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Abstract

The heterogeneity of neurological and mental disorders has been a key con-
found in disease understanding and treatment outcome prediction, as the study
of patient populations typically includes multiple subgroups that do not align
with the diagnostic categories. The aim of this thesis is to investigate and
extend classical multivariate methods, such as Canonical Correlation Analysis
(CCA), and latent variable models, e.g., Group Factor Analysis (GFA), to un-
cover associations between brain and behaviour that may characterize patient
populations and subgroups of patients.

In the first contribution of this thesis, we applied CCA to investigate
brain-behaviour associations in a sample of healthy and depressed adolescents
and young adults. We found two positive-negative brain-behaviour modes
of covariation, capturing externalisation/ internalisation symptoms and well-
being/distress. In the second contribution of the thesis, I applied sparse CCA
to the same dataset to present a regularised approach to investigate brain-
behaviour associations in high dimensional datasets. Here, I compared two ap-
proaches to optimise the regularisation parameters of sparse CCA and showed
that the choice of the optimisation strategy might have an impact on the
results. In the third contribution, I extended the GFA model to mitigate
some limitations of CCA, such as handling missing data. I applied the exten-
ded GFA model to investigate links between high dimensional brain imaging
and non-imaging data from the Human Connectome Project, and predict non-
imaging measures from brain functional connectivity. The results were consist-
ent between complete and incomplete data, and replicated previously reported
findings. In the final contribution of this thesis, I proposed two extensions
of GFA to uncover brain behaviour associations that characterize subgroups
of subjects in an unsupervised and supervised way, as well as explore within-
group variability at the individual level. These extensions were demonstrated
using a dataset of patients with genetic frontotemporal dementia.
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In summary, this thesis presents multi-view methods that can be used
to deepen our understanding about the latent dimensions of disease in men-
tal/neurological disorders and potentially enable patient stratification.



Impact Statement

This thesis explores different implementations and applications of multi-view
machine learning approaches to uncover associations among multiple data
modalities, namely brain imaging data and behavioural data. The work presen-
ted in this thesis shows how these methods can shine light on the latent di-
mensions of abnormal states of the healthy or diseased brain and be used to
improve patient stratification. The methods explored and proposed in this
thesis can be easily applied to other neuroimaging applications, as well as
other fields of research.

The work presented in Chapters 3 and 4 shows the potential of classical
multi-view methods to deepen our understanding of the underlying dimensions
of depression in adolescence and young adulthood. The method proposed in
Chapter 5 is a more robust alternative to the classical methods used to uncover
associations among multiple data modalities in high dimensional incomplete
data sets. The work presented in Chapter 6 provides an extension of these
methods to improve model interpretability, characterize subgroups of a popu-
lation and explore the heterogeneity of the subgroups.

The studies presented in this thesis have been disseminated through
journal (Chapters 3, 5) and conference (Chapter 4) publications, as well as
international conference presentations (Chapter 4 and 5). Lastly, the work
presented in Chapter 6 is an important proof of concept that might have an
impact beyond academia by providing a set of models that are interpretable,
able to explore variability within subgroups of patients and contribute to per-
sonalised medicine by computing individual patient outcomes.
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Chapter 1

Introduction

Machine learning methods have been applied in several fields for automatic de-
tection of patterns in data, which can be defined as any relations, regularities
or structure. These patterns can then be used, for instance, to classify unseen
observations into different categories (Bishop, 2006). Since the beginning of
this century, these methods have been extensively applied to brain imaging
data, e.g., structural and functional Magnetic Resonance Imaging (MRI), to
distinguish two groups of subjects (e.g., healthy controls from patients) or
cognitive states (Mourão-Miranda et al., 2005; Ecker et al., 2010; Nouretdinov
et al., 2011; Orrù et al., 2012; Mateos-Pérez et al., 2018). Although these clas-
sification approaches have demonstrated the biomarker potential of neuroima-
ging in psychiatry and neurology, they rely on the quality of the diagnostic
categories. This might be a hindrance because these populations are usually
heterogeneous, and, in the case of mental disorders, their diagnosis is based on
signs and symptoms rather than objective biomarkers of illness. Indeed, it has
been shown that diagnostic categories in psychiatry do not align with findings
emerging from clinical neuroscience and genetics, and fail to predict treatment
response (Insel et al., 2010; Bzdok and Meyer-Lindenberg, 2018).

The lack of understanding of the underlying dimensions of disease in such
studies opened a window of opportunity for exploratory multivariate methods,
such as Canonical Correlation Analysis (CCA) (Hotelling, 1936) and Partial
Least Squares (PLS) (Wegelin, 2000). CCA and PLS have been used to uncover
multivariate associations between multiple sets of data (also termed as different
views), e.g., different data modalities, without relying on diagnostic categories.
These approaches are particularly relevant for brain imaging research, where
different types of data (e.g., structural and functional MRI, behavioural and/or
cognitive assessments) are collected from the same individuals to have a better
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understanding of the brain diseases and cognitive processes.
In high dimensional data (e.g., neuroimaging datasets), i.e., when the

number of samples is much smaller than the number of features, solving the
CCA optimisation problem is not possible (Uurtio et al., 2017). To address
this issue, dimensionality reduction methods, such as Principal Component
Analysis (PCA), can be used to reduce the number of features before apply-
ing CCA (Smith et al., 2015) or alternatively regularisation methods, such
as sparse CCA (Witten et al., 2009; Parkhomenko et al., 2009; Waaijenborg
et al., 2008; Lê Cao et al., 2008) can be applied. However, both methods con-
tain hyperparameters (i.e., number of principal components and regularisation
parameters) that must be carefully tuned to optimise the trade-off between
the variance explained and model overfitting. In this thesis, I compare two
different strategies to optimise the number of principal components and the
regularisation parameters of sparse CCA.

Although these methods have been successfully applied to different
scenarios in neuroimaging to uncover associations between brain connectiv-
ity/structure, demographic and behavioural features (Smith et al., 2015; Mon-
teiro et al., 2016; Drysdale et al., 2017; Xia et al., 2018; Mihalik et al., 2019),
they have some limitations. First, they do not provide an inherent robust
inference approach to infer the relevant associations. This is usually done by
assessing the statistical significance of the associations using permutation in-
ference on the whole data set (Smith et al., 2015; Winkler et al., 2020) or on
hold-out sets of the data (Monteiro et al., 2016; Mihalik et al., 2020). Second,
the variability within data modalities, which might explain important vari-
ance in the data, are not modelled. Finally, they assume data pairing between
views, which is problematic when values are missing in one or both views.
This is a common issue in clinical and neuroimaging datasets and the missing
values usually need to be imputed, or the samples removed before applying
the models.

One potential way to address the limitations mentioned above is to con-
sider CCA as a latent variable model (Bach and Jordan, 2006), in which the
data is assumed to be generated by the same latent variables. Bach and Jordan
(2006) used a maximum likelihood approach to estimate the model’s paramet-
ers and showed that the latent space found by probabilistic CCA is equival-
ent to the subspace that standard CCA finds, and therefore the limitations
mentioned above are not solved using probabilistic CCA alone. Nevertheless,
probabilistic CCA could be used as a building block for more complex mod-
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els, such as Bayesian CCA (Klami and Kaski, 2007; Chong Wang, 2007), to
assess the uncertainty of the model parameters and impose regularisation, by
adding appropriate priors over the model parameters, in order to remove latent
components that explain little variance. Bayesian CCA has some limitations,
however: it is not able to uncover associations within data modalities and,
in high dimensional data, it can be computationally infeasible (Klami et al.,
2013). Virtanen et al. (2011) and Klami et al. (2013) proposed an extension
of Bayesian CCA to overcome these two limitations. This model was further
extended to include more than two data modalities (termed groups) and was
named Group Factor Analysis (GFA) (Virtanen et al., 2012; Klami et al., 2015).
GFA does not address the third limitation mentioned above, i.e., it cannot be
applied to data modalities with missing data. In this thesis, I extend GFA to
handle missing data. This extension required re-writing the variational update
rules and allow more flexible assumptions about noise.

Bunte et al. (2016) proposed a sparse extension of GFA to impose fea-
ture and sample-wise sparsity by adding shrinkage priors (i.e., spike-and-slab
priors) over the loading matrices and latent variables. This model finds sub-
sets of samples sharing associations across multiple data modalities, which is
particularly useful in clinical applications where the populations are usually
heterogeneous. In this thesis, I propose a new sparse GFA model by repla-
cing the spike-and-slab priors with regularised horseshoe priors (Piironen and
Vehtari, 2017), which allow a more efficient inference using automatic meth-
ods, such as Hamiltonian Monte Carlo (Hoffman and Gelman, 2014). In ad-
dition, I propose supervised GFA by including a discriminative module to the
sparse GFA model to identify brain-behaviour associations that characterise
pre-defined/underlying subtypes. Both models explore heterogeneity within
these subtypes and provide information about how these associations are ex-
pressed at the individual level.

1.1 Thesis outline and contributions
The aim of this thesis is to apply and propose new extensions of machine
learning methods that can extract and combine information from different data
modalities (e.g., brain structural/functional MRI and cognitive/behavioural
assessments) to uncover multivariate brain-behaviour associations that might
provide a better understanding of the underlying dimensions of disease and
characterisation of subgroups of patients to improve patient stratification. The
thesis is structured as follows:
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• Chapter 2 gives an overview of the machine learning concepts relevant
for this thesis, which is followed by the descriptions of the background
theory on the classical multi-view methods and latent variable models
used in this thesis. The chapter also includes an overview of the data
modalities used in this thesis.

• Chapter 3 presents an application of CCA coupled with PCA to a clinical
dataset of healthy and depressed young subjects and shows how these
methods can shed some light on the underlying dimensions of abnormal
behaviour by investigating multivariate associations between individual
patterns of functional brain connectivity and individual sets of psycho-
metric/IQ/demographic data. In the same study, two different strategies
to optimise the number of principal components were compared. Pub-
lication associated with this chapter: Mihalik et al. (2019).

• Chapter 4 describes a comparison between two frameworks to op-
timise the sparse CCA hyperparameters using the dataset mentioned
above. It also describes how these different strategies might affect the
brain-behaviour associations identified. Publication associated with this
chapter: Ferreira et al. (2018).

• Chapter 5 presents a novel extension of GFA to uncover multivariate as-
sociations among multiple data modalities with missing data. The GFA
extension was applied to synthetic data and data from the Human Con-
nectome Project (HCP) (Van Essen et al., 2013) to uncover associations
between high dimensional brain functional connectivity and non-imaging
features (e.g., demographics, psychometrics and other behavioural fea-
tures). Publication associated with this chapter: Ferreira et al. (2021).

• Chapter 6 describes novel sparse and supervised GFA models, which
were applied to the Genetic Frontotemporal dementia Initiative (GENFI)
dataset. Sparse and supervised GFA can find sparse associations that
may describe pre-defined subtypes/subgroups of patients, explore within-
subtype variability and provide information about how these associations
are expressed at the individual level.

• Chapter 7 summarises the work presented in this thesis, and proposes
directions for future work.



Chapter 2

Background

This chapter provides the background theory relevant for the work presented
in this thesis. Section 2.1 introduces the machine learning framework, distinct
types of learning, as well as techniques for model selection. Sections 2.2 and 2.3
present the classical multi-view methods and latent variable models, respect-
ively, used for the approaches presented in this thesis. Finally, an overview
of the brain imaging and non-imaging data used in this thesis is provided in
Section 2.4.

2.1 Machine Learning overview
Machine learning is a subfield of Artificial Intelligence that provides statistical
methods to automatically infer hidden patterns or associations in data that can
be used to predict unseen data (Bishop, 2006). Machine learning approaches
are divided into two main phases: a learning or training phase, where a large
set of data called a training set is used to learn the parameters of an adaptive
model; a testing phase, where the generalisability/predictive performance of
the trained model is assessed on a new data set, the test set (Bishop, 2006).
The observations/samples in both sets are assumed to be generated from the
same distribution. Finally, a decision step can also be considered, i.e., in
practice people often need to make decisions based on the model’s predictions.
For instance, a doctor needs to decide whether to give a treatment to a patient
or not, given the class that the patient was assigned (or more likely to belong)
to. This area of research is often known as decision analysis and the goal is to
choose the best action from a set of candidate actions, e.g., choosing the action
that maximises the expected utility (Bishop, 2006; Gelman et al., 2013).

Machine learning is usually divided into three broad, distinct types of
learning. In the supervised learning approach, the goal is to learn a func-
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tion/the model’s parameters, during the training phase, that maps the inputs
X ∈ RD×N (D represents the number of features and N is the number of
training observations) to the outputs or response variables y ∈ RN×1 of the
training set D = {(xi,yi)}Ni=1 (where xi, yi represent a labelled input-output
pair). When the outputs are categorical, the problem is known as classifica-
tion (e.g., object classification) and when the outputs are continuous variables,
the problem is known as regression (e.g., age prediction). The performance of
the supervised models are often assessed by comparing the predictions of the
outputs yi with observed values in the test set (e.g., using accuracy or mean
squared error). Examples of supervised learning models are logistic regression,
support vector machines, decision trees or neural networks.

The second main type of learning is the unsupervised learning approach,
where only the inputs (D = {xi}Ni=1) are available, and the goal is to find
“relevant” patterns or associations in data. The problem is less well-defined,
since the models are less constrained with respect to what kind of patterns to
look for and often there is no obvious performance metric to use. Example of
unsupervised learning models are clustering (e.g., k-means or Gaussian mix-
ture models), dimensionality reduction (e.g., Principal Component Analysis)
or latent variable models (such as, factor analysis or variational autoencoders).

The third type is known as reinforcement learning (RL). The goal in RL
is to take actions in an environment in order to maximise the cumulative re-
ward. The RL agent (i.e., machine learning model) learns by receiving positive
or negative rewards occasionally to avoid bad behaviours and prioritize good
behaviours. It is less commonly used and more challenging, but it has become
increasingly popular in recent years, for instance in gaming (Silver et al., 2017)
or healthcare (Coronato et al., 2020) applications.

More recently, a fourth type of learning has emerged: semi-supervised
learning, which falls between the supervised and unsupervised learning. Semi-
supervised algorithms usually use a large amount of unlabelled data in con-
junction with a small amount of labelled data. This approach is very useful
for applications where the labelling process is challenging or expensive (e.g.,
in neuroimaging (Honnorat et al., 2019; Wen et al., 2021)).

In this thesis, I use methods that can be considered supervised and unsu-
pervised learning approaches, such as Canonical Correlation Analysis (CCA)
and Group Factor Analysis (GFA). We use CCA in an unsupervised manner
only (Chapters 3 and 4) to uncover associations among multiple views, but
it can also be used as a supervised approach, e.g., to predict one view from
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the other. GFA was used as a supervised and unsupervised model to uncover
associations among multiple views (Chapters 5 and 6), predict behaviour from
brain functional connectivity (Chapter 5) and predict the probabilities of sub-
jects to belong to the underlying subtypes (Chapter 6).

2.1.1 Model selection and prediction
As mentioned above, the generalisability of a machine learning model relates
to its predictive performance on a test set, since the model performance on the
training set is not a good indicator due to the problem of overfitting (Bishop,
2006; Hastie et al., 2009). In practice, the data available is sometimes lim-
ited, and therefore it is difficult to choose a good proportion of training and
test observations to simultaneously learn the model’s parameters properly and
obtain a useful estimate of the model’s predictive performance. The proced-
ure commonly applied to address this practical issue is called cross-validation,
where the data is first split into k distinct partitions, one partition is used as
test set and the remaining ones are used as training set. A model is fit to the
training set (i.e., the model’s parameters are estimated based on the training
set) and evaluated k times on the test set (each time a different partition is
used as test set). The model’s predictive performances obtained for all test
sets (e.g., accuracy) are averaged at the end of the procedure. When only
a few different partitions are considered (k = 5,10), the procedure is called
k-fold cross validation (Bishop, 2006; Hastie et al., 2009). Finally, the statist-
ical significance of the results can be assessed using permutation tests (Fisher,
1935; Pitman, 1938). The goal of permutation tests is to generate “random-
ised” data by permuting either the inputs or outputs to break the associations
between them, and test whether the predictive performance metric on the test
set could have happened by chance. This is achieved by computing a p-value
to assess whether the predictive performance metric obtained with the non-
permuted/original data is larger than the null distribution of those obtained
with the permuted data sets. A small p-value means that it is unlikely that
the predictive performance of the model was obtained by chance.

In most machine learning applications, the researchers need to train a
range of different models or the same model with different hyperparameters
(e.g., regularisation parameters). If enough data is available, a separate in-
dependent set of the data, called a validation set, should be considered to
select the best model or set of hyperparameters. As the model selection step
is usually performed multiple times, the risk of the model overfitting the val-



36 Chapter 2. Background

idation set is high, therefore the generalisability of the best model should be
assessed on the test set, which is held-out during model selection (Hastie et al.,
2009). This procedure is often incorporated into a cross-validation scheme for
hyperparameter search and is known as nested cross-validation, which consists
of two loops of cross-validation. In the outer loop, the data is divided into
training and test sets. In the inner loop, the training set is further divided
into training and validation sets, where the model is fit to the training set and
the best hyperparameters are chosen to maximise the predictive performance
metric on the validation sets. In the outer loop, the model is fit to the training
set using the best hyperparameters, chosen in the inner loop, and the model’s
predictive performance is assessed on the held-out test sets. In summary, the
inner loop is used to optimise the hyperparameters and the outer loop is used
to access the generalisability of the model.

The use of cross-validation might be computationally expensive in cases
where the training of different models is itself demanding, or multiple hyper-
parameters need to be tuned. In deterministic approaches, researchers often
use a more statistical framework, in which the model is trained on the whole
data set and the statistical significance of the results is assessed using per-
mutation tests, as explained above. Although a small p-value indicates that
the results may have not happen by chance, the predictive performance of
the model cannot be assessed and there is the risk of overfitting because no
independent test set is used.

In probabilistic approaches, it is possible to choose the best model on a
single training run (i.e., no validation set is needed) using approaches, such
as the Akaike Information Criterion (Akaike, 1974) or Bayesian Information
Criterion (Schwarz, 1978). In these approaches, penalty terms are included to
control for model complexity and to avoid overfitting. However, in practice,
these metrics usually favour very simple models and do not take into account
the uncertainty of the model’s parameters (Bishop, 2006; Hastie et al., 2009).
These limitations can be addressed by applying a fully Bayesian approach to
model selection. In Bayesian model selection, we assume a set of candidate
models Mm, m = 1, ...,M and corresponding model parameters θm, and we
are uncertain which model is the best. Bayes’ theorem allow us to incorpor-
ate our prior knowledge with any evidence (i.e., data) to obtain an updated
posterior belief. Given a training set D and assuming the prior distribution
p(θm|Mm) over the parameters of each modelMm, we can compute the pos-
terior probability of a given model using Bayes’ theorem (Bishop, 2006; Hastie
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et al., 2009):

p(Mm|D)∝ p(Mm)p(D|Mm),

∝ p(Mm)
∫
p(D|θm,Mm)p(θm|Mm)dθm,

(2.1)

where p(Mm) represents the prior probability of each m-th model and
p(D|Mm) is the model evidence, which can be interpreted as the probabil-
ity of the data being generated by a given modelMm, under the prior belief
about the model parameters θm. The model evidence is also called the mar-
ginal likelihood because it can be seen as a likelihood function over the space
of models, in which the parameters have been marginalised out, using the sum
and product rules of probability, as shown in Equation 2.1 (Bishop, 2006). Due
to the marginalisation over the model parameters, we can control the model
complexity and avoid overfitting or underfitting by favouring models with in-
termediate complexity (Bishop, 2006). Finally, to compare two models Mm

andMj we can compute the ratio of their posterior probabilities:

p(Mm|D)
p(Mj |D) = p(Mm)

p(Mj)
p(D|Mm)
p(D|Mj)

, (2.2)

where the ratio of the model evidences (i.e., the rightmost quantity) is known
as the Bayes factor (Kass and Raftery, 1995). If we assume equal prior prob-
ability for all different models, the model Mm is considered the best if the
Bayes factor is greater than one, i.e. p(D|Mm) is larger than p(D|Mj). In
practice, if multiple models are compared, the model with the highest model
evidence is usually considered the best. As the model evidence might be sens-
itive to the choice of the prior distribution, the model’s predictive performance
should still be evaluated in an independent test set (Bishop, 2006).

2.2 Classical multi-view methods
In this section, I begin by briefly introducing Canonical Correlation Analysis
(CCA) (Section 2.2.1), Partial Least Squares (PLS) (Section 2.2.2), and de-
scribing sparse CCA (Section 2.2.3). In Section 2.2.4, I present some applica-
tions of these models to neuroimaging. These methods were used in the studies
presented in Chapters 3 and 4.
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2.2.1 Canonical Correlation Analysis
CCA was introduced by Hotelling (1936) and it is a multivariate statistical
method for exploring linear associations between two views. Let the two views
be denoted by X(1) ∈RD1×N and X(2) ∈RD2×N (D1 andD2 denote the number
of features of X(1) and X(2), respectively), where the N samples are assumed to
be generated from a common latent process. CCA finds pairs of weight vectors
uk ∈RD1×1 and vk ∈RD2×1, k = 1, . . . ,K (where K is the number of canonical
directions, also called CCA modes) that maximise the (canonical) correlation
between the corresponding projections uTkX(1) and vTkX(2) (also known as
canonical variates). This is achieved by solving the following optimization
problem:

maxuk,vku
T
kX(1)X(2)Tvk,

s.t. uTkX(1)X(1)Tuk = 1 and vTkX(2)X(2)Tvk = 1,
(2.3)

where the features of X(1) and X(2) are considered to be standardised to zero
mean and unit variance. The optimisation problem in Equation (2.3) can be
solved using a standard eigenvalue solution (Hotelling, 1936), singular value
decomposition (SVD) (Uurtio et al., 2017), alternating least squares (Golub
and Zha, 1994) or non-linear iterative partial least squares (Wegelin, 2000).
The description of these approaches is beyond the scope of this thesis. For
more details, please refer to Uurtio et al. (2017).

2.2.2 Partial Least Squares
PLS was introduced by Wold (1985) and, similarly to CCA, it is a multivariate
statistical method to uncover associations between two views (X(1) and X(2),
defined as in Section 2.2.1). PLS computes a pair of weight vectors uk and vk,
k= 1, . . . ,K (K is the number of PLS modes), such that the projections uTkX(1)

and vTkX(2) have maximum covariance (Wegelin, 2000). This is achieved by
solving the following optimization problem:

maxuk,vku
T
kX(1)X(2)Tvk,

s.t. ||uk||2 = 1 and ||vk||2 = 1,
(2.4)

where || · ||2 represents the L2-norm (which is defined as the square root of the
sum of the squares of the components of a vector in a space). The optimisation
problem in Equation 2.4 can be solved by performing the rank-1 approximation
of X(1)TX(2) using SVD (Wegelin, 2000). After the first weight vectors (u1 and
v1) are computed, the association explained by these vectors is removed from
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the data by performing matrix deflation of X(1) and X(2) (Monteiro et al.,
2016). The process is repeated to find the subsequent weight vector pairs.
For more details about PLS variants, see Wegelin (2000); Rosipal and Krämer
(2006).

2.2.3 Sparse CCA
Sparse CCA is a regularised variant of CCA (Lê Cao et al., 2008; Parkhomenko
et al., 2009; Waaijenborg et al., 2008; Witten et al., 2009) that enables CCA
to be applied to high dimensional data and improves the interpretability of
the results. In this section, the method proposed by Witten et al. (2009)
is explained in more detail, as this is the method used in Chapter 4. The
comparison with other versions of sparse CCA is beyond the scope of this
thesis. For more details regarding other sparse CCA methods, see Lê Cao
et al. (2008); Waaijenborg et al. (2008); Parkhomenko et al. (2009)

Sparse CCA computes sparse weight vectors uk and vk that maximise
the correlation between uTkX(1) and vTkX(2) (similarly defined as in Section
2.2.1). This is achieved by adding sparsity penalties to the norm of weight
vectors (e.g., a L1-norm, represented as || · ||1, which corresponds to the sum
of the magnitudes of a vector in a space) to the CCA optimisation problem
(Equation 2.3). Due to the geometry of the L1-norm, these penalties will
allow feature selection by shrinking some “irrelevant” weights (e.g., collinear
weights) to zero, which is a useful property to regularise the models in high di-
mensional spaces. In the case of sparse CCA, this corresponds to the following
optimisation problem (Witten et al., 2009):

maxuk,vku
T
kX(1)X(2)Tvk,

s.t. uTkX(1)X(1)Tuk ≤ 1, vTkX(2)X(2)Tvk ≤ 1, ||uk||1 ≤ cu, ||vk||1 ≤ cv.
(2.5)

In high dimensional data, the calculations of X(1)X(1)T and X(2)X(2)T

are computationally demanding; therefore (Witten et al., 2009) proposed to
replace XTX and YTY by identity matrices:

maxuk,vku
T
kX(1)X(2)Tvk,

s.t. ‖uk‖22 ≤ 1,‖vk‖22 ≤ 1,‖uk‖1 ≤ cu,‖vk‖1 ≤ cv,
(2.6)

where cu and cv are the regularisation parameters (or sparse CCA hyperpara-
meters) that control the L1 penalties of uk and vk, respectively. If cu and cv
are sufficiently small, the L1 penalties impose sparsity on the weights and, con-
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sequently, fewer features are included in the model. The pair of regularisation
parameters can be optimised using permutation tests to assess the significance
of the canonical correlation on the whole data set, (Witten and Tibshirani,
2009) or using multiple training and validation sets to obtain an out-of-sample
performance metric (Monteiro et al., 2016). A comparison between these ap-
proaches is presented in Chapter 4. Although this method is referred to as “di-
agonal penalised CCA” in Witten et al. (2009), what is being maximised is no
longer the correlation between uTkX(1) and vTkX(2), but the covariance between
them, therefore the optimisation problem becomes equivalent to sparse PLS.

The sparse weight vectors uk and vk are obtained in an iterative manner
by generating 1-rank approximations of the covariance matrix, where a soft-
thresholding operator is applied in each iteration (Witten et al., 2009). As in
PLS, the associations explained by the weight vectors are removed from the
data by performing matrix deflation of X(1) and X(2), iteratively. There are
different deflation methods, such as Hotelling’s deflation (Witten et al., 2009),
projection deflation (Mackey, 2008; Monteiro et al., 2016) or mode-A deflation
(Wegelin, 2000; Mihalik et al., 2020). The projection deflation, which is used
in the study presented in Chapter 4, removes the association explained by uk
and vk from X(1) and X(2) by subtracting from each view the projection of
each view onto the space spanned by the corresponding weight vector:

X(1)
k+1 = X(1)

k −uk(uTkX(1)),

X(2)
k+1 = X(2)

k −vk(vTkX(2)).
(2.7)

The description of the rest of the deflation techniques is beyond the scope
of this thesis. For a more detailed description of the sparse CCA algorithm,
see Witten et al. (2009).

2.2.4 Applications to neuroimaging
Due to the high dimensionality of neuroimaging datasets, CCA has to be
applied jointly with a dimensionality reduction or regularisation technique.
Recently, CCA has been applied jointly with Principal Component Analysis
to investigate associations between brain connectivity, demographics and be-
haviour in healthy population (Smith et al., 2015; Bijsterbosch et al., 2018;
Li et al., 2019), healthy and clinically depressed young adolescents (Mihalik
et al., 2019) and children (Alnæs et al., 2020).

PLS and its variants have also been widely applied to neuroimaging data
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(Krishnan et al., 2011). For instance, PLS has been used in studies of emotional
processing (Keightley et al., 2003), memory (Della-Maggiore et al., 2000) and
behavioural (Vallesi et al., 2009) tasks to explore associations between brain
imaging features (e.g. functional MRI) and task measurements (e.g. pictures
or colour patterns). It has also been used to find brain-behaviour associations
in schizophrenia (Nestor et al., 2002). For a more extended review of PLS
applications in neuroimaging, see Krishnan et al. (2011).

Different sparse CCA algorithms were proposed to uncover associations
between different types of genomics data (Waaijenborg et al., 2008; Witten
et al., 2009; Witten and Tibshirani, 2009; Parkhomenko et al., 2009) and om-
ics data (Lê Cao et al., 2008). Sparse CCA has also been widely applied
to brain imaging to identify associations between genetic polymorphisms and
brain activity during a cognitive functional MRI task (Le Floch et al., 2012),
and between single nucleotide polymorphisms and brain activity in schizo-
phrenic patients (Lin et al., 2014). Avants et al. (2010) applied sparse CCA
to explore associations between brain structure and diffusion tensor imaging
of Alzheimer’s disease and frontotemporal dementia patients. Monteiro et al.
(2016) used sparse CCA to uncover associations between brain structure and
demographic and clinical/cognitive data in a sample of healthy controls and
patients with Alzheimer disease and mild cognitive impairment. More recently,
sparse CCA was also applied to find associations between behavioural, clin-
ical, and multimodal imaging phenotypes in psychosis (Moser et al., 2018), and
between functional connectivity and psychiatric symptoms in a large sample of
young people (Xia et al., 2018). Finally, Mihalik et al. (2020) used sparse CCA
to identify associations between brain structure, demographic and behavioural
measures.

2.3 Latent variable models
Here, I begin by briefly introducing the probabilistic and Bayesian CCA models
(Section 2.3.1 and Section 2.3.2, respectively) and explaining their connection
to Group Factor Analysis (GFA, Section 2.3.3). Then, I describe a sparse
extension of GFA (Section 2.3.4) and finalise by presenting some applications
of these models to neuroimaging datasets. These models were used in the
studies presented in Chapters 5 and 6.
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2.3.1 Probabilistic CCA
The probabilistic interpretation of CCA (Figure 2.1) assumes that N samples
of X(1) and X(2) (similarly defined as in Section 2.2.1) are generated by the
same latent variables Z ∈ RK×N that explain the associations between data
modalities (Bach and Jordan, 2006), where K corresponds to the number of
components (which are equivalent to the CCA modes described in Section
2.2.1):

zn ∼N (0,IK),

x(1)
n ∼N (A(1)zn+µ(1),Φ(1)),

x(2)
n ∼N (A(2)zn+µ(2),Φ(2)),

(2.8)

where N (·) represents the multivariate normal distribution, A(1) ∈RD1×K and
A(2) ∈ RD2×K are the loading matrices (also known as projection matrices)
that represent the transformations of the latent variables zn ∈ RK×1 into the
input space. A(1) and A(2) are equivalent to the (horizontal) concatenation of
all uk and vk, respectively, that CCA finds (see Section 2.2.1). Φ(1) ∈RD1×D1

and Φ(2) ∈ RD2×D2 denote the noise covariance matrices, and µ(1) and µ(2)

are the mean parameters.

x(1)
nΦ(1)

µ(1)

A(1)

x(2)
n Φ(2)

µ(2)

A(2)
zn

n= 1, ...,N

Figure 2.1: Graphical representation of the probabilistic CCA model.

Bach and Jordan proved that the maximum likelihood estimates of the
parameters in Equation 2.8 lead to the same canonical directions as classical
CCA up to a rotation (Bach and Jordan, 2006), i.e., the posterior expectations
E[Z|X(1)] and E[Z|X(2)] lie in the same subspace that classical CCA finds
(which is represented by the canonical variates UTX(1) and VTX(2), where
U ∈ RD1×K and V ∈ RD2×K). An equivalent representation of the latent
variables Z can be obtained - for CCA - by averaging the canonical variates
obtained for each view (Klami et al., 2013).

Although probabilistic CCA does not provide an explicit inference ap-
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proach to estimate the number of relevant components, it was used as a build-
ing block for Bayesian CCA that - as described in the next section - provides
a solution for this limitation.

2.3.2 Bayesian CCA
Klami and Kaski (2007) and Chong Wang (2007) proposed a hierarchical
Bayesian extension of CCA by introducing suitable prior distributions over the
model parameters, which can then be inferred using Bayesian inference. The
goal of Bayesian inference is to provide a procedure for incorporating our prior
beliefs about unknown random variables θ (e.g., latent variables and model
parameters) with any evidence (e.g., a data set D) to obtain an updated pos-
terior belief. This is done using Bayes’ theorem: p(θ|D) = p(D|θ)p(θ)/p(D),
where p(θ) represents the prior distributions over θ, p(D|θ) represents the
likelihood and p(θ|D) represents the joint posterior distribution that ex-
presses the uncertainty about θ after accounting for the prior knowledge and
data. p(D) represents the model evidence (Equation 2.1) and is usually con-
sidered a normalising constant. In this way, Bayes’ theorem is formulated as:
p(θ|D)∝ p(D|θ)p(θ).

In the Bayesian CCA model (represented graphically in Figure 2.2), the
samples of X(m) ∈RDm×N are assumed to be generated by Equation 2.8. The
joint probabilistic distribution of the model is given by (Chong Wang, 2007):

p(X,Z,A,α,Φ,µ) =
M∏
m=1

[
p(X(m)|Z,A(m),Φ(m),µ(m))×

p(A(m)|α(m))p(α(m))p(Φ(m))p(µ(m))
]
p(Z),

(2.9)

where M is the number of views, A(m) and Z are defined as in Equation (2.8)
and α(m) ∈R1×K . The prior distributions are chosen to be conjugate (i.e., the
posterior distribution has the same functional form as the prior distribution),
which simplifies the inference:

p(A(m)|α(m)) =
Dm∏
j=1

K∏
k=1
N (a(m)

j,k |0,(α
(m)
k )−1), p(α(m)) =

K∏
k=1

Γ(α(m)
k |a

(m)
α , b(m)

α ),

p(µ(m)) =N (µ(m)|0,(β(m))−1I), p(Φ(m)) =W−1(Φ(m)|S(m)
0 ,ν

(m)
0 ),

(2.10)
where S(m)

0 is a symmetric positive definite matrix, ν(m)
0 denotes the degrees

of freedom for the inverse Wishart distribution (W−1(·)) and Γ(·) represents
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the Gamma distribution. The prior over the loading matrices A(m) is the
Automatic Relevance Determination (ARD) prior (Mackay, 1995), which is
used to find the relevant latent components (i.e., rows of Z). This is achieved
by allowing some α(m)

k to be pushed towards infinity, which consequently drives
the loadings (i.e., elements of the loading matrices) of the corresponding kth
columns of A(m) close to zero. The corresponding irrelevant latent components
k are then pruned out during inference.

x(1)
n

zn

Φ(1)

µ(1)

A(1)α(1)

x(2)
n Φ(2)

µ(2)

A(2) α(2)

n= 1, ...,N

Figure 2.2: Graphical representation of the Bayesian CCA model.

For learning the Bayesian CCA model, we need to infer the model para-
meters and latent variables from data, which can be done by estimating
the posterior distribution p(Z,A,α,Φ,µ|X) and marginalise out uninterest-
ing variables. However, these marginalisations are often analytically intract-
able, so the posterior distribution needs to be approximated. This can be
achieved using mean-field variational approximation (Chong Wang, 2007) or
Gibbs sampling (Klami and Kaski, 2007), since all conditional distributions are
conjugate. However, the inference of the Bayesian CCA model is difficult for
high dimensional data as the posterior distribution needs to be estimated over
large covariance matrices Φ(m) (Klami et al., 2013). The inference algorithms
usually need to invert those matrices in every step, leading to long compu-
tational times. Moreover, Bayesian CCA does not account for view-specific
associations.

Virtanen et al. (2011) proposed an extension of Bayesian CCA to impose
view-wise sparsity to separate associations between views from those within
each view of the data. Moreover, this model assumes spherical noise covariance
matrices (Φ(m) = σ(m)2

I, where σ(m)2 corresponds to the noise variance of the
m-th view) for more efficient inference. The same authors proposed a further
extension of the model to uncover associations between more than two views,
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called Group Factor Analysis (GFA) (Virtanen et al., 2012; Klami et al., 2015).

2.3.3 Group Factor Analysis
In the GFA problem, it is assumed that a collection of N samples, stored in
X ∈ RD×N , have disjoint M partitions of features Dm called groups (in this
thesis, I refer to distinct groups of features as views, e.g., different data modal-
ities), X (X(m) ∈RDm×N for the mth view). Moreover, the latent components
correspond to the rows of Z ∈ RK×N (as in probabilistic and Bayesian CCA).

GFA finds a set of K components that can separate the associations
between views (i.e., shared components) from those within views (i.e., view-
specific components) by considering a joint component model (Figure 2.3),
where each mth view is generated as follows (Virtanen et al., 2012; Klami
et al., 2015):

zn ∼N (0,IK),

x(m)
n ∼N (W(m)zn,T(m)−1

),
(2.11)

where T(m)−1 is a diagonal covariance matrix (T(m) = τ (m)I), where τ (m) rep-
resents the noise precisions, i.e., inverse noise variances, of the mth view),
W(m) ∈ RDm×K is the loading matrix of view m and zn ∈ RK×1 is the latent
variable for a given observation x(m)

n (i.e., row of X(m)). The model assumes
zero-mean data without loss of generality. Alternatively, a separate mean para-
meter could have been included; however, its estimate would converge close
to the empirical mean, which can be subtracted from the data before training
the model (Klami et al., 2013).

x(m)
n

zn

τ (m) W(m) α(m)

n= 1, ...,N m= 1, ...,M

Figure 2.3: Graphical representation of the GFA model.

If we consider M = 2 (also known as Bayesian CCA via group sparsity
(Virtanen et al., 2011) or Bayesian inter-battery factor analysis (Klami et al.,
2013)), the noise covariance matrix is given by T =

(
T(1) 0

0 T(2)

)
and W =A(1) B(1) 0

A(2) 0 B(2)

, where A(1) and A(2) represent the loading matrices con-
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taining the shared components (equivalent to those obtained by probabilistic
and Bayesian CCA) and B(1) and B(2) correspond to the loading matrices
containing the view-specific components. The structure of W and the corres-
ponding latent structure (represented by Z) is learned automatically by im-
posing a view-wise sparsity on the components (Virtanen et al., 2011), which
is achieved by assuming independent ARD priors to encourage sparsity over
the views (Virtanen et al., 2012; Klami et al., 2015):

p(W|α) =
M∏
m=1

Dm∏
j=1

K∏
k=1
N (w(m)

j,k |0,(α
(m)
k )−1), p(α) =

M∏
m=1

K∏
k=1

Γ(α(m)
k |aα(m) , bα(m)),

(2.12)
which is a simple extension of the single ARD prior used by Chong Wang
(2007). Here, a separate ARD prior is used for each W(m), which is chosen
to be uninformative to enable the automatic pruning of irrelevant latent com-
ponents. Γ(·) represents a gamma distribution with shape parameter aτ (m)

and rate parameter bτ (m) . These separate priors cause features of some views
to be pushed close to zero for some components k (w(m)

k → 0) by driving the
corresponding α(m)

k towards infinity. If the loadings of certain components are
pushed towards zero for all views, the underlying latent component is deemed
inactive and pruned out. (Klami et al., 2013). Finally, the prior distributions
over the noise and latent variables Z are:

p(τ ) =
M∏
m=1

Γ(τ (m)|aτ (m) , bτ (m)), p(Z) =
K∏
k=1

N∏
n=1
N (zk,n|0,1), (2.13)

with shape parameter aτ (m) and rate parameter bτ (m) of the gamma distribu-
tion. The hyperparameters aα(m) , bα(m) ,aτ (m) , bτ (m) can be set to a very small
number (e.g., 10−14), resulting in uninformative priors. The joint distribution
p(X,Z,W,α,τ ) is hence given by:

p(X,Z,W,α,τ ) = p(X|Z,W,τ )p(Z)p(W|α)p(α)p(τ ). (2.14)

As mentioned in Section 2.3.2, the calculations needed to infer the model
parameters and latent variables from data are often analytically intractable.
Therefore, the posterior distribution needs to be approximated using, for in-
stance, similarly to Bayesian CCA, mean-field variational approximation. This
involves approximating the true posterior p(θ|D) by a suitable factorized dis-
tribution q(θ) (Bishop, 1999). The marginal log-likelihood (lnp(D)) can be
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decomposed as follows (Bishop, 2006):

lnp(D) = L(q) +DKL(q||p),

L(q) =
∫
q(θ) ln p(D,θ)

q(θ) dθ,

DKL(q||p) =
∫
q(θ) ln p(θ|D)

q(θ) dθ,

(2.15)

where DKL(q||p) is the Kullback-Leibler divergence between q(θ) and p(θ|X)
and L(q) is the lower bound of the marginal log-likelihood. Since lnp(D)
is constant, maximising L(q) is equivalent to minimising DKL(q||p), which
means q(θ) can be used to approximate the true posterior distribution p(θ|X)
(Bishop, 1999). Assuming that q(θ) can be factorised such that q(θ) =∏
i qi(θi), the L(q) can be maximised with respect to all possible distributions

qi(θi) as follows (Bishop, 1999, 2006):

lnqi(θi) = 〈lnp(X,θ)〉j 6=i+ const, (2.16)

where 〈·〉j 6=i denotes the expectation taken with respect to ∏j 6=i qj(θj) for all
j 6= i. In GFA, the full posterior is approximated by:

q(θ) = q(Z)
M∏
m=1

[
q(W(m))q(α(m))q(τ (m))

]
, (2.17)

where θ denotes the model parameters and latent variables (θ= {Z,W,α,τ}).
As conjugate priors are used, the free-form optimisation of q(θ) (using Equa-
tion 2.16) results in the following analytically tractable distributions:

q(Z) =
N∏
n=1
N (zn|µzn ,Σzn), q(W(m)) =

Dm∏
j=1
N (W(m)

j,∗ |µW(m)
j,∗
,ΣW(m)

j,∗
),

q(α(m)) =
K∏
k=1

Γ(α(m)
k |ãα(m) , b̃

(k)
α(m)), q(τ (m)) = Γ(τ (m)|ãτ (m) , b̃τ (m)),

(2.18)
where zn is the n-th column of Z and W(m)

j,∗ denotes the j-th row of W(m).
The optimisation is done using variational Expectation-Maximization, where
the parameters in Equation 2.18 are updated sequentially until convergence,
which is achieved when a relative change of the lower bound L(q) falls below
an arbitrary low number (e.g., 10−6) (Klami et al., 2013).
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2.3.4 Sparse GFA
As described in the previous section, GFA provides view-wise sparsity; how-
ever, in some applications only a few subsets of features within each view
might be associated with features in other views. Therefore, feature-wise
sparsity is important to improve the interpretability of the model. This can be
achieved by adding a popular shrinkage prior in sparse Bayesian estimation,
i.e, the spike-and-slab prior (Mitchell and Beauchamp, 1988), over the loading
matrices (Khan et al., 2014; Bunte et al., 2016):

w
(m)
j,k |h

(m)
j,k ,α

(m)
k ∼ h(m)

j,k N
(
0,(α(m)

k )−1
)

+ (1−h(m)
j,k )δ0,

h
(m)
j,k |π

(m)
k ∼ Bernoulli(π(m)

k ), π
(m)
k ∼ Beta(aπ, bπ),

(2.19)

where h(m)
j,k is binary and determines whether the component k is active in

the j-th feature of X(m), π(m)
k represents the probability of h(m)

j,k = 1 and α(m)
k

is sampled from the prior in Equation 2.12 and determines the scale of the
component k in view m. If the Gamma prior is uninformative, as explained
in Section 2.3.3, it implements view-wise sparsity. In this way, assuming these
priors and those in Equation 2.13 for the noise precisions and latent variables,
the model imposes view and feature-wise sparsity, which enables finding asso-
ciations between subsets of features among multiple data modalities.

The spike-and-slab prior can also be applied to the latent variables to
impose sample-sparsity. This is relevant if one assumes that there are asso-
ciations present only in subsamples of the data (e.g. subgroups of patients).
The prior over the latent variables is defined as follows (Bunte et al., 2016):

zn,k|h
(z)
n,k,α

(z)
k ∼ h

(z)
n,k N

(
0,(α(z)

k )−1
)

+ (1−h(z)
n,k)δ0,

h
(z)
n,k|π

(z)
k ∼ Bernoulli(π(z)

k ), π
(z)
k ∼ Beta(aπ, bπ), α

(z)
k ∼ Γ(aα, bα).

(2.20)

Assuming the priors described above, the sparse GFA model (displayed
in Figure 2.4) can identify subpopulations in data that share common charac-
teristics (e.g., brain-behaviour associations), which may be described as asso-
ciations between subsets of features of two or more views. The model para-
meters and latent variables are inferred using Gibbs sampling (Bunte et al.,
2016). The description of Gibbs sampling is beyond the scope of this thesis,
for more details see e.g., Bishop (2006); Gelman et al. (2013).
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Figure 2.4: Graphical representation of sparse GFA using spike-and-slab priors.

2.3.5 Applications to neuroimaging
Sparse versions of Bayesian CCA have been used to reconstruct visual images
from brain activity patterns (measured with functional MRI) (Fujiwara et al.,
2009, 2013), uncover links between brain structure and single-nucleotide poly-
morphisms (Grellmann et al., 2015), and analyse relationships between brain
activity and natural music stimuli (Virtanen et al., 2011). Mixture of Bayesian
CCA models (where an additional multinomial latent variable was included to
let each mixture cluster to model different kind of associations between the
views) has also been applied to find associations between brain activity (meas-
ured with magnetoencephalography) and autonomic nervous system response
under emotional sound stimuli (Viinikanoja et al., 2010) or speech segments
(Koskinen et al., 2013).

Examples of GFA applications to neuroimaging are scarce. Although it
has mostly been applied to genomics data (Klami et al., 2013; Suvitaival et al.,
2014; Zhao et al., 2016; Bunte et al., 2016) and drug response data (Khan et al.,
2014; Klami et al., 2015), GFA has also been used to uncover associations
between brain activity and audio (Klami et al., 2015) or audiovisual stimuli
(Virtanen et al., 2012; Remes et al., 2013). In our recent study (see Chapter
5), I applied GFA to explore associations between high-dimensional brain func-
tional connectivity data, demographics, psychometrics and other behavioural
measures in a sample of healthy people (Ferreira et al., 2021).

2.4 Data modalities
The models described in this thesis were applied to brain imaging data and
non-imaging data (e.g., self-report questionnaires and cognitive tests). Here, I
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briefly describe the two different brain imaging modalities used in this thesis:
resting-state functional MRI (Section 2.4.1) and structural brain MRI (Section
2.4.2); as well as the non-imaging measures (Section 2.4.3). The description
of the image acquisition and preprocessing techniques are beyond the scope of
this thesis, but a brief description of these steps is provided in the Chapters
where the datasets are introduced.

2.4.1 Resting-state functional MRI
Resting-state functional MRI (rs-fMRI) allows us to measure the brain activity
during rest (i.e, no explicit task is being performed) by detecting local changes
in cerebral blood flow, which can be quantified by measuring a blood-oxygen-
level dependent (BOLD) signal using MRI. When neurons in a particular re-
gion of the brain are more active, there is an increased regional blood flow
and oxygen supply that can be detected by comparing the relative levels of
oxyhaemoglobin and deoxyhaemoglobin using their different magnetic proper-
ties (Lv et al., 2018). One way of analysing rs-fMRI data is to estimate the
functional connectivity between different brain regions, which has shown the
potential to provide biomarkers for better characterising brain disorders (Du
et al., 2018). To achieve this, the rs-fMRI scans are parcellated into different
regions or components, which can be done using pre-defined brain functional
atlases (e.g., see Glasser et al. (2016)) or using data-driven models (e.g, Inde-
pendent Component Analysis (ICA)). In Chapter 3 and 4, we use the former
approach to parcellate the brain scans into approximately 350 regions. The
regional time-series signal is estimated as the average of the time-series signal
of all voxels within each region. Finally, brain functional connectivity can be
estimated, for each subject, as the pairwise Pearson’s correlation between the
averaged signal of each possible pair of regions. In Chapter 5, I use the latter
approach, where 200 brain parcellations are extracted using ICA and a brain
functional connectivity matrix, for each subject, is calculated using pairwise
partial correlations between all parcellations.

2.4.2 Structural brain MRI
Structural brain MRI is an imaging technique used to examine the anatomy
and pathology of the brain. As the MRI signal varies across the different tis-
sues, the brain MRI scans can be separated into four main components: grey
matter that consists mostly of cell bodies (e.g., neurons and glial cells); white
matter which is composed of long-range nerve fibres (myelinated axons) con-
necting the neurons, along with supporting glial cells; the cerebrospinal fluid,
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a clear and colourless fluid providing mechanical and immunological protection
to the brain; hard tissue (e.g., skull) (Symms et al., 2004). MR images with
different types of contrast between tissues can be obtained using different type
of MRI sequences, e.g., T1-weighted (which provides a good contrast between
grey and white matter) and T2-weighted images (which shows good contrast
between brain tissue and the cerebrospinal fluid) (Symms et al., 2004). The
former is often more used to detect anatomical changes in grey matter, while
the latter is used to detect white matter changes. In Chapter 6, I use grey
matter volume extracted from T1-weighted MRI images, which is then par-
cellated into different cortical and subcortical regions using anatomical brain
atlases.

2.4.3 Non-imaging data
As non-imaging data, we use item-level measures or total scores from
self-report questionnaires (e.g., questionnaires completed by the patients),
informant questionnaires (completed by primary caregivers), cognitive
tests/neuropsychological tasks (completed by patients) and medical assess-
ments. We also include demographic measures (e.g., age, gender and educa-
tion) in the set of non-imaging measures. In Chapter 3 and 4, we use measures
that assess psychopathological symptoms, personality characteristics, mental
well-being and fluid intelligence (see Appendix A.1.1). In Chapter 5, we use
demographics (age, sex, income and substance use), psychometrics (IQ, lan-
guage performance) and other behavioural measures to assess, for instance,
rule-breaking behaviour, mental well-being and personality (see Table B.5).
In Chapter 6, we use measures of cognitive/neuropsychological tests to assess
memory and language performance, medical assessments of disease severity
and other behavioural measures to assess mood, self-care and abnormal beha-
viour (see Table C.1).





Chapter 3

Brain-behaviour modes of
covariation in healthy and
clinically depressed young
people

The content of this chapter is based on a journal article published in Scientific
Reports where I was joint first author with Agoston Mihalik (Mihalik et al.,
2019). I have rewritten to avoid repetition with the background content de-
scribed in Chapter 2. Agoston Mihalik, Maria J. Rosa and I implemented
the learning frameworks. Agoston Mihalik and I ran the CCA analyses, pre-
pared the results and wrote the paper. Michael Moutoussis, Edward T. Bull-
more, Peter Fonagy, Ian M. Goodyer, Peter B. Jones, Raymond Dolan and the
NeuroScience in Psychiatry Network (NSPN) consortium collected the data.
Agoston Mihalik jointly with other co-authors preprocessed the MRI and ques-
tionnaire data. Agoston Mihalik, I, Michael Moutoussis and Rick A. Adams
interpreted the results. Janaina Mourao-Miranda designed and supervised the
study, and revised the manuscript.

3.1 Introduction
Adolescence and early adulthood are periods of high risk for the onset of many
psychiatric disorders (Kessler et al., 2007; Paus et al., 2008), with up to a
fifth of 18 to 25-year-olds seeking professional help for psychological distress
(Lipari et al., 2014). Despite this, there are still no biological measures that
inform early diagnosis and treatment. Neuroimaging techniques, especially
resting-state functional MRI (Smith et al., 2013), enable researchers to relate
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biological measures, such as patterns of functional brain connectivity, to the
continuum of healthy to pathological states (Bassett and Bullmore, 2009).

As discussed in Chapter 2, CCA can be used to explore associ-
ations between multiple data modalities collected from the same individuals.
Moreover, the fact that CCA can be used in an unsupervised manner has
made it increasingly popular in several fields of neuroscience, such as psy-
chiatry, where the diagnostic categories are not reliable (Insel et al., 2010;
Bzdok and Meyer-Lindenberg, 2018). In this study, we applied CCA (coupled
with PCA to reduce the dimensionality of the data) to resting-state fMRI and
non-imaging measures (i.e., items of self-report questionnaires and demograph-
ics) to uncover associations between individual patterns of functional brain
connectivity and individual sets of psychometrics/demographics during a key
developmental period. We used permutation tests on the whole data set to
assess the statistical significance of the CCA modes, as in Smith et al. (2015),
and optimise the number of principal components. In addition, we propose
a new framework to assess the generalisability of the statistically significant
CCA modes and optimise the number of principal components using a similar
multiple hold-out framework to that proposed by Monteiro et al. (2016).

Given the age range of our sample, we expected a strong age (or devel-
opmental) effect on the brain-behaviour modes of covariation. We predicted
that variation in these modes would also be related to the presence of de-
pression (Buckholtz and Meyer-Lindenberg, 2012), given that our sample also
included approximately 9% of depressed subjects. Finally, we hypothesised
that psychopathological symptoms might be associated with a core set of ab-
normal functional brain networks, incorporating default mode, frontoparietal
and limbic networks as suggested by recent literature (Buckholtz and Meyer-
Lindenberg, 2012; Menon, 2011).

3.2 Methods
3.2.1 Data
In total, 2406 healthy subjects and 50 subjects clinically diagnosed with de-
pression (diagnosis and referral made by the subject’s NHS GP) aged 14 to
24 years were recruited from schools, colleges, National Health Service (NHS)
primary care and mental health services, and via direct advertisement in Lon-
don and Cambridgeshire (Kiddle et al., 2018). This was carried out by the
University College London and University of Cambridge NeuroScience in Psy-
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chiatry Network research initiative. An MRI cohort was subsampled from the
primary cohort, comprising a healthy cohort of 318 subjects and a depression
cohort of 37 subjects. Furthermore, a demographically balanced cohort of 297
subjects was subsampled from the healthy cohort, with approximately 60 sub-
jects in each of five age-defined strata: 14-15 years inclusive, 16-17, 18-19,
20-21, and 22-24 years.

Of the healthy cohort, two subjects were excluded due to low quality
images, one was excluded due to gross radiological abnormalities, four were
excluded due to missing convergence in multi-echo ICA preprocessing, and
nine were excluded due to excessive motion during their resting-state func-
tional MRI acquisitions (five subjects with maximum framewise displacements
larger than 1.3 mm and four subjects with mean framewise displacements of
0.3 mm using a calculation by Power et al. (2012)). Of the depression cohort,
three subjects were excluded due to low quality anatomical scans, one was ex-
cluded due to radiological artefacts, four were excluded due to motion-induced
Freesurfer reconstruction errors, one was excluded due to lack of convergence,
one was excluded due to extremely low explained variance (< 20%) and two
were excluded due to excessive motion during their resting-state functional
MRI (the same criteria as for the healthy cohort was applied). These exclu-
sion criteria produced a final healthy cohort consisting of 281 subjects (mean
age=19.13, SD=2.88, 144 females) and a final depression cohort comprising 25
subjects (mean age=16.80, SD=1.15, 21 females).

Written informed consent was obtained for all subjects over the age of 16
years. For subjects under 16 years old, a written informed assent was obtained
from their parent/legal guardian. The study was ethically approved by the
Cambridge Central Research Ethics Committee and conducted in accordance
with the NHS research governance standards.
3.2.1.1 Structural MRI data
All MRI data was acquired on three identical 3T whole-body MRI systems
(Magnetom TIM Trio; VB17 software version; Siemens Healthcare): two loc-
ated in Cambridge and one located in London. Between-site reliability and
tolerability of all MRI procedures were satisfactorily assessed by a pilot study
of five healthy volunteers at each site (Weiskopf et al., 2013). Only scans at
the baseline visit were included in the current study. Structural MRI scans
were acquired using a multi-echo acquisition protocol with six equidistant echo
times (TE) between 2.2 and 14.7 ms and averaged to form a single image of
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increased signal-to-noise ratio (Weiskopf et al., 2013). Apparent longitudinal
relaxation rate R1 (R1=1/T1w) was calculated using previously developed
models to create quantitative R1 maps (Helms et al., 2008a,b; Weiskopf et al.,
2011). Other acquisition parameters included: temporal resolution of 18.70
ms, spatial resolution 1.0 mm isotropic, field of view (FOV) = 256 × 256, 176
sagittal slices and parallel imaging using GRAPPA factor 2 in the anterior-
posterior phase-encoding direction.

The R1 images were used to perform a surface reconstruction
of each subject using Freesurfer recon-all (Dale et al., 1999) (ht-
tps://surfer.nmr.mgh.harvard.edu/). Freesurfer average subject (fsaverage)
was parcellated using a multimodal scheme that subdivides the cortex into 360
bilaterally symmetric regions based on Human Connectome Project (HCP)
data (Glasser et al., 2016). HCP parcellation was transformed from fsaver-
age space to the cortical surface of each individual subject using Freesurfer
mri_surf2surf. In addition, 16 regions were used from the subcortical seg-
mentation of Freesurfer (thalamus-proper, caudate, putamen, pallidum, hip-
pocampus, amygdala, accumbens-area and ventral diencephalon for each hemi-
sphere).
3.2.1.2 Resting-state functional MRI data
The resting-state functional MRI data was acquired using a multi-echo acquis-
ition protocol with three echo times TE = 13, 31, 48 ms, temporal resolution
(TR) of 2.420 s, spatial resolution 3.8 mm isotropic with 10% gap, sequential
slice acquisition, FOV = 240 × 240 mm, 34 oblique slices; bandwidth 1/4 2,368
Hz/pixel and matrix size = 64 × 64 × 34.

The data was preprocessed using multi-echo ICA (Kundu et al., 2013,
2015). Multi-echo ICA identifies BOLD components that scale linearly with
TE and discards remaining components to reduce motion-related artefacts.
Only BOLD components were optimally combined to generate the denoised
time-series of each voxel. A wavelet filtering was used to focus on the physiolo-
gically relevant frequency range of 0.025-0.111 Hz (scales 2 and 3). Wavelet-
based methods have shown significant advantages in terms of signal preser-
vation and denoising over other filtering approaches (e.g., bandpass filtering),
but the choice of method, filter type and length should be considered carefully
as they might have an impact on the reliability of the estimates (Zhang et al.,
2016). Functional scans were coregistered with each individual’s structural
R1 image for time-series extraction. Regional time-series were estimated as

https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
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the average time-series of all the voxels included in each of the 360 cortical
and 16 subcortical regions. 28 regions (mostly near the frontal and temporal
pole) were excluded due to low regional mean signal in at least one subject
(z-score across regions within subject, z <−1.96), resulting in a total of 348 re-
tained regions. Functional connectivity was calculated as the pairwise Pearson-
correlation (also known as full correlation) between time-series of each possible
pair of regions, resulting in a total of 60,378 brain connectivity features per
subject (x(1)

n ∈ R60378×1 for each subject n). The vectors of the 306 subjects
were concatenated to form the brain connectivity matrix (X(1) ∈ R60378×306).
3.2.1.3 Non-imaging features
Subjects completed self-report questionnaires and cognitive tests as part of
the NSPN data acquisition (Kiddle et al., 2018). We used a subset of these
features that assess psychopathological symptoms, personality characteristics,
mental well-being and IQ: Antisocial Behaviours Checklist; Antisocial Process
Screening Device; Barratt Impulsivity Scale; Child and Adolescent Disposi-
tions Scale; Child Trauma Questionnaire; Drugs Alcohol and Self-Injury; In-
ventory of Callous-Unemotional Traits; Kessler Psychological Distress Scale;
Leyton Obsessional Inventory; Moods and Feelings Questionnaire; Revised
Children’s Manifest Anxiety Scale; Rosenberg Self-Esteem Scale; Schizotypal
Personality Questionnaire; Wechsler Abbreviated Scale of Intelligence; War-
wick Edinburgh Mental Wellbeing Scale. A description of each questionnaire
can be found in Appendix A.1.1. We removed eight items for which more than
95% of the subjects had the same value. Finally, we added four demographic
features (age, sex, and socioeconomic deprivation index), resulting in a total of
364 non-imaging features per subject (x(2)

n ∈ R364×1). The vectors of the 306
subjects were concatenated to form the non-imaging matrix (X(2) ∈R364×306).
The missing data was imputed by the median of the respective feature across
subjects.

3.2.2 Additional data preprocessing
We identified two main confounding variables, which were regressed out from
both brain and non-imaging data: mean frame-wise displacement, which is a
summary statistic quantifying average subject head motion during the resting-
state functional MRI acquisitions (Power et al., 2012), and site. Finally, we
standardised each non-imaging and brain connectivity feature to have zero
mean and unit variance before applying CCA.
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3.2.3 CCA experiments
We apply CCA to the NSPN dataset to explore the associations between pat-
terns of brain connectivity and the non-imaging features. As mentioned in
Chapter 2, CCA cannot be applied to high dimensional data sets without
using regularisation or dimensionality reduction techniques. Here, we first re-
duced the dimensionality of the data using PCA. In summary, X(1) and X(2)

were first decomposed into X(1)
d ∈ Rd×N and X(2)

d ∈ Rd×N , where N is the
number of subjects and d represents the number of principal components. The
optimal d was chosen using permutation tests (Section 3.2.4.1) from a set of 9
different values of d= {5,10,25,50,75,100,125,150,200}.

After this step, X(1)
d and X(2)

d are fed into CCA, which outputs d CCA
modes. Each CCA mode is represented by a pair of weight vectors u ∈RD1×1

(where D1 is the number of brain connectivity features) and v∈RD2×1 (where
D2 is the number of non-imaging features), which indicate the direction of
maximum brain-behaviour correlation; as well as a pair of canonical variates
PX(1) ∈RN×1 and PX(2) ∈RN×1 obtained by projecting X(1)

d and X(2)
d onto u

and v, respectively. The correlation between PX(1) and PX(1) corresponds to
the canonical correlation.

The statistical significance of the CCA modes was assessed using permuta-
tion tests on the whole data set, described in Section 3.2.4.1. To find the brain
connectivity features and non-imaging features most strongly associated with
the CCA modes, we correlated X(1) and X(2) with PX(1) and PX(2) , respect-
ively (similarly to Smith et al. (2015)). Alternatively, PX(1) and PX(2) could
be first averaged (which corresponds to a shared latent component of prob-
abilistic CCA, as explained in Section 2.3.1) to reduce potential within-view
overfitting. For illustration purposes, we selected the 20 most (positively and
negatively) correlated brain connectivity features (Figures 3.3-3.4) and non-
imaging features (Figure 3.2) with the statistically significant CCA modes.

3.2.4 Learning frameworks
Here, we describe the statistical (Section 3.2.4.1) and machine learning frame-
works (Section 3.2.4.2) used in this study to optimise the number of principal
components and assess the statistical significance of the CCA modes.
3.2.4.1 Statistical framework
We used permutation tests on the whole data set to optimise the number of
principal components and calculate a corrected p-value to assess the signific-
ance of each CCA mode. The algorithm proceeds as follows (Figure A.1):
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1. For a given number of principal components (e.g., d = 5), the reduction
step is performed on X(1) and X(2) resulting in the reduced data matrices
X(1)

5 ∈R5×N and X(2)
5 ∈R5×N . Then, these are fed into CCA to compute

a vector of “true” canonical correlations q ∈ R5×1.

2. The columns of X(2)
5 are permuted (X(2)∗

5 ). CCA is run again with X(1)
5

and X(2)∗

5 and a vector with “permuted” canonical correlations q∗ ∈R5×1

is obtained. This procedure is repeated 10,000 times, resulting in a
matrix of “permuted” canonical correlations Q∗ ∈ R5×10000.

3. For each row i = 1, . . . ,5 of Q∗, a p-value is computed as the fraction
of permuted canonical correlations (in row i) exceeding the first “true”
canonical correlation (the canonical correlations are ordered), which is
equivalent to a maximum statistics approach. At the end of this pro-
cedure, a vector of p-values p ∈ R5×1 is obtained, one per CCA mode.
This allows one to estimate the number of significant CCA modes (i.e.
any CCA mode with p < 0.05 is considered statistically significant). The
p-value of the first CCA component (i.e. the first element of p) is used
to choose the optimal number of PCA components.

4. Steps 1-3 are repeated for other number of principal components (d =
{10,25,50,75,100,125,150,200})

The obtained p-value of each d is corrected for multiple comparisons using
a Bonferroni correction (i.e. α = 0.05

9 = 0.0056), which means that only those
p-values smaller than or equal to α (pcorr ≤ 0.0056) are considered statistically
significant. The optimal number of PCA components is chosen based on the
lowest pcorr.
3.2.4.2 Machine learning framework
We used a multiple hold-out framework to choose the optimal number of PCA
components and assess the statistical significance of the CCA modes based
on permutation tests on the held-out sets. This was implemented based on
the framework proposed by Monteiro et al. (2016) and it is similar to the
framework displayed in Figures 4.1 and 4.2:

1. The data matrices X(1) and X(2) are randomly split into an optimisation
set (80% of the data), X(1)

op and X(2)
op , and a hold-out/test set (20% of

the data), X(1)
ho and X(2)

ho .

2. For each d principal components, X(1)
op and X(2)

op are randomly split 50
times into a training set (80% of the optimisation set), X(1)

optr and X(2)
optr ,
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and a validation set (20% of the optimisation set), X(1)
opval and X(2)

opval .
For each random split, PCA and CCA are applied to obtain the com-
bined PCA+CCA vectors Utr ∈RD1×d and Vtr ∈RD1×d. The canonical
correlations on the validation sets Qval ∈ Rd×50 (each row corresponds
to a CCA mode) are computed between the projections X(1)

opvalUtr and
X(2)

opvalVtr. The optimal number of principal components d∗ is chosen
based on the maximal averaged canonical correlation of the first CCA
mode across the validation sets.

3. PCA (using d∗ components) and CCA are applied to X(1)
op and X(2)

op to
compute the combined PCA+CCA vectors, Uop and Vop. The “true”
hold-out canonical correlations, qho ∈ Rd

∗×1, are computed between the
projections X(1)

ho Uop and X(2)
ho Vop.

4. For assessing the statistical significance of the CCA modes, the columns
of X(2)

op (after applying PCA with d∗ components) are permuted and
CCA is applied to compute the “permuted” weight vectors U∗op and
V∗op. The “permuted” hold-out canonical correlations q∗ho ∈ Rd

∗×1 are
calculated between X(1)

ho U∗op and X(2)∗

ho V∗op. The permutation approach
is repeated 10,000 times resulting in a matrix of “permuted” hold-out
canonical correlations Q∗ho ∈ Rd

∗×10000. For CCA mode k, a p-value is
computed as the fraction of permuted canonical correlations (kth-row of
Q∗ho) exceeding the maximal “true” hold-out canonical correlation (the
correlations are not ordered in the hold-out set). At the end of this
procedure, a vector of p-values is obtained (p ∈ Rd

∗×1, where any CCA
mode with p < 0.05 is considered statistically significant).

5. Steps 1-4 are repeated 9 more times (i.e., 10 different hold-out sets in
total). The obtained p-values for each hold-out set are corrected for
multiple comparisons using Bonferroni correction (i.e. α= 0.05

10 = 0.005),
which means that only the hold-out sets with a pcorr ≤ 0.005 are con-
sidered statistically significant. Finally, the best hold-out set is chosen
based on the lowest pcorr. As analyses from different dimensionalities
can be correlated, this approach might be over-conservative. Alternat-
ively, we could calculate a p-value through pooled permutation testing
to potentially obtain greater sensitivity.
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3.3 Results
We found two significant modes of covariation (Figure 3.1) between patterns of
functional brain connectivity and sets of non-imaging features (or behavioural
features, for simplicity) using the statistical framework. The optimal number
of principal components obtained was 25 (d = 25), which explained 53% and
56% of the non-imaging features and brain connectivity features variance, re-
spectively. The first and second CCA modes yielded canonical correlations
of q = 0.62, p < 0.0001 (the mean null canonical correlation qnull = 0.52) and
q = 0.58, p < 0.0134 (the mean null canonical correlation qnull = 0.48), respect-
ively.

Figure 3.1: Significant brain-behaviour modes of covariation. Scatter plots show-
ing the brain and behaviour scores for the first (a and c) and second
(b and d) modes, where each dot represents an individual subject.
Subjects are colour coded by: sex and clinical diagnosis (a and b); age
(c and d). The canonical correlation, q, and the corresponding p-value
are shown on the top of each plot.
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Figure 3.1 shows the two significant brain-behaviour modes of covariation,
representing the correlation between brain and behaviour scores of individual
subjects. The first mode was associated with sex and has an interaction with
depression, with healthy males clustering towards higher scores and depressed
females clustering towards lower scores (Figure 3.1a). Additionally, younger
adolescents can be seen to have lower scores, whereas older ones were dis-
tributed more towards higher scores (Figure 3.1c). The characteristics of the
second mode were qualitatively different. Although depressed females seem to
cluster towards lower scores (Figure 3.1b) again, both males and females were
evenly distributed along this mode. Moreover, younger adolescents presented
higher scores, whereas older ones were more distributed towards lower scores
(Figure 3.1d).

To interpret the association captured by each mode, we correlated the
brain connectivity and behavioural features with the brain and behaviour
scores, respectively. Figure 3.2a shows that the first CCA mode was posit-
ively associated with age, being male, measures of impulsivity, sensation seek-
ing, drinking habits, and negatively associated with being female, depression-
related symptoms and suicidal thoughts. Thus, the first mode has charac-
teristic of an externalization/internalization axis, where extreme positive and
negative scores represent vulnerability for males and females, respectively. Im-
portantly, sex was weakly associated with the other top identified non-imaging
features suggesting that these are present due to an association with brain con-
nectivity and not because of their association with sex (Figure A.2). The brain
connections most positively correlated with the first CCA mode (denoted by
red edges in Figure 3.3) included regions within the dorsal and ventral atten-
tion networks and somatomotor network; brain connections most negatively
correlated (denoted by blue edges in Figure 3.3) included nodes of the de-
fault mode, limbic and frontoparietal networks. Similar overall patterns were
observed using different thresholds on the top connections (Figure A.3). In
addition, when looking at the 0.5% most negatively correlated connections
(top 302 connections), the subcortical network (mostly thalamus and caudate
nucleus) also appeared negatively correlated with the first mode (including
subcortical-subcortical connections and cortical connections with the default
mode network, Figure A.3). The list of the 20 brain connections most posit-
ively/negatively associated with the first mode and their assignment to ana-
tomical regions are displayed on Figure A.4.
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Figure 3.2: Correlations between the behavioural features and the behavioural ca-
nonical variate of the first (a) and second (b) CCA modes. The top
20 most positively and top 20 most negatively correlated features are
shown.

For the second mode, the most positively correlated behavioural features
(Figure 3.2b) related to measures of mental well-being, self-esteem and confid-
ence, while the most negatively associated related to age, depression-related
symptoms, drinking habits, suicidal thoughts and sexual abuse. Thus, this
second mode captures a well-being/distress axis, along which individuals vary
from high mental well-being to distress. The brain connections most positively
correlated (depicted in red edges in Figure 3.4) with this CCA mode included
nodes involving mainly the default mode and subcortical networks (thalamus);
brain connections most negatively correlated (depicted in blue edges in Fig-
ure 3.4) included nodes within the dorsal and ventral attention networks and
the visual and somatomotor networks. A largely similar overall pattern of
networks was observed using different thresholds on the top connections (Fig-
ure A.3). In addition, when looking at the 0.5% most positively correlated
connections (top 302 connections), the limbic and frontoparietal networks also
appeared positively correlated with the second mode (including cortico-cortical
connections and subcortical connections mostly with the thalamus, putamen
and accumbens nucleus, Figure A.3). The top 20 most positively/negatively
brain connections associated with the second mode and their assignment to
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anatomical regions are displayed on Figure A.5.

Figure 3.3: Correlations between the brain connectivity features and the brain
canonical variate of the first CCA mode in sagittal (left and right)
and axial views (middle). (a) Top 20 most positively and top 20 most
negatively correlated brain connections. The thickness of the edges is
proportional to the absolute correlation (red for positive correlations
and blue for negative correlations). (b) Top 20 most positively and top
20 most negatively correlated brain connections, summarised by nodes.
The node size is proportional to the mean absolute correlation. Nodes
are colour coded by resting state networks, assigning each node to one
of the seven cortical networks (based on the maximal surface based
intersection) described in Thomas Yeo et al. (2011) or the subcortex.

Additionally, we applied a multiple hold-out framework (Section 3.2.4.2)
and obtained one brain-behaviour mode of covariation (qho = 0.46 (p < 0.0008)
and the mean null canonical correlation qnull = 0.00016) (Figure A.6). The
optimal number of principal components was ten (d = 10), which explained
40% and 47% of the behaviour and brain connectivity variance, respectively.
Importantly, the distribution of subjects along the CCA main axis showed
the same trend in the training and test sets (Figure A.7). The overall rank-
ing of the brain connectivity and behavioural features was similar to those
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obtained using the statistical framework described in Section 3.2.4.1 (Figure
A.8). Although the overlap was not large when only the top 20 most posit-
ively/negatively correlated behavioural and brain features were considered, it
was more pronounced when the top 5% most positively/negatively correlated
features were selected (Figure A.8). This might be explained by the fact that
the correlations of the very top features only differ from each other on the
fourth decimal place.

Figure 3.4: Correlations between the brain connectivity features and the brain
canonical variate of the second CCA mode in sagittal (left and right)
and axial views (middle). (a) Top 20 most positively and top 20 most
negatively correlated brain connections. The thickness of the edges is
proportional to the absolute correlation (red for positive correlations
and blue for negative correlations). (b) Top 20 most positively and
top 20 most negatively correlated brain connections, summarised by
nodes. The node size is proportional to the mean absolute correlation.
The nodes were coloured as explained in Figure 3.3.

3.4 Discussion and Conclusion
In summary, leveraging from both resting-state fMRI and non-imaging features
(e.g., demographics, psychometrics and other behavioural features, which we
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also refer to as behavioural features for simplicity) within a multivariate ana-
lysis framework, we identified two brain-behaviour modes of covariation in a
sample of 306 adolescents and young adults. The first CCA mode related to an
externalization/internalization axis, which was associated with sex. Specific-
ally, it suggests that males might be more susceptible to disruptive behaviour
and alcohol use, whilst females might be more susceptible to depression and
self-harm. The second CCA mode related to a well-being/distress axis which
covered positive symptoms of well-being on one side and negative symptoms
related to depression, suicidal thoughts, history of sexual abuse and alcohol
use on the other side. Both modes were also associated with age, which could
be expected considering that the sample age range covers an important de-
velopmental period. Importantly, the brain networks related to both CCA
modes align well with models of brain development that highlight the sequen-
tial maturation of subcortical and cortical regions in adolescence (Casey et al.,
2008; Casey, 2015) and models of psychopathology (Buckholtz and Meyer-
Lindenberg, 2012; Menon, 2011).

Both CCA modes were conceptually associated with broadly described de-
pressive psychopathology, and can hence be seen as helping refine this clinical
concept. It is therefore important to understand whether they capture distinc-
tions in brain connectivity profiles alone or in descriptive psychopathology. At
first glance, the behavioural features common to both modes of depression,
such as “. . . life was not worth living”, “I thought about dying”, “I cried a lot”
seem to support the former hypothesis. Nevertheless, there are three clear
differences:

First, the first mode was associated with a more anxious, agitated and
behaviourally-activated expression of depression (four self-harm measures, “I
felt sick. . .”, “I worried. . .”, “I was afraid. . .”, “Are you emotional?”). Con-
versely, the second mode was associated with a more anhedonic and a mo-
tivational state (negatively correlated with “. . . life was not worth living”,
“. . .nothing good for me in the future”, “. . . feel so sad. . .”, and positively
correlated with “. . . feeling interested in other people”). Interestingly, similar
“anxious” and “anhedonic” axes have been found in other large data-driven
depression studies (Drysdale et al., 2017; Chekroud et al., 2017).

Second, the first CCA mode was strongly correlated with sex, but the
second mode was not. Thus, the latter was a more sex independent dimension
of psychopathology. Additionally, the depression-related features of the first
mode were associated with younger age, whilst depression-related features of
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the second mode were associated with older age (Figure 3.1c-d and Figure
3.2). Accordingly, depression in the first CCA mode was related to behavioural
features, such as “. . .I looked ugly”, “. . .my family would be better off without
me”, “I worried about what my parents would say. . .”, which are more likely
to be hallmarks of depression at a younger age. On the contrary, distress in
the second CCA mode was related to measures more likely to characterise
depression at an older age (e.g., “I thought about killing myself ”, being drunk
and drinking spirits).

Third, depression in the second mode was associated with sexual abuse
and was negatively associated with feeling loved, confident and close to other
people, perhaps indicating that sexual abuse affects these traits (although
causal attributions are not possible in this dataset).

The strong association between sex and the first CCA mode is striking in
light of recent findings that there is < 10% overlap in gene expression changes
in the brains of male and female humans with depression − at least in the
prefrontal cortex and insula (other cortical areas were not sampled) (Labonté
et al., 2017). Moreover, the authors demonstrated that a similar lack of overlap
between the sexes also exists in a chronic variable stress mouse model (Labonté
et al., 2017). It is interesting that both insula and the prefrontal cortex dom-
inate the connections of the first CCA mode, being either positively (insula) or
negatively (prefrontal cortex) correlated with depression. This suggests that
sex interacts with depression risk in these (and likely other) areas in a way
that might be fundamental to the disorder.

Adolescence and early adulthood is the peak age of onset for many psychi-
atric disorders (Kessler et al., 2007; Paus et al., 2008), therefore understanding
the vulnerability of individuals at this age is of particular relevance. Import-
antly, most measures correlated with the CCA modes were related to psycho-
pathology, and so the identified CCA modes might represent a two-dimensional
space not only related to current depressive symptoms (or their absence), but
to a latent vulnerability to psychopathology. Deeper understanding of this vul-
nerability may powerfully inform biologically informed interventions in young
people (Lee et al., 2014).

Substance use is highly correlated with psychiatric disorders (Alterman,
1985; Brent, 1989), and it is especially detrimental in adolescence. Personality
traits have an etiological role in the development of alcohol and substance use,
and a vast body of research implicates two broad personality domains with
opposing action tendencies, namely inhibition and disinhibition (Castellanos-
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Ryan and Conrod, 2012; Carver et al., 2000). Our results concur with such a
model. Alcohol usage was associated with both of our CCA modes in oppos-
ing directions. Behavioural features resembling to a disinhibited personality
(first CCA mode) were positive correlations with, for instance, “. . .enjoy doing
things that are risky and dangerous?”, “. . . like TV, movies, comics, or elec-
tronic games with a lot of violence in them?” or “Do you like rough games
and sports?”; whereas measures suggestive of an inhibited personality (second
CCA mode) are negative correlations with, for instance, being interested in or
enjoying the company of other people, or being interested in new things.

As discussed above, age was associated with both CCA modes. The first
CCA mode correlated positively with age (depicted in red in Figure 3.2), at-
tentional and frontoparietal networks (depicted in red in Figure A.3) and neg-
atively with subcortical-subcortical connections as well as connections within
the limbic system (depicted in blue in Figure A.3). These results are consistent
with models of adolescent brain development, demonstrating that subcortical
and limbic regions mature in early adolescence followed by the maturation
of cortico-cortical connections (Casey et al., 2008; Casey, 2015). The second
CCA mode was negatively correlated with age, connections within and between
attentional networks (depicted in blue in Figure A.4) and was positively cor-
related with various subcortical-cortical connections (depicted in red in Figure
A.4). Again, these results corroborate the aforementioned models of adolescent
brain development. In particular, the results of the two CCA modes substan-
tiate the sequential maturation of brain circuits, namely, the fine-tuning of
circuits from subcortical-subcortical (early adolescence) to cortico-subcortical
(late adolescence) and cortico-cortical (young adulthood) (Casey et al., 2016).
Furthermore, the sequential maturation of brain circuits might be a risk factor
for alcohol use (Spear, 2018), which aligns well with the strong positive cor-
relation between alcohol use and age found in both CCA modes (Figure 3.2).

Our brain connectivity results were also consistent with recent literature
suggesting that most psychiatric disorders emerge as a result of impairments
within a few core brain circuits and networks (Xia et al., 2018; Buckholtz
and Meyer-Lindenberg, 2012; Menon, 2011). In particular, the first mode was
negatively correlated with depression and connections of the default mode,
frontoparietal and limbic networks (Figure 3.3); whilst the second mode was
negatively correlated with depression and positively correlated with many de-
fault mode areas (Figure 3.4). These networks underlie core social, execut-
ive and affective cognition, respectively, and dysfunctions in these networks



3.4. Discussion and Conclusion 69

might result in specific domains of symptoms (e.g. alterations in default mode
network connectivity resulting in impaired self-representation and social func-
tioning) (Buckholtz and Meyer-Lindenberg, 2012). Interestingly, due to the
strong interplay between these networks, the aberrant functioning in any of
these could cause impairments of the others. For example, excessive coupling
between the limbic and default mode networks could mean that initial dysfunc-
tion in the former may propagate to the latter, causing depressive symptoms
(Xia et al., 2018; Berman et al., 2011; Cooney et al., 2010). Conversely, a
default mode network that can only dominate but cannot reciprocally commu-
nicate with the limbic network could prevent positive mood being established
by the latter (Admon and Pizzagalli, 2015).

In this study, we also applied CCA embedded in a multiple hold-out frame-
work (Section 3.2.4.2) which was proposed by Monteiro et al. (2016). We found
one mode of covariation, which was comparable to the first mode obtained us-
ing the statistical framework (Figure A.6). The second mode was not found
with the hold-out framework, potentially due to the small sample size and
the strictness of the framework. The most striking finding obtained with this
approach was that the distribution of the subjects along the CCA main mode
on the test set was very similar to the training set (Figure A.7), which means
that the CCA mode generalised well on the test set.

Finally, we acknowledge limitations to the current study. Methodological
limitations relate to the pipeline choice, which includes use of an atlas and
full correlation as a connectivity metric. Full correlation is a robust and fast
method, but when the number of nodes is large (here, >300 brain regions)
the biological interpretability of a connection between two nodes might be
poor because this method does not take into account the indirect connections
between the nodes (Smith et al., 2013). Further work exploring other ap-
proaches to parcellate the data (e.g., independent component analysis (Smith
et al., 2015)) and measures to estimate the resting state connectivity between
nodes (such as, partial correlation (Smith et al., 2011), although it has not
shown improved performances when the HCP atlas is used (Sala-Llonch et al.,
2019)). Moreover, although the PCA dimensionality reduction step is needed
to apply CCA to high dimensional data and avoid overfitting, it might also
remove a significant amount of signal variability of potential interest if the
number of principal components are not chosen carefully. Regularised variants
of CCA could be investigated in future work to overcome potential limitations
of the current pipeline. In addition, although we have used a multiple hold-out
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framework, we should ideally use an independent replication sample to validate
our model.

In conclusion, our results showed that identifying brain-behaviour modes
of covariation in healthy and depressed young people provide a better under-
standing of the latent dimensions of abnormal mental states and behaviour
(Insel et al., 2010), and brings new insights into the mediation of vulnerability
to mental disorders.



Chapter 4

Hyperparameter optimisation in
sparse CCA

The content of this chapter is based on a comparison study published in the
2018 International Workshop on Pattern Recognition in Neuroimaging (Fer-
reira et al., 2018). I have rewritten some sections and changed the figures
to be consistent with the nomenclature and notation used in this thesis. In
this study, I compared two different frameworks to optimise the regularisation
parameters (hyperparameters) of sparse CCA.

4.1 Introduction
As mentioned in the previous chapters, CCA is a multi-view method which has
been widely used in neuroimaging to investigate associations between different
types of data. However, neuroimaging datasets are typically high dimensional
and include only a few hundred subjects, which prevents CCA from being
applied to these datasets. As described in Chapter 2, regularised versions of
CCA, such as sparse CCA, have been proposed to address this issue by adding
regularisation terms to penalise the norm of the weight vectors (Lê Cao et al.,
2008; Parkhomenko et al., 2009; Waaijenborg et al., 2008; Witten et al., 2009).
L1 and L2-norm penalties are included in the sparse CCA optimisation problem
to simultaneously regularise and impose sparsity on the weight vectors. These
changes make the learning feasible for high dimensional datasets and improve
the interpretability of the results by allowing feature selection. Moreover, the
L1 penalties help to solve the issue of arbitrary rotations that CCA suffers
by constraining the model to converge to a unique solution. However, each
L1-norm penalty has a parameter that controls the degree of sparsity, which
affects the number of features selected in each view, and therefore should be
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carefully optimised.
In this study, I compared two frameworks to optimise the sparse CCA

hyperparameters: a statistical framework proposed by Witten and Tibshirani
(2009) and a machine learning framework proposed by Monteiro et al. (2016).
In the former, permutation tests are applied on the whole training set and the
hyperparameters are chosen based on the lowest p-value. In the latter, the
training set is divided multiple times into training and validation sets and the
hyperparameters are chosen to maximise the averaged correlation across the
validation sets. The two approaches were compared in terms of the features
selected in each view, and the generalisability of the sparse CCA modes using
a hold-out framework.

4.2 Methods
4.2.1 Data
In this study, I used the dataset described in Section 3.2.1. In summary, the
dataset comprises resting-state fMRI and extensive item-level questionnaire
data and demographics (which I will refer to as non-imaging features) of 306
(281 healthy and 25 depressed) participants (adolescents and young adults:
14-24 years old) from NSPN study (Kiddle et al., 2018). For a more detailed
description of the dataset and data preprocessing steps, see Section 3.2.1. All
experiments were run using two data modalities: brain functional connectiv-
ity (represented by X(1) ∈ RD1×N ) and non-imaging features (represented by
X(2) ∈RD2×N ), where N is the number of subjects, D1 is the number of brain
connectivity features and D2 is the number of non-imaging features.

4.2.2 Sparse CCA
Sparse CCA finds sparse weight vectors such that the covariance between the
projections of X(1) and X(2) onto these vectors is maximised:

maxu,vuTX(1)X(2)Tv,

s.t. ‖u‖22 ≤ 1,‖v‖22 ≤ 1,‖u‖1 ≤ cu,‖v‖1 ≤ cv,
(4.1)

The regularisation parameters cu and cv (Equation 4.1) control the L1-
norm penalties of u ∈ RD1×1 and v ∈ RD2×1, respectively. If cu and cv are
sufficiently small, the L1-norm penalties impose sparsity on the corresponding
view and consequently fewer features are included in the model. The values
of cu and cv must be chosen in 1 ≤ cu ≤

√
D1 and 1 ≤ cv ≤

√
D2 for both L1
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and L2-norms to be active (Witten et al., 2009). For more details, see Section
2.2.3.

4.2.3 Learning framework
The learning framework consists of three parts: hyperparameter optimisation,
statistical inference of the associations and matrix deflation. To evaluate the
generalisability of each hyperparameter optimisation, the data matrices X(1)

and X(2) are randomly split into an optimisation set, X(1)
op and X(2)

op (80% of the
data) and a hold-out set, X(1)

ho and X(2)
ho (20% of the data). The former is used

for optimising the hyperparameters, and the latter is used for assessing the
generalisability of the associations. All ρs mentioned in this section represent
Pearson’s correlations.
4.2.3.1 Hyperparameter optimisation
The hyperparameters were optimised using a grid-search, in which 20
equidistant points in 1≤ cu ≤

√
D1 and 1≤ cv ≤

√
D2 were defined.

Statistical framework

For each cu and cv pair, the weight vectors u and v are computed using
the optimisation set. Then, the correlation ρ between the projections X(1)T

op u
and X(2)T

op v (ρ= corr(X(1)T
op u,X(2)T

op v)) is computed (Figure 4.1a).
The rows of X(2)

op are then randomly permuted to obtain X(2)b
op (where

b = 1, . . . ,B). For each data permutation b, the weight vectors ub and vb are
computed and the correlations ρb between X(1)T

op ub and X(2)bT
op vb are computed

(Figure 4.1a). The procedure is repeated B = 1000 times in total, and the p-
value for ρ is calculated as follows (Witten and Tibshirani, 2009):

p=
1 +∑B

b=1 1 ρb≥ρ
B+ 1 (4.2)

The hyperparameter pair with the lowest p-value (p < 0.001) is chosen. How-
ever, it is likely that several combinations have the same p-value and then a
second criterion needs to be used: the hyperparameter pair with the largest
distance between the true correlation and the null distribution of the “per-

muted” correlations (d =
ρ− 1

B

∑B
b=1 ρ

b

sd(ρB) , where sd(ρB) indicates the standard

deviation of ρ1, . . . ,ρB) is chosen (Witten and Tibshirani, 2009). The best
hyperparameter pair is finally passed for use in the statistical inference step
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(Figure 4.2).
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Figure 4.1: Hyperparameter optimisation step for (a) statistical and (b) machine
learning framework.

Machine learning framework

For each cu and cv pair, the optimisation set is randomly split 50 times
into a training (80%) and test sets (20%). For each split, the weight vectors utr

and vtr are computed using the training set (X(1)
optr and X(2)

optr) and the canon-
ical correlation is computed by projecting the validation set (X(1)

opval and X(2)
opval)

onto these weight vectors (ρval = corr(X(1)T
opvalutr,X

(2)T
opvalvtr) (Figure 4.1b). The
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50 test correlations are averaged across splits to obtain ρ̄val, for each hyper-
parameter pair. The hyperparameter pair with the highest ρ̄val is selected. If
multiple hyperparameter combinations have the same ρ̄val, the sparsest pair
among those is chosen (Monteiro et al., 2016). The best hyperparameter pair
is then passed for use in the statistical significance step (Figure 4.2).
4.2.3.2 Statistical inference
The statistical significance of the sparse CCA modes is assessed using multiple
hold-out sets (Figure 4.2). First, the model is trained with the best hyperpara-
meter pair using the optimisation set to compute uop and vop. Second, the
hold-out set (X(1)

ho and X(2)
ho ) is projected onto uop and vop and the hold-out cor-

relation is calculated (ρho = corr(X(1)T
ho uop,X

(2)T
ho vop)). Third, the rows of X(2)

ho
are permuted to obtain X(2)m

ho (where m= 1, . . . ,M). For each permutation m,
the model is trained with the best hyperparameter pair and the hold-out set
is projected onto umop and vmop (Figure). The hold-out correlation between the
projections is calculated as follows: ρmho = corr(X(1)T

ho umop,X
(2)mT
ho vmop). The pro-

cess is run M = 10000 times and a p-value for ρho is computed using Equation
4.2.
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Figure 4.2: Statistical significance evaluation step.

In neuroimaging datasets, the sample sizes are usually small and therefore
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few samples may be included in the hold-out set, which can lead to unstable
findings since the validation is dependent on how the data is split. To make the
model validation more robust, multiple hold-out sets (here ten random splits
of the data into optimisation and hold-out sets) are used. As multiple hold-out
sets were used, a criterion is needed to determine if any of the sparse CCA
modes were statistically significant. Here, we assume the ominbus hypothesis,
which is a statistical test to assess multiple hypotheses nh at the same time by
assuming that all of them are true. The ominbus hypothesis is rejected if any
of the hypothesis Hi, i = 1, ...,nh is rejected, which means, in this case, that
if any of the hold-out sets is considered statistically significant, the ominbus
hypothesis is rejected. The p-values are corrected for multiple comparisons
using a Bonferroni correction, which is a technique that correct for multiple
comparisons when several statistical tests are performed simultaneously by
setting the significance level α (usually 0.05) to α = α/Nt (where Nt is the
number of tests). A sparse CCA mode is considered statistically significant,
if any hold-out set is considered statistically significant: pcorr ≤ 0.05/10. The
sparse CCA mode (among those statistically significant) with the lowest p-
value is chosen to deflate the data matrices.
4.2.3.3 Matrix deflation
If any of the weight vector pairs is considered statistically significant, the brain-
behaviour association explained by those weights is removed from the data
for allowing new associations to be found. This process is known as matrix
deflation. Here, I used the projection deflation method proposed by Mackey
(2008) and tested in Monteiro et al. (2016) for sparse CCA (see Equation 2.7).

4.3 Results
The frameworks were compared in terms of the brain-behaviour associations
identified and the generalisability of these, measured by hold-out correlation.

4.3.1 Brain-behaviour associations
Three statistically significant brain-behaviour associations were obtained us-
ing the statistical framework (q1 = 0.60 (p < 0.0001), q2 = 0.51 (p < 0.0001)
and q3 = 0.33 (p < 0.0047), and the corresponding mean null canonical cor-
relations q∗1 = −0.003, q∗2 = 0.009 and q∗3 = 0.003, respectively), and only one
was obtained using the machine learning framework (q1 = 0.60 (p < 0.0001)
and the mean null canonical correlation q1 = −0.001). Figure 4.3 shows the
non-imaging and brain weights of the first sparse CCA mode obtained using
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both frameworks. Figure 4.4 shows the weights of the second and third sparse
CCA modes identified by the statistical framework. For visualisation pur-
poses, only the top 20 brain connectivity features associated with the modes
(the features with the highest absolute weights) are shown. The first brain and
non-imaging (NI) weight vectors were similar across frameworks (ρbrain = 0.70
and ρNI = 0.98) as can be seen in Figure 4.3. Moreover, the distribution of the
weights was similar across frameworks (Figure 4.5).

Figure 4.3: All non-zero non-imaging features (top) and top 20 brain connectiv-
ity features (bottom) associated with the first sparse CCA mode, ob-
tained using the statistical (left) and machine learning (right) frame-
works. L - left hemisphere; R - right hemisphere.
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Figure 4.4: Non-imaging features (top) and top 20 brain connectivity features
(bottom) associated with the second (left) and third (right) sparse
CCA modes, obtained using the statistical framework. L - left hemi-
sphere; R - right hemisphere.

4.3.2 Generalisability of the frameworks
Table 4.1 shows the hold-out correlations of the ten different splits of the data
for the first and second sparse CCA mode, for each framework. The first
statistically significant mode was similar across both frameworks. A second
and third modes statistically significant were obtained using the statistical
framework (Figure 4.4), but not with the machine learning framework.
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Table 4.1: Hold-out correlations and p-values of the ten different splits of the data
for the first and second sparse CCA modes obtained by each frame-
work, and the third one for the statistical framework. The statistically
significant splits are shown in bold.

Machine learning framework Statistical framework
First mode Second mode First mode Second mode Third mode

Split ρho (pho) ρho (pho) ρho (pho) ρho (pho) ρho (pho)
1 0.51 (0.0001) -0.03 (0.5906) 0.51 (0.0001) 0.11 (0.1940) 0.08 (0.2625)
2 0.33 (0.0052) 0.03 (0.4179) 0.35 (0.0031) 0.20 (0.0567) 0.24 (0.0289)
3 0.45 (0.0005) 0.11 (0.1900) 0.45 (0.0002) 0.20 (0.0576) 0.09 (0.2367)
4 0.27 (0.0161) 0.20 (0.0601) 0.35 (0.0020) 0.24 (0.0296) 0.22 (0.0406)
5 0.36 (0.0030) 0.02 (0.4349) 0.51 (0.0001) 0.41 (0.0005) 0.32 (0.0063)
6 0.39 (0.0007) 0.14 (0.1376) 0.41 (0.0003) 0.25 (0.0249) 0.21 (0.0487)
7 0.43 (0.0003) 0.22 (0.0436) 0.45 (0.0002) 0.29 (0.0135) 0.27 (0.0166)
8 0.35 (0.0024) 0.07 (0.3040) 0.37 (0.0019) 0.12 (0.1719) 0.11 (0.2070)
9 0.60 (0.0001) 0.21 (0.0499) 0.60 (0.0001) 0.33 (0.0046) 0.33 (0.0047)
10 0.38 (0.0011) 0.23 (0.0327) 0.47 (0.0001) 0.35 (0.0034) 0.30 (0.0091)
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Figure 4.5: Distribution of the weights of the first sparse CCA mode obtained
with the (left) statistical framework and (right) machine learning
framework.
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Figure 4.6: Distribution of the weights of the (left) second and (right) third
sparse CCA modes obtained with the statistical framework.

4.4 Discussion
The statistical framework, proposed by Witten and Tibshirani (2009), uses p-
values computed using permutation tests on the whole training set to optimise
the sparse CCA hyperparameters, which can be seen as a limitation because
no out-of-sample metric is used. Monteiro et al. (2016) proposed a machine
learning framework to calculate out-of-sample correlations based on multiple
validation sets. In this study, we compared both frameworks for optimising
the sparse CCA hyperparameters using a hold-out framework to access the
generalisability of the frameworks (based on hold-out correlation).

Both frameworks were able to identify at least one brain-behaviour as-
sociation. The weight vectors obtained showed great similarity across frame-
works (Figures 4.3 and 4.5), which indicates that both frameworks are able
to generalise to different hold-out sets (Table 4.1). However, only the stat-
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istical framework was able to find more brain-behaviour associations. On one
hand, these results suggest that the statistical framework might be prone to
overfitting and false positive findings. In fact, the third mode (Figure 4.4,
right) is likely to be a false positive finding, because only one split of the data
was rendered as statistically significant with a p-value close to the defined
threshold (p= 0.0047, Table 4.1) and most of the brain features were included
in the model (i.e., obtained non-zero weights, Figure 4.6). On the other hand,
these results suggest that the machine learning framework might be a strict ap-
proach that may lead to false negative findings. Indeed, as we only considered
the single most statistically significant held-out solution, the Bonferroni cor-
rection might be overconservative. Moreover, we might be losing power by
not pooling the results before the statistical test. However, there is no trivial
solution for this issue because the different splits of the data might obtain
different sparse weight vectors. In terms of computational cost, the machine
learning framework is much more efficient than the statistical framework (i.e.
200 times faster).

In summary, the sparse CCA hyperparameters should be carefully optim-
ised, because different criteria and frameworks might have a strong influence
on the results. As expected, optimising the hyperparameters using a metric
based on test data (i.e., test correlation) leads to stricter approaches than those
based on the whole data.





Chapter 5

Identifying brain-behaviour
associations in incomplete data
sets using GFA

The content of this chapter is based on the study recently submitted to
NeuroImage (Ferreira et al., 2021). I have rewritten some sections to avoid
repeating content presented in previous Chapters, and to be consistent with
the nomenclature and notation used in this thesis. In this study, I extended
Group Factor Analysis (GFA) (Section 2.3.3) to uncover associations among
multiple data modalities and predict the features in one view (i.e., multi-output
prediction) from other views observed in the test set (e.g., predict behavioural
measures from brain functional connectivity) in incomplete data sets.

5.1 Introduction
As mentioned throughout the thesis, CCA and equivalent methods have been
successfully applied to identify associations between two views (e.g., data mod-
alities). Nonetheless, these methods have some limitations. First, they do not
provide an inherently robust inference approach to infer the relevant associ-
ations. This is usually done by assessing the statistical significance of the
associations using permutation tests on the whole data set (Smith et al., 2015;
Winkler et al., 2020) or on hold-out sets (Monteiro et al., 2016; Mihalik et al.,
2020). Second, the associations within data modalities, which might explain
important variance in the data, are not modelled. Finally, CCA assumes data
pairing between data modalities, which is problematic when values are missing
in one or both modalities. This is a common issue in clinical and neuroima-
ging datasets, in which the missing values usually need to be imputed or the
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samples with missing values need to be removed before fitting the models.
In this chapter, I address these limitations by proposing an extension of

GFA (described in Section 2.3.3) that can handle missing data. I first applied
this extended GFA to synthetic data to assess whether it can find known as-
sociations among different views. I then applied it to data from the Human
Connectome Project (HCP) (Van Essen et al., 2013) to uncover associations
between brain connectivity and non-imaging features (e.g., demographics, psy-
chometrics and other behavioural features). I evaluated the consistency of
the findings across different experiments with complete and incomplete data
sets. Finally, even though the GFA model was proposed as an unsupervised
approach, it can also be used as a predictive model (Klami et al., 2015): I ap-
plied the proposed GFA implementation to synthetic and HCP data to assess
whether it was able to predict missing data and non-observed data modalities
from the observed ones in incomplete data sets.

To illustrate the differences between GFA and CCA, CCA was also ap-
plied to both datasets. First, I hypothesised that GFA would replicate previous
CCA findings using broadly the same HCP dataset, where previous investigat-
ors identified a single mode of population covariation representing a “positive-
negative” component linking lifestyle, demographic and psychometric meas-
ures to specific patterns of brain connectivity (Smith et al., 2015). Second,
I expected CCA to show poorer performance when data is missing, whereas
GFA results would be more consistent across experiments with complete and
incomplete data sets.

5.2 Materials and Methods
I first explain how the GFA model was modified to accommodate missing data
(Section 5.2.1) and used to make predictions (Section 5.2.3). These subsections
are followed by descriptions of experiments on synthetic data (Section 5.2.4),
as well as on HCP data (Section 5.2.5).

5.2.1 Proposed GFA extension
To handle missing data, I modified the original GFA model (see Section 2.3.3)
by assuming independent noise for each feature (i.e., diagonal noise) within a
view:

p(τ ) =
M∏
m=1

Dm∏
j=1

Γ(τ (m)
j |aτ (m) , bτ (m)) (5.1)
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where aτ (m) and bτ (m) shape parameter and rate parameter of the gamma
distribution, respectively. In addition, I modified the variational update rules
similarly to what has been proposed by Luttinen and Ilin (2010) for variational
Bayesian factor analysis. The derivations of the variational EM update rules
are described in Section 5.2.2. The derivations of the lower bound can be
found in Appendix B.1. Although I only present applications of GFA to two
modalities/views in this thesis, the GFA extension can be applied to more
than two data modalities (see our Python implementation: https://github.
com/ferreirafabio80/gfa).

5.2.2 Variational updates of GFA
The variational updates of the model parameters are derived by writing the
expectation of the log joint distribution p(X,θ) with respect to all other vari-
ational parameters (Equation 2.16). Considering Equation 2.14, the log joint
distribution is defined as follows:

lnp(X,Z,W,α,τ ) = ln
[
p(X|Z,W,τ )p(Z)p(W|α)p(α)p(τ )

]
+ const (5.2)

where the individual log-densities (considering the priors in Equations 2.12
and 2.13) are given by:

lnp(X|Z,W,τ ) =
M∑
m=1

[
N

2

Dm∑
j=1

(lnτ (m)
j − ln(2π))

− 1
2

N∑
n=1

(x(m)
n −W(m)zn)TT(m)(x(m)

n −W(m)zn)
] (5.3)

lnp(Z) =−1
2

N∑
n=1

zTnzn−
NK

2 ln(2π) (5.4)

lnp(W|α) =
M∑
m=1

[
Dm

2

K∑
k=1

lnα(m)
k − 1

2

K∑
k=1

α
(m)
k w(m)T

k w(m)
k + DmK

2 ln(2π)
]

(5.5)

lnp(α) =
M∑
m=1

K∑
k=1

[
aα(m) lnbα(m)− lnΓ(aα(m))+(aα(m)−1) lnα(m)

k −bα(m)α
(m)
k

]
(5.6)

lnp(τ ) =
M∑
m=1

Dm∑
j=1

[
aτ (m) lnbτ (m)− lnΓ(aτ (m)) + (aτ (m)−1) lnτ (m)

j − bτ (m)τ
(m)
j

]
(5.7)

https://github.com/ferreirafabio80/gfa
https://github.com/ferreirafabio80/gfa
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where T(m) = diag(τ (m)), zn is the n-th column of Z, x(m)
n is the n-th column

of X(m), w(m)
k is a column vector representing the k-th column of W(m) and

aα(m) , bα(m) ,aτ (m) , bτ (m) are the hyperparameters of the Gamma distributions
in Equations 2.12-2.13.
5.2.2.1 q(Z) distribution
The optimal log-density for q(Z), given the other variational distributions is
calculated using Equation 2.16:

lnq(Z) = Eq(W),q(τ )[lnp(X|Z,W, τ) + lnp(Z)]

=
N∑
n=1

[
− 1

2

M∑
m=1
〈(x(m)

n −W(m)zn)TT(m)(x(m)
n −W(m)zn)〉− 1

2zTnzn
]

=
N∑
n=1

[
zTn

M∑
m=1

∑
j∈O(m)

n

〈τ (m)
j 〉〈W(m)T

j,∗ 〉x
(m)
j,n

− 1
2zTn

(
M∑
m=1

∑
j∈O(m)

n

〈τ (m)
j 〉〈W(m)T

j,∗ W(m)
j,∗ 〉

)
zn−

1
2zTnzn

]

=
N∑
n=1

[
zTn

M∑
m=1

∑
j∈O(m)

n

〈τ (m)
j 〉〈W(m)T

j,∗ 〉x
(m)
j,n

− 1
2zTn

(
IK +

M∑
m=1

∑
j∈O(m)

n

〈τ (m)
j 〉〈W(m)T

j,∗ W(m)
j,∗ 〉

)
zn
]

(5.8)
where 〈·〉=Eq(W),q(τ )[·] represents expectations, W(m)

j,∗ denotes the j-th row of

W(m), 〈τ (m)
j 〉=

ã
(j)
τ (m)

b̃
(j)
τ (m)

(ã(j)
τ (m) and b̃

(j)
τ (m) are the variational parameters obtained

for q(τ (m)) in Equation 5.22) and 〈W(m)T
j,∗ W(m)

j,∗ 〉 = ΣW(m)
j,∗

+µT
W(m)

j,∗
µW(m)

j,∗

(ΣW(m)
j,∗

and µW(m)
j,∗

are the variational parameters obtained for q(W(m)) in

Equation 5.16). O(m)
n is the set of indices in the n-th column of X(m) (x(m)

(:,n))
that are not missing. Equation 5.8 omits any constant terms that do not de-
pend on Z. Taking the exponential of the log density, the optimal q(Z) is a
multivariate normal distribution:

q(Z) =
N∏
n=1

q(zn) =
N∏
n=1
N (zn|µzn ,Σzn) (5.9)
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The variational parameters for q(Z) are:

Σzn =
[
IK +

M∑
m=1

∑
j∈O(m)

n

〈τ (m)
j 〉〈W(m)T

j,∗ W(m)
j,∗ 〉

]−1

µzn = Σzn

M∑
m=1

∑
j∈O(m)

n

〈τ (m)
j 〉〈W(m)T

j,∗ 〉x
(m)
j,n

(5.10)

5.2.2.2 q(W(m)) distribution
The optimal log-density for q(W(m)), given the other variational distributions,
is obtained by calculating:

lnq(W(m)) = Eq(Z),q(α(m)),q(τ (m))[lnp(X
(m)|Z,W(m),τ (m)) + lnp(W(m)|α(m))]

=− 1
2

N∑
n=1
〈(xn−W(m)zn)TT(m)(xn−W(m)zn)〉

− 1
2

K∑
k=1
〈α(m)

k w(m)T
k w(m)

k 〉

(5.11)
where 〈·〉 = Eq(Z),q(α(m)),q(τ (m))[·]. The constant term was omitted. The first
term of Equation 5.11 can be expanded as follows:

− 1
2

N∑
n=1
〈(x(m)

n −W(m)zn)TT(m)(x(m)
n −W(m)zn)〉=

Dm∑
j=1
〈τ (m)
j 〉

( ∑
n∈O(m)

j

x
(m)
j,n 〈z

T
n 〉
)

×W(m)T
j,∗ +

Dm∑
j=1
−1

2W(m)
j,∗

(
〈τ (m)
j 〉

∑
n∈O(m)

j

〈znzTn 〉
)

W(m)T
j,∗

(5.12)
where 〈znzTn 〉= Σzn +µznµ

T
zn (Σzn and µzn are the variational parameters of

q(Z) in Equation 5.10) and O(m)
j is the set of indices in the j-th row of X(m)

(x(m)
(j,:)) that are not missing. The second term of Equation 5.11 is given by:

− 1
2

K∑
k=1
〈α(m)

k w(m)T
k w(m)

k 〉=−1
2

Dm∑
j=1

W(m)
j,∗ 〈A

(m)
α 〉W

(m)T
j,∗ (5.13)

where 〈A(m)
α 〉= diag(〈α(m)〉) and 〈α(m)〉= ã

α(m)
b̃

α(m)
(ãα(m) and b̃α(m) are the vari-

ational parameters of q(α(m)) in Equation 5.19). Putting both terms together,
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we get:

lnq(W(m)) =
Dm∑
j=1

[
〈τ (m)
j 〉

( ∑
n∈O(m)

j

x
(m)
j,n 〈z

T
n 〉
)

W(m)T
j,∗

− 1
2W(m)

j,∗

(
〈A(m)

α 〉+ 〈τ
(m)
j 〉

∑
n∈O(m)

j

〈znzTn 〉
)

W(m)T
j,∗

] (5.14)

Taking the exponential of the log density, the optimal q(W(m)) is a mul-
tivariate normal distribution:

q(W(m)) =
Dm∏
j=1

q(W(m)
j,∗ ) =

Dm∏
j=1
N (W(m)

j,∗ |µW(m)
j,∗
,ΣW(m)

j,∗
) (5.15)

Then the variational update rules for q(W(m)) are:

ΣW(m)
j,∗

=
[
〈A(m)

α 〉+ 〈τ
(m)
j 〉

∑
n∈O(m)

j

〈znzTn 〉
]−1

µW(m)
j,∗

= 〈τ (m)
j 〉

∑
n∈O(m)

j

(
x

(m)
j,n 〈z

T
n 〉
)

ΣW(m)
j,∗

(5.16)

5.2.2.3 q(α(m)) distribution
The optimal log-density for q(α(m)), given the other variational distributions,
is obtained by calculating:

lnq(α(m)) = Eq(W(m))[lnp(W
(m)|α(m)) + lnp(α(m))]

=
K∑
k=1

[
Dm

2 lnα(m)
k − 1

2α
(m)
k 〈w

(m)T
k w(m)

k 〉+ (aα(m)−1) lnα(m)
k

− bα(m)α
(m)
k

]

=
K∑
k=1

(
Dm

2 +aα(m)−1
)

lnα(m)
k −

K∑
k=1

(
bα(m) + 1

2〈w
(m)T
k w(m)

k 〉
)
α

(m)
k

(5.17)
where 〈·〉 = Eq(W(m))[·]. Constant terms are omitted that do not depend on
α. Taking the exponential of the log density, the optimal q(α(m)) is a Gamma
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distribution:

q(α(m)) =
K∏
k=1

q(α(m)
k ) =

K∏
k=1

Γ(α(m)
k |ãα(m) , b̃

(k)
α(m)) (5.18)

And the variation update rules for q(α(m)) are:

ãα(m) = aα(m) + 1
2Dm

b̃
(k)
α(m) = bα(m) + 1

2〈w
(m)T
k w(m)

k 〉
(5.19)

where 〈w(m)T
k w(m)

k 〉=
(∑Dm

j=1µ
T

W(m)
j,∗
µW(m)

j,∗
+ΣW(m)

j,∗

)
(k,k)

.

5.2.2.4 q(τ (m)) distribution
The optimal log-density for q(τ (m)), given the other variational distributions,
is obtained in the following way:

lnq(τ (m)) = Eq(Z),q(W(m))[lnp(X
(m)|Z,W(m),τ (m)) + lnp(τ (m))]
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(5.20)
where N (m)

j is the number of non-missing observations in the j-th row of X(m)

and 〈·〉=Eq(Z),q(W(m))[·]. I have omitted constant terms that do not depend on
τ . Taking the exponential of the log density, the optimal q(τ (m)) is a Gamma
distribution:

q(τ (m)) =
Dm∏
j=1

q(τ (m)
j ) =

Dm∏
j=1

Γ(τ (m)
j |ã(j)

τ (m) , b̃
(j)
τ (m)) (5.21)
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where the variational parameters are:

ã
(j)
τ (m) = aτ (m) + 1

2N
(m)
j

b̃
(j)
τ (m) = bτ (m) + 1

2
∑
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x
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j,n −2x(m)
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(m)
j,∗ 〉〈zn〉+Tr[〈W(m)T

j,∗ W(m)
j,∗ 〉〈znz

T
n 〉]

(5.22)
Finally, to solve the rotation and scaling ambiguity known to be present in

factor analysis models, I used a similar approach previously proposed by Vir-
tanen et al. (2011), which consists of maximising the variational lower bound
with respect to a separate parameter matrix R (that is a linear transformation
applied to W), after each round of variational EM updates. As it is shown by
Virtanen et al. (2011), maximising the lower bound with respect to R forces
the model to find components that are maximally independent of each other,
and provides a deterministic choice for the rotation. This not only solves the
rotation and scaling ambiguity, but also improves convergence and speeds up
the learning.

5.2.3 Multi-output and missing data prediction
As mentioned above, GFA can be used as a predictive model. As the views
are generated by the same latent variables, the unobserved view of new (test)
observations (X(m)?) can be predicted from the observed ones on the test
set (X−(m)?) using the predictive distribution p(X(m)?|X−(m)?) (Klami et al.,
2015). This distribution is analytically intractable, but its expectation can
be approximated using the parameters learned during the variational EM as
follows (Klami et al., 2015):

〈X(m)? |X−(m)?〉=〈W(m)Z〉q(W(m)), q(Z|X−(m)?)

=〈W(m)〉Σ?
Z〈W−(m)T 〉T?X−(m)?

(5.23)

where 〈·〉 denotes expectations, Σ?
Z = IK + ∑

l 6=m
∑Dl
j 〈τ

(l)
j 〉〈W

(l)T
j,∗ W(l)

j,∗〉,

〈W(l)T
j,∗ W(l)

j,∗〉 = Σw(l)
j

+µT
W(l)

j,∗
µW(m)

j,∗
and T? = {diag(〈τ (l)〉)}l 6=m. In all ex-

periments, 〈X(m)?|X−(m)?〉 was used for prediction.
Additionally, the missing data can be predicted using Equation 5.23 where,

in this case, the observed views X−(m)? correspond to the training observations
in view m and the missing data is represented as: X(m)? = X(m)?

n,j∈O(m)
n,j

, where

O
(m)
n,j is the set of indices (n,j) for which the corresponding x(m)?

n,j are missing.
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5.2.4 Synthetic data
I validated the extended GFA model on synthetic data generated from x(m)

n ∼
N (W(m)zn,T(m)−1) (Equation 2.11). I generated N = 500 observations for
two views with D1 = 50 (X(1) ∈ R50×500) and D2 = 30 (X(2) ∈ R30×500), re-
spectively. The data was generated from two shared and two view-specific
latent components, which were manually specified, similarly to the toy ex-
ample generated in Klami et al. (2013) (Figure 5.1). The α(m) parameters
were set to 1 for the active components and 106 for the inactive ones. The
loading matrices W(m) were drawn from W(m) ∼ N (0,(α(m))−1) (Equation
2.12) and diagonal noise with fixed precisions (τ1 = 5ID1 and τ2 = 10ID2) was
added to the observations.

I ran GFA experiments on the following selections of synthetic data:

1. Complete data.
2. Incomplete data:

(a) 20% of the elements (i.e., entries) of X(2) were randomly removed.

(b) 20% of the observations (i.e., rows) in X(1) were randomly removed.

In all experiments, the model was initialised with K = 15 (number of latent
components) to assess whether it can learn the true latent components while
automatically pruning out the irrelevant ones. The recommended choice for the
maximal number of latent components is K = min(D1,D2), but in high dimen-
sional data sets this leads to large K and consequently to long computational
times. In practice, aK value that leads to the removal of some irrelevant latent
components should be a reasonable choice (Klami et al., 2013). In Figure B.1,
I show that the model still converges to the right solution when the number
of latent components is overestimated (K = 30) in low and high dimensional
data.

As the variational approximations for GFA are deterministic, and the
model converges to a local optimum that depends on the initialisation, all
experiments were randomly initialised 10 times. The initialisation with the
largest variational lower bound was considered to be the best one. For visual-
ization purposes, I matched the true and inferred latent components by calcu-
lating the maximum similarity (using Pearson’s correlation) between them, in
all experiments. If a correlation value was negative, the corresponding inferred
component was multiplied by −1. The inferred components with correlations
greater than 0.70 were visually compared with the true ones.
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For each random initialisation, in all experiments, the data was split into
training (80%) and test (20%) sets. The model performance was assessed by
predicting one view from the other on the test set (e.g., predict X(2) from
X(1)) using Equation 5.23. The mean and standard deviation of the mean
squared error (MSE) (calculated between the true and predicted values of the
non-observed view on the test set) was calculated across the different initial-
isations (Table 5.1). The chance level of each experiment was obtained by
calculating the MSE between the observations on the test set and the means
of the corresponding features on the training set.

In the incomplete data experiments, the missing data was predicted using
Equation 5.23. I calculated the mean and standard deviation (across initial-
isations) of the Pearson’s correlations between the true and predicted missing
values to assess the ability of the model to predict missing data. To compare
our results with a common strategy for data imputation in the incomplete data
experiments, I ran GFA with complete data, after imputing the missing values
using the median of the respective feature.

Finally, in order to assess the CCA performance in complete and incom-
plete data sets, I ran additional experiments with CCA (Section B.2.2).

5.2.5 HCP dataset
I applied the proposed GFA extension to the publicly available resting-state
fMRI and non-imaging features (e.g., demographics, psychometrics and other
behavioural features) obtained from 1003 subjects (only these had rs-fMRI
data available) of the 1200-subject data release of the HCP (https://www.
humanconnectome.org/study/hcp-young-adult/data-releases). Two subjects
were missing the family structure information that we needed to perform the
restricted permutations in the CCA analysis, so were excluded.

In particular, I used the brain connectivity features of the extensively
processed rs-fMRI data using pairwise partial correlations between 200 brain
regions from a parcellation estimated by independent component analysis
(ICA). This processing was identical to Smith et al. (2015), yielding 19,900
brain features for each subject (i.e., the lower triangular part of the brain
connectivity matrix containing pair-wise connectivity among all 200 regions).
The vectors were concatenated across subjects to form X(1) ∈ R19900×1001.
I used 145 items of the non-imaging features used in Smith et al. (2015) as
the remaining features (SR_Aggr_Pct, ASR_Attn_Pct, ASR_Intr_Pct,
ASR_Rule_Pct, ASR_Soma_Pct, ASR_Thot_Pct, ASR_Witd_Pct,

https://www.humanconnectome.org/study/hcp-young-adult/data-releases
https://www.humanconnectome.org/study/hcp-young-adult/data-releases
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DSM_Adh_Pct, DSM_Antis_Pct, DSM_Anxi_Pct, DSM_Avoid_Pct,
DSM_Depr_Pct, DSM_Somp_Pct) were not available in the 1200-subject
data release. The description of the non-imaging measures can be found in
Table B.5. The non-imaging matrix included 145 features from 1001 subjects
(X(2) ∈ R145×1001).

Similarly to Smith et al. (2015), nine confounding variables (acquisition
reconstruction software version, summary statistic quantifying average subject
head motion during acquisition, weight, height, blood pressure systolic, blood
pressure diastolic, haemoglobin A1C measured in blood, the cube-root of total
brain and intracranial volumes estimated by FreeSurfer) were regressed out
from both data modalities. Finally, each feature was standardised to have
zero mean and unit variance. For additional details on the data acquisition
and processing, see Smith et al. (2015).

I ran GFA experiments on the following selections of HCP data:

1. Complete data.
2. Incomplete data:

(a) 20% of the elements of X(2) were randomly removed.

(b) 20% of the subjects were randomly removed from X(1).

In all experiments, the model was initialised with K = 80 latent com-
ponents. As in the experiments with synthetic data, all experiments were
randomly initialised ten times and the data was randomly split into training
(80%) and test (20%) sets. The initialisation with the largest variational lower
bound was considered to be the best one.

The number of components obtained in all experiments was greater than
60. Therefore, to facilitate interpretability, I selected the most relevant com-
ponents by calculating the relative variance explained (rvar) by each compon-
ent k within each data modality m (i.e., k-th column of W(m)) with respect
to the total variance in the data modality:

rvar(m)
k = w(m)T

k w(m)
k

Tr(W(m)W(m)T )
×100 (5.24)

where Tr(·) represents the trace of the matrix. The components explaining
more than 7.5% variance within any data modality were considered most
relevant. In order to decide whether a given most relevant component was
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modality-specific or shared, the ratio between the variance explained (var) by
each component on the non-imaging and brain data was computed:

rk = var(2)
k

var(1)
k

(5.25)

where var(m)
k = w(m)T

k w(m)
k

Tr(W(m)W(m)T +T(m)−1)
, and T(m)−1 is the diagonal covariance

matrix in Equation 2.11. A component was considered shared if 0.001≤ rk ≤
300, specific to the non-imaging modality if rk > 300 or brain-specific if rk <
0.001. These values were selected taking into account the imbalance of the total
number of features across data modalities (∼100 times more brain connectivity
features than non-imaging features). These thresholds were validated in high
dimensional synthetic data (Table B.2).

To assess whether the missing data affected the estimation of the most
relevant components, I calculated the Pearson’s correlations between the com-
ponents obtained in the complete data experiment and the components ob-
tained in the incomplete data ones (Table 5.3).

All non-imaging features were predicted from brain connectivity on the
test set to show the potential of GFA to be used for multi-output prediction.
The model performance was assessed by calculating the mean and standard
deviation of the relative MSE (rMSE) between the true and predicted values
of each non-imaging feature on the test set, across the different initialisations:

rMSEj =
1
N

∑N
n=1(x(2)

nj −x
(2)∗

nj )2

1
N

∑N
n=1(x(2)

nj )2
(5.26)

where N is the number of subjects, x(2)
nj and x(2)∗

nj are the true and predicted
non-imaging feature j on the test set, respectively. The chance level was
obtained by calculating the relative MSE between each non-imaging feature
in the test set and the mean of the corresponding non-imaging feature in the
training data.

Similarly to the incomplete data experiments on synthetic data, the miss-
ing data was predicted using Equation 5.23 and the mean and standard de-
viation (across initialisations) of the Pearson’s correlations between the true
and predicted missing values were calculated.

Finally, to compare our GFA results with CCA, we applied a similar CCA
analysis proposed by Smith et al. (2015) to the HCP dataset used in the
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GFA experiments. In summary, we reduced the dimensionality of both data
modalities using PCA (using 100 principal components for each data modality)
and applied CCA to these reduced data matrices. The statistical significance of
the CCA modes was estimated by permutation inference, in which the subjects
of the non-imaging matrix were permuted 10,000 times respecting the family
structure of the data (Winkler et al., 2015). For each CCA mode, we compute
a p-value to assess whether the “true” canonical correlation (i.e., the canonical
correlation of the respective CCA mode obtained without permuting the data)
was larger than the null distribution of permuted canonical correlations. If a
CCA mode is statistically significant (p < 0.05), we remove its effect from the
data using matrix deflation (Shawe-Taylor and Cristianini, 2004). These steps
are repeated to compute subsequent CCA modes until no more statistically
significant modes are obtained.

5.3 Results
In this section, I present the results of the experiments on synthetic data
(Section 5.3.1) and real data from the Human Connectome Project (Section
5.3.2).

5.3.1 Synthetic data
Figure 5.1 shows the results of the extended GFA model applied to complete
data (experiment 1). The model correctly inferred the components, identifying
two of them as shared and the other two as view-specific. These components
were all considered most relevant based on the rvar threshold (Equation 5.24)
and were all correctly assigned as shared or view-specific based on the ratio rk
(Equation 5.25). The structure of the inferred latent components was similar
to those used for generating the data (Figure 5.1). The results were robust to
initialisation, i.e., the model converged to similar solutions across the different
initialisations. Furthermore, the irrelevant latent components were correctly
pruned out during inference. The noise parameters were also inferred correctly
(i.e., the average values of τs were close to the real ones (τ1 = 5ID1 and τ2 =
10ID2): τ̂ (1) ≈ 5.08 and τ̂ (2) ≈ 10.07). Furthermore, the model performed well
in the multi-output prediction task, i.e., the averaged MSE was lower than
chance level when predicting X(1) from X(2), and vice-versa (Table 5.1).
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Figure 5.1: True and inferred latent components and model parameters obtained in
the complete data experiment. The latent components and parameters
used to generate the data are plotted on the left-hand side, and the
ones inferred by the model are plotted on the right-hand side. The
four rows on the top represent the two shared (1 and 2) and two view-
specific (3 and 4) latent components. The loading matrices of the first
and second view are represented on the left and right-hand side of the
red line in WT , respectively. The alphas of the first and second view
are shown on the first and second column of αT , respectively. The
small black dots and big black squares represent active and inactive
components, respectively.

Figures 5.2a and 5.2b show the results of the incomplete data experi-
ments 2a (20% of the elements of X(2) missing) and 2b (20% of the rows of
X(1) missing), respectively. The parameters inferred using our GFA extension
(Figure 5.2, middle column) were compared to those obtained using the me-
dian imputation approach (right column). The results were comparable when
the amount of missing data was small (Figure 5.2a), i.e., both approaches were
able to infer the model parameters fairly well. Even so, the model misses the
true value of the noise parameter of X(2) (τ̂ (1) ≈ 5.14 and τ̂ (2) ≈ 5.22) when
the median imputation approach is used. Whereas, the noise parameters were
correctly recovered (τ̂ (1) ≈ 5.15 and τ̂ (2) ≈ 10.17) when the proposed GFA ap-
proach was applied. The parameters were not inferred correctly by the median
imputation approach (although the noise parameters were recovered fairly well,
τ̂ (1) ≈ 6.24 and τ̂ (2) ≈ 10.20), when the number of missing observations was
considerable (Figure 5.2b). This was not observed when the extended GFA
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was applied (τ̂ (1) ≈ 5.04 and τ̂ (2) ≈ 10.24).
Finally, the proposed GFA model predicted missing data consistently well

in both experiments: ρ = 0.868± 0.016 and ρ = 0.680± 0.039 (where ρ rep-
resents the averaged Pearson’s correlation between the missing and predicted
values across initialisations) for the incomplete data experiments 2a and 2b,
respectively.

True parametersa Extended GFA  Median imputation

b

WT αT WT αT WT αT

WT αT WT αT WT αT

Latent factors Latent factors Latent factors

Latent factors Latent factors Latent factors

Figure 5.2: True and inferred latent components and model parameters obtained
in the incomplete data experiments 2a (a) and 2b (b). (Left
column) latent components and parameters used to generate the data.
(Middle column) latent components and parameters inferred using
the proposed GFA approach. (Right column) latent components and
parameters inferred using the median imputation approach (the latent
components were not ordered because the model did not converge to
the right solution). The loading matrices (WT ) and alphas (αT ) can
be interpreted as in Figure 5.1.

I showed that the model can make reasonable predictions when the data
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was missing randomly or one data modality was missing for some observations,
i.e., the MSEs were similar across experiments and below chance level (Table
5.1). Moreover, there seems to be no improvement between using the proposed
GFA approach or imputing the median before training the model.

Table 5.1: Prediction errors of the multi-output prediction tasks. The values cor-
respond to the mean and standard deviation of the MSEs across 10
initialisations. The first (second) column shows the MSE between the
test observations X(1)? (X(2)?) and the mean predictions 〈X(1)? |X(2)?〉
(〈X(2)? |X(1)?〉). ours - proposed GFA approach; imputation - median
imputation approach; chance - chance level. Exp. 1 - complete data;
Exp. 2a - 20% of the elements of X(2) missing; Exp. 2b - 20% of the
rows of X(1) missing.

Predict X(1) from X(2) Predict X(2) from X(1)

E
xp

.
1 ours 1.38 ± 0.21 0.81 ± 0.18

chance 2.48 ± 0.28 2.24 ± 0.39

E
xp

.
2a ours 1.23 ± 0.25 0.71 ± 0.11

imputation 1.27 ± 0.25 0.74 ± 0.11
chance 2.29 ± 0.27 2.06 ± 0.29

E
xp

.
2b ours 1.14 ± 0.19 0.75 ± 0.18

imputation 1.17 ± 0.18 0.75 ± 0.18
chance 2.27 ± 0.26 2.22 ± 0.36

In additional experiments, I showed that the proposed GFA approach out-
performs the median imputation approach (in inferring the model parameters
and predicting one unobserved view from the observed one), when values from
the tails of the data distribution are missing (Figure B.2a and Table B.2). The
proposed GFA extension also outperformed the median imputation approach,
when both data modalities were generated with missing values in low (Figure
B.2b) and high dimensional (Figure B.2c) data.

5.3.2 HCP data
In the complete data experiment, the model converged to a solution comprising
75 latent components, i.e., five components were inactive for both data modal-
ities (the loadings were close to zero) and were consequently pruned out. The
model converged to similar solutions across different initialisations, i.e., the
number of inferred latent components was consistent across initialisations. The
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total percentage of variance explained by the components (∑2
m=1

∑75
k=1var

(m)
k )

corresponded to ∼7.55%, leaving 92.45% of the variance captured by residual
error. Within the variance explained, six components were considered most
relevant (rvar(m)

k > 7.5%), which captured ∼27.8% of the variance explained
by the total number of components (Table 5.2). Based on the ratio between
the variance explained by the non-imaging and brain components rk (Equation
5.25), we identified four shared components (displayed in Figure 5.3) and two
brain-specific components (displayed in Figure 5.4), ordered from the highest
to the lowest ratio rk (Table 5.2).

Table 5.2: Most relevant shared and modality-specific components obtained with
complete data according to the proposed criteria. Components explain-
ing more than 7.5% variance within any data modality were considered
most relevant. A component was considered shared if 0.001≤ rk ≤ 300,
specific to non-imaging (NI) modality if rk > 300 or brain-specific if
rk < 0.001. rvar - relative variance explained; var - variance explained;
rk - ratio between the variance explained by the k-th component in the
non-imaging and brain data.

rvar (%) var (%) rk
Components Brain NI Brain NI varNI/varbrain

Sh
ar
ed

a 0.096 8.103 0.007 0.028 4.03
b 0.032 17.627 0.002 0.061 26.22
c 0.011 9.869 7.65 × 10−4 0.034 44.32
d 0.008 33.336 5.46 × 10−4 0.114 209.65

B
ra
in a 14.267 2.311 × 10−9 1.028 7.93 × 10−12 7.72 × 10−12

b 11.407 0.036 0.822 1.23 × 10−4 1.50 × 10−4

Figure 5.3 shows the loadings of the shared GFA components obtained
with complete data. To aid interpretation, the loadings of the brain com-
ponents were multiplied by the sign of the population mean correlation to
obtain a measure of edge strength increase or decrease (as in Smith et al.
(2015)). The first shared component (Figure 5.3a) relates cognitive perform-
ance (loading positively), smoking and drug use (loading negatively) to the
default mode and frontoparietal control networks (loading positively) and in-
sula (loading negatively). The second shared component (Figure 5.3b) relates
negative mood, the long term frequency of alcohol use (loading negatively) and
short term alcohol consumption (loading positively) to the default mode and
dorsal and ventral attentional networks (loading negatively), and frontopari-
etal networks loading in the opposite direction. The third shared component
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(Figure 5.3c) is dominated by smoking behaviour (loading negatively) and,
with much lower loadings, externalising in the opposite direction, which are
related to the somatomotor and frontotemporal networks (loading positively).
The fourth shared component (Figure 5.3d) seems to relate emotional function-
ing, with strong negative loadings on a variety of psychopathological aspects
(including both internalising and externalising symptoms), and positive load-
ings on traits such as conscientiousness and agreeableness and other aspects of
wellbeing to cingulo-opercular network (loading negatively), and the left sided
default mode network (loading positively).
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a b

c d

Figure 5.3: Non-imaging features and brain networks described by the first (a),
second (b), third (c) and fourth (d) shared GFA components ob-
tained in the complete data experiment. For illustrative purposes,
the top and bottom 15 non-imaging features of each component are
shown. The brain surface plots represent maps of brain connection
strength increases/decreases, which were obtained by weighting each
node’s parcel map with the GFA edge-strengths summed across the
edges connected to the node (for details, see Appendix B.2.3). Separ-
ate thresholded maps of brain connection strength increases and de-
creases can be found in Figure B.7.
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Figure 5.4 shows the loadings of the brain-specific components obtained
with complete data. The first component (Figure 5.4a) contains positive load-
ings on many areas within the frontoparietal control network, including dor-
solateral prefrontal areas and inferior frontal gyrus, supramarginal gyrus, pos-
terior inferior temporal lobe and parts of the cingulate and superior frontal
gyrus. The second component (Figure 5.4b) includes positive loadings on many
default mode network areas, such as medial prefrontal, posterior cingulate and
lateral temporal cortices, and parts of angular and inferior frontal gyri. These
components show that there is great variability in these networks across the
sample, but this variability was not linked to the non-imaging features included
in the model.

a b

Figure 5.4: Brain networks associated with the brain-specific GFA components
obtained in the complete data experiment. The brain surface plots
represent maps of brain connection strength increases/decreases, which
were obtained by weighting each node’s parcel map with the GFA
edge-strengths summed across the edges connected to the node (see
Appendix B.2.3).

The model converged to a similar solution in the incomplete data ex-
periment 2a (20% of the elements of the non-imaging matrix missing), which
included 73 components and the total percentage of variance explained by
these was ∼7.60%. The number of most relevant components, based on the
rvar metric (Equation 5.24), was six, and they were similar to those obtained
in the complete data experiment (Table 5.3), capturing ∼28.2% of the variance
explained by all components (Table B.3). Four of these were considered shared
components (Figure B.4) and two were considered brain-specific (Figure B.6a,
c). In the incomplete data experiment 2b (20% of the subjects missing in
the brain connectivity matrix), the model converged to a solution containing
63 components and the total percentage of variance explained corresponded
to ∼5.21%. Although more components were removed and a loss of variance
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explained was noticeable, the most relevant components were similar to those
obtained in the other experiments (Table 5.3, Figure B.5 and Figure B.6b, d),
capturing ∼33.2% of the variance explained by all components (Table B.4).

Table 5.3: Similarity (measured by Pearson’s correlation) between the most rel-
evant components obtained in the complete and those obtained in the
incomplete data experiment 2a and 2b (first and second row, respect-
ively).

Shared components Brain components
a b c d a b

Experiment 2a 0.896 0.964 0.954 0.989 0.974 0.974
Experiment 2b 0.907 0.973 0.954 0.995 0.941 0.942

In the multi-output prediction task, the model predicted several non-
imaging features better than chance (Figure 5.5) using complete data. The top
10 predicted features corresponded to those with the highest loadings obtained
mainly in the first shared component (Figure 5.3a) and were consistent across
the incomplete data experiments (Figure B.8). Finally, the model failed to pre-
dict the missing values in both incomplete data experiments: ρ= 0.112±0.011
(where ρ represents the averaged Pearson’s correlation across initialisations)
for experiment 2a; ρ= 0.003±0.007 for experiment 2b.

Top 10 predicted variables: 

Reading Test
Picture Vocabulary Test
Picture Vocabulary Test Age Adjusted
Reading Test Age Adjusted
Penn Line Orientation: (Total Positions Off for All Trials)
Fluid intelligence (number of correct responses)
Number days smoked/used ANY TOBACCO in past 7 days
Any positive test for THC (cannabis)
Dimensional Change Card Sort Test (executive function)
Penn Line Orientation (Total Number Correct)

Prediction
Train mean (chance level)

Figure 5.5: Multi-output predictions of the non-imaging features using complete
data. The top 10 predicted features are described on the right-hand
side. For each non-imaging feature, the mean and standard deviation
of the relative MSE (Equation 5.26) between the true and predicted
values on the test set was calculated across different random initialisa-
tions of the experiments.

To highlight the differences between GFA and CCA, we compared the
CCA modes to the GFA components obtained using complete data (Figure
5.6 and Table 5.4). To interpret the association captured by each CCA mode,
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we correlated the non-imaging measures and brain connectivity variables with
the canonical scores obtained for each data modality (as in Smith et al. (2015)),
respectively. The first, second and third CCA modes (Figure 5.6a,b,c) were
similar to the top and bottom non-imaging measures obtained in the first GFA
component (Figure 5.3a). However, the positive brain loadings on the postero-
lateral and medial default mode networks in the first GFA component are split
between the first and third CCA modes, respectively. The fifth CCA mode
related most strongly to inattention, aggression and antisocial behaviour to
positive loadings on posterior insula, and inferior, superior and medial frontal
regions. The fourth GFA component contained these non-imaging measures
and low mood/internalising as well. Finally, the brain loadings in lateral pre-
frontal and insular cortex were similar across the fifth CCA mode and the
fourth GFA component.

Finally, the first GFA component (related to CCA modes 1-3) replicates
the findings found by Smith et al. (2015) using CCA applied to approxim-
ately 500 subjects (first release of the HCP dataset). Both of these contained
loadings related to cognitive performance and tobacco or cannabis use, and
brain loadings on default mode areas. Some remaining non-imaging measures
in Smith et al.’s mode appeared in our fourth GFA component (related to
life satisfaction and aggression), which strongly related to different forms of
psychopathology.

Table 5.4: Pearson’s correlations between the most relevant GFA components and
the CCA modes obtained in the HCP experiment with complete data.
The values in bold represent the highest absolute correlations between
a given CCA mode and the GFA components.

GFA
Shared Brain-specific

a b c d a b

C
C
A

a 0.605 0.011 0.105 0.064 0.093 0.347
b 0.380 0.112 0.050 0.190 0.093 0.081
c 0.231 0.112 0.206 0.065 0.299 0.048
d 0.009 0.191 0.039 0.061 0.083 0.036
e 0.052 0.092 0.115 0.173 0.031 0.386
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d e

a b c

Figure 5.6: Non-imaging measures and brain networks correlated with the CCA
modes obtained in the HCP experiment with complete data. The top
and bottom 15 non-imaging measures for each component are shown.
The brain surface plots represent maps of brain connection strength
increases/decreases, which were obtained as described in Section B.2.3.

5.4 Discussion
We showed, using synthetic data, that the proposed GFA extension can cor-
rectly learn the underlying latent structure, i.e., it separates the shared com-
ponents from the view-specific ones, when data is missing. Moreover, it in-
ferred the model parameters better than the median imputation approach in
different incomplete data scenarios. CCA, on the other hand, was only able to
recover the shared latent components and identified spurious latent compon-
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ents when the values of the tails of the data distribution were missing (Figure
B.3). These findings highlight the importance of using approaches that can
handle missing data and model the view-specific associations. Interestingly, in
the multi-output prediction task, our GFA extension only outperformed the
median imputation approach when the most informative values of the data
(i.e., the values on the tails of the data distribution) were missing (Table B.1).
This indicates that these values might be driving the predictions, and the
model fails to predict one view from the other when these values are not care-
fully imputed. Finally, our GFA extension was able to predict, on synthetic
data, the missing values in different incomplete data scenarios.

The application of the extended GFA model to the HCP dataset led to
the identification of six most relevant components: four describing associations
between brain connectivity and non-imaging features and two describing asso-
ciations within brain connectivity. Importantly, these were consistent across
the experiments with complete and incomplete data sets. Of note, only a small
proportion of the variance was captured by the GFA latent structure, which
may be explained by two main reasons: the brain connectivity data is noisy
and/or the shared variance between the included non-imaging and the brain
connectivity features is relatively small with respect to the overall variance in
brain connectivity. Interestingly, most of the featured domains of non-imaging
features were not unique to particular components, but appeared in different
arrangements across the four components. For instance, alcohol use appeared
in three out of four components: in the first, it loads in the opposite direction
to cognitive performance, in the second, its frequency loads in the same dir-
ection as low mood and internalising, and in the third, its total amount loads
in the same direction as externalising. The second GFA component (Figure
5.3b) has puzzlingly opposing loadings of frequency of alcohol use versus total
alcohol drunk in the last seven days. This is probably because the distribu-
tions of “total amount” answers are very skewed, with most subjects reporting
zero, hence a lot of variance can be explained by this rather paradoxical set of
loadings (Figure B.9). Alternatively, it might be that these alcohol use items
represent two different behaviours, where “total amount” answers are related
to a more short-term alcohol use and the “frequency” answers might represent
more long-term and consistent alcohol use.

The first GFA component was almost identical to the first CCA mode
(Figure 5.6 and Table 5.4), which resembled the CCA mode obtained using
a subset of this data set (Smith et al., 2015). The second and third CCA
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modes presented similar most positive and negative non-imaging features to
the first GFA component. A possible explanation of the differences observed
between the CCA and GFA results is that we had to apply principal compon-
ent analysis (using 100 principal components for each data modality) to reduce
the dimensionality of the data before applying CCA. This extra preprocessing
step makes the CCA approach less flexible because the model cannot explore
all variance in the data, whereas in GFA this does not happen because no
dimensionality reduction technique is needed. Moreover, the lack of corres-
pondence between CCA modes and GFA factors might be due to the different
assumptions on noise across the two models, i.e., CCA assumes full covariance
matrices, while GFA assumes diagonal covariance matrices. Curiously, sparse
CCA (which also assumes diagonal covariance matrices, and it does not need
a PCA step beforehand) was applied to this dataset (results not show here),
and it uncovered modes of covariation similar to GFA’s factors. Finally, this
difference might also be explained due to the random rotations of CCA, how-
ever this is unlikely reason here because we ran CCA iteratively (see Section
5.2.5), where each mode is force to be orthogonal to the subsequent ones and
in this way we potentially fix the issue of rotation ambiguity in CCA.

The brain-specific components were difficult to interpret - as would be
expected due to the inherent complexity of this data modality. Their partial
similarity to known functional connectivity networks (frontoparietal and de-
fault mode) indicates, unsurprisingly, that there are aspects of these networks
that are not related to the non-imaging features included here. Interestingly,
the second brain component (Figure 5.4b) showed a few similarities (ρ≈ 0.39,
Table 5.4) with the fifth CCA mode (Figure 5.6e), which indicates that this
mode could be either a spurious association or a brain-specific component that
CCA is not able to explicitly identify. This finding indicates the importance
of separating the shared components from the modality-specific ones and the
use of more robust inference methods. Finally, the relevance of the modality-
specific associations would have been more evident if we had included more
than two data modalities, where associations within subsets of data modalities
could be identified.

Finally, our GFA extension was able to predict a few non-imaging features
from brain connectivity in incomplete data sets. Even though the relative
MSE values were modest, the model could predict several features better than
chance. Importantly, the best predicted features corresponded to the loadings
most informative in the shared components (i.e., the highest absolute loadings),
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which demonstrates the potential of GFA as a predictive model.
Although the findings from both synthetic and real datasets were robust,

there are still a few inherent limitations in our GFA extension. Firstly, the
number of initial latent components K needs to be chosen; however, we have
shown in synthetic data that the model can still converge to a good solution
even if the number of latent components is overestimated. Secondly, although
the criteria used to select the most relevant components were validated on syn-
thetic data, these can be further improved, e.g., by assessing the robustness of
the components. Thirdly, our GFA extension is computationally demanding
to run experiments with incomplete data sets (e.g., the CPU time was ap-
proximately 50 hours per initialisation in the HCP experiments). Finally, al-
though we were not proposing an imputation method, our GFA extension could
have been compared to better methods than median imputation, e.g., using
PCA-low-rank-soft-shrinkage (Cai et al., 2010) or an iterated GFA-imputation
extension.

In summary, I proposed an extension of Group Factor Analysis (GFA)
that can uncover associations among multiple data modalities, even when these
modalities have missing data. We showed that our proposed GFA approach
can: (1) find associations between high dimensional brain connectivity data
and non-imaging features (e.g., demographics, psychometrics and other beha-
vioural features) and (2) predict non-imaging features from brain connectivity
when either data is missing at random or one modality is missing for some
subjects. Moreover, we replicated previous findings obtained in a subset of
the HCP dataset using CCA (Smith et al., 2015). Due to its Bayesian nature,
GFA provides great flexibility to be extended to more complex models that
can potentially solve more complex tasks in neuroimaging studies.



Chapter 6

Uncovering multivariate
associations in subgroups of
patients with genetic FTD using
GFA

In this chapter, I present two extensions of the GFA model: a new sparse GFA
model and supervised GFA. These models include sparsity over the features
and samples to allow feature selection to improve model interpretability and
sample selection to identify latent components that characterise subgroups of
subjects at the individual subject level. The study presented in this chapter
was a collaborative work with Samuel Kaski (Department of Computer Science,
Aalto University), Jonathan Roher and Arabella Bouzigues (UCL Dementia
Research Centre). Samuel Kaski and Janaina Mourao-Miranda supervised the
project. Jonathan Rohrer and Arabella Bouzigues provided the preprocessed
GENFI dataset and contributed to the interpretation and discussion of the
results.

6.1 Introduction
As described in the previous chapter, GFA can be used to model associations
among multiple views, separating the associations between views from those
within views. However, the model does not allow feature-wise sparsity, which
is particularly useful for feature selection and model interpretation in high di-
mensional data sets. Moreover, the model is unable to identify associations
only present in population subgroups, which might be relevant in clinical ap-
plications where populations are usually heterogeneous (e.g., neurological and
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psychiatric disorders).
Bunte et al. (2016) proposed a sparse extension of GFA to find biclusters,

which are defined as sets of rows that are similar for sets of columns in a data
matrix, and vice versa. These biclusters are inferred by adding shrinkage priors
(e.g., spike-and-slab priors) over the loading matrices and latent variables to
impose sparsity over samples and features, respectively (see Section 2.3.4). For
instance, the biclusters can be interpreted as subsets of individuals sharing
associations among subsets of features in multiple data modalities.

The spike-and-slab priors have been widely used in sparse Bayesian models
and have shown good performance in practice (Piironen and Vehtari, 2017; van
Erp et al., 2019). However, due to its discrete nature, the model inference may
be quite slow. Alternative continuous shrinkage priors, such as the horseshoe
prior (Carvalho et al., 2009), have been proposed to provide more efficient infer-
ence using automatic methods (e.g., Hamiltonian Monte Carlo (HMC) (Neal,
2011; Betancourt and Girolami, 2013)), while obtaining similar performance to
the spike-and-slab prior in practice (Piironen and Vehtari, 2017; van Erp et al.,
2019). In this study, I implemented a new sparse GFA method by replacing the
spike-and-slab priors of Bunte et al.’s model with regularised horseshoe priors
(Piironen and Vehtari, 2017) to uncover sparse associations among multiple
data modalities and identify components that characterise subgroups of sub-
jects at the individual subject level. In addition, I extended the sparse GFA
model by including a discriminative module to find latent components that
describe pre-defined subtypes and explore the heterogeneity of the subtypes.
This new model was termed supervised GFA.

The sparse and supervised GFA were applied to synthetic data and the
Genetic Frontotemporal dementia Initiative (GENFI) dataset, which includes
patients with genetic frontotemporal dementia (FTD). In FTD, a large pro-
portion of cases are caused by mutations in progranulin (GRN ), microtubule-
associated protein tau (MAPT ) and chromosome 9 open reading frame 72
(C9orf72 ) (Snowden et al., 2012; Koskinen et al., 2013). GRN and MAPT
mutations are associated with distinct phenotypes representing more homo-
geneous groups, whereas C9orf72 is known to be a heterogeneous group (Ma-
honey et al., 2012). Therefore, GENFI serves as a real data set with a partially
known ground truth for validating the proposed models. Here, I used sparse
and supervised GFA to: (1) uncover associations between brain structure and
non-imaging data (i.e., behaviour, disease severity and cognitive measures) in
genetic FTD; (2) identify latent components that may describe the distinct
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subtypes and explore within-subtype variability; (3) assess how the compon-
ents are expressed at the individual level.

6.2 Methods
In this section, I first describe our new implementation of sparse GFA using
regularised horseshoe priors (Section 6.2.1), which is followed by descriptions
of the supervised GFA model (Section 6.2.2), model inference and implement-
ation (Section 6.2.3) and how supervised GFA can be used for prediction (Sec-
tion 6.2.4). I then present a brief description of the generated synthetic data
(Section 6.2.5) and the GENFI data (Section 6.2.6). I end this section by de-
scribing the approach used to assess the robustness of the inferred components
(Section 6.2.7).

6.2.1 Sparse GFA using regularised horseshoe priors
The horseshoe prior (Carvalho et al., 2009) is a popular shrinkage prior for
Bayesian regression that ensures that small coefficients β= (β1, ...,βD)T (where
D is the number of features) are heavily shrunk towards zero, while large coef-
ficients remain large. However, this property might be harmful in practice
when the coefficients are weakly identified. Piironen and Vehtari (2017) pro-
posed a regularised extension of the horseshoe prior to ensure that large βs are
shrunk at least by a small amount. These priors are often termed as global-
local shrinkage priors, because there is a global parameter τ that shrinks all
coefficients towards zero, while the local parameters λ allow some of these
to escape complete shrinkage. The regularised horseshoe prior is defined as
follows (Piironen and Vehtari, 2017):

βj |λ̃j , τ ∼N (0, τ2λ̃2
j), λ̃2

j =
c2λ2

j

c2 + τ2λ2
j

, λj ∼ C+(0,1), j = 1, ...,D,

c2 ∼ Inv-Gamma(ν/2,νs2/2), τ ∼ C+(0, τ2
0 ), τ0 = p0

D−p0

σ√
N
,

(6.1)

where p0 is the prior guess of the number of relevant features, σ is the noise
standard deviation, N is the number of samples and C+ represents a half-
Cauchy distribution (which represents a Cauchy distribution truncated to only
have non-zero probability density for values greater than or equal to the loc-
ation of the peak). The inverse-Gamma distribution over c2 corresponds to a
Student-tν(0, s2) (with ν degrees of freedom and scale s2) slab for coefficients
far from zero (Piironen and Vehtari, 2017). If the degrees of freedom ν are
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small enough, the prior will have heavy tails that ensure robust shrinkage of
the large coefficients. In this way, the local parameters λ̃ cause small coeffi-
cients to shrink close to zero, while also regularising the largest ones. For more
details on shrinkage priors for Bayesian regression, see Piironen and Vehtari
(2017) and van Erp et al. (2019).

We replaced the spike-and-slab priors of the sparse GFA model (Equations
2.19-2.20) with regularised horseshoe priors (Figure 6.1). The priors over the
loading matrices (W(m) ∈RDm×K , where Dm is the number of features in the
m-th view and K is the number of components) are defined as follows:
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w )2(λ(m)
j,k )2

, λ
(m)
j,k ∼ C

+(0,1),

τ (m)
w ∼ C+(0, τ2

0 ), τ
(m)
0 = p

(m)
0

Dm−p(m)
0

(
√
σ(m))−1
√
N

, σ(m) ∼ Γ(a,b),

(6.2)

where p(m)
0 and σ(m) are the prior guess of the number of relevant features

and noise precision of the m-th view, respectively. The prior over (c(m)
k )2 is

an inverse-Gamma distribution as defined in Equation 6.1. The prior allows a
different number of relevant features for each view because a global shrinkage
parameter τ (m)

w is specified for each m-th view. Moreover, as a c value is
specified for each component k within a view, the prior implements sparsity
over the views (i.e. c

(m)
k → 0 leads to w(m)

k → 0). A component is deemed
“irrelevant” if the loadings of that component are pushed close to zero for all
views. Finally, the prior also implements feature-wise sparsity because some
loadings escape shrinkage due to large local parameters in Λ(m). An analogous
prior is used over the latent variables (Z ∈RK×N ) to include sparsity over the
samples:

zk,n|λ̃
(z)
k,n, τ

(z)
k ∼N (0,(τ (z)

k )2(λ̃(z)
k,n)2), n= 1, ...,N, k = 1, ...,K,

(λ̃(z)
k,n)2 =

(c(z)
k )2(λ(z)

k,n)2

(c(z)
k )2 + (τ (z)

k )2(λ(z)
k,n)2

, τ
(z)
k ∼ C

+(0,1), λ
(z)
k,n ∼ C

+(0,1),
(6.3)

where the prior over c(z)
k is also defined as in Equation 6.1. The regularised

horseshoe prior implements different levels of sparsity across the latent com-
ponents by assuming different τ (z)

k . The interpretation of the effects of c(z)
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and Λ(z) is equivalent to that described above for the loading matrices. Each
view is then generated from the following model:

x(m)
n ∼N (W(m)zn,σ(m)−1

). (6.4)

The joint probability distribution of sparse GFA is then given by:

p(X,Z,W,Λw,τw,cw,Λ(z),τ (z),c(z),σ) =
M∏
m=1

[
p(W(m)|Λ(m)

w ,τ (m)
w ,c(m)

w )

p(Λ(m)
w )p(τ (m)

w )p(c(m)
w )p(σ(m))

N∏
n=1

(
p(zn|λ(z)

n ,τ (z),c(z))p(λ(z)
n )

p(xn|zn,W(m),σ(m))
)]
p(τ (z))p(c(z)),

(6.5)
where λ(z)

n is the n-th column of Λ(z).

x(m)
n
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τ (z)

λ
(z)
n

c(z)

σ(m) W(m)

τ
(m)
w

Λ(m)
w

c
(m)
w

n= 1, ...,N

m= 1, ...,M

Figure 6.1: Graphical representation of sparse GFA using regularised horseshoe
priors.

6.2.2 Supervised GFA
To assess whether the latent components are related to a given class (e.g., a
subtype), we assume that observed labels Y ∈ RN×S (where S is the number
of classes) are generated by the same latent variables that generate X (Figure
6.2). In addition, the model includes a matrix A that stores the probabilities of
a given subtype s (a(s,:)) being associated with any of the latent components.
We added a regularised horseshoe prior over A to include sparsity over the
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subtypes and, in this way, find latent components that are associated with a
given subtype:

as,k|λ̃
(a)
s,k, τ

(a)
k ∼N (0,(τ (a)

k )2(λ̃(a)
s,k)2), s= 1, ...,S, k = 1, ...,K,

(λ̃(a)
s,k)2 =

(c(a)
k )2(λ(a)

s,k)2

(c(a)
k )2 + (τ (a)

k )2(λ(a)
s,k)2

, τ
(a)
k ∼ C+(0,1), λ

(a)
s,k ∼ C

+(0,1),
(6.6)

where c(a), Λ(a) and τ (a) can be similarly interpreted as the parameters of the
regularised horseshoe prior used over Z. A and Z are then normalized, where
a large absolute value |zk,n| represents a high probability of a sample n being
associated with a latent component k, and a large positive value as,k represent
a high probability of a subtype s being related to a latent component k. These
are calculated as follows:

z̄k,n = |zk,n|∑K
j=1 |zj,n|

, ās,k = exp(as,k)∑K
j=1 exp(as,j)

, (6.7)

Using these two matrices, one can calculate the probability of a given
sample n to belong to a subtype s, Ψn,s:

Ψn,s =
K∑
k=1

ās,kz̄k,n, yn,s ∼ Bernoulli(Ψn,s), (6.8)

where the label yn,s is assumed to be binary and generated from a Bernoulli
distribution. The joint probability distribution of the supervised GFA model
is then defined as follows:

p(X,Y,Z,A,Θ) =
N∏
n=1

[
p(yn|A)

]
p(A|Λ(a),τ (a),c(a))p(Λ(a))p(τ (a))p(c(a))

×p(X,Z,Θ),
(6.9)

where Θ = {W,Λw,τw,cw,Λ(z),τ (z),c(z),σ}, p(X,Z,Θ) was defined in Equa-
tion 6.5 and x(m)

n is generated from Equation 6.4.
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Figure 6.2: Graphical representation of supervised GFA.

6.2.2.1 Extended supervised GFA in GENFI dataset
As the GENFI dataset (Section 6.2.6) included presymptomatic and sympto-
matic mutation carriers, we decided to extend the model to account for both
the patients’ subtype category and to the fact the patients could be presymp-
tomatic or symptomatic. This was achieved by inferring two subtype probab-
ilities matrices: A (as in Equations 6.6-6.7) to infer the subtype probabilities
within the affected/symptomatic group; P to infer the subtype probabilities
within the presymptomatic group. A regularised horseshoe prior was added
over P (as it was done for A in Equation 6.6), which was then normalised, as
for A in Equation 6.7. The probabilities of the subjects to belong to the symp-
tomatic and presymptomatic mutation carriers were estimated in the following
way:

Ψ(A)
s,n =

K∑
k=1

ās,kz̄k,n, y(A)
s,n ∼ Bernoulli(Ψ(A)

s,n ),

Ψ(P )
s,n =

K∑
k=1

p̄s,kz̄k,n, y(P )
s,n ∼ Bernoulli(Ψ(P )

s,n ),
(6.10)

where y(A)
s,n = 1 if a symptomatic individual belongs to subtype s, and y(A)

s,n = 0
otherwise. y(P )

s,n = 1 if a presymptomatic individual belongs to subtype s, and
y

(P )
s,n = 0 otherwise.

6.2.3 Model inference and implementation
As in GFA and Bayesian CCA (Section 2.3), exact inference of sparse (unsuper-
vised) and supervised GFA is analytically intractable. Here, I used Hamilto-
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nian Monte Carlo (HMC) (Neal, 2011; Betancourt and Girolami, 2013), which
is a sampling technique, to approximate the posterior distribution of both mod-
els. Briefly, sampling algorithms, such as Markov Chain Monte Carlo (MCMC)
methods, approximate the posterior distribution by drawing samples from it
to compute posterior estimates (e.g., posterior expectation and variance).

MCMC methods use the properties of a Markov Chain to stochastically
explore (using Markov transitions) the space around the mode of the pos-
terior distribution (i.e., the region with high probability mass) (Betancourt,
2018). However, constructing appropriate transitions is very important to use
these methods efficiently, which is often a challenging process. The Metropolis-
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) was proposed to
mitigate this issue by considering a proposal and a correction step. In the
former, a candidate sample is randomly generated from a proposal probability
distribution (i.e., a probability distribution that is compared to the posterior
distribution), which is accepted if it falls into regions close to the high pos-
terior probability mass, or rejected otherwise in the correction step (Bishop,
2006; Betancourt, 2018). However, this random “walk” is problematic in high
dimensional spaces, where, due to its geometry, most of the proposal samples
fall far away from the high probability regions. The rejection rate is therefore
high, making the procedure very slow and with the possibility of several re-
gions of the target distribution not being explored. It is possible to induce a
larger acceptance rate by shrinking the covariance of the proposal distribution,
but the transitions would be very small, which leads to extremely slow explor-
ation. Moreover, even if the posterior distribution is well explored, the slow
exploration yields large autocorrelations and imprecise estimates (Betancourt,
2018). Hamiltonian Monte Carlo (HMC) is a MCMC method that makes use
of Hamiltonian dynamics to improve the exploration step and increase the
acceptance rate in high dimensional spaces (Betancourt, 2018). In this way,
approximate inference can be run more efficiently to compute good estimates
of the model’s parameters. The description of these methods and its variants
are beyond the scope of this thesis. For more details, see e.g. Gelman et al.
(2013); Betancourt (2018).

In recent years, several probabilistic programming libraries, such as Stan
(Stan Development Team, 2019), Edward (Tran et al., 2016), PyMC3 (Sal-
vatier et al., 2016) and NumPyro (Phan et al., 2019), have been developed to
provide high-performance probabilistic modelling and inference. These librar-
ies use, for instance, HMC and its extensions (e.g., the No-U-Turn Sampler
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(NUTS) (Hoffman and Gelman, 2014)) to run full Bayesian statistical infer-
ence efficiently even in high dimensional datasets. Here, I used NumPyro to
implement both models. NumPyro is a Python library that uses automatic
differentiation and end-to-end compilation to run HMC (with a NUTS imple-
mentation) on CPU/GPU, which allows efficient automatic inference, i.e, the
user does not need to derive the inference equations.

The models were fitted using HMC with four sampling chains and 5,000
samples (the first 1,000 were discarded as warm-up) and randomly initialised
ten times. The best initialisation was selected to maximise the expected log
joint posterior density.

6.2.4 Predictive inference
Supervised GFA can be used to predict the probabilities of the subjects on the
test set to belong to a given class/subtype of each sample, using its posterior
predictive distribution:

p(Ỹ|X̃,Y,X) =
∫
Θ

∫
Z̃
p(Ỹ|X̃, Z̃,Θ) ·p(Z̃|X̃,Θ) ·p(Θ|X,Y)dΘdZ̃

≈ 1
L

1
B

L∑
l=1

B∑
b=1

p(Ỹ|X̃, Z̃(b),Θ(l)),
(6.11)

where Θ(l) ∼ p(Θ|X,Y), Z̃(b) ∼ p(Z̃|X̃,Θ(l)), L is the total number of
samples drawn from p(Θ|X,Y) and B is the total number of samples
drawn from p(Z̃|X̃,Θ(l)) using HMC. X̃ and Z̃ correspond to the in-
put data and latent variables on the test set, respectively, and Θ =
{Z,W,Λw,τw,cw,Λ(z),τ (z),c(z),Λ(A),τ (A),c(A)σ}.

6.2.5 Synthetic data
I created a toy example consisting of N = 150 samples with three different
views (D1 = 60, D2 = 40 and D3 = 15) generated from the following model
x(m)
n ∼ N (W(m)zn,σ(m)), where the priors over W(m) and zn are defined

in Equations 6.2 and 6.3, respectively, and the noise precision of each view
was fixed (σ(1) = 3, σ(2) = 6 and σ(3) = 4). The parameters to construct the
regularised horseshoe priors over W and Z were defined as follows: (c(m)

k )2

and (c(z)
k )2 were sampled from the inverse-Gamma prior in Equation 6.1 with

ν = 2 and s = 2 (as proposed by Piironen and Vehtari (2017)); Λ(m) and
Λ(z) were set manually, i.e., the values of the indices of the relevant fea-
tures/samples were set to 50 and the remainder to 0.01; τ (m) = τ

(m)
0 , where

p
(m)
0 =Dm/3 (i.e., one third of the features in a given view m were considered
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relevant); τ (z)
k = p

(z)
k

N−p(z)
k

σz, where σz = 1 and p(z)
k = N/3 (i.e., one third of the

samples in a given latent component k had non-zero values). The data was
generated with Ktrue = 3 latent components that were defined to represent
three distinct subtypes (S = 3): Ā = IS×Ktrue , where I represents an iden-
tity matrix. The subtypes were defined as independent subsets of samples,
i.e.: S1 = {X1,:, . . . ,X50,:}, S2 = {X51,:, . . . ,X100,:} and S3 = {X101,:, . . . ,X150,:},
where X corresponds to the concatenation of the three views. The first sub-
type (Figure 6.3a) is defined by associations between subsets of features of X(2)

and X(3). The second subtype (Figure 6.3b) represent the subset of samples
with associations within subsets of features of X(1). The third subtype (Fig-
ure 6.3c) is described by associations between subsets of features of all views.
Forty samples of each subtype were chosen for training, and the remaining
ten of each subtype were used for testing. Finally, all sampling chains were
initialised with K = 5.

6.2.6 GENFI dataset
We used cross-sectional brain structural MRI data and non-imaging data (e.g.,
psychometrics and other behavioural features) of 473 subjects from GENFI
(https://www.genfi.org/) recruited across 13 centres in the United Kingdom,
Canada, Italy, The Netherlands, Sweden and Portugal. 60 subjects were re-
moved because they had more than one third of the non-imaging features
missing. The 413 participants included 296 presymptomatic (114 C9orf72,
134 GRN and 48 MAPT ) and 117 symptomatic (58 C9orf72, 41 GRN and 18
MAPT ) mutation carriers.

The structural MR images were parcellated into different cortical and sub-
cortical regions using a multi-atlas segmentation propagation approach (Car-
doso et al., 2015) to calculate grey matter volumes of the left and right frontal,
temporal, parietal, occipital, cingulate and insula cortices. An estimate of
the volume of the cerebellum was also included. The subcortical volumes in-
cluded left and right amygdala, caudate, hippocampus, pallidum, putamen and
thalamus. In addition to regional volumetric measures, a measure of volume
asymmetry was calculated as proposed in Young et al. (2018), i.e., the absolute
value of the difference between the volumes of the right and left hemispheres,
normalised by the total volume of both hemispheres. This asymmetry measure
was log transformed to improve normality. The total number of brain imaging
features was 28 (X(1) ∈ R28×413). For more details on the acquisition and
preprocessing procedures of the structural MRI data, see Rohrer et al. (2015).

https://www.genfi.org/
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As non-imaging data, we included measures from informant questionnaires
(which were completed by primary caregivers) assessing behaviour and disease
severity, neuropsychological tasks (completed by patients) and medical assess-
ments of disease severity. A brief description of each non-imaging feature is
provided in Table C.1. Measures with more than 10% of missing data were ex-
cluded, and the missing values that still remained were imputed by the median
of the respective feature across subjects (as the percentage of missing data for
most of the remaining features was below 1%). Four confounding variables
were regressed out from both data modalities: age, sex, education and total
intracranial volume. All features were standardised to have zero mean and unit
variance. After the preprocessing step, 34 non-imaging features were included
in the second view (X(2) ∈ R34×413).

All presymptomatic individuals and 90% of the symptomatic individuals
were randomly selected for training the model. The remaining 10% sympto-
matic individuals were used for testing. The mean and confidence intervals
of the individual subject probabilities on the test set were computed using
Equation 6.11. Finally, all sampling chains were initialised with K = 15.

6.2.7 Robust data components
The inferred data components correspond to the latent components mapped
back to the input/data space (i.e., Xk = w(:,k)z(k,:), k = 1, ...,K). To minimise
the risk of obtaining components that might have occurred by chance, I used
a similar approach as in Bunte et al. (2016) to search and select components
that were consistent across the different sampling chains. Briefly, as the com-
ponents indices can be arbitrarily permuted across different sampling chains,
they need to be matched with similar components across the sampling chains.
The components were first averaged over the posterior samples within a chain
(which can be done because the component indices are stable within a chain),
and then compared with the components in other sampling chains using cosine
similarity. Two components were considered to be similar if the highest cosine
similarity measure was greater than 0.80. Finally, a component was considered
robust if it had appeared in more than half of all sampling chains.

6.3 Results
In this section, I present the results of the experiments on synthetic data using
supervised GFA (Section 6.3.1) and on the GENFI dataset (Section 6.3.2)
using sparse (unsupervised) and supervised GFA.
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6.3.1 Synthetic data
Figure 6.3 shows the generated and inferred subtypes (which are represented
by three distinct components). Supervised GFA was able to infer the struc-
ture of each subtype correctly, i.e., the sparsity over the samples and features
was correctly inferred. The number of latent components was correctly estim-
ated, where most of the elements of the “irrelevant” components were very
close to zero (these components were not considered robust components us-
ing the approach described in Section 6.2.7). Moreover, the individual sample
probabilities Ψ were well inferred by supervised GFA (Figure 6.5a-b) by cor-
rectly assigning most samples to the generated subtype, i.e., a high probability
was calculated if a sample belonged to a given subtype. The probabilities of
the subtypes being associated with the latent components were also properly
inferred:

Ā =


0.984±0.020 0.003±0.006 0.003±0.005
0.003±0.006 0.984±0.020 0.003±0.006
0.003±0.005 0.003±0.005 0.984±0.020


where each subtype was associated with (i.e., had a high probability of being
related to) a distinct latent component. The posterior distribution over the
remainder of the model’s parameters included the values used to generate the
data (see, e.g., Figure 6.4). Finally, the model predicted the probabilities of
the test samples belonging to each class/subtype reasonably well (Figures 6.5c-
d), i.e., a high probability of belonging to the correct subtype was correctly
estimated for most of the samples.
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Figure 6.3: Generated and inferred data components representing the underly-
ing subtypes. Subtype 1 is described by associations between subsets
of features of X(2) and X(3). Subtype 2 is described by association
within subsets of features of X(1). Subtype 3 is characterised by as-
sociations between subsets of features of all views. The components
were transposed for visualisation purposes, where the training samples
are represented on the rows and the features on the columns.
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σ τw

Figure 6.4: Histogram of the posterior samples of σ (left) and τw (right) obtained
when running supervised GFA on synthetic data. The vertical red line
indicates the true value of each parameter.
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Figure 6.5: Probabilities of samples to belong to the subtypes (Ψ). True (a) and
inferred (b) Ψ on the training set; True (c) and predicted (d) Ψ on
the test set. The samples are represented on the rows and the subtypes
on the columns.

6.3.2 GENFI dataset
In this section, I present the results obtained using sparse GFA (Section 6.3.2.1)
and supervised GFA (Section 6.3.2.2) applied to the GENFI dataset.
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6.3.2.1 Sparse GFA
Figures 6.6a-d show the four robust components obtained by sparse GFA that
explained more variance (≈ 40.04%) in the data (i.e., Components 15, 7, 9 and
3 in the scree plot shown in Figure 6.7b). In these heatmaps, the rows rep-
resent the brain and non-imaging features and the columns represent patients,
coloured by genetic group (C9orf72, GRN and MAPT ) and status (sympto-
matic and presymptomatic). Component 15 (Figure 6.6a) explained more than
20% of the variance, and it seems to separate the presymptomatic individu-
als from the symptomatic ones. Component 7 (Figure 6.6b) did not seem to
be associated with any specific subtype, but obtained greater values on only
non-imaging measures, mostly for symptomatic C9orf72 and MAPT carriers.
Component 9 (Figure 6.6c) shows mostly symmetric subcortical changes, and
it was also not specifically associated with any subtype. Component 3 (Figure
6.6d) obtained greater absolute values on a few brain regions for symptomatic
MAPT carriers. Although, the values of these brain regions were not very close
to zero for individuals of the other subtypes, it is likely that this component
might be associated with the symptomatic MAPT carriers.
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Figure 6.6: Robust components obtained using sparse GFA. (a) Component 15;
(b) Component 7; (c) Component 9; (d) Component 3. The rows
represent the brain (brown) and non-imaging (yellow) features. The
columns represent the patients, coloured by genetic group and status.
The task name of the abbreviated non-imaging labels can be found in
Table C.1 and the full label of the brain imaging features can be found
in Table C.2.

To investigate whether any of the remaining robust components were as-
sociated with a specific subtype, we considered a component to be related to
a specific subtype if it had non-zero values (i.e., |x(d,n)|> 0.01) for more than
10% individuals in a single subtype only. Only Component 5 (Figure 6.7a),
which explained 2.14% variance, was selected based on this threshold, and it
seems to be associated with the symptomatic GRN carriers (i.e., most of the
non-zero values were specific to these individuals).
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Figure 6.7: Component related to symptomatic GRN carriers obtained using
sparse GFA and total variance explained by each component. (a)
Component 5; (b) scree plot of the variance explained by each inferred
component. The rows represent the brain (brown) and non-imaging
(yellow) features. The columns represent the patients, coloured by
genetic group and status.

6.3.2.2 Supervised GFA
Figures 6.8a and 6.8b show the inferred probabilities of the subtypes being as-
sociated with the latent components of the symptomatic (Ā) and presympto-
matic (P̄) individuals, respectively. 12 (out of 15) components were considered
robust using the approach described in Section 6.2.7. These components ex-
plained 51.52% of the total variance on the training data. Figure 6.8c shows
the percentage of the total variance explained by each component. Here, I
will focus on the interpretation of the robust components that showed a prob-
ability of being associated with a subtype above 15% (i.e., Components 1, 4,
5, 7 and 9), which together explained 39.54% of variance. Components 4,
5, 7 and 9 explained more variance in the data (Figure 6.8c). Component 1
(which explained 1.97% of variance) obtained a high probability (0.98) of be-
ing associated with the symptomatic GRN mutation carriers. Component 9
(which explained 4.39% of variance) showed a 0.95 probability of being related
to the symptomatic MAPT mutation carriers. Component 9 was also associ-
ated with presymptomatic MAPT (probability of 0.28). Components 4 and
7 (23.42% and 5.46% of variance explained, respectively) obtained probabil-
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ities of 0.58 and 0.19, respectively, of being associated with the symptomatic
C9orf72 mutation carriers. In addition, Component 4 showed a 0.77 probab-
ility of being related to the presymptomatic GRN mutation carriers, but was
also slightly associated with the presymptomatic C9orf72 and MAPT muta-
tion carriers (probabilities of 0.19 and 0.17, respectively). Finally, Component
5 explained 4.30% of variance, and was more associated with the presympto-
matic C9orf72 mutation carriers (probability of 0.74), and slightly related to
GRN and MAPT individuals (probability of 0.12 for both groups).

a b c

L
at

en
t 

co
m

p
on

en
ts

Subtypes Subtypes

L
at

en
t 

co
m

p
on

en
ts

Latent components

V
ar

ia
n

ce
 e

xp
la

in
ed

 (
%

)

Figure 6.8: The probabilities of the subtypes being associated with the latent com-
ponents for the (a) symptomatic (Ā) and (b) presymptomatic (P̄)
individuals, and the (c) scree plot of the variance explained by each
inferred component.

Figure 6.9 shows the component related to the symptomatic GRN muta-
tion carriers (which is very similar to Component 5 obtained by sparse GFA,
Figure 6.7a). Most of these individuals showed greater grey matter volume
(or values above average) in the right frontal lobe, parietal lobe, temporal
lobe, insula, cingulate and right subcortical regions (hippocampus, putamen,
pallidum, thalamus, amygdala and accumbens) while the same regions on the
left hemisphere showed less grey matter volume (or values below average). In
terms of non-imaging measures, these GRN individuals had higher scores in
language, speech and neuropsychological tasks such as trail making and Stroop
tasks, and lower scores in self-care, cognitive performance (mini mental state
examination (MMSE)), digit span forwards and Boston naming task. Finally,
a few other symptomatic GRN carriers showed an opposite pattern on the
same brain and non-imaging features, i.e., the positive and negative values
were flipped.
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Figure 6.9: Component related to the symptomatic GRN mutation carriers. The
rows represent the brain (brown) and non-imaging (yellow) features.
The columns represent the patients, coloured by genetic group and
status. The task name of the abbreviated non-imaging labels can be
found in Table C.1 and the full label of the brain imaging features can
be found in Table C.2.

Figure 6.10 shows Component 9, which was associated with the sympto-
matic (probability of 0.95) and presymptomatic (probability of 0.28) MAPT
mutation carriers, and it is identical to Component 3 obtained by sparse GFA,
Figure 6.6d). The symptomatic individuals showed predominantly smaller
grey matter volume (values below average) in the right and left temporal
lobes, amygdala and hippocampus, and lower scores in the Boston naming
task. For some presymptomatic MAPT carriers and symptomatic carriers of
other genetic groups, the sign of the features described above were flipped.
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Figure 6.10: Component related to the symptomatic MAPT mutation carriers.
The rows represent the brain (brown) and non-imaging (yellow) fea-
tures. The columns represent the patients, coloured by genetic group
and status. The task name of the abbreviated non-imaging labels can
be found in Table C.1 and the full label of the brain imaging features
can be found in Table C.2.

Figure 6.11 shows the component associated with the symptomatic
C9orf72 individuals (similar to Component 7, Figure 6.6b), which is represen-
ted by non-imaging features only, i.e., the values of the brain imaging features
are very close to zero. The symptomatic C9orf72 mutation carriers showed
higher scores in several behavioural measures (e.g., abnormal, stereotypic beha-
viour, CBI (general behaviour), mood, motivation, memory, eating, self-care,
beliefs and everyday skills), clinical dementia rating (FTDL) and neuropsycho-
logical tasks (digit span forwards and backwards). The lower scores for these
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individuals were mostly related to disease severity (FRS), social behaviour
(RSMS), and cognitive and emotional empathy (mIRI).

Figure 6.11: Component associated with the symptomatic C9orf72 mutation car-
riers. The rows represent the brain (brown) and non-imaging (yellow)
features. The columns represent the patients, coloured by genetic
group and status. The task name of the abbreviated non-imaging la-
bels can be found in Table C.1 and the full label of the brain imaging
features can be found in Table C.2.

Component 4 is shown in Figure 6.12a, and it seems to separate the symp-
tomatic individuals (similar to Component 15 obtained by sparse GFA, Figure
6.6a) from the presymptomatic individuals, where the former showed higher
scores mostly in behavioural measures (e.g., CBI, memory, motivation, eat-
ing, everyday skills, self-care, abnormal and stereotypic behaviour), executive
function tasks (e.g., Stroop task, trail making task), clinical dementia rating
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(FTDL), speech and language assessments, and lower scores in most neuro-
psychological tasks (except for the Stroop and trail masking tasks), the FTD
rating scale (disease severity), modified interpersonal reactivity index (cognit-
ive and emotional empathy), revised self monitoring scale (social behaviour)
and MMSE. In addition, the symptomatic individuals showed greater asym-
metry between left and right hemispheres, smaller grey matter volume in the
frontal, temporal, parietal lobes and insula, as well as in several subcortical
regions (e.g., hippocampus, putamen and thalamus). The presymptomatic in-
dividuals showed an inverted pattern on the same brain and non-imaging fea-
tures. Figure 6.12b (similar to Component 9 obtained by sparse GFA, Figure
6.6c) displays Component 5, which was more associated with the presympto-
matic carriers (particularly C9orf72 ) and reveals smaller grey matter volume
in several subcortical regions for these individuals (e.g., hippocampus, caud-
ate, thalamus, amygdala, putamen and pallidum), insula and cerebellum, and
lower scores in the revised self monitoring scale, Stroop and trail making tasks
for some presymptomatic individuals and an opposite pattern for others.

Figure 6.12: Components mostly associated with presymptomatic individuals.
(a) Component mostly associated with the presymptomatic carriers
and symptomatic C9orf72 carriers (Component 4). (b) Compon-
ent mostly associated with the presymptomatic C9orf72 individuals
(Component 5). The rows represent the brain (brown) and non-
imaging (yellow) features. The columns represent the patients, col-
oured by genetic group and status. The task name of the abbreviated
non-imaging labels can be found in Table C.1 and the full label of
the brain imaging features can be found in Table C.2.
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The predicted probabilities of the symptomatic individuals on the test
set are shown in Figure 6.13. The GRN mutation carriers were fairly well
predicted, i.e., a probability greater than 0.65 was obtained for three GRN
carriers. Moreover, half of the C9orf72 carriers obtained a probability greater
than 0.50, whereas for the remaining C9orf72 individuals and MAPT carriers
the probabilities were below 0.40. Finally, the model was more uncertain about
the predictions of the C9orf72 and MAPT carriers.

a b c d

Figure 6.13: Probabilities of the symptomatic individuals on the test set to belong
to the underlying subtypes. The test samples are represented on the
rows and the subtypes on the columns. (a) Test labels; posterior
(b) mean and quantiles at (c) 0.05 and (d) 0.95 of the posterior
distribution of Ψ(A) on the test set.

6.4 Discussion
In this study, we proposed a sparse extension of GFA using regularised horse-
shoe priors to impose feature and view-sparsity, as well as sparsity over the
samples, to improve model interpretability and identify components that may
characterise different subgroups of patients in the data. We then proposed
supervised GFA by including a discriminative module to find components that
may describe the pre-defined/underlying subtypes. Although the supervised
GFA model is still at the relatively preliminary stage, it seemed to success-
fully uncover associations between brain structure and non-imaging data (i.e.,
behaviour, disease severity and cognitive measures) in genetic FTD that char-
acterised the different subtypes, which aligned with the components inferred
by sparse GFA. Moreover, both models further identified and characterised
within-subtype heterogeneity for the heterogeneous group, i.e., C9orf72 carri-
ers.

We first showed in synthetic data that supervised GFA is able to correctly
infer the data structure of each individual subtype (Figure 6.3) and the model’s
parameters (Figure 6.4). Supervised GFA correctly inferred the probabilities
of a given subtype being associated with latent components (represented in
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Ā), which means that supervised GFA can correctly identify the latent com-
ponents that are associated with subtypes, as well as the probabilities of the
samples to belong to a given subtype (Ψ, Figure 6.5a-b). In addition, super-
vised GFA predicted well the probabilities of test samples to belong to the
subtypes (Figure 6.5c-d), although the probabilities of some samples obtained
higher uncertainty (Figure C.1). In addition, the model was able to infer the
true relevant features in each view even when the prior guess of p(m)

0 did not
match the true value (Figure C.3). Finally, although our sparse (unsupervised)
GFA model cannot estimate whether a latent component is associated with an
underlying subtype, it can still infer the correct data structure of each subtype
and the model’s parameters (Figure C.2).

In applying sparse and supervised GFA to the GENFI dataset, we iden-
tified five robust components that were associated with the subtypes, which
together explained approximately 40% of variance in the data. Although we
cannot calculate probabilities of the individuals to belong to the underlying
subtypes with sparse GFA, it can identify similar components to those obtained
with the supervised model. These findings show that components that are re-
lated to subgroups in the data can be identified even if the classes/subtypes
are not known or are unreliable.

Two distinct components were associated with the symptomatic GRN
(Figures 6.7a and 6.9) and MAPT (Figures 6.6d and 6.10) mutation carriers,
which are known to be homogeneous groups (Mahoney et al., 2012). The symp-
tomatic GRN carriers showed a prominent asymmetrical pattern of atrophy in
either the left or the right frontal, temporal and parietal lobes, which replic-
ates previous findings (Rohrer et al., 2010; Mahoney et al., 2012; Gordon et al.,
2016). These individuals also showed worse executive function (longer TMTB
times, longer Stroop colour times), attention (lower digit span forwards), lan-
guage (impaired performance on Boston Naming task, verbal fluency and C&C
tasks as well as a higher score on the PASS language scale), overall cognitive
abilities (MMSE) and - not as impaired - on certain everyday behaviours (self-
care, beliefs, eating). These results are in line with previous literature which
suggests that symptomatic GRN carriers show a diverse range of behavioural,
cognitive and language deficits (Rohrer et al., 2010). Language problems are
common (in left sided cases) in this mutation group compared to the others.
The symptomatic MAPT carriers showed a very symmetrical pattern of at-
rophy involving the temporal lobe volume, as well as in the amygdala and
hippocampus, as reported in previous findings (Rohrer et al., 2010; Rohrer
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and Rosen, 2013; Whitwell et al., 2009). The MAPT individuals showed
worse object naming than other genetic groups (as measured with the Bo-
ston Naming Task) which has been also found in previous work (Rohrer et al.,
2015) and can even dissociate this mutation carrier group from the others at a
presymptomatic stage (Bouzigues et al., in prep.). The symptomatic C9orf72
mutation carriers (Figures 6.6b and 6.11), showed worse overall behaviour as
measured by the clinical dementia rating, FTD rating scale and Cambridge Be-
havioural Index (CBI, where the overall score was worse, as well as the scores
of nine out of ten individual items). In addition, the symptomatic C9orf72
carriers showed worse social cognition (as measured by the revised self mon-
itoring scale (RSMS) and modified interpersonal reactivity index (mIRI)) and
working memory (digit span backwards) and attention (digit span forwards).
These results are in keeping with previous studies, where C9orf72 carriers have
been shown to have empathy deficits (measured by the mIRI), social cognition
impairments (measured by the RSMS) and emotion recognition impairments
in the prodromal phase (Russell et al., 2020; Franklin et al., 2021) which the
other genetic groups do not show. C9orf72 carriers are a very heterogeneous
group, which might explain why the probability of this component is slightly
lower, and no brain regions were found to particularly dissociate them from
the other genetic groups.

We also identified two more components that were mostly associated to
presymptomatic individuals. The component shown in Figures 6.6a and 6.12a
explained almost half of the total variance explained by all robust components,
and it seems to dissociate the symptomatic individuals from the presympto-
matic individuals. The symptomatic individuals showed worse overall cogni-
tion and behaviour (CBI scores, FTLD, Stroop colour time and TMT times),
which is expected, for instance, in the symptomatic C9orf72 carriers as they
usually show overall heterogeneous cognitive and behavioural changes, as men-
tioned above. In addition, these individuals showed asymmetrical widespread
brain atrophy involving left and right cortical (e.g., frontal and temporal lobes),
subcortical regions (e.g., thalamus) and cerebellum, which has been reported
in previous studies (Mahoney et al., 2012; Rohrer and Rosen, 2013). Finally,
the component shown in Figures 6.6c and 6.12b characterises presymptomatic
carriers according to their executive function, attention processing and social
cognition, and grey matter volume changes in the left and right subcortical
structures as well as insula and cerebellum. Early subcortical involvement,
particularly in C9orf72 carriers, is in line with previous work (Bocchetta et al.,
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2021). Bocchetta and colegues found that in all three groups, subcortical in-
volvement can be identified early in the disease course, particularly in C9orf72
and MAPT mutation carriers, involving volume changes in thalamic subnuclei,
cerebellum, hippocampus, amygdala and hypothalamus. C9orf72 carriers were
found to show the earliest and most widespread changes, including the thal-
amus, basal ganglia and medial temporal lobe. These components do not dis-
sociate presymptomatic carriers, most likely because presymptomatic changes
are subtle, and the early changes differ according to the genetic group, as
shown in previous works (Rohrer et al., 2015; Young et al., 2018). These find-
ings altogether show that sparse and supervised GFA can successfully identify
latent components that are characteristic of specific subtypes, as well as reveal
heterogeneous characteristics within a specific subtype.

The supervised GFA model’s predictions of the individual probabilities
on the test set for the GRN group were reasonably good, but they were not
as good for the other two subtypes (Figure 6.13). The model was also more
uncertain about the predictions of the non-GRN mutation carriers. This may
be explained by the fact that the C9orf72 subtype is more heterogeneous, and
the sample size of this study was small. Moreover, there is recent evidence that
distinct groups might characterise the MAPT subtype (Young et al., 2021).

In summary, sparse and supervised GFA can be used to uncover latent di-
mensions of brain-behaviour associations that provide insights about diseases
mechanisms and improve the characterisation of diseases subtypes. In ad-
dition, these models enable within-subtype heterogeneity to be characterised,
potentially leading to the identification of new subtypes. Supervised GFA may
be used to improve patient stratification because it can output individualised
predictions of the patients, and estimate uncertainty about them. Finally,
both models are interpretable as they select subsets of features within each
view, can be easily extended to more complex models, and can be applied to
other neuroimaging tasks or fields of research.
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Conclusions

This chapter presents a summary of the main contributions of this thesis (Sec-
tion 7.1), along with future research directions (Section 7.2).

7.1 Summary of the Main Contributions
This thesis presents classical multi-view methods and latent variable models to
uncover associations among multiple views, which can provide insights about
underlying dimensions of disease. Moreover, I have shown in this thesis that
these methods can be used to identify latent components that characterize
disease subtypes and estimate uncertainty about individualized predictions to
improve patient stratification. These models could potentially be used in the
future to identify disease subtypes.

In Chapter 3, we applied CCA (coupled with PCA) to find associations
between resting-state functional MRI and non-imaging data (including be-
havioural, cognitive and demographic measures) in a sample of healthy and
clinically depressed adolescents and young adults. We identified two positive-
negative brain-behaviour modes of covariation: the first mode related extern-
alisation/ internalisation symptoms, age and sex to attentional and frontopari-
etal networks, as well as to subcortical and limbic regions; the second mode
related well-being/distress and age to many default mode regions. This work
shows the potential of classical multi-view methods, such as CCA, to provide a
better understanding of the underlying dimensions of depression in adolescence
and young adulthood.

In Chapter 4, I applied sparse CCA to the same dataset and compared two
approaches to optimise its regularisation parameters. In this work, I showed
that the choice of the optimisation strategy and criterion might influence the
results of sparse methods, where approaches based on the optimisation of met-
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rics on validation sets are stricter than those based on the whole data set. The
experiments showed that the latter approach may be prone to overfitting and
false positive findings, whereas the former may lead to false negative findings.

In Chapter 5, I proposed an extension of GFA to address some limita-
tions of CCA, such as control for model complexity (i.e., infer the number
of relevant/robust associations), explore variability within views and handle
missing data. I showed that the proposed GFA model is able to handle miss-
ing data in different scenarios, and it can: (1) uncover associations between
high dimensional brain functional connectivity data and non-imaging meas-
ures (e.g., demographics, psychometrics and other behavioural measures); (2)
predict non-imaging measures from brain functional connectivity. Moreover,
we were able to replicate previous findings obtained in a subset of the Human
Connectome Project dataset using CCA (Smith et al., 2015).

In Chapter 6, we proposed a sparse extension of GFA to impose feature
and view-sparsity, as well as sparsity over the samples, to uncover sparse as-
sociations among multiple views and identify components that characterised
subsets of samples and could be expressed at the individual level. In addition,
we proposed supervised GFA by including a discriminative module to find lat-
ent components that describe pre-defined subtypes and explore within-subtype
variability. Sparse and supervised GFA uncovered associations between brain
structure and non-imaging data (i.e., behaviour, disease severity and cognit-
ive measures) in genetic FTD, identified latent components that described
known genotypes and explored within-genotype variability. Moreover, super-
vised GFA predicted individual probabilities of the patients belonging to the
genotypes and estimated uncertainty about those, which shows the potential
of supervised GFA to improve patient stratification.

7.2 Future Research Directions
Here, I will describe potential future research directions in terms of further
applications of the GFA methods proposed in this thesis (Section 7.2.1), and
provide suggestions for further methodological improvements, along with ideas
for new methods (Section 7.2.2).

7.2.1 Applications
In this thesis, I have presented GFA applications with two data modalities only
(e.g, structural/functional brain MRI and behavioural/cognitive assessments),
but these models can be applied to more than two data modalities. For in-
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stance, more brain imaging modalities (e.g., diffusion MRI) or other type of
data (e.g., genetic or other “omics” data) can be included to potentially un-
cover more interesting associations between, e.g., multiple imaging modalities
(brain structure, function and connectivity) and non-imaging measures (e.g.,
genetics and behaviour). This would likely increase the predictive power of
the models, to predict either missing views or underlying subtypes. Moreover,
other type of outcome variables can be used to classify the patients into dif-
ferent categories (e.g. treatment outcome), e.g., one can use sparse GFA to
find latent components that describe different subgroups of patients and assess
which subgroups respond better to specific treatments.

Both GFA models could also be applied to other datasets, such as the
ABCD study (Volkow et al., 2018) or UK Biobank (Miller et al., 2016), to ex-
plore more variability in the general population and potentially find different
dimensions of psychopathology or population subgroups at risk of developing
certain diseases. For example, the new sparse GFA model could be applied to
mental health datasets to potentially find subtypes, e.g., in mood or psychotic
disorders. In addition, supervised GFA could be applied to datasets, in which
treatment response or other relevant outcome measures are collected, for in-
stance, to compute the probability of a given patient responding to one or
several treatments. Lastly, in future studies we should ideally use independent
replication samples to assess the out-of-distribution generalisation of the mod-
els, i.e., assess whether the models are robust to population (or other) shifts
on the test set.

Finally, the methods presented and proposed in this thesis can be easily
applied to other subfields of neuroscience and other fields of research.

7.2.2 Methodological developments
Future research could also focus on further improvements of the methods.
First, in all studies we have assumed that all features were continuous; how-
ever, different priors should be included in the models to handle different type
of data, e.g., categorical variables. Second, the assumption over the observed
labels of the supervised GFA could be extended to allow continuous variables to
be predicted, i.e., to assess whether the latent components could be predictive
of a clinical score. Third, the supervised GFA formulation is still at relatively
preliminary stage. In future work, a fully generative approach could be imple-
mented, for instance, by considering some form of mixture of horseshoe priors
over the latent variables so that these could differ among different subgroups.
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Moreover, a baseline comparison between supervised GFA and other models
should be done in future work. Fourth, supervised GFA could also be extended
to incorporate longitudinal data, for instance, to assess how the individual sub-
ject probabilities of belonging to each underlying subtype change over time.
This could be achieved by considering a Hidden Markov Model, where the
probability of each subject transitioning from one subtype to another between
different time points could be modelled (Vogelsmeier et al., 2019; Chien et al.,
2020). This would allow modelling subjects’ disease trajectories and therefore
potentially predict disease progression for each subject or identify people at
risk of developing illnesses. Lastly, future studies could also explore the devel-
opment and application of deep multi-view learning methods, such as a deep
variational information bottleneck approach for incomplete multi-view obser-
vations (DeepIMV) (Lee and van der Schaar, 2021), to integrate more complex
representations of the data in incomplete data sets.
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Complements to Chapter 3

A.1 Methods
A.1.1 Self-report questionnaires

• Antisocial Behaviours Checklist: self-report questionnaire for symp-
toms of antisocial behaviour based on DSM-IV conduct disorder items.
The questionnaire was designed solely for the purpose of the NSPN pro-
ject (11 items).

• Antisocial Process Screening Device: self-report scale measuring
psychopathic traits and antisocial behaviour (20 items).

• Barratt Impulsive Scale: self-report questionnaire assessing person-
ality and behavioural constructs of impulsiveness (30 items).

• Child and Adolescent Dispositions Scale: self-report measure of
the three underlying dimensions of cognitive control of behaviour (pro-
sociability, negative emotionality and daring) (57 items).

• Child Trauma Questionnaire: self-report inventory screening for his-
tories of abuse and neglect, which covers five types of maltreatment:
emotional, physical, and sexual abuse, and emotional and physical neg-
lect (28 items).

• Drugs Alcohol and Self-Injury: self-report measure assessing the
frequency of drug and alcohol use as well as the frequency, methods and
motives of non-suicidal self-harm acts. The questionnaire was designed
solely for the purpose of the NSPN project (16 items).
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• Inventory of Callous-Unemotional Traits: self-report inventory of
assessing 3 domains of callous and unemotional traits: callousness, un-
caring, and unemotional (24 items).

• Kessler Psychological Distress Scale: self-report measurement of
psychological distress (10 items).

• Leyton Obsessional Inventory: self-report questionnaire measuring
obsessional and anxiety symptoms (11 items).

• Moods and Feelings Questionnaire: self-report questionnaire meas-
uring depressive symptoms in the last 2 weeks (33 items).

• Revised Children’s Manifest Anxiety Scale: self-report question-
naire measuring anxiety symptoms (28 items).

• Rosenberg Self-Esteem Scale: self-report questionnaire measuring
global self-esteem or feelings of self-worth and self-acceptance (10 items).

• Schizotypal Personality Questionnaire: self-report scale measuring
schizotypal personality traits (74 items).

• Wechsler Abbreviated Scale of Intelligence: matrix reasoning and
vocabulary subsets of the Wechsler Abbreviated Scale of Intelligence de-
signed to assess fluid and crystallized intelligence, respectively (2 items).

• Warwick Edinburgh Mental Wellbeing Scale: self-report instru-
ments spanning the theoretical distribution of common mental symptoms
and wellbeing (14 items).
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Figure A.1: Statistical framework to jointly optimise the number of principal com-
ponents and estimate the statistical significance of the CCA modes.

Figure A.2: Correlations between the top 20 positive and top 20 negative behavi-
oural items of the first CCA mode. Male gender (first item) is weakly
associated with the other positive behavioural items (items 2-19 with
mean correlation=0.20). Female gender (last item) is weakly associ-
ated with the other negative behavioural items (items 1-19 with mean
correlation=0.17).



142 Appendix A. Complements to Chapter 3

Figure A.3: Mean correlations between and within resting-state networks for the
first (a-c) and the second (d-f) CCA mode at three different levels
of top connections: top 20 (a, d), top 0.5% (b, e) and top 5%
(c, f) of most positively/negatively correlated connections. Posit-
ive correlations (red) and negative correlations (blue) are summar-
ized separately in the lower and upper triangular matrices, respect-
ively. The mean absolute correlations are log-transformed and nor-
malized for easier comparison between the three levels. Dorsal Atten-
tion Network (DAN); Default Mode Network (DMN); Frontoparietal
Network (FPT); Limbic Network (LMB); Subcortex (SBC); Somat-
omotor Network (SMT); Ventral Attention Network (VAN); Visual
Network (VIS).
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Figure A.4: Correlations between the brain connectivity variables and the brain
canonical variate of the first CCA mode in sagittal (left and right)
and axial views (middle). Notations are as in Figure 3.3 except that
nodes are colour coded by gross anatomical regions used in Glasser
et al. (2016).



144 Appendix A. Complements to Chapter 3

Figure A.5: Correlations between the brain connectivity variables and the brain
canonical variate of the second CCA mode in sagittal (left and right)
and axial views (middle).
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Figure A.6: Brain-behaviour mode of covariation obtained using the machine
learning framework. The scatter plot shows the brain and behaviour
scores of the first CCA mode (each dot represents a subject). Sub-
jects are colour coded by gender and clinical diagnosis. The canonical
hold-out correlation, q, and corresponding p-value are shown on the
top of the plot.
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Figure A.7: Brain-behaviour mode of population covariation obtained in the train-
ing (left) and test set (right) using the machine learning framework.
All the conventions are as in Figure A.6.
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Figure A.8: Brain (a,c) and behaviour (b,d) correlations of the first CCA mode
obtained using the statistical (“permutation approach”) and ma-
chine learning (“hold-out approach”) frameworks. (a,b) The over-
lap (purple) between the top 20 most positively/negatively correlated
variables obtained with the statistical (orange) and machine learning
(yellow) frameworks is shown; (c,d) the same colour scheme is used
to show the overlap between the top 5% most positively/negatively
correlated variables obtained with the statistical and machine learning
frameworks. Blue denotes the remaining variables.
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B.1 Lower bound for GFA
Considering Equations 2.14-2.15, the lower bound of lnp(X) is given by:

L(q) = E[lnp(X,Z,W,α,τ)]−E[lnq(Z,W,α,τ)]

= E[lnp(X|Z,W, τ)] +E[lnp(Z)] +E[lnp(W|α)] +E[lnp(α)] +E[lnp(τ )]

− E[lnq(Z)] +E[lnq(W)] +E[lnq(α)] +E[lnq(τ )]
(B.1)

where the expectations of the lnp(·) terms are given by (see Equations 5.3-5.7):
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E[lnp(τ )] =
M∑
m=1
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where q(θ) = q(Z)q(W)q(τ ), 〈lnτ (m)
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α(m) , Γ(·) is a Gamma function and ψ(·) is a digamma func-
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k 〉 are calculated as in Equations
5.8, 5.12, 5.13 and 5.18, respectively.

The terms involving expectations of the logs of the q(·) distributions
simply represent the negative entropies of those distributions (Bishop, 2006):
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B.2 Methods
B.2.1 Additional GFA experiments on synthetic data
We ran GFA experiments on the following selections of synthetic data:

1. Complete data (all models were initialised with K = 30):

(a) low dimensional data (D1 = 50 and D2 = 30) was generated using
the same parameters described in Section 5.2.4.

(b) high dimensional data was generated (D1 = 20000 and D2 = 200)
using the same parameters described in Section 5.2.4.

2. Incomplete data (all models were initialised with K = 15):
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(a) the elements of X(2) deviating more than 1σ (i.e., standard devi-
ation) from the mean (i.e, xdn > µ+σ and xdn < µ−σ) were re-
moved from the synthetic data generated in experiment 1a, which
led to approximately 30% of missing values in X(2).

(b) 10% of the rows of X(1) and 20% of the elements of X(2) were
randomly removed from the synthetic data generated in experiment
1a.

(c) 10% of the rows of X(1) and 20% of the elements of X(2) were
randomly removed from the high dimensional data generated in
experiment 1b.

B.2.2 CCA experiments on synthetic data
In order to assess the CCA performance in complete and incomplete data sets,
we generated data using the parameters described in Section 5.2.4 and ran
experiments on the following selections of the data:

• Complete data

• Incomplete data

– 20% of the elements of X(1) and 40% of the elements of X(2) were
randomly removed.

– the elements of X(1) and X(2) deviating more than 1σ from the
mean were removed, which led to approximately 30% of missing
values in each data modality.

The missing values were imputed using the median. The statistical signi-
ficance of the CCA modes was estimated by permutation inference, in which
the rows of X(2) were permuted 1000 times and CCA was run after each per-
mutation. For each CCA mode, we compute a p-value to assess whether the
“true” canonical correlation (i.e., the canonical correlation of the respective
CCA mode obtained without permuting the data) was larger than the null dis-
tribution of permuted canonical correlations of the first CCA mode. To obtain
an equivalent representation of a single latent variable for CCA (comparable to
a latent component in GFA), the canonical scores UTX(1) and VTX(2), where
U ∈RD1×K and V ∈RD2×K , were averaged. These experiments were also run
using our GFA extension without imputing the values. The incomplete data
experiments were different from those described in Section 5.2.4 because we
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wanted to show the potential of GFA to handle missing data when more than
one modality has missing values. Moreover, it would be of little interest to run
CCA with missing rows because, in practice, one would not impute values but
rather remove the rows in both data modalities.

B.2.3 Surface plots
The surface plots illustrate maps of brain connection strength in-
creases/decreases, which were obtained by weighting each node’s parcel
map by the GFA/CCA edge-strengths (the loadings were multiplied by the
sign of the population mean correlation) summed across the edges con-
nected to the node. We used the node’s parcel maps provided as a ci-
fti file (named melodic_IC_ftb.dlabel.nii) in the group ICA folder (named
groupICA_3T_HCP1200_MSMAll_d200.ica). In this file, one can find the
number of the ICA component that each vertex is most likely to belong to.

B.3 Results
B.3.1 Additional GFA experiments on synthetic data
The model parameters were correctly inferred using low (Figure B.1a) (τ̂ (1) ≈
5.10 and τ̂ (2) ≈ 9.98) and high (Figure B.1b) (τ̂ (1) ≈ 5.01 and τ̂ (2) ≈ 9.97)
dimensional synthetic data, when the model was initialised with K = 30. The
most relevant shared and view-specific components were correctly estimated
in both experiments.

In the experiment 2a, taking into account the difficulty of the task our
GFA approach recovered the model parameters fairly well (τ̂ (1) ≈ 5.04 and
τ̂ (2) ≈ 11.72), whereas the median imputation approach failed to estimate the
noise parameter of the second view (τ̂ (1) ≈ 5.03 and τ̂ (2) ≈ 6.95) and the third
component (i.e. the component specific to X(2)) was erroneously identified
(Figure B.2a). Furthermore, our GFA extension performed better in the multi-
output prediction task (Table B.1). The model predicted missing data accur-
ately (ρ= 0.929±0.021).

In the experiments 2b (Figure B.2b) and 2c (Figure B.2c), the proposed
GFA approach inferred the model parameters correctly in low (τ̂ (1) ≈ 5.01 and
τ̂ (2) ≈ 10.15) and high dimensional (τ̂ (1) ≈ 5.03 and τ̂ (2) ≈ 9.97) data sets,
respectively. The median imputation approach failed to infer the model para-
meters in both experiments (τ̂ (1) ≈ 6.23 and τ̂ (2) ≈ 6.39 in experiment 2b (Fig-
ure B.2b); τ̂ (1) ≈ 6.33 and τ̂ (2) ≈ 3.95 in experiment 2c (Figure B.2c)). The
performance of both approaches in the multi-output prediction task was sim-
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ilar and below chance level (Table B.1). The model predicted reasonably well
the missing observations in both views (experiment 2b: ρ= 0.675±0.031 and
ρ= 0.779±0.022 for the missing values in X(1) and X(2), respectively; experi-
ment 2c: ρ= 0.627±0.012 and ρ= 0.859±0.003 for the missing values in X(1)

and X(2), respectively).



154 Appendix B. Complements to Chapter 5

True parameters Inferred parameters

Latent factors

WT

1

2

3

4

αT WT αT

Latent factors

1

2

3

4

a

Latent factors

WT

1

2

3

4

αT WT αT

Latent factors

1

2

3

4

b
1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Figure B.1: True and inferred latent components and model parameters obtained
in the experiments 1a (a) and 1b (b) described in Section B.2.1. The
latent components and parameters used to generate the data are plot-
ted on the left-hand side and those inferred by the model are plotted
on the right-hand side. The four rows on the top represent the four
latent components. The loading matrices of the first and second data
modality are represented on the left and right-hand side of the red line
in WT , respectively. The alphas of the first and second data modality
are shown on the first and second column of αT , respectively. The
small black dots and big black squares represent active and inactive
latent components, respectively.
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b
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Figure B.2: True and inferred latent components and model parameters obtained
in the experiments 2a (a), 2b (b) and 2c (c) described in Section
B.2.1. (Left column) latent components and model parameters used
to generate the data. (Middle column) latent components and para-
meters inferred using the proposed GFA approach. (Right column)
latent components and parameters inferred using the median imputa-
tion approach. The loading matrices (WT ) and alphas (αT ) can be
interpreted as in Figure B.1.



156 Appendix B. Complements to Chapter 5

Table B.1: Prediction errors of the multi-output prediction tasks obtained in the
experiments 2a-c described in Section B.2.1. The values correspond to
the mean and standard deviation of the MSEs across 10 initialisations.
The first (second) column shows the MSE between the test observations
X(1)? (X(2)?) and the mean predictions 〈X(1)? |X(2)?〉 (〈X(2)? |X(1)?〉).
ours - proposed GFA approach; imputation - median imputation ap-
proach; chance - chance level.

Predict X(1) from X(2) Predict X(2) from X(1)

E
xp

.
2a ours 1.35 ± 0.34 0.92 ± 0.16

imputation 2.87 ± 1.01 1.56 ± 0.28
chance 2.33 ± 0.45 2.04 ± 0.36

E
xp

.
2b ours 1.21 ± 0.10 0.78 ± 0.15

imputation 1.16 ± 0.07 0.79 ± 0.15
chance 2.23 ± 0.12 2.34 ± 0.36

E
xp

.
2c ours 1.26 ± 0.06 0.84 ± 0.04

imputation 1.17 ± 0.03 0.85 ± 0.04
chance 2.27 ± 0.02 2.35 ± 0.10

Table B.2: Most relevant shared and view-specific components obtained with the
complete high dimensional synthetic data (experiment 1b in Section
B.2.1) according to the proposed criteria. Components explaining more
than 7.5% variance within any view were considered most relevant. A
component was considered shared if 0.001≤ rk ≤ 300, specific to X(2) if
rk > 300 or specific X(1) if rk < 0.001. rvar - relative variance explained;
var - variance explained; rk - ratio between the variance explained by
w(2)
k and w(1)

k .

rvar (%) var (%) rk

Components X(1) X(2) X(1) X(2) varw(2)
k

/varw(1)
k

Sh
ar
ed 1 25.09 46.03 15.39 0.19 0.01

2 25.47 35.44 15.62 0.15 9.6 × 10−3

Sp
ec
ifi
c 3 2.88 × 10−4 18.53 1.76 × 10−4 0.08 442.85

4 49.44 8.80 × 10−5 30.32 3.71 × 10−7 1.22 × 10−8
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B.3.2 CCA experiments on synthetic data

True latent factors GFA
a

CCA

b

c

Figure B.3: True and inferred latent components obtained using CCA and GFA
in synthetic data. (Left column) latent components used to gener-
ate the data. (Middle column) latent components inferred using
the proposed GFA approach. (Right column) latent components
inferred using CCA. (a) experiment using complete data; (b) experi-
ments using incomplete data, where 20% of the elements of X(1) and
40% of the elements of X(2) were randomly removed; (c) experiment
using incomplete data, where the elements of X(1) and X(2) deviating
more than 1σ from the mean were removed.
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B.3.3 GFA experiments on the HCP data

Table B.3: Most relevant shared and modality-specific components obtained in
the HCP experiment 2a (Section 5.2.5) according to the proposed cri-
teria. Components explaining more than 7.5% variance within any
data modality were considered most relevant. A component was con-
sidered shared if 0.001 ≤ rk ≤ 300, specific to non-imaging (NI) meas-
ures if rk > 300 or brain-specific if rk < 0.001. rvar - relative variance
explained; var - variance explained; rk - ratio between the variance
explained by the k-th component in the non-imaging and brain data.

rvar (%) var (%) rk

components Brain NI Brain NI varNI/varbrain

Sh
ar
ed

a 0.159 9.44 0.012 0.028 2.42
b 0.065 18.152 0.005 0.005 11.32
c 0.036 10.539 0.003 0.031 12.04
d 0.015 39.330 0.001 0.117 105.10

B
ra
in a 13.531 6.60 × 10−5 0.988 1.97 × 10−7 1.99 × 10−7

b 12.269 0.001 0.896 4.19 × 10−6 4.68 × 10−6

Table B.4: Most relevant shared and modality-specific components obtained in the
HCP experiment 2b (Section 5.2.5). Components explaining more than
7.5% variance within any data modality were considered most relevant.
A component was considered shared if 0.001≤ rk ≤ 300, specific to non-
imaging (NI) measures if rk > 300 or brain-specific if rk < 0.001. rvar -
relative variance explained; var - variance explained; rk - ratio between
the variance explained by the k-th component in the non-imaging and
brain data.

rvar (%) var (%) rk

Components Brain NI Brain NI varNI/varbrain

Sh
ar
ed

a 0.149 7.643 0.007 0.028 3.83
b 0.034 16.550 0.002 0.060 36.19
c 0.016 8.670 7.82 × 10−4 0.031 40.11
d 0.019 31.255 8.99 × 10−4 0.113 125.82

B
ra
in a 15.625 0.0350 0.758 1.27 × 10−4 1.67 × 10−4

b 14.979 0.177 0.727 6.42 × 10−4 8.83 × 10−4
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a b

c d

Figure B.4: Non-imaging measures and brain networks described by the first (a),
second (b), third (c) and fourth (d) shared GFA components ob-
tained in the incomplete data HCP experiment 2a described in Section
5.2.5. For illustrative purposes, the top and bottom 15 non-imaging
measures for each component are shown. The brain surface plots rep-
resent maps of brain connection strength increases/decreases, which
were obtained as described in Section B.2.3.



160 Appendix B. Complements to Chapter 5

a b

c d

Figure B.5: Non-imaging measures and brain networks described by the first (a),
second (b), third (c) and fourth (d) shared GFA components ob-
tained in the incomplete data HCP experiment 2b described in Section
5.2.5. For illustrative purposes, the top and bottom 15 non-imaging
measures for each component are shown. The brain surface plots rep-
resent maps of brain connection strength increases/decreases, which
were obtained as described in Section B.2.3.



B.3. Results 161

a b

c d

Figure B.6: Brain networks associated with the brain-specific GFA components
obtained in the incomplete data HCP experiments 2a (a,c) and 2b
(b,d) described in Section 5.2.5. The brain surface plots represent
maps of brain connection strength increases/decreases, which were
obtained as described in Section B.2.3.
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a b

c d

Figure B.7: Brain surface maps of the brain connection strength increases (red)
and decreases (blue) of the first (a), second (b), third (c) and fourth
(d) shared GFA components obtained in the HCP experiment with
complete data (Figure 5.3). The distribution of the brain connection
strengths was thresholded at the 80th (red) and 20th percentile (blue).



B.3. Results 163

a

Top 10 predicted variables:  

Picture Vocabulary Test
Picture Vocabulary Test Age Adjusted
Reading Test
Reading Test Age Adjusted
Fluid intelligence (number of correct responses)
Penn Line Orientation: (Total Positions Off for All Trials)
Delay Discounting (Area Under the Curve for Discounting of $40K)
Penn Line Orientation (Total Number Correct)
Any positive test for THC (cannabis)
List sorting (working memory) Age Adjusted

b

Top 10 predicted variables: 

Picture Vocabulary Test
Picture Vocabulary Test Age Adjusted
Reading Test
Reading Test Age Adjusted
Fluid intelligence (number of correct responses)
Number days smoked/used ANY TOBACCO in past 7 days
Penn Line Orientation: (Total Positions Off for All Trials)
List sorting (working memory) Age Adjusted
List sorting (working memory)
Any positive test for THC (cannabis)

Prediction
Train mean (chance level)

Prediction
Train mean (chance level)

Figure B.8: Multi-output predictions of the non-imaging measures obtained in the
incomplete data HCP experiments 2a (a) and 2b (b) described in Sec-
tion 5.2.5. The top 10 predicted measures are displayed on the right.
For each non-imaging measure, the mean and standard deviation of
the relative MSE between the true and predicted values on the test
set was calculated across different random initialisations of the exper-
iments.
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Figure B.9: Histograms of the top 4 variables (top) and bottom 4 variables (bot-
tom) of the second shared GFA component, displayed in Figure 5.3.
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B.3.4 Non-imaging measures from HCP

Table B.5: Description of the non-imaging measures from the HCP dataset used
in Chapter 5

Item Variable Label
1 FamHist_Moth_Dep Mother had depression
2 FamHist_Fath_Dep Father had depression
3 FamHist_Fath_DrgAlc Father had drug or alcohol problems
4 FamHist_Moth_None Mother had none of the previously listed

disorders
5 FamHist_Fath_None Father had none of the previously listed

disorders
6 ASR_Anxd_Raw Anxious/Depressed Raw Score
7 ASR_Anxd_Pct Anxious/Depressed Raw Score
8 ASR_Witd_Raw Withdrawn Raw Score
9 ASR_Soma_Raw Somatic Complaints Raw Score
10 ASR_Thot_Raw Thought Problems Raw Score
11 ASR_Attn_Raw Attention Problems Raw Score
12 ASR_Aggr_Raw Aggressive Behaviour Raw Score
13 ASR_Rule_Raw Rule Breaking Behaviour Raw Score
14 ASR_Intr_Raw Intrusive Raw Score
15 ASR_Oth_Raw ASR Other Problems Raw Score
16 ASR_Crit_Raw Critical Items Raw Score
17 ASR_Intn_Raw Internalizing Raw Score
18 ASR_Intn_T Internalizing Gender and Age Adjusted T-

score
19 ASR_Extn_Raw Externalizing Raw Score
20 ASR_Extn_T Externalizing Gender and Age Adjusted

T-score
21 ASR_TAO_Sum ASR Sum of scale IV, scale V and Other

Raw Score
22 ASR_Totp_Raw ASR Total Raw Score
23 ASR_Totp_T ASR Total Gender and Age Adjusted T-

score
24 DSM_Depr_Raw DSM Depressive Problems Raw Score
25 DSM_Anxi_Raw DSM Anxiety Problems Raw Score
26 DSM_Somp_Raw DSM Somatic Problems Raw Score
27 DSM_Avoid_Raw DSM Avoidant Personality Problems Raw

Score
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28 DSM_Adh_Raw DSM AD/H Problems Raw Score
29 DSM_Inat_Raw DSM Inattention Problems Raw Score
30 DSM_Hype_Raw DSM Hyperactivity Problems Raw Score
31 DSM_Antis_Raw DSM Antisocial Personality Problems

Raw Score
32 SSAGA_Childhood Con-

duct
Number of of Childhood Conduct prob-
lems

33 SSAGA_PanicDisorder Non-diagnostic screen of panic disorder
34 SSAGA_Agoraphobia Non-diagnostic screen of agoraphobia
35 SSAGA_Depressive_Ep DSMIV Major Depressive Episode over

his/her lifetime
36 SSAGA_Depressive_Sx Number of depressive symptoms for major

depression over his/her lifetime
37 EVA_Denom Electronic Visual Acuity Denominator
38 Correction Eyeglass lens correction
39 THC Any positive test for THC (cannabis)
40 Total_Drinks_7days Total drinks in past 7 days
41 Num_Days_Drank_7days Number days drank alcohol in past 7 days
42 Avg_Weekday_Drinks_

7days
Avg total weekday alcoholic drinks/day in
past 7 days

43 Avg_Weekend_Drinks_
7days

Avg total weekend alcoholic drinks/day in
past 7 days

44 Total_Beer_Wine_
Cooler_7days

Total alcoholic drinks in past 7 days
(Beer/Wine Coolers)

45 Avg_Weekday_Beer_
Wine_Cooler_7days

Avg total weekday alcoholic drinks/day in
past 7 days (Beer/Wine Coolers)

46 Avg_Weekend_Beer_
Wine_Cooler_7days

Avg total weekend alcoholic drinks/day in
past 7 days (Beer/Wine Coolers)

47 Total_Wine_ 7days Total alcoholic drinks in past 7 days
(Wine)

48 Avg_Weekday_Wine_
7days

Avg total weekday alcoholic drinks/day in
past 7 days (Wine)

49 Avg_Weekend_Wine_
7days

Avg total weekend alcoholic drinks/day in
past 7 days (Wine)

50 Total_Hard_Liquor_
7days

Total alcoholic drinks in past 7 days (Hard
Liquor)

51 Avg_Weekend_Hard_ Li-
quor_7days

Avg total weekend alcoholic drinks/day in
past 7 days (Hard Liquor)
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52 SSAGA_Alc_D4_Dp_Sx Number of DSM4 ALC Dependence Cri-
teria Met

53 SSAGA_Alc_D4_Ab_Dx DSM4 criteria for Alcohol Abuse some-
time over his/her lifetime

54 SSAGA_Alc_D4_Ab_Sx Number of symptoms of DSM4 Alcohol
Abuse sometime over lifetime

55 SSAGA_Alc_12_Drinks_
Per_Day

Drinks consumed per drinking day in past
12 months

56 SSAGA_Alc_12_Frq Frequency of any alcohol use in past 12
months

57 SSAGA_Alc_12_Frq_
5plus

Frequency of drinking 5+ drinks in past
12 months

58 SSAGA_Alc_12_Frq_Drk Frequency drunk in past 12 months
59 SSAGA_Alc_12_Max_

Drinks
Max drinks consumed in a single day in
the past 12 months

60 SSAGA_Alc_Age_1st_
Use

Age at first alcohol use

61 SSAGA_Alc_Hvy_
Drinks_Per_Day

Drinks per day in the heaviest 12-month
drinking period of participant’s lifetime

62 SSAGA_Alc_Hvy_Frq Frequency of any alcohol use in the heav-
iest 12-month drinking period of parti-
cipant’s lifetime

63 SSAGA_Alc_Hvy_Frq_
5plus

Frequency of drinking 5+ drinks during
the heaviest 12-month drinking period of
participant’s lifetime

64 SSAGA_Alc_Hvy_Frq_
Drk

Frequency drunk in the heaviest 12-month
drinking period of participant’s lifetime

65 SSAGA_Alc_Hvy_Max_
Drinks

Lifetime max drinks consumed in single
day

66 Total_Any_Tobacco_
7days

Total times used/smoked ANY TO-
BACCO in past 7 days

67 Times_Used_Any_ To-
bacco_Today

Times used/smoked ANY TOBACCO
TODAY

68 Num_Days_Used_Any_
Tobacco_7days

Number days smoked/used ANY TO-
BACCO in past 7 days

69 Avg_Weekday_Any_ To-
bacco_7days

Avg total weekday ANY TOBACCO per
day in past 7 days

70 Avg_Weekend_Any_ To-
bacco_7days

Avg total weekend ANY TOBACCO per
day in past 7 days
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71 Total_Cigarettes_7days Total number of CIGARETTES in past 7
days

72 Avg_Weekday_Cigarettes
_7days

Avg weekday CIGARETTES per day in
past 7 days

73 Avg_Weekend_Cigarettes
_7days

Avg weekend CIGARETTES per day in
past 7 days

74 SSAGA_TB_Smoking_
History

Smoking history

75 SSAGA_TB_Still_
Smoking

Participant still smoking

76 SSAGA_Times_Used_ Il-
licits

Times used all classes of non-marijuana
illicit drugs, including cocaine, hallucino-
gens, opiates, sedatives, or other

77 SSAGA_Times_Used_
Cocaine

Times used cocaine

78 SSAGA_Times_Used_
Hallucinogens

Times used hallucinogens

79 SSAGA_Times_Used_
Opiates

Times used opiates

80 SSAGA_Times_Used_
Sedatives

Times used sedatives

81 SSAGA_Times_Used_
Stimulants

Times used stimulants

82 SSAGA_Mj_Use Ever used marijuana
83 SSAGA_Mj_Ab_Dep DSM criteria for Marijuana Dependence

at some time over his/her lifetime
84 SSAGA_Mj_Times_Used Times used marijuana
85 MMSE_Score Mini Mental Status Exam Total Score
86 PSQI_Score Total score of Pittsburgh Sleep Quality In-

dex
87 PicSeq_Unadj Picture Sequence Memory Test (fluid abil-

ity)
88 PicSeq_AgeAdj Picture Sequence Memory Test (fluid abil-

ity) Age Adjusted
89 CardSort_Unadj Dimensional Change Card Sort Test (ex-

ecutive function)
90 CardSort_AgeAdj Dimensional Change Card Sort Test (ex-

ecutive function) Age Adjusted
91 Flanker_Unadj Flanker test (executive function)
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92 Flanker_AgeAdj Flanker test (executive function) Age Ad-
justed

93 PMAT24_A_CR Fluid intelligence (number of correct re-
sponses)

94 ReadEng_Unadj Reading Test
95 ReadEng_AgeAdj Reading Test Age Adjusted
96 PicVocab_Unadj Picture Vocabulary Test
97 PicVocab_AgeAdj Picture Vocabulary Test Age Adjusted
98 ProcSpeed_Unadj Pattern Comparison Processing Test (pro-

cessing speed)
99 ProcSpeed_AgeAdj Pattern Comparison Processing Test (pro-

cessing speed) Age Adjusted
100 DDisc_AUC_200 Delay Discounting (Area Under the Curve

for Discounting of $200)
101 DDisc_AUC_40K Delay Discounting (Area Under the Curve

for Discounting of $40K)
102 VSPLOT_TC Penn Line Orientation (Total Number

Correct)
103 VSPLOT_CRTE Penn Line Orientation (Median Reaction

Time)
104 VSPLOT_OFF Penn Line Orientation: (Total Positions

Off for All Trials)
105 SCPT_SEN Short Penn CPT Sensitivity
106 SCPT_SPEC Short Penn CPT Specificity
107 IWRD_TOT Penn Word Memory (Total Number of

Correct Responses)
108 ListSort_Unadj List sorting (working memory)
109 ListSort_AgeAdj List sorting (working memory) Age Adjus-

ted
110 ER40_CR Penn Emotion Recognition (Number of

Correct Responses)
111 ER40ANG Penn Emotion Recognition (Number of

Correct Anger Identifications)
112 ER40FEAR Penn Emotion Recognition (Number of

Correct Fear Identifications)
113 ER40NOE Penn Emotion Recognition (Number of

Correct Neutral Identifications)
114 ER40SAD Penn Emotion Recognition (Number of

Correct Sad Identifications)
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115 AngAffect_Unadj Anger
116 AngHostil_Unadj Hostility and cynicism
117 AngAggr_Unadj Aggression
118 FearAffect_Unadj Fear and anxious misery
119 FearSomat_Unadj Somatic symptoms of anxiety
120 Sadness_Unadj Sadness
121 LifeSatisf_Unadj Global feelings and attitudes about one’s

life
122 MeanPurp_Unadj Life matters or makes sense
123 PosAffect_Unadj Positive affect
124 Friendship_Unadj Perceptions of friendship
125 Loneliness_Unadj Perceptions of loneliness
126 PercHostil_Unadj Perceptions of hostility in daily social in-

teractions
127 PercReject_Unadj Perceptions of rejection in daily social in-

teractions
128 EmotSupp_Unadj Emotional support
129 InstruSupp_Unadj Instrumental support
130 PercStress_Unadj Perception of stress
131 SelfEff_Unadj Sense of global self-efficacy
132 Dexterity_Unadj Manual dexterity
133 Dexterity_AgeAdj Manual dexterity Age Adjusted
134 NEOFAC_A Agreeableness Scale Score
135 NEOFAC_O Openness Scale Score
136 NEOFAC_C Conscientiousness Scale Score
137 NEOFAC_N Neuroticism Scale Score
138 NEOFAC_E Extraversion Scale Score
139 Odor_Unadj Ability to identify various odours
140 Odor_AgeAdj Ability to identify various odours Age Ad-

justed
141 PainInterf_Tscore Consequences of pain on relevant aspects

of one’s life
142 Taste_Unadj Taste
143 Taste_AgeAdj Taste Age Adjusted
144 Mars_Log_Score Contrast Sensitivity Score
145 Mars_Final Final Contrast Sensitivity (CS) Score
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C.1 Results on synthetic data
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Figure C.1: Probabilities of the test samples to belong to the subtypes. (a) Pos-
terior mean and quantiles at (b) 0.05 and (c) 0.95 of the posterior
distribution of Ψ on the test set.
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Figure C.2: Generated (a) and inferred (b) input data, and model’s parameters
when applying sparse GFA to the synthetic data described in Section
6.2.5. Histogram of the posterior samples of (c) σ and (d) τw. The
vertical red line indicates the true value of each parameter.
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Figure C.3: Generated and inferred input data X with different values of p(m)
0

using supervised GFA. (a) p(m)
0 =Dm/5; (b) p(m)

0 =Dm/3; (c) p(m)
0 =

Dm/2. The samples are represented on the rows and the features on
the columns.
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C.2 GENFI data
Table C.1: Description of the non-imaging features from the GENFI dataset used

in Chapter 6. Orange corresponds to medical assessments of the
patients; blue corresponds to informant questionnaires completed by
primary caregiver; red corresponds to neuropsychological tasks com-
pleted by patients. ∗a high score in the test means that the individual
is more affected; ∗∗a high score in the test means that the individual is
less affected.

Label Task Name Cognitive function

FTDL Clinical Dementia Rating∗ disease severity (FTD
appropriate)

Lang Progressive Aphasia Severity Scale∗ speech and language
mmse Mini Mental State Examination∗∗ disease severity (general

dementia)
memory Cambridge Behavioural Index∗ memory
ev_skills Cambridge Behavioural Index∗ everyday skills
self_care Cambridge Behavioural Index∗ self care
abn_beh Cambridge Behavioural Index∗ abnormal behaviour
mood Cambridge Behavioural Index∗ mood
beliefs Cambridge Behavioural Index∗ beliefs
eating Cambridge Behavioural Index∗ eating
sleep Cambridge Behavioural Index∗ sleep
st_beh Cambridge Behavioural Index∗ stereotypic behaviour
Motiv Cambridge Behavioural Index∗ motivation
CBI Cambridge Behavioural Index (overall

score)∗
general behaviour

FRS FTD Rating Scale∗∗ disease severity
mIRI Modified Interpersonal Reactivity

Index∗∗
cognitive and emotional
empathy

RSMS Revised Self Monitoring Scale∗∗ social behaviour
Ben_figcopy Benson figure copy∗∗ visuospatial skills
Ben_figrec Benson figure recall∗∗ episodic memory
Ben_figrecog Benson figure recognition∗∗ visual memory
DS_F Digit span forewards∗∗ attention processing
DS_B Digit span backwards∗∗ working memory
CC Camel and Cactus Test∗∗ semantic memory
TMTA Trail Making Task A∗ attention processing
TMTB Trail Making Task B∗ executive function
Digit Digit symbol∗∗ processing speed
Boston_nam Boston Naming Task∗∗ object naming - word re-

trieval
Stroop_color Stroop Task∗ executive funtion
Stroop_word Stroop Task∗ executive function
Stroop_ink Stroop Task∗ executive function
VF_animals Verbal fluency∗∗ language fluency
VF_comb Verbal fluency∗∗ language fluency
Block_design Block design∗∗ visuospatial skills
Ekman Facial emotion recognition∗∗ emotion recognition
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Table C.2: Description of the brain imaging features from the GENFI dataset.

Abbreviated Label Variable Label

Racc Right Accumbens Area
Lacc Left Accumbens Area
Ram Right Amygdala
Lam Left Amygdala
RC Right Caudate
LC Left Caudate
RH Right Hippocampus
LH Left Hippocampus
Rpal Right Pallidum
Lpal Left Pallidum
Rpu Right Putamen
Lpu Left Putamen
Rth Right Thalamus
Lth Left Thalamus
LFL Left Frontal lobe
RFL Right Frontal lobe
LTL Left Temporal lobe
RTL Right Temporal lobe
LPL Left Parietal lobe
RPL Right Parietal lobe
LOL Left Occipital lobe
ROL Right Occipital lobe
Lcing Left Cingulate
Rcing Right Cingulate
Lins Left Insula
Rins Right Insula
Cer Cerebellum
Asy Asymmetry



Appendix D

Distributions

In this section, I present the probability density/mass function of the distri-
butions used in this thesis.

D.1 Multivariate normal distribution

f(x;µ,Σ) = 1√
(2π)D|Σ|

e−
1
2 (x−µ)TΣ−1(x−µ), (D.1)

where µ is the mean vector, Σ is the covariance matrix, | · | is the determinant
and D is the number of dimensions.

D.2 Gamma distribution

f(x;α,β) = 1
Γ(α)β

αxα−1e−βx, (D.2)

where α is the shape parameter, Γ(·) is the gamma function and β is the rate
parameter.

D.3 Inverse-Gamma distribution

f(x;α,β) = 1
Γ(α)

βα

xα+1 e
−βx , (D.3)

where α is the shape parameter, Γ(·) is the gamma function and β is the rate
parameter.

D.4 Half-Cauchy distribution

f(x;µ,σ) =


2
πσ

1
1+(x−µ)2/σ , x≥ µ

0, otherwise,
(D.4)
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where µ is the location parameter and σ is the scale parameter.

D.5 Bernoulli distribution

f(x;θ) =

1− θ, x= 0

θ, x= 1,
(D.5)

where θ is the probability that a trial is successful.

D.6 Beta distribution

f(x;α,β) = Γ(α+β)xα−1(1−x)(β−1)

Γ(α)Γ(β) , (D.6)

where α and β are shape parameters, and Γ(·) is the gamma function.

D.7 Inverse-Wishart distribution

f(x;ν,Ψ) = |Ψ|ν/2

2νD/2ΓD(ν2 )
|x|−(ν+D+1)/2e−

1
2 Tr(Ψx−1), (D.7)

where Ψ is the D×D scale matrix, ν is the degrees of freedom, | · | is the
determinant and ΓD(·) is the multivariate gamma function.
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