptor sub-matrix is diagonalised, one can find the eigenvalues of the acceptor

continuum. This diagonalisation results in the following band structure for the

TiO2 in this system, figure 5.17.

The valence band and the conduction band can clearly be seen, showing a band
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-5 -4 -3 -2 -1  0  1  2  3  4  5

Energy, eV

Figure 5.17: The diagonalised acceptor sub-matrix derives the eigenvalues. There are
100 states in the continuum included here.

gap of 3.2 eV, which corresponds to the parameters in this model.

The additional advantage of using this second approach, is that the model can

be easily scaled up from a 1D chain to a 2D slab, or 3D block. The donor state

would still couple to only the first acceptor site, but these extended systems would

contains more β coupling elements. This is a more realistic description of how the

charge spreads out once in the semiconductor. Figure 5.18 shows how this method

can be adapted for these bigger systems.

5.9.2 Results

Starting where the previous method failed, the first set of results test the dynam-

ics of the wavepacket in a purely electronic basis set, i.e. without any vibronic

coupling.

Using the analogous parameters from the previous method, where Ed = 3.2
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semiconductor

dye

semiconductor

dye

(a)

(b)

Figure 5.18: A schematic showing how the model used can be easily expanded to an (a)
2D and (b) 3D model.

eV, β = 2 eV and ε = 1.6 eV, the dye-semiconductor coupling parameter, β′, was

tested. Using the initial guess of 1 eV, which was shown in the previous method

to be much too strong, the β′ value was decreased in increments to 0.05 eV. The

effect of changing this parameter is shown in figure 5.19. For the sake of time

considerations for these preliminary calculations, only 50 states were included in

the continuum.

The general trend shows that the stronger the coupling, the faster the initial

decay, which makes sense. Even with the expectation that the wavepacket will

rebound as an insufficient number of states have been included, setting β′=1 eV

and β′=0.5 eV is too high, and causes the noise seen in plots 5.19(a) and (b).

Conversely, β′=0.05 eV is too weak a coupling parameter, and does not generate

a complete donor state decay.

As mentioned at the end of the previous section, the series of papers used to

reference a lot of this work also changed their method. Using a later paper [124] to
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Figure 5.19: The diabatic population of the donor state of the C343-TiO2 system, testing
the effect of changing the β′ parameter, where β′ = (a) 1 eV, (b) 0.5 eV, (c) 0.2 eV, (d)
0.15 eV, (e) 0.1 eV and (f) 0.05 eV.
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benchmark results against, it was reported that for electronic dynamics only there

was complete donor state population decay after ∼ 25 fs. By identifying the β′

value which most closely resembles these dynamics from figure 5.19, the β′ value

of 0.2 eV was chosen. This value was was used in all future calculations from here,

unless stated otherwise.

Now that the matrix parameters had been determined, the final variable to be

finalised was how many states to include in the acceptor continuum before there is

no wavepacket rebound observed in the time scale used in the calculations, shown

in figure 5.20. Including 500 acceptor states was sufficient for a smooth donor state

decay, with no wavepacket rebound effects. Adding more states does not change

the dynamics. Therefore, all future calculations will included 500 states in the

acceptor continuum, unless stated otherwise.

5.9.3 Adding vibronic coupling

Now that the electronic dynamics have been tested match previously reported

data, the next step was to include the vibronic coupling into the Hamiltonian .

The expectation was that by including vibronic coupling, vibrational modes will

absorb the extra energy and dampen any oscillations. Another expectation was

that the donor state will decay slower with the added vibronic coupling, as it is

stabilised by the vibronic coupling at short time scales [123].

The effect of adding an increasing number of vibrational modes into the vibronic

coupling Hamiltonian was investigated. Beginning with the most active modes, ν6

and ν7, a propagation with 2 DOF was performed. As there are only 2 modes

included, this could not be performed using the ML-MCTDH approach. This

was followed by the 4D, 9D and 17D ML-MCTDH calculations. The ML-tree

diagrams of these calculations are shown in figures 5.21, 5.22 and 5.23, respectively.

The groupings of the modes for the ML-trees were based purely off the coupling

strength - κ/ω - with similar strengths being grouped together initially, and split
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Figure 5.20: The diabatic population of the donor state of the C343-TiO2 system, testing
the effect of changing the number of states included in the acceptor continuum - showing
100, 500 and 1000.

down further into 1-dimensional SPFs.

The results of these propagations are shown in figure 5.24.

It can be seen from figure 5.24 that including vibronic coupling into the model

does not affect the dynamics significantly. In fact, despite the prediction that the

decay would be slower after the inclusion of vibronic coupling, the plot with 17

modes decays marginally quicker than the others. This complete contrast to the

expected results called for further adaptations to the model.
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Figure 5.21: The ML-Tree diagram for 4D system, with the node number shown in the
circles. The number of basis functions is shown in black, and the number of DVR grid
points per DOF is shown in blue.
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Figure 5.22: The ML-Tree diagram for 9D system, with the node number shown in the
circles. The number of SPF basis functions is shown in black, and the number of DVR
grid points per DOF is shown in blue.
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Figure 5.23: The ML-Tree diagram for 17D system, with the node number shown in the
circles. The number of basis functions is shown in black, and the number of DVR grid
points per DOF is shown in blue.
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Figure 5.24: The diabatic state population of the donor state showing the decay of the
donor state with 2, 4, 9 and 17 modes. The inset shows the magnification of the plot
from 0 - 70 fs for clarity
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5.9.4 The β′ Parameter

So far, in this second approach to the dynamics, the β′ parameter coupling the

dye to the semiconductor has been static. It has been set to 0.2 eV. This is

quite a strong value, and a factor that may be causing the lack of change of

the dynamics. The transfer of population is so fast that nuclear motion is not

quick enough to affect it. Also, the value of 0.2 eV has only been achieved by

benchmarking it to previously reported results. In order to approach this value

more analytically, one needs to consider how this parameter arises. As mentioned

in section 5.6, the overlap between the donor orbital and acceptor orbital gives

rise to this parameter. With this in consideration, it becomes apparent that this

coupling parameter should be a dynamic coupling parameter, rather than the

current static one. As the bonds which adsorb the dye to the semiconductor

surface stretch and contract, so too will the orbital overlap between donor and

acceptor change.

To determine what these vibrations are, and thus determine the dynamic cou-

pling parameter value (which will now be termed λ), a vibrational analysis was

performed on the small C-343-TiO2 complex, consisting of a TiO2 dimer. As de-

scribed in the previous chapter, this off-diagonal λ coupling parameter is defined

by,

λijα =
∂

∂Qα

〈φj|Hel|φi〉 , (5.21)

where this λ denotes the couplingbetween diabatic states φi and φj, for mode α.

The vibrations which most closely resemble the symmetric and asymmetric

stretch of the bonds adsorbing the dye to the TiO2 surface were identified. These

are summarised in table 5.6.

These additional modes were added into the model, with the anti-symmetrical

Coumarin-343 - TiO2 112



5.9 Dynamics II

Mode Stretch Frequency (cm−1)

48 anti-symmetrical 428

58 anti-symmetrical 610

72 symmetrical 895

Table 5.6: The anti-symmetrical and symmetrical stretches of the C-343 - TiO2 complex.

stretch on the off-diagonal coupling matrix site, and the symmetrical stretch as

an on-diagonal tuning mode. The symmetrical mode, νs was approximated to 900

cm−1, and the anti-symmetrical mode, νa, was an approximated average of the two

identified modes at 500 cm−1.

Using these frequencies to construct a pseudo-vibronic coupling Hamiltonian ,

the values of the λ parameter for the νa mode, and the κ values for the νs were

tested. The κa and κd values were set to the same value initially, a value of ±0.1

eV, in order to optimise λ independently. Testing a range of λ values, from 0.1 �

0.5 eV, the dynamics of the donor state decay were plotted, figure 5.25.

From these results, and from comparing to other reported decay timescales [123,

124, 128], λ = 0.4 eV most closely simulates a decay on the correct time scale.

Thus future calculations will use λ = 0.4 eV.

As the modes selected are pseudo-modes, as in not true vibronic modes of the

dye, there are no caluclated κ values associated with them. Therefore, the next

step was to determine sensible κd/a parameters. A range of both κd and κa values
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Figure 5.25: The diabatic state population of the donor state showing the decay of the
donor state with a λ = 0.1 � 0.5 eV, with a κd=κa=±0.1 eV.

were tested, ranging from -0.1 � -0.5 eV for κd and between 0.1 � 0.5 eV for κa

. For the sake of clarity, not all 25 plots of these κ combinations will be included,

only the ones of interest. The results of these are shown in figure 5.26.

Again, the κ parameters were narrowed down to which most closely resem-

bled previously reported decay dynamics on this system, and the most optimal

parameters were chosen. All of the plots in figure 5.26 replicate the ultrafast ini-

tial decay observed in reported data, followed by the quenching by the vibronic

coupling. Setting κd = -0.5 eV (the blue and orange plots in figure 5.26), gives

more complete donor state decay and was chosen as the optimal κd from the test

calculations performed. The change in dynamics from changing κa from 0.4 eV to

0.5 eV was minimal, and so κa = 0.4 eV was chosen, to break the symmetry of the
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Figure 5.26: The diabatic state population of the donor state showing the effect on the
decay of the donor state by altering the κd and κa parameters.

acceptor and donor states. Therefore, κd= -0.5 eV, and κa= 0.4 eV.

5.9.5 Extending the Model

The next step to further test this model was to add further vibronic coupling, and

see the effect on the dynamics of the electron transfer. This was tested first by

adding ν6 and ν7, to predict and compare the dynamics in a 3-mode and 4-mode

system. The results of this are shown in figure 5.27.

It can be seen from figure 5.27 that there is no significant change in dynamics

by adding these extra modes. In order to further explore this issue, a test using 9

modes of vibronic coupling in the system was performed. This was to check that

it was simply not an issue of not adding a sufficient number of modes to see a
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Figure 5.27: The diabatic state population of the donor state showing the effect off
adding more vibronic coupling into the model, the 3D system consists of the 2 pseudo-
modes of the anti-symmetric and symmetric stretches, and ν6. The 4D system has the
additional ν7 modes.

significant change. The results of this 9-modes system are shown in figure 5.28

compared against the 4D system. The ML-MCTDH layer structure for the 9D

calculation was the same as the previous 9D calculations, shown as a ML-tree in

figure 5.22.

Adding 9 modes of vibronic coupling into the Hamiltonian still has no signifi-

cant effect on the dynamics of the system. The reasons for this are unclear, but

could be due to the parameters of the model. Compared to the pseudo-modes,

νa and νs, denoting the anti-symmetric and symmetric stretch respectively, the κ

values of the modes in the system are very weak. This means that there is very

little notable change upon the addition of these modes.

Another factor that was considered as to why there is no significant change in

Coumarin-343 - TiO2 116



5.9 Dynamics II

9D

4D

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100

Po
p

u
la

ti
o
n

Time, fs

Figure 5.28: The diabatic state population of the donor state showing the effect off
adding more vibronic coupling into the model, comparing the 4D and 9D system.

the dynamics is that the coupling between the acceptor states, β, is too strong,

relative to other coupling parameters. It is currently set to 2 eV. It is possible

that this strong coupling term quickly dissipates the wavepacket along the semi-

conductor acceptor states before the vibronic coupling terms have time to affect a

change in the dynamics. Additional research on this model would look much more

closely at all the parameters of the model, calucalate the couplings via ab initio,

and optimise each parameter analytically.

There are a couple of key next steps in which this model could be expanded if

research were to continue. The first would be to extend the model to the 2D slab

and 3D block, as discussed in section 5.9.2. This would give additional insight into

how the semiconductor parameters, namely β, affects the dynamics of the donor

state decay. By expanding on this knowledge, more insight could be gained as
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to why there is minimal change upon addition of vibronic coupling in the current

model.

The next key step in extending this model is to include temperature effects. As

this system ultimately aims to simulate the quantum dynamics of a dye-sensitised

solar cell, DSSC, the current model is not a fully realistic model. Thus far, all

the calculations discussed in this thesis so far have been performed at 0 K. Whilst

this is helpful to understand the pure quantum behaviour of the systems, this is

not the real working temperature of solar cells. The normal working temperature

of solar cells ranges from 283 - 343 K [137, 138], and the effect of temperature on

DSSC is not as well studied as other types of solar cell. This means the results so

far are varied, with some reports suggesting that efficiency actually improves with

a temperature increase [139, 140, 141], which is in opposition to Silicon based solar

cells which become less efficient as the temperature rises [142]. One interesting

avenue in which temperature effects can be added into the model is by using

density matrices. The potential of using density matrices on larger system will be

discussed in the next chapter.

5.10 Summary

From looking at the results discussed in this chapter, it is clear that the new model

employed is a suitable starting point to capture the donor state decay dynamics of

the system. However, it also clear that there is additional research that is required

to perfect the model. The lack of effect of vibrational motion on the dynamics

of the system is unexpected. Whether this issue lies in the electronic structure

of the dye molecule, i.e. the calculated κ parameters, in the dye-semiconductor

term, λ, or in the semiconductor parameters determined by the solid state theory

is unknown without further investigation.

Another possibility is that not only would including temperature effects in-
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crease the reality of the model, but may actually be necessary in observing vi-

bronic effects in the dynamics. Increasing the temperature of the system would

introduce more energy into the system, possible allowing the vibrational motion

of the modes to have more of an effect on the dynamics. Further tests on opti-

mising all the parameters in the system, as well as simulating the dynamics at

temperatures > 0 K, would help narrow down where the problems lie within this

model.
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Chapter 6

Salicylaldimine

6.1 Introduction

The previous two chapters in this thesis have investigated the limits of both

MCTDH, and ML-MCTDH. Whilst these methods have been successful in pre-

dicting charge transfer dynamics in different systems, thus far all systems have

been represented as pure states. The wavepacket starts in a well-defined initial

pure state and finishes in a pure state. While this holds true for closed-system

dynamics at 0 Kelvin, what happens when the systems are open, or at finite tem-

peratures? Understanding and predicting the dynamics of open systems is vital

in understanding almost all chemical and biological processes, as no process oc-

curring in nature is truly ever a closed system at 0 Kelvin. Recent studies have

shown that temperature effects can play an important role in the quantum dynam-

ics of a system [143, 144, 145]. Wavefunctions are no longer sufficient to describe

these systems and density matrices must be used. Density matrices are able to

describe thermalisation effects using an incoherent system of statistical mixtures,

as detailed in chapter 3.6.

Although the main focus of my research has already been discussed in the

previous chapter, in order to simulate the electron transfer process in a real-world

environment, one must use density matrices. Solar cells, in which the electron

transfer process takes place, clearly do not have working temperatures of 0 Kelvin.
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They also occur in a redox medium. In fact, all the currently reported efficiencies of

solar cells reported by the National Renewable Energy Laboratory are given under

standard conditions, i.e 298 K [146]. Whilst this allows for an easy comparison

of different solar cell systems, it is not a realistic way to report efficiencies, as

the real working temperatures of solar cells can range from 283 - 343 K [147].

Although the current research into dye-sensitised solar cells, DSSCs, discussed in

this thesis is still relatively new, there has been evidence to suggest that unlike in

first generation silicon based solar cells, the DSSCs actually increase in efficiency

with temperature [139, 140]. Therefore, investigating these systems at working

temperatures is critically important. In order to properly simulate this process we

need to use a density matrix.

Density matrices have been previously used with MCTDH, termed the ρ-

MCTDH method, with success [108, 148, 149]. However, using the ML-MCTDH

expansion with density operators has not yet been studied. The computational ef-

fort needed for the ML-MCTDH form of the density matrix, discussed in chapters

2 and 3, is that of the ML-MCTDH wavefunction squared. As shown in the pre-

vious chapter, the dye-semiconductor system is already at the limits of what the

ML-MCTDH method can do, so therefore it is currently computationally infeasible

to use density matrices. A smaller, well-known model system will be employed as

an initial test of the method.

6.2 Salicylaldimine

Salicylaldimine exhibits a ground state intramolecular proton transfer. Using a

pre-computed potential energy surface, PES, of this molecule, the reaction coordi-

nate exhibits an asymmetrical double well. Figure 6.1 shows this potential surface

along with the keto and enol tautomers of salicylaldimine .

This potential surface was computed by Polyak et al[150]. Using Hartree-Fock
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Figure 6.1: The ground state double well potential of the reaction coordinate for the
proton transfer in salicylaldimine . The more stable tautomer occurs with the hydrogen
on the nitrogen.

theory using a 6-31G* basis set, a set of ab initio points were calculated, followed

by fitting these points to a polynomial using VCHam.

This asymmetrical double well can be thought of as the adiabatic representa-

tion of a 2 state system and therefore lends itself to another model system for a

donor/acceptor system, as in the previous chapters. The energy barrier for con-

version from the enol to the keto tautomer is 0.19 eV, and 0.06 eV for the reverse.

Using Boltzmann’s constant, the temperature required to overcome this energy

barrier can be calculated,

E = (kBT ) ∗ 6.24 x 1018, (6.1)

where kB is the Boltzmann constant, 1.38 x 10−23 J K−1, and 6.24x1018 is con-

version factor for eV to J conversion. Converting the 0.19 eV energy barrier into

Kelvin, this equates to an energy barrier of approximately 2200 K. It is clear that

an external input of energy is required to induce this proton transfer. The less sta-
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ble keto-minimum sits in a well with an energy barrier of 0.058 eV, which equates

to 673 K.

6.3 Potential Surface

As mentioned in the previous section, the PES was fitted by Polyak et al[150].

In his paper, the 42 normal modes of salicylaldimine were calculated, and the

modes which contributed most significantly to the transition state to the minima

transitions were isolated, selecting 13 modes. In this Hamiltonian, as described in

chapter 4, the PES takes the form of a Taylor expansion of up to fourth order,

where the mass-frequency scaled normal modes are expanded around the transition

state geometry, Q0,

V (Q) = V (Q0) +
N∑
α

καQα +
1

2

N∑
α

ωαQ
2
α +

1

2

N∑
α 6=β

γαβQαQβ

+
1

6

N∑
αβ

εαβQαQ
2
β +

1

24

N∑
αβ

(ιαβQ
2
αQ

2
β + ηαβQαQ

3
β),

(6.2)

where the Q represents the normal mode coordinates, ω is the frequency and

κ, γ, ε, ι and η are the polynomial fitting parameters. The parameters of this

fitting for the 13 normal modes can be found in the supplementary information

for the cited paper. In order to determine which of the 13 modes were the most

significant to this proton transfer process, the coupling parameters were calculated.

As in chapter 4, this equates to κi
ωi

, where κi is the linear expansion coefficient of

mode i, with frequency ωi., These coupling parameters are shown in table 6.1.

It was determined that the two most significant modes for the proton transfer

were ν1 and ν36, which represent the proton transition mode and the in-plane

perpendicular movement of the proton, respectively.

In order to determine the dynamics of the proton transfer, first a relaxation

[151] was performed on salicylaldimine to ensure that the system was in the lowest
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Mode ω (eV) κ (eV) Coupling parameter

1 0.18808 -0.01071 0.05694
5 0.05254 0.00008 0.00152
7 0.06644 0.00019 0.00286
9 0.07815 0.00029 0.00371
10 0.07928 -0.00010 0.00126
11 0.09815 -0.00008 0.00082
13 0.10501 0.00009 0.00086
16 0.12166 -0.00001 0.00001
22 0.15213 -0.00004 0.00026
23 0.15954 -0.00028 0.00176
24 0.16244 0.00006 0.00037
32 0.20607 0.00008 0.00039
36 0.26963 -0.00793 0.02941

Table 6.1: The coupling parameters for the 13 most significant modes for proton transfer
in salicylaldimine

eigenstate. This process is discussed in upcoming section 6.4. To model the proton

transfer dynamics the molecule must first be localised as one tautomer. To obtain

a suitable wavefunction, it was thus necessary to approximate the initial state of

the nuclear wavefunction as a harmonic oscillator which sits in the lower energy

well in the PES along v1. This was done by expanding a new quadratic equation

around the PES minimum using the derivatives of the quartic double well.

The form of the PES for this ν1 mode is of the quartic polynomial form,

V =
1

24
εq4 +

1

6
ιq3 +

1

2
γq2 + κq +

1

2
ωq2, (6.3)

where the fitting parameters are listed in table 6.2, along with the frequency, ω.

Mode ω (eV) κ (eV) γ (eV) ι (eV) ε (eV)

1 0.18808 -0.01071 -0.38006 -0.06540 0.48662

Table 6.2: The table of fitting parameters for the quartic polynomial for ν1

This equations expands to,

V = 0.020275q4 − 0.01090q3 − 0.09599q2 − 0.01707q. (6.4)
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Finding the first derivative allows the turning points, and thus the global min-

imum, to be determined. Setting this equation to 0, and solving for q allows the

global minimum to be found, and the quadratic expansion around this point can

be determined. This is as follows,

dV

dq
= 0.08110q3 − 0.03270q2 − 0.19198q − 0.01707, (6.5)

when
dV

dq
= 0; q = −1.29691

−0.09063

1.79075

(6.6)

The global minimum is at q=1.79075. This can be confirmed by plotting the

PES, shown in the previous section, figure 6.1. Finding the second derivative, and

substituting q=1.79075 then gives the frequency of the new harmonic oscillator

around that point,

d2V

dq2
= 0.2433q2 − 0.0654q − 0.19198, (6.7)

when q = 1.79075;
d2V

dq2
= 0.47362. (6.8)

Therefore, the quadratic harmonic oscillator frequency, ω0 = 0.47362 eV. Although

this calculated frequency is high when compared to the calculated frequencies of

the system, as it is only used for the initial wavepacket relaxation, this is not a

problem.

As we do not have any κ parameters to fit this curve, in order to determine

the potential of the new quadratic curve the following equation was used,

V ′ =
1

2
ω0(q − q0)2 + V0, (6.9)

where q0 is the new centre, and V0 is the original potential at q0. This can be

expanded in order to calculate the energy shift to so that the new curve sits in the

Salicylaldimine 125



6.3 Potential Surface

original potential energy well,

V ′ =
1

2
ω0q

2 − ω0q0q +
1

2
ω0q

2
0 + V0, (6.10)

where the 1
2
ω0q

2
0 +V0 term is the energy shift. With w0 = 0.47362eV , q0 = 1.79075

and V0 = −0.19246eV , the equation representing the harmonic oscillator can be

simplified to,

V ′ = 0.2368q2 − 0.8481q + 0.5669. (6.11)

The approximated harmonic oscillator potential energy surface can be seen in

figure 6.2.
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Figure 6.2: The initial state in approximated to be in a harmonic potential which lies
in the global minimum of the quartic double well

It can be seen from figure 6.2 that the harmonic approximation holds well for

the bottom of well, but as the reaction coordinate moves away from the energy

minimum, the approximation becomes less applicable. However, as the harmonic

approximation was only used to relax to the lowest eigenstate, i.e. the energy
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minimum, it is a good approximation.

6.4 Proton transfer dynamics

The dynamics of all the following results were calculated using the Quantics[112]

package. In order to observe the dynamics of the proton transfer, the expectation

value of the step operator was plotted. The step function is a projector operating

on a wavefunction which allows all parts outside the area of interest to be removed.

In this example, a barrier is set at q=0, the saddle point of the double well poten-

tial. The wavepacket density to the right hand side of the barrier is determined

by using the projection operator

θ = |q〉θ(q)〈q| (6.12)

where θ(q) is the Heaviside step function at the barrier. Here θ(q) = 0 when x<0,

and θ(q) = 1 when q>0. The expectation value, P , of this operator is the integral

of the wavepacket density from the barrier to the end of the grid, Q. This is the

proportion of the system that has crossed to the keto configuration.

P (q) = 〈Ψ|θ|Ψ〉

=

Q∫
0

Ψ2dq
(6.13)

The first task before any propagations can take place is the energy relax-

ation mentioned in the previous section. This relaxation method propagates a

wavepacket in imaginary time and renormalised, equation 6.14

Ψ(τ) =
e−HτΨ(0)

||e−HτΨ(0)||
(6.14)

where τ = −it. By expanding the wavefunction into a linear combination of

eigenstates
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6.4 Proton transfer dynamics

Ψ =
∑
j

cje
−iEjtφj (6.15)

it can be seen that the eigenstates disappear as t → ∞, leaving only the lowest

eigenstate, i.e the ground state, remaining.

Ψ(τ) =
∑
n

cne
−Enτψn(0) (6.16)

Once this relaxation to the ground state energy was calculated, the propaga-

tions could begin. These propagations were performed using a variety of methods,

to both benchmark and test each approach.

The first method was the standard MCTDH propagation on a simple 2D sali-

cylaldimine system, containing the ν1 and ν36 significant modes. The advancement

on this method in previous chapters is that now the thermalised MCTDH method

was used, so that the dynamics could be simulated at a non-zero temperature.

As mentioned in chapter 3, a thermalised system cannot be expressed as a sin-

gle wavefunction, i.e a pure state, as the MCTDH method does. The idea of the

thermalised MCTDH method is that the incoherent superposition of a thermalised

state is described using a randomly generated wavefunction. These wavefunctions

all begin at infinite temperature, i.e. equal populations of all configurations but

with random phases. The wavefunctions are all then relaxed to the correct temper-

ature, and the resulting set of wavefunctions are propagated in time. Thermalising

the MCTDH wavefunction was achieved by setting the length of the relaxation,

tfinal, to

tfinal =
1

2kBT
(6.17)

where kB is the Boltzmann constant, and T is the desired temperature. The key-

word ”thermal = temperature,seed” in the input file of Quantics sets the tempera-

ture, T , in Kelvin, and also where the seed for the random number generator is set.
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6.4 Proton transfer dynamics

This random number generator sets the random Boltzmann weighted amplitudes

of the initial MCTDH wavefunctions[102]. After propagating all the generated

wavefunctions, by averaging out the different generated wavefunctions, the final

dynamics of the system at that temperature can be determined.

The second method used on this simple 2D salicylaldimine system was the

MCTDH form of the density matrix, ρ-MCTDH. As mentioned previously, density

matrices are able to account for all thermal effects as they can represent a system

of mixed states. The ρ-MCTDH can be expressed as either the type I or type II

formalism. Type I expands the wavefunction into SPDOs, akin to the standard

MCTDH expansion. The computational scaling of the type I density matrix is in

these SPDOs, and so this method is more efficient for larger systems, and more

readily combined with the ML-MCTDH. The type II density matrix expands the

wavefunction a step further into SPFs. The computational scaling for type II

now lies in the expansion coefficients of the SPFs, and thus is more suitable for

smaller systems. The two approaches, however, are equivalent and give identical

results. For these reasons, the type II density MCTDH form of the density matrix,

ρ-MCTDH(2), was used for these 2D calculations.

As the system was simple enough, the final method used on this 2D system was

an exact propagation of the density matrices, i.e. the full solution of the density

matrix. This was to determine that the ρ-MCTDH(2) was predicting the correct

dynamics of the thermalised system, and the thermalised-MCTDH method was

falling short and missing out some key interactions.

The next set of calculations focuses on a larger 4D system, using the ν1, ν36,

ν10, and ν11 modes. The objective of these calculations were to prove that the

ML-MCTDH form of the density matrix, ρ-ML-MCTDH, could be successfully

implemented by us into the Quantics code and could produce identical results to

ρ-MCTDH , but much more efficiently.
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The final set of calculations tested the limits of what the ρ-ML-MCTDH

method is capable of by applying it to a 8D and 13D system. For the reasons

discussed above, these were performed using the type I formalism.

6.5 2D salicylaldimine Results

The first set of results, figure 6.3, show the dynamics of the 2D system using

the thermalised-MCTDH method. Plotting the expectation of the step function

against time allows the dynamics of the various methods to be compared. The

Heaviside step function is a function that on this system is placed on the saddle

point, at q=0 along the reaction coordinate. The expectation value of this function

is 0 when the wavepacket is to the right hand side, and 1 when to the left hand

side. Therefore, in this system it is a show of what proportion of the wavepacket

has crossed the barrier.
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Figure 6.3: Using the thermalised-MCTDH method, the step function expectation value
as a function of time for the 2D salicylaldimine system, including ν1 and ν36, for various
temperatures ranging from 0 � 3000 K.
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At 0 Kelvin, the only movement of the system occurs through proton tunnelling,

where part of the wavepacket crosses the barrier from the global enol-minimum

into the less stable keto-minimum. Increasing the temperature from 0 � 500 K

� 1000 K does not change the dynamics of the system significantly. The slight

difference between the plots for 500 K and 1000 K could be attributed to the

dynamics at 1000 K now having enough energy to overcome the lower activation

energy barrier for the return keto � enol tautomerisation. Therefore, the dynamics

are no longer just the quantum proton tunnelling. The most significant change in

dynamics occurs when the temperature increases from 1000 K � 2000 K. The zero

point energy, ZPE, of ν1 can be calculated by the formula,

ZPE =
1

2

∑
k

ωk. (6.18)

The ZPE of the system along the reaction coordinate is 0.094 eV, which means

the energy barrier is now 0.098 eV. This is 1140 K. Therefore, the large change in

dynamics occurring for this temperature can be explained. Although this system

may not be a realistic system in the sense that this molecule will probably have

dissociated at the high temperatures described, it serves only as a test system for

the method.

As mentioned in the previous section, this method works by using random

numbers to generate a set of initial wavefunctions. Taking the average of the ex-

pectation value of the step function at each time step of each propagation allowed

the dynamics of the thermalised system to be determined. The number of propa-

gations needed before convergence was reached is expressed in table 6.3. All the

listed propagations were run using 16 SPFs in both the ν1 and ν36 DOF, for all

temperatures. The ν1 modes is represented as a sine DVR, with 61 grid points,

and the ν36 mode is represented as a harmonic oscillator using 21 grid points.

Convergence was achieved with respect to the step plots, i.e. when the dynamics

no longer significantly changed by including more propagations, convergence had
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been reached.

Temperature (K) Number of propagations needed

500 10
1000 21
2000 30
3000 30

Table 6.3: The number of propagations needed for the thermalised-MCTDH method to
converge. The different propagations within each temperature each begin with a different
seed

Whilst these results using the thermalised-MCTDH method are logical and

show a correct trend, it was necessary to compare these results to the exact solution

of the dynamics at the same temperatures. The results of the exact method are

shown in figure 6.4.
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Figure 6.4: Using the exact method, the step function as a function of time for the 2D
salicylaldimine system, including ν1 and ν36, for various temperatures ranging from 0 �
3000 K.

While the overall trends for the dynamics as the temperature increases matches

that of the previous thermalised-MCTDH method, the fine details of the dynamics
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6.5 2D salicylaldimine Results

are different. This can be attributed to the approximate nature of the thermalised-

MCTDH method. The thermalised-MCTDH method uses a set of independent

wavefunctions to describe the system at a temperature > 0 K. Thermalised sys-

tems are a incoherent statistical mixture of states, but in the full density matrix

picture the components of the incoherent superposition do interact, and cannot be

exactly described using independent wavefunctions. Therefore, this method fails

to account for this, and is only an approximation.

The ρ-MCTDH method can correctly account for the thermalised system, and

by implementing this method the dynamics should be that of the exact calcula-

tions. The results for the ρ-MCTDH(II) method are shown in figure 6.5 and they

do indeed agree with the exact results. The ρ-MCTDH(II) propagations on the

2D system were all run using 32 SPFs in the ν1 DOF, and 16 SPFs in the ν36

DOF, for all temperatures. The ν1 modes is represented as a sine DVR, with 61

grid points, and the ν36 mode is represented as a harmonic oscillator using 21 grid

points.

From looking at these results it is clear that the ρ-MCTDH approach can accu-

rately predict the dynamics of a thermalised salicylaldimine system, as can be

seen by comparing the plots in figure 6.5 to that of figure 6.4, which are identical.

The ρ-MCTDH replicates the results obtained by an exact calculation, whereas

the thermalised-MCTDH approach fails at this. This failure arises from the inde-

pendence of the wavefunctions generated from the thermalised MCTDH method,

compared to the incoherent states in the density matrix incoherent mixture which

are able to interfere with each other.
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Figure 6.5: Using the ρ-MCTDH(II) method, the step function expectation value as
a function of time for the 2D salicylaldimine system, including ν1 and ν36, for various
temperatures ranging from 0 � 3000 K.

6.6 4D salicylaldimine Results

This next set of results will show that the ML-MCTDH form of the density matrix,

ρ-ML-MCTDH, can also be successfully used to predict the dynamics of the proton

transfer in salicylaldimine . This 4D salicylaldimine system is really pushing the

limits of the standard MCTDH density matrix approach, ρ-MCTDH, due to the

computational effort discussed in chapter 3. Plotting the expectation value of the

step function, as before, allows the dynamics of the system to be tracked.

Having shown in the previous results section that the ρ-MCTDH method at

finite temperatures can give accurate and reliable results, this method will now

act as a benchmark for the ρ-ML-MCTDH method. Using the ρ-ML-MCTDH(II)

method for the 4D system allowed for the most efficient calculations.

The first plot, figure 6.6, shows the dynamics of the 4D salicylaldimine system
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at temperatures ranging from 0 � 3000 K. This 4D system adds ν10 and ν11 to the

existing ν1 and ν36 modes, as these extra have been shown to be significant to the

proton transfer process[150].
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Figure 6.6: Using the ρ-MCTDH(II) method, the step function expectation value as
a function of time for the 4D salicylaldimine system, for various temperatures ranging
from 0 � 3000 K.

The results from the 2D salicylaldimine proved that this ρ-MCTDH method

works, and that theses results are reliable. The general trend of increased dynamics

as temperature increases supports this. However, as mentioned, this method be-

come quickly infeasible for large systems. Even for this relatively small 4D system,

in order to converge these propagations using ρ-MCTDH(II), the computational

effort was large. The timings and number of basis functions required to converge

these calculations are shown in table 6.4.

As this 4D system is at the higher limits of what the ρ-MCTDH method can

achieve, it was an optimally sized system to check the validity of the ρ-ML-MCTDH

method, as the two methods can be readily compared.
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Temperature (K) Time (hours)
SPFs

(ν1 + ν36) (ν10 + ν11)

0 15.5 32 32
500 27.5 32 32
1000 157 42 52
2000 85 42 52
3000 46 42 52

Table 6.4: The number of SPFs needed to converge the 4D salicylaldimine ρ-MCTDH(II)
calculations, along with the timings.

Using the same temperatures as used for the ρ-MCTDH calculations, the prop-

agations were repeated using the ρ-ML-MCTDH(II) method. The ML-tree imple-

mented for these calculations is shown in figure 6.8. The groupings of the modes

were based on the coupling strengths, and grouping those of similar strength to-

gether.

The results of this are shown in figure 6.7.
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Figure 6.7: Using the ρ-ML-MCTDH(II) method, the step function expectation value as
a function of time for the 4D salicylaldimine system, for various temperatures ranging
from 0 � 3000 K.
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Figure 6.8: The ML-tree used to describe the nuclear wavefunction in the ρ-ML-
MCTDH(II) method including 4 DOF. As an example, the number of SPFs in each
layer is shown in black, with the number of primitive basis functions shown in blue were
used in the 500 K propagation, but the number of SPFs required vary with temperature.

The plots of the expectation value of the step function clearly show that the

dynamics calculated with the two different methods are equivalent. Therefore, the

validity of the ρ-ML-MCTDH has been shown. A comparison of the timings of

the methods is shown in table 6.5.

Temperature (K) Time taken (hours)
ρ-MCTDH(II) ρ-ML-MCTDH(II)

0 15.5 5
500 27.5 14
1000 157 12.5
2000 85 255
3000 46 444

Table 6.5: A comparison of the timings for the ρ-MCTDH(I) and ρ-ML-MCTDH(II)
method for a 4D salicylaldimine system at various temperatures.

Using the ρ-ML-MCTDH method allows much larger systems to be treated

then the standard ρ-MCTDH method could. It can be seen from table 6.5 that

using the ρ-ML-MCTDH method does not automatically increase efficiency. Due

to the additional equations of motion required to solve the wavefunction in the
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multi-layer form, for these smaller systems it becomes more expensive to solve

the wavefunction in this way. This is not specific to the ρ-ML-MCTDH method,

but the ML-MCTDH method in general. Since the aim of these sets of results

was not to prove the speed up of calculations, but to prove the validity of the

ρ-ML-MCTDH method, this is not an issue here. The extreme inefficiencies of the

ρ-ML-MCTDH in this specific case could possibly be due to the layering structure

the wavefunction has been separated into not being fully optimised. The way the

ML-tree is set up can greatly affect the efficiency of the ML calculations, for both

density matrices and pure wavefunctions.

6.7 8D and 13D salicylaldimine Results

The next set of results will really push the limits of the ρ-ML-MCTDH method.

Running calculations on the 8D and 13D salicylaldimine system will establish if

it is possible to determine the dynamics of the proton transfer on a large system

using this method. Using a density matrix on these larger systems is extremely

computationally expensive, so if the ρ-ML-MCTDH method is able to simulate

dynamics on systems of this size, it would be a very encouraging result for the the

future of this method.

The ML-tree structures of the 8D and 13D systems are shown in figures 6.9

and 6.10 respectively.
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Figure 6.9: The ML-tree used to describe the nuclear wavefunction in both the ρ-ML-
MCTDH(I) method including 8 DOF. As an example, the number of SPDOs in each layer
is shown in black, with the number of primitive basis functions shown in blue were used
in the 500 K propagation, but the number of SPDOs required vary with temperature.
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Figure 6.10: The ML-tree used to describe the nuclear wavefunction in both the ρ-
ML-MCTDH(I) method including all available 13 DOF. As an example, the number of
SPDOs in each layer is shown in black, with the number of primitive basis functions
shown in blue were used in the 500 K propagation, but the number of SPDOs required
vary with temperature.
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As before, the groupings of the modes were based on grouping modes with similar

coupling strengths.

The following plots, figures 6.11 and 6.12, show the expectations value of the

step function for the 8D system and the 13D system, respectively.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  20  40  60  80  100

S
te

p

Time, fs

2000 Kelvin
500 Kelvin

0 Kelvin

Figure 6.11: Using the ρ-ML-MCTDH(I) method, the step function as a function of time
for the 8D salicylaldimine system for temperatures 0, 500, and 2000 K.

These results show that the trend previously exhibited in the smaller systems

is replicated here. There is, however, an obvious damping of the population os-

cillations in higher dimensional systems when compared to those plots for the 2D

and 4D systems. In the smaller systems, there are oscillations in the population

with a time period of roughly 40 fs, which are not present in the 8D and 15D

plots. The large change in dynamics occurs when the temperature exceeds the

energy barrier of the proton transfer, which is as expected. The computational

expense to predict these dynamics using the standard density matrix ρ-MCTDH

method would be huge, and be completely infeasible. However, by implementing
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Figure 6.12: Using the ρ-ML-MCTDH(I) method, the step function as a function of time
for the 13D salicylaldimine system for temperatures 0, 500, and 2000 K.

the ρ-ML-MCTDH method, these larger systems are opened up to investigation.

The time taken to collect the data plotted in figures 6.11 and 6.12 are shown in

table 6.6.

Size of System Time Taken (hours)
0 K 500 K 2000 K

8D 28 60 53
13D 351 314 374

Table 6.6: A table showing the time taken to run the propagations for the 8D and 13D
systems, at 0, 500, and 2000 K.

It can be clearly see from both this table, and table 6.5, that the time taken to

propagate the system rising exponentially with the number of modes included in

the dynamics. Even though, due to an incomplete basis set, the dynamics of the

13D system are not fully converged, it is clear that this method is feasible for a

system as large as this.
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6.8 Summary

Analysing all the dynamics collected for this chapter, it is very clear by looking at

the results presented in section 6.5, that not only can the ρ-MCTDH accurately

predict the dynamics of a proton transfer in the ground state system at finite

temperatures, but it actually captures a lot of the fine detail of the dynamics lost

by using the wavefunction approach of the thermalised-MCDTH method.

It is also clear that by looking at the results presented in sections 6.6 and 6.7

that by implementing the ML-MCTDH form of the density matrix, ρ-ML-MCTDH,

the dynamics of previously inaccessible larger systems can be investigated. This

approach of studying larger systems at temperatures above 0 Kelvin in this quan-

tum manner is enormously under-reported, despite the vast scope of this method.

Using this method not only allows these large systems to be treated, but the the-

ory of the density matrix approach allows environmental effects to be included

in the dynamics. This ability to predict accurate quantum dynamics on systems

above 0 K, combined with solvent and/or environmental effects, has extremely

wide applications. One such application of interest to this thesis could be using

this ρ-ML-MCTDH method to study the dynamics of the electron transfer process

on the previous dye-semiconductor system from chapter 5.
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Chapter 7

Conclusions

The aim of this report was to outline the background, theory and methods as to

how one can begin to solve the time-dependent Schrödinger equation (TDSE), with

the aim of simulating a charge transfer process in a dye-semiconductor system, and

to highlight the results obtained so far. The need to simulate the quantum dynam-

ics of a charge transfer have been discussed in detail in chapter 2. It highlights the

importance of an electron transfer being a key process in the conversion of solar to

electrical energy in a dye-sensitised solar cell (DSSC). Only by fully understand-

ing these key processes can one begin to design and develop more efficient and

commercially viable solar cells.

In order to simulate the dynamics of a system, one firstly implements the

Born-Oppenheimer approximation, (BOA), where the electronic motion and nu-

clear motion of the full wavefunction are separated. The electronic states are

solved using ab initio methods, and are plotted along the coordinates of the sys-

tem. The nuclear wavepacket then moves over these stationary electronic sur-

faces according the the TDSE. There are various ways in which the TDSE can

be solved, described in chapter 3. This thesis has focused on 2 approaches, the

multi-configuration time-dependent Hartree method (MCTDH) and the multi-

layer multi-configuration time-dependent Hartree method (ML-MCTDH). This

thesis set out to not only show that the electron transfer process can be simu-
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lated, but a secondary motivation was to showcase the ability of the ML-MCTDH

method. The results presented in this thesis have shown it to be a very useful tool

in predicting the dynamics of the three systems discussed.

Firstly, in chapter 4, the Quantics program was used to run quantum dynamic

simulations using both the MCTDH and ML-MCTDH methods on the ground

state of radical cationic allene, a small system exhibiting a Jahn-Teller conical

intersection. The molecule in this state undergoes a charge transfer along the

molecule. This system was chosen as it provided a suitable precursor to study-

ing a dye-semiconductor charge transfer, both a donor-acceptor state-type system.

The potential energy surfaces along each mode were predicted, using both electron

propagator theory, (EPT) and complete active space self consistent field theory,

(CASSCF). Using the ML-MCTDH method, the dynamics of the charge transfer

were predicted for the full 15-mode system and the photoelectron spectrum pre-

dicted. This resulted in a good agreement with the experimental spectrum for the

dynamics run on the surfaces obtained through EPT, but the experimental results

were much less accurately reproduced using the surfaces obtained via CASSCF.

This project showed that the ML-MCTDH was a suitable method to predict charge

transfer dynamics in donor-acceptor systems.

Simulating the charge transfer from a dye molecule into the conduction band

of a semiconductor required an adapted model, discussed in chapter 5. The simple

donor-acceptor system becomes more complex as now there are several acceptor

states in the discretised conduction band. The molecules chosen were Coumarin-

343 as the dye molecule, and a TiO2 semiconductor due to the abundance of

both experimental and theoretical data to benchmark the results against. The

main issue that emerged in this project was how to account for the donor-acceptor

coupling terms. The initial approach of an decay function to generate coupling

terms, adapted from a series of papers on a similar study, turned out to not be an
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appropriate model for these dynamics. This meant a new approach to the coupling

was required, and a new model was implemented. With the new coupling approach

between the donor and acceptor state being implemented into the Quantics code,

the dynamics of the electron injection process were probed. When the vibronic

coupling terms were not included, i.e. just the electronic dynamics, the system

behaved as expected, exhibiting a smooth exponential donor state decay, on the

40 fs time scale. Using the ML-MCTDH method, the dynamics of the electron

injection process were investigated including up to 17 degrees of freedom, DOF.

The unexpected lack of change in dynamics after adding in the vibronic coupling

led to further developments to this model. By probing the complex of the dye

attached to the semiconductor surface, 2 pseudo vibronic modes were created

for the system, representing the symmetrical and anti-symmetrical stretch of the

adsorption bonds. This adaptation of the model has yet to provide conclusive

results as to the validity of the model, but the results presented so far show this

model to be an excellent starting point for these types of systems.

Following on from this work on the dye-semiconductor system, the quantum

dynamics of a proton transfer in a donor-acceptor system at temperatures >0

Kelvin were simulated, discussed in chapter 6. This required the use of density

matrices. By using the novel approach of using the ML-MCTDH formalism of the

density matrix, the ground state proton transfer in the molecule Salicylaldimine

was simulated, including 13 DOF. This proton transfer has an energy barrier

equating to roughly 1500 K. By plotting the expectation value of the step function

as a function of time, the dynamics of the proton transfer was simulated at various

temperatures, both above and below the energy barrier. The computational effort

of using density matrices has previously limited the size of systems probed in

this way, but by implementing the ML-MCTDH formalism of the density matrix,

the method opens up to much larger systems. This exciting prospect of probing
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the quantum dynamics of systems above 0 Kelvin has potential in many areas of

research. The next route of research for this method is to apply it to the dye-

semiconductor systems to see how temperature affects the dynamics of the key

electron transfer step in determining the efficiency of DSSC.
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Appendix

Table A.1: A table showing the calculated frequencies and κ values for Coumarin-
343

Mode Frequency (eV) κd (eV) κa (eV)
1 0.00334 0.00200 -0.01865
2 0.00502 -0.00211 -0.00128
3 0.00673 0.00168 -0.03146
4 0.01096 0.00746 -0.00318
5 0.01205 -0.00139 -0.00795
6 0.01579 0.05815 -0.00191
7 0.01723 0.00455 0.01599
8 0.01988 0.00544 -0.00523
9 0.02704 0.00688 -0.02578
10 0.02812 -0.00031 -0.02440
11 0.03362 0.02104 0.00385
12 0.03512 0.01916 -0.03995
13 0.03886 -0.00296 -0.00693
14 0.04072 0.00585 -0.01475
15 0.04332 0.01165 0.03223
16 0.04612 0.00601 -0.00208
17 0.05022 -0.03889 -0.00165
18 0.05121 0.00839 -0.01014
19 0.05412 0.00712 -0.01577
20 0.05629 0.01180 0.01463
21 0.05801 0.00773 -0.00154
22 0.05914 0.01648 0.03637
23 0.06616 -0.00621 -0.00549
24 0.06639 -0.00337 0.01324
25 0.06939 0.01730 -0.00778
26 0.07017 -0.00275 0.01893
27 0.07455 0.01428 0.01011

Continued on next page
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Table A.1 – continued from previous page
Mode Frequency (eV) κd (eV) κa (eV)

28 0.07687 -0.02569 -0.01751
29 0.07944 -0.03378 0.07570
30 0.08521 0.00339 0.00840
31 0.08691 0.01054 -0.00338
32 0.09050 -0.01945 -0.00371
33 0.09141 0.01648 0.00229
34 0.09657 0.01003 0.01379
35 0.09895 0.00569 0.00194
36 0.10141 -0.00078 0.00306
37 0.10721 0.01215 0.01659
38 0.10780 -0.00060 0.01153
39 0.10959 -0.00704 -0.01160
40 0.11118 -0.00293 0.02238
41 0.11244 -0.01818 0.01269
42 0.11298 -0.00115 0.06700
43 0.11383 -0.00188 0.00649
44 0.11728 0.01793 -0.05002
45 0.12245 -0.02708 -0.02928
46 0.12371 0.00126 -0.01292
47 0.12732 -0.00073 -0.00411
48 0.12958 -0.01303 -0.02069
49 0.13203 0.01362 0.04295
50 0.13343 0.03118 0.00459
51 0.13612 0.00254 -0.03222
52 0.13672 -0.01589 -0.01421
53 0.13798 0.00331 -0.02371
54 0.14537 -0.00501 -0.01281
55 0.14697 -0.03470 0.00026
56 0.14903 -0.01423 -0.00137
57 0.15027 -0.00986 -0.02934
58 0.15217 0.01326 0.00314
59 0.15274 -0.00680 0.02529
60 0.15471 0.00972 0.00414
61 0.15578 0.01826 0.00046
62 0.16117 -0.00853 -0.01498
63 0.16231 0.00377 -0.02954
64 0.16321 0.00097 -0.00235
65 0.16604 -0.00110 0.00523
66 0.16817 -0.02745 -0.02873
67 0.16878 -0.02445 0.00791
68 0.16926 -0.00615 -0.02446
69 0.17108 -0.00620 0.01950

Continued on next page
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Table A.1 – continued from previous page
Mode Frequency (eV) κd (eV) κa (eV)

70 0.17157 -0.00095 0.00647
71 0.17219 0.00269 0.01864
72 0.17225 -0.00863 -0.01277
73 0.17393 0.03782 -0.00609
74 0.18019 -0.01623 -0.00824
75 0.18249 -0.00532 0.00266
76 0.18402 0.00687 0.00452
77 0.18420 -0.00424 0.01207
78 0.18524 0.00532 0.01274
79 0.18525 0.00311 -0.01070
80 0.18699 -0.01219 0.00569
81 0.18715 -0.00002 0.00241
82 0.19202 0.01187 0.03439
83 0.19627 0.02068 -0.00195
84 0.20222 0.03802 -0.01749
85 0.20519 0.02633 0.00027
86 0.22078 -0.04414 0.00330
87 0.22933 -0.01984 -0.02539
88 0.36542 0.00620 0.00733
89 0.36635 -0.01253 0.00577
90 0.37184 0.00368 -0.00551
91 0.37306 0.00474 0.02617
92 0.37621 -0.00197 0.00905
93 0.37650 -0.00098 -0.00636
94 0.37899 0.00311 -0.00339
95 0.38003 0.00130 -0.00356
96 0.38017 0.00397 -0.04007
97 0.38183 -0.00194 0.00083
98 0.38188 -0.00395 0.01265
99 0.38263 -0.00141 -0.00738
100 0.39159 -0.00313 -0.00040
101 0.39620 0.01709 0.00413
102 0.46681 -0.00001 0.00865
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