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Abstract: Subsurface soil profiling is an essential step in a site investigation. The traditional methods for in situ 

investigations, such as SPT borings and sampling, have been progressively replaced by CPT soundings since they 

are fast, repeatable, economical and provide continuous parameters of the mechanical behaviour of the soils. 

However, the derived CPT-based stratigraphy profiles might present noisy thin layers, and its soil type description 

might not reflect a textural-based classification (i.e. Universal Soil Classification System, USCS). Thus, this paper 

presents a straightforward artificial neural network (ANN) algorithm, to classify CPT soundings according to the 

USCS. Data for training the model have been retrieved from SPT-CPT pairs collected after the 2011 Christchurch 

earthquake in New Zealand. The application of the ANN to case studies show how the method is a cost-effective 

and time-efficient approach, but more input parameters and data are needed for increasing its performance.        
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1. Introduction 
Determining the layering of different soil types 
and their thickness is crucial for the development 
of many geotechnical engineering projects. For 
instance, the state-of-practice methods for the 
liquefaction potential assessment depend on a 
preliminary evaluation of in-situ characteristics 
of the soil layering (Idriss & Boulanger, 2008). 
Typically, site investigations are carried out 
through soil borings with standard penetration 
test (SPT), and laboratory analysis on the soil 
samples extracted. Soils are then commonly 
classified based on their physical and textural 
characteristics according to the Unified Soil 
Classification System (USCS). 
Due to the laborious and time-consuming 
approach of laboratory tests, site investigations 
based on cone penetration test (CPT) are gaining 
popularity. A CPT consists of pushing a cone 
probe of usually 10/15 cm into the ground at a 
controlled rate, while specific sensors place on 
the probe continuously measure the tip resistance 
𝑞𝑐, sleeve friction 𝑓𝑠 and pore pressure 𝑢. Thus, 
this test results in being fast, repeatable, cost-
effective and can provide almost continuous soils 
strength and stiffness data (Robertson, 2012). 
These parameters can reveal invaluable 
information about the mechanical behaviour and 
variability of soils, which cannot be determined 
with sampling and laboratory tests. However, a 
CPT does not allow visual inspection of 

undisturbed soil samples for the identification of 
thin layers and a textural-based classification. 
Specific CPT-based classifications have been 
developed to aid the identification of soil strata. 
The soil type is determined directly linking the 
retrieved cone parameters to behavioural soil 
class using graphic charts. The most widely used 
one is the Soil Behaviour Type (SBT) proposed 
by Roberson et al. (1986), which is based on the 
normalised friction ratio 𝐹𝑟, and the normalised 
tip resistance 𝑄𝑡:  

𝐹𝑟 =  100𝑓𝑠/ (𝑞𝑡 − 𝜎𝑣0) (1) 

𝑄𝑡𝑛 =  [(𝑞𝑡 − 𝜎𝑣0) 𝑃𝑎⁄ ](𝑃𝑎 𝜎𝑣0
′⁄ )𝑛 (2) 

where 𝑞𝑡, 𝜎𝑣0, 𝜎𝑣0
′ , 𝑃𝑎, 𝑛 are, respectively, the 

corrected tip resistance, total vertical stress, 
vertical effective stress, atmospheric pressure and 
normalisation factor. The boundaries of each soil 
class in the SBT charts can be found estimating 
the SBT index 𝐼𝑐 (Robertson, 2009) or 𝐼𝑏 , in the 
latest classification proposed (Robertson, 2016): 

𝐼𝑐 = √(3.47 − log 𝑄𝑡𝑛)2 + (log 𝐹𝑟 + 1.22)2 (3) 

𝐼𝑏 = 100 (𝑄𝑡𝑛 + 10) (𝑄𝑡𝑛𝐹𝑟 + 70)⁄  (4) 

Thus, for engineering practitioners, the most cost-
effective and time-efficient method to identify a 
subsurface stratigraphy is to consider the profile 
of the SBT Indices. Given the continuous nature 
of the CPT-based parameters, the obtain soil 
profiles might contain noisy ‘thin layers’ which 
do not have a physical meaning or misclassified 
the soil due to ‘transition zones’. However, these 
effects are relevant in some circumstances, such 
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as for the liquefaction methodologies, and must 
be carefully evaluated (Boulanger et al., 2018).  
To solve this problem, an extensive range of 
approaches has been proposed in the literature. 
By way of illustration, Zhang & Tumay (1999), 
and Jung et al. (2008) have used the concept of 
probability fuzzy sets, whereas Liao & Mayne 
(2007), Wang et al. (2019), Hegazy & Mayne 
(2002), and Facciorusso & Uzielli (2004) have 
adopted clustering analysis approaches. Other 
studies have attempted to identify layer boundary 
locations using advanced algorithms based on 
wavelet functions (Ching et al., 2013) as well as 
Bayesian methods (e.g. Wang et al., 2013). Taken 
together, these approaches are sophisticated 
methods that require advanced mathematical 
knowledge and, thus, might not be of easy 
implementation for practitioners.  
Therefore, this paper provides a first step in 
understanding if deep learning methods, such as 
artificial neural networks (ANNs), are a viable 
and more straightforward option for determining 
a soil stratigraphy. ANNs have been used in a 
variety of tasks for solving complex nonlinear 
classification problems, without requiring any 
specific assumption related to the underlying 
physical problem. In particular, the paper aims to 
determine a soil stratigraphy profile using the 
USCS classification given the CPT-based 
parameters as input. In the following, a brief 
overview of ANNs and their application in 
geotechnical engineering are illustrated. Data and 
methodology adopted for building a soil multi-
classification ANN are then presented. The paper 
concludes by discussing the results of the ANN 
model with consideration made of the adequacy 
of ANNs and SBT classifications for assessing 
subsurface profiles.  

2. Artificial neural networks in geotechnical 

engineering practice 
ANNs are a powerful deep learning technique 
able to model complex classification problems 
(Basheer & Hajmeer, 2000; Fausett, 1994). 
Similarly to human nervous systems, these 
computational tools are composed of artificial 
‘neurons’ or ‘nodes’ interconnected to each other 
Nodes are commonly arranged into an input 
layer, an output layer and one or more 
intermediate/hidden layers. The linkings from 
neuron to neuron, equivalent to humanlike 

synapsis, are mathematical ‘weighting 
functions’. These functions are the ones that 
determine the ability of a neural model to provide 
accurate predictions. 
ANNs can train themselves in classification 
analysis without requiring human development of 
algorithms. In particular, a supervised ANNs 
modelling approach can be schematised into 
three-step phases: training, validation and testing. 
In the training phase, the weighting functions are 
calibrated by matching known input-output data 
pairs. Each neuron 𝑋 computes a summation 
Σ of its inputs weighted by a weight vector 𝑤 
and then applies an activation function Φ, to Σ 
and derive the output (Fig.1). The described 
procedure continues iteratively until when an 
optimal combination of weighting functions is 
reached. In the validation phase, a new set of 
input-output data pairs are used to evaluate how 
accurately the ANN can predict the outputs. If its 
performance results being acceptable, the 
determined weighting functions and model 
structure are used to test unseen output data.   
Thus, the strength of ANNs is that they are data-
driven (Shain et al., 2008). In contrast to classical 
statistical approaches, ANNs can learn and adapt 
themselves without the need of either simplify the 
problem or incorporate any assumptions. 
Besides, they usually outperform conventional 
techniques both in terms of efficacy and 
accuracy. For instance, in the geotechnical 
engineering field they have been successfully 
applied for the estimation of several soil 
properties, such as soil composition (i.e. Kurup et 
al., 2006; Reale et al., 2018; Bhattacharya & 
Solomatine, 2006) and soil liquefaction potential 
( i.e. Hanna et al., 2007;  Goh, 2002). Thus, 
ANNs result in being a powerful approach to 
solve a soil classification problem.  

 

 

 

 

 

Figure 1. Schematic representation of an ANN.  
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3. Prediction of soil stratigraphy using ANN 
The soil profile stratigraphy requires the 
identification of several soil classes. For this 
purpose, the multi-classification ANN is 
implemented in Python through the Scikit-learn 
(Pedregosa et al., 2011) and Keras (Chollet, 
2015) libraries. In the next paragraphs, first the 
data sources used are introduced followed by a 
description of the cleaning procedure executed on 
the available data; then, the approach adopted to 
train, validate and test the ANN is illustrated.  

3.1 Data Sources  
A considerable amount of data are necessary to 
train and validate an ANN. For this purpose, 
Christchurch (New Zealand) offers a unique 
opportunity as a case study. Following the 2010-
2011 Canterbury Earthquake Sequence, an in-
depth soil characterisation programme was 
conducted to aid the reconstruction; 
approximately 18,000 SPT and more than 30,000 
CPT tests have been performed and made 
available through the New Zealand Geotechnical 
Database (NZGD). Through this dataset, 35 sites 
spread around the entire Christchurch City 
Council are selected. This arbitrary selection is 
based on the availability of both SPT and CPT 
soundings in approximately the same location.  
Christchurch is placed in a complex geologic and 
geomorphic environment, formed prevalently by 
alluvial, coastal, and swamp depositional 
processes (Bertelli et al., 2019). Particularly, the 
superficial soil conditions broadly include the 
Springston and Christchurch Formations. The 
first is an alluvial soil deposit mainly originated 
from the periodic floods of the northern 
Waimakariri River through the city. These 
deposits of gravel, sand, and silt sediments 
eroded from the Southern Alps overly the 
Christchurch Formation marine sands which, in 
turn, are mixed with silt-clay estuarine and 
swamp deposits accumulated following the last 
glaciation. Below these deposits, there is an older 
Riccarton Gravel formation deposited during the 
last glaciation. As a consequence, the data used 
for training the ANN would comprise all main 
types of soils.  
Despite the availability of supplementary sites 
from the NZGD for testing the ANN, three CPT 
tests provided by the TC304 Student Contest are 
used. Additional information regarding 

geomorphological features, water regime and soil 
stratigraphy from where these tests are taken rest 
unknown. However, these soundings might 
provide an insight into the suitability of the 
proposed ANN to be applied for the soil 
stratigraphy classification of a wider variety of 
geological contexts than the Christchurch area.      

3.2 Pre-processing procedure 
A preprocessing analysis is carried out before 
using the CPT soundings and SPT borings data 
for the training and validation of the ANN. The 
raw data are examined in order to identify and 
exclude outliers from the dataset. This procedure 
consists of a screening of the borehole 
stratigraphy, estimation of relevant information 
from the CPT tests, side-by-side comparison of 
SPT and CPT profiles, statistical outliers 
detection and re-sampling of data. 
First, SPT borings are checked in order to assure 
consistency in the soil label classification. The 
drilling reports provided contain a soil 
description, a graphic log as well as a label class 
according to the USCS rating. In some cases, 
percentages of fines content and pictures of 
retrieved specimens are also available to provide 
a well-rounded overview of subsurface 
conditions. Thus, characteristics of the soil 
layering are examined, and data which show 
differences among information are discarded.  
Instead, tabulated CPT data include basic 
attributes; namely depth 𝑧 , tip resistance 𝑞𝑐 , 
sleeve resistance 𝑓𝑠  and penetration pore 
pressure 𝑢 . These values are transformed into 
𝑄𝑡𝑛 and 𝐹𝑟 (Eq. 1 and Eq.2) in order to account 
the influence of overburden stresses. Since CPT-
based soil classification is commonly based on 
various combination of these parameters, 𝑄𝑡𝑛 , 
𝐹𝑟 , and 𝑧 are chosen as input variables for the 
ANN. However, the SBT Indices 𝐼𝑐 (Robertson, 
2009) and 𝐼𝑏  (Robertson, 2016) are also 
estimated to be consistent with existing soil 
classification methodologies. 
Following this treatment, the CPT soundings and 
SPT borings are compared side-by-side in order 
to correlate 𝑧 , 𝑄𝑡𝑛 , and 𝐹𝑟 attributes with the 
confirmed information about the soil 
stratigraphy. This comparison is necessary to 
identify differences in stratifications between the 
two soil profiles. The typical 10-15 cm cone 
penetrometers cannot penetrate in hard soils, such 



2019 TC304 Student Contest 

22 Sep 2019, Hannover, Germany 

 

 

as rocks and gravel layers. Similarly, SPT 
boreholes cannot clearly distinguish between silt 
and clay soils for which detailed laboratory tests 
are recommended (Robertson, 2012). Therefore, 
the USCS is re-arranged in broader classes; 
namely, ‘gravels’, ‘clean sands’, ‘sands with 
fines’, ‘silt and clay’, ‘peat’. Data corresponding 
to ‘peat’ and ‘gravels’ are removed due to the 
relatively low number of entries and high 
uncertainties associated with these class.  
To further detect outliers, a more rigorous 
exploratory data analysis is applied (Iglewicz & 
Hoaglin, 1993). Initially, each data is grouped 
according to the soil class and plot on the SBTn 
chart proposed by Robertson (2009). Also, each 
soil class is visually inspected, examing the 
variability of 𝐼𝑐  and 𝐼𝑏  values. From a 
statistical standpoint, standard deviation 𝜎 and 
z-scores are calculated for the 𝑄𝑡𝑛  and 𝐹𝑟 
distributions of each soil class and entries with 𝜎 
and/or z-score greater than three are labelled as 
outliers. The interquartile range method is then 
applied and results are cross-referenced with the 
previous ones, before discarding the data 
identified as outliers. The resulting dataset is 
resampled trough the ‘resample’ metrics in 
Scikit-learn (Pedregosa et al., 2011) in order to 
handle the imbalance between the soil classes and 
increase the performance of the ANN.    

3.3 ANN structure and methodology  
After the pre-processing procedure, the soil 
dataset is randomly split into two nonoverlapping 
groups; approximately 75% of them are assigned 
to the role of training, whereas the remaining 
ones are used for validation. The attributes 𝑧, 𝐹𝑟 
and 𝑄𝑡𝑛 are identified as input variables; the soil 
class vector is instead turned into a one-hot 
encoded binary matrix to be used for comparison 
with the output variables.  
The ANN model itself is built by adopting a 
‘KerasClassifier’ as an estimator (Chollet, 2015). 
A base-model function is defined to be used as an 
argument in the classifier, which creates and 
return the ANN model ready for the training. The 
function constructed for this particular study is a 
simple sequential network with an input layer and 
a number of hidden layers, each of which is 
characterised by several neurons, activation 
function and back-normalisation. Instead, the 
output layer creates many output variables, one 

for each soil class. The output value with the 
highest value is taken as the predicted soil class 
by the model using the activation function 
‘softmax’ in Keras (Chollet, 2015). The model is 
then compiled using an optimisation algorithm 
and the Keras logarithmic loss function 
‘categorical crossentropy’ (Chollet, 2015). The 
resulting base-model function is passed to the 
KerasClassifier with the number of epochs and 
back-size dimensions to train the model.  
The training process involves the tuning of 
several parameters to optimise the predictive 
performance of the ANN. A Gridsearch 
hyperparameter optimisation technique is used 
for ease of computation as it is provided by the 
‘GridSearchCV’ class in the Scikit-learn library 
(Pedregosa et al., 2011). A dictionary of 
parameters is passed to this class for the 
evaluation based on the ones available and 
offered by Keras. For instance, the number of 
neurons and hidden layers, activation functions, 
optimiser, epochs, and back-size dimension 
inside the aforementioned KerasClassifier are 
tuned based on their accuracy score. Then, the 
GridSearcgCV process constructs and evaluates 
one model for each combination of parameters 
based on a 3-fold cross-validation technique. The 
combination of parameters that achieved the best 
results are used for training the final ANN model. 
In order to evaluate the ANN model, the data left 
untouched from the splitting are tested. The 
performance of the estimator is assessed using 
metrics from the Scikit-learn metrics (Pedregosa 
et al., 2011). In particular, the predicted and the 
given output variables are compared plotting a 
‘confusion matrix’ and a ‘classification report’ 
which include precision, recall, F1-score for each 
soil class, and accuracy of the entire model. The 
best performing ANN is then used to test and 
classify unseen data, such as the CPT provided by 
the 2019 TC304 contest.   

4. Results 

This section provides an overview of the results 

obtained by applying the ANN. First, concise 

evaluation of the data collected from the NZGD 

is provided. This is followed by the description of 

the optimised ANN architecture with a particular 

focus on its performance. The section concludes 

with presenting the soil stratigraphy for three 

different CPT soundings.     
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4.1 Data Exploratory Analysis 
The resulting dataset obtained comparing the 
SPT-CPT pairs is presented in Table 1. It contains 
more than 24,500 entries for depths 𝑧 ranging 
from 0 to roughly 26m. The soil class ‘clean sand’ 
reported significantly more entries than the other 
two groups. Thus, the data loaded in the ANN 
environment are resampled to 9500 entries for 
each class in order to avoid unbalanced classes.  

Table 1. Adopted Soil Classification. 

Soil  

Description 
Entries 𝐼𝑐 ranges 𝐼𝑏 ranges 

Clean Sand 12898 1.43 - 2.10 53 - 127 

Sand with fines 3902 1.66 - 3.02 13 - 87 

Silt and Clay 7761 1.98 - 3.59 8 - 43 

 

The most striking aspect of Table 1 is the 

correlation between the soil classes, which were 

derived directly from the USCS rates, and the 

SBT Indices ranges. For the ‘Clean sand’ class, 

both 𝐼𝑐  and 𝐼𝑏  correspond quite well to either 

the SBT6 class (Robertson, 2009) or SD/SC 

classes (Robertson, 2016). Instead, the ‘Sand 

with fines’ and ‘Silt and Clay’ classes show 

significant overlap between the sandlike and 

claylike classes in the SBT classifications. These 

anomalies are confirmed by the SBTn Robertson 

(2009) charts reported in Fig.2. Indeed, they set 

out how the soil classification criteria based on 

textural-based features relate quite well with the 

SBT for the ‘clean sand’ class, but differences 

arise looking at the ‘Sand with fines’ and ‘Silt and 

Clay’ classes.  
 

 

Figure 2. Application of SBTn Robertson (1990) 

chart in logarithmic scale according to SBT 

boundaries suggested by Wang et al. (2013): a) 

‘Clean Sand’ (yellow); b) ‘Sand with Fines’ (light 

green); c)‘Silt and Clay’ (dark green).  

These results reflect those of Robertson (2012, 
2016), who also highlighted how the SBTn chart 
is less useful in recognising structured soils. The 
SBT is a behaviour-type classification and not a 
textural-based one; similarities on terms used in 
the description of the SBT might be misleading in 
the geotechnical practise for the extrapolation of 
soil stratigraphy profiles as soil behaviour might 
not relate to textural features. 
In order to overcome this confusion, Robertson 
(2016) has suggested identifying soils on a 
modified SBTn classification. Following the 
introduction of the 𝐼𝑏  parameter, soils which 
behaviour is somewhere between either sandlike 
or claylike ideal soil-based are identified as the 
ones in the range between 22 <  𝐼𝑏  <  32. In 
this regard, the 𝐼𝑏  histogram reported in Fig. 3 is 
revealing in several ways. First, the ‘Clean sand’ 
class corresponds perfectly to soils with 𝐼𝑏 >
 32. Secondly, the statistical mode of the ‘Silt and 
Clay’ soils distribution agrees with the claylike 
interpretation of 𝐼𝑏 <  22 , but the range is 
slightly broader. Nonetheless, the 𝐼𝑏  values of 
the ‘sand with fines’ cover the clay-like, sand-like 
and transitional soils ranges. These result may 
partially be explained by the limited number of 
entries for this class or misclassification errors 
and, thus, further research is suggested to 
understand if a better behavioural-textured 
correlation exists.  
 

 

Figure 3. Histograms of 𝐼𝑏 values for each class: 

‘Clean Sand’ (yellow), ‘Sand with Fines’ (light 

green), and ‘Silt and Clay’ (dark green) 

4.2 Model performance evaluation 
Based on the hyperparameter optimisation, the 
final ANN structure consists of five fully 
connected layers. In particular, one layer each for 

(a)  (b)  (c)  
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the input and output neurons and three hidden 
layers (Table 2). Among all the activators and 
optimisers offered by the Keras package (Chollet, 
2015), the ones which suit better the data are 
respectively the linear rectifier ‘Relu’ and the 
first-order gradient-based stochastic optimiser 
‘Adam’ (Kingma & Ba, 2014). The back-size and 
epochs are also set to 80 and 200. Table 2 
summarises the adopted structure with 
specifications of neurons (output shape) and 
parameters used at each step.    

Table 2. Summary of the ANN structure. 

Layer Output Shape Activation Parameters 

Input 240 Relu 960 

Hidden 1 140 Relu 33740 

Hidden 2 120 Relu 16920 

Hidden 3 18 Relu 3025 

Output 3 Softmax 130 

 

A positive correlation is found between the input 
𝑧, 𝑄𝑡𝑛, 𝐹𝑟 attributes and the adopted soil classes 
through this model. Indeed, the results reported in 
Table 3 show a total accuracy of the ANN equal 
to 0.91. The class which is better classify is the 
‘clean sand’, followed by the ‘silt and clay’ as 
also the precision, recall and F1-score values are 
proximate to the unit. Instead, the ‘sand with 
fines’ class shows borderlines values. Its metrics 
are all closed to 0.85, which is the commonly 
accepted reference target for an acceptable multi-
class classification.  

Table 3. Classification Report. 

Soil Class Precision Recall F1-score 

Clean Sand  0.98 0.94 0.96 

Sand with fines 0.84 0.88 0.86 

Silt and Clay 0.91 0.90 0.90 
    

Accuracy   0.91 

 
These uncertainties are confirmed by the 
confusion matrix. Fig.3 illustrates how entries 
classified as ‘sand with fines’ could be instead 
‘silt and clay’ with a 10% probability. This 
ambiguity in the classification might be due to the 
limited number of entries in the original dataset 
adopted for this class, which could be solved 
using more CPT-SPT input pairs. Contrary to 
conventional statistical approaches, deep learning 
models increase their performance augmenting 
the number of input data as they can better 

understand the non-linearity of the problem. 
Nonetheless, this uncertainty could also be 
related to soil misclassification from the retrieved 
SPT. These borings provide a continuous but 
rough characterisation of the subsurface profile 
and major strata (Wentz & Dickenson, 2013). 
Thus, in future investigations, it might be 
possible to improve these results carrying out 
high-quality continuous borings and laboratory 
tests for assessing precisely the soil class. 

 

Figure 4. Normalised confusion matrix 

   
4.3 Application  
The results of the ANN on the CPT testing data 
provided by the 2019 TC304 contest are shown in 
Fig.5, Fig.6 and Fig7. The figures report for each 
soil profile the continuos 𝐼𝑐 and 𝐼𝑏  values, and 
the soil classification based on the ‘clean sands’, 
‘sands with fines’ and ‘silts and clays’ classes.    
 

 

Figure 5. CPT- test 1: 𝐼𝑐, 𝐼𝑏, and soil classes: 

‘Clean Sand’ (yellow), ‘Sand with Fines’ (light 

green), and ‘Silt and Clay’ (dark green). 
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Figure 6. CPT- test 1: 𝐼𝑐, 𝐼𝑏, and soil classes: 

‘Clean Sand’ (yellow), ‘Sand with Fines’ (light 

green), and ‘Silt and Clay’ (dark green). 

 

Figure 7. CPT- test 1: 𝐼𝑐, 𝐼𝑏, and soil classes: 

‘Clean Sand’ (yellow), ‘Sand with Fines’ (light 

green), and ‘Silt and Clay’ (dark green). 

 These results need to be interpreted 
qualitatively. 𝐼𝑐  and 𝐼𝑏  are parameters based 
on the mechanical behaviour of the soils, whereas 
the classification adopted in the ANN derived 
from the textural-based USCS. To verify the 
efficacy in the classification these results should 
be instead compared with SPT borings. 
Concerns are also expressed regarding the ANN 
predictions. The training dataset does not include 
‘gravels’ and ‘peats’, which might be present in 
the testing profiles. Indeed, more input data are 
needed in the training dataset. In future studies, it 
might be possible to develop a more reliable 
ANN increasing the number of CPT-SPT pairs, 
compare the soil classes with more reliable 
laboratory test and include more parameters as 
inputs such as the fines and water content.   

6. Conclusion 
The present research has attempted to 
investigated if ANNs are a viable and more 
straightforward option for determining a USCS 
based soil stratigraphy from CPT tests. Adopting 
SPT-CPT data pairs, the analysis has confirmed 
that SBT classifications might not coincide with 
textural features, and caution might be necessary 
for the interpretation of soil stratigraphy.       
Taken together, the ANN approach is fast, 
straightforward, less labour intensive then 
laboratory tests and does not require extensive 
statistical knowledge. In this regards, it suits well 
the needs of a cost-effective and time-efficient 
methodology for the soil stratigraphy profile for 
engineering practitioners. Nonetheless, the 
method does not allow to check and control how 
it assigns the weighting functions and, hence, its 
efficacy is compromised by acting as a ‘black 
box’. Thus, at the state-of-art, it might be better 
using the ANN method as first pass filter to 
determine the likely soil stratigraphy.    
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