On Feasibility and Performance of Rowhammmer Attack

Varnavas Papaioannou
University College London
London, UK
varnavas.papaioannou.16@ucl.ac.uk

ABSTRACT

In this paper we study the Rowhammer sidechannel attack and
evaluate its feasibility on practical exploitation scenarios in Linux.
Currently, all the implementations released, capable of perform-
ing the Rowhammer attack, require elevated privileges. This is a
very strong requirement which, in a sense, puts ths attack into the
theoretical spectrum. The purpose of this report is to explore differ-
ent techniques that would allow the execution of the Rowhammer
attack in userspace. More specifically, we provide two implementa-
tions, each of them having different strength of requirements but
with one characteristic in common: the capability of executing the
Rowhammer attack without elevated privileges. At the end, we
see that not only it was possible to reach similar levels of perfor-
mance with the programs that required elevated privileges, but
in some cases even outperform them, in both native and virtual
environments.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and counter-
measures; Operating systems security;

KEYWORDS
side channel attack, rowhammer, DRAM, DFA, perturbation attacks

ACM Reference Format:

Varnavas Papaioannou and Nicolas Courtois. 2017. On Feasibility and Per-
formance of Rowhammmer Attack. In Proceedings of ASHES’17. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3139324.3139330

1 BACKGROUND ON COMPUTER MEMORY
1.1 DRAM

Modern DRAM modules’ hierarchy is organized into multiple levels.
At its bottom, there are the memory cells, which are the main com-
ponents for storing information within DRAM modules . A memory
cell is composed by one transistor and one capacitor. The transistor
is used to enable the potential charging of the capacitor, which
at the end will hold the encoded one-bit information. Due to the
nature of the capacitor, there is current leakage through the access
transistor, so in order to retain its value within the predefined noise
margins, a periodic refreshing within the expected lifetime of the
information is necessary. During the refreshing time, the capacitor
gets recharged to its original levels.

The memory cells are then grouped into a two-dimensional grid
with rows and columns to form the next level into the hierarchy,
the bank. A collection of banks is further combined to form a chip
on the module. A chip has a specified data width (typically 4 or 8
bits) and so multiple chips are utilized in order to fill the bus width
of the module (typically 64 bits or 72 with ECC) and form the top
level of the hierarchy, the rank. Modern DRAM modules may have

Nicolas Courtois
University College London
London, UK
n.courtois@cs.ucl.ac.uk

1,2 or 4 ranks. Finally, since the total capacity of a DRAM module
is limited, it is common for memory controllers to support access
to multiple modules on the same board and even provide increased
bandwidth by accessing them in parallel. In the latter case, the
memory controller groups the DRAM modules in channels, where
each channel can be accessed independently from the others.

The operations on the DRAM module most of the time are di-
rectly controlled by the memory controller. When there is memory
access request, the memory controller maps the corresponding
physical address into the DRAM hierarchy using a bijective func-
tion. What that means, is that for each physical address, there is a
corresponding channel, DRAM module, rank, bank, row and col-
umn. After mapping the address, the memory controller activates
the row where the data resides in which causes the data to be sensed
by the sense amplifiers and stored into the row-buffer. The row
buffer in this case essentially acts as a cache to facilitate faster
access to data with spatial locality (in the DRAM module) and each
bank has its own row-buffer. Finally, after the data gets sensed into
the row-buffer, the input signals for the data columns are used to
return the requested data. A graphical way to describe the above
operation can be observe in Figure 1

2 THE ROWHAMMMER SIDE CHANNEL

After defining the basics of DRAM architecture, it’s time to intro-
duce the Rowhammer phenomenon. The term Rowhammer in the
memory context was formally defined and publicized by Kim, Daly,
Fallin et al. [11] in 2014. It is described as the process of repeatedly
activating specific rows within a bank which may have the side-
effect of flipping bits in neighboring rows. This behavior, as it was
mentioned in the paper, is a direct consequence of the inter-cell

—~— activated row

row selection
——

il \\\E

-— row buffer

| column selection

input signals enable input/output data enable

Figure 1: DRAM Structure, Source: [1] (Modified)

https://doi.org/10.1145/3139324.3139330

coupling effects that accelerate charge leaking in adjacent rows
which eventually provokes bit flips in memory locations that poten-
tially belong to another process. The disturbance caused by those
effects is amplified by the increased density of modern memory
modules e.g. in DDR3, due to poor isolation between neighboring
cells. The end result, bit flips in different rows, adjacent to those
"hammered" by the attacker.

The success of inducing the Rowhammmer perturbation relies
on two capabilities on the attacker’s side. First the attacker has to be
capable of bypassing the CPU cache for his memory accesses. This
is due to the fact that when a memory access is already in the CPU
cache, the DRAM module will not get activated and instead the
memory access will be served by the CPU cache. After bypassing
the CPU cache, the attacker needs to at least be capable of avoiding
the target’s bank row buffer. Accessing memory locations that are
already in the row buffer would prevent the corresponding row to
get activated and so the attack cannot be performed.

Even though the attack’s requirements are straightforward, their
implementation in practice hides a lot of complexities. In the next
chapter we will discuss various ways of implementing each of the
requirements that could be useful in different scenarios.

2.1 Attack Foundations

2.1.1 Requirement 1: Bypassing the CPU Cache. Full description
of cache memory is not within the scope of this paper. We will
only provide the elements essential for the Rowhammmer attack.
Modern processors utilize multiple levels of cache memory in order
to keep to the minimum the required DRAM memory accesses. An
important characteristic of each cache level is its cache inclusion
policy. We will say that a cache memory is higher in the memory
hierarchy if it’s closer to the CPU. For example, L1 cache will be
always the highest ranking type of memory. An example of the var-
ious levels of a modern memory hierarchy can be seen in Figure 2.

Most common types of cache inclusion policies are Inclusive,
Exclusive and Non-Inclusive/Non-Exclusive (NINE). When a cache
level is Inclusive, it is guaranteed to include all the data found in
the higher cache levels. When a cache level is Exclusive, then it is
guaranteed that it doesn’t include any data found in the cache levels
above its own. With the NINE, there is no guarantee to be neither
Inclusive nor Exclusive. Having this brief description of the cache,
we will review various techniques which aim at bypassing the cache.

>
zpz' L2 Cache \
R ;

/ L3 Cache N,

Main Memory (DRAM)

/ Secondary Storage
(Hard Disk)

Figure 2: Example of the multiple levels of memory hierar-
chy

Architecture Specific Instructions. Since the CPU cache plays a
critical role in optimizing the system’s performance, modern CPU
architectures are designed to allow fine-grained functionality over
how the cache should be used. One commonly found feature over
the cache is the invalidation of a cache entry (from all the cache
levels). For example, the x86 processors may include the instruction
clflush !, which takes a memory location as input and removes the
associated cache line from all levels in processor’s cache hierarchy.
Now even though various computing architectures support such
functionality, it’s not always the case that such functionality will be
available in the user space. For example, clflush instruction in x86
is available in all privilege levels, however in ARM processors the
equivalent instruction requires elevated privileges. Calling clflush is
the fastest and the most effective way of bypassing the CPU cache.

Another functionality often found in CPU architectures is sup-
port for non temporal memory accesses. Primarily focused towards
avoiding cache pollution with data which are known that are not
going to be used in the near future, modern processors offer instruc-
tions that effectively bypass the cache for the specified memory
access. The use of Non-Temporal instructions for the Rowhammer
attack was first mentioned in [5] and successfully used in [15].

Cache Eviction. The most intuitive way to direct a request to
DRAM and avoid the whole cache complexity is by filling the whole
cache with irrelevant data. This can be achieved by accessing a
buffer with size at least as big as the last level cache. That way, it is
possible to evict a target cache line which was e.g. demonstrated
in [10]. Even though this technique is effective irrespectively to
the implemented cache coherence policies, this technique is par-
ticularly ineffective within the context of Rowhammer. If we use
it, we need to cause eviction of the whole cache just in order to
evict a much smaller quantity of data related with the rowhammer
attack. Accordingly, this technique is typically considered totally
impractical for Rowhammer.

A better way would be to achieve the eviction of a single block
of data which includes a target memory location. For example,
consider a CPU where Last-Level Cache (LLC) is L3 and which
implements any type of Inclusive policy, with a known mapping
function from the physical address space to L3 cache. In this case
one can evict the contents of a physical address by just evicting
it from the LLC, i.e. L3. The set of addresses that are required to
be accessed in order to generate the eviction of the target is called
Cache Eviction Set (CES)

This approach was initially taken by Seaborn and Dullien in [17]
where they implemented the Rowhammer attack for dual core pro-
cessors based on Sandy Bridge micro-architecture, which is known
to have inclusive LLC. For the attack, they used the mapping func-
tion that was reverse engineered in [10]. Later, Gruss, Clementine
and Mangard in [9] implemented the Rowhammer attack using
javascript with the same methodology of bypassing the cache.

2.1.2 Requirement 2: Bypassing the Rowbuffer. The techniques
described for bypassing the row buffer can be separated into those
that rely on first calculating the DRAM mapping from the virtual
address space all the way to the DRAM chip locations, and those

!The clflush instruction was introduced with Streaming SIMD Extensions 2 (SSE2)
and its availability can be verified throughout its CPUID feature flag.

BAO + P

X"
BA1 ¢ Pe
BA2 ¢ ’ }‘
Rank +

...,2221,20,19,18,17,16,15,14,13,12/11,10,9,8 ,7 , 6, ...
Ch. ¢ |

Figure 3: Illustration of Sandy Bridge DRAM Mapping
Found in [6]

that operate without precise knowledge of that mapping. By suc-
cessfully mapping the memory into the DRAM the attack can be
more efficient however will often require special privileges or de-
pendency on specific assumptions about the target system which
we will study later. In contrast, the second class of techniques has
the advantage that may work with less privileges or for a wider
range of target systems.

Mapping Memory to DRAM. The physical component of the CPU
responsible for the DRAM mapping is the memory controller. Upon
receiving a memory transaction with a given physical address, the
memory controller uses some logic to map this address to the DRAM.
This logic is documented in AMD CPU microarchitectures but is
kept secret by Intel. Regardless of that fact, various researchers
have managed to reverse engineer a significant amount of DRAM
mapping functions used by Intel in [6, 14, 19]. In Figure 3 we can see
the mapping of the memory controller on Sandy Bridge microarchi-
tecture, on a system with 2-channels of memory with each channel
composed by a single DRAM module. As a result, in many cases the
knowledge of the physical addresses allows accurate calculation of
the DRAM location on the chip.

The procedure of translating virtual to physical address is stan-
dardized and it can be performed on every operating system by
writing code that would manually perform the Page-Walk?. Even
though possible, this is relatively complex and so modern operating
systems often offer some kind of interface for translating virtual
memory to physical. Linux offers this functionality through the
pagemap interface. Up to the kernel version 4.0, it was allowed for
userspace programs to use this functionality. After the release of the
first exploit based on the Rowhammer bug [17] by Mark Seaborn
and Thomas Dullien, the access to the translation information be-
came available only to privileged users. Windows operating systems
do not offer such functionality natively. On Windows, it is possible
to find where virtual memory of a program is mapped for users with
elevated privileges by using the WinDbg debugger in kernel mode.

Initially, the ideal is to have a complete physical translation of all
attacker’s memory locations. As explained above, the attacker may
be unable to obtain these. In that case, the consideration of current
OS page size can be useful. The page size is used in the physical
address translation through the fact that the virtual page offset is the
same as the physical page offset. This allows us to partially map the
addresses, with the accuracy level which depends on the page size.

The most commonly supported page size among CPU architec-
tures is 4KB. When available, this is the default page size modern
operating systems choose for their operations. Now considering the

2Page-Walk is a procedure usually executed by the Memory Management Unit to
translate a virtual address to a physical one.

4KB page for the purpose of the Rowhammer attack, the provided
12 least significant bits of the physical address will not provide us
with enough information to successfully launch the attack. This
can be observed in Figure 3, where the first 12 bits provide only the
channel information.

But even though the default page size is 4KB, both CPU and
operating systems support bigger sizes as an optimization primarily
to reduce the pressure in the Translation Lookaside Buffer (TLB) 3.
To give some perspective on the subject, a 1GB memory allocation
with 4KB page would result in 250K entries, while for example a
1GB page would result in just one entry. For instance, x86-64 CPU
architectures support 2MB and potentially 1GB pages. In Windows,
this optimization is called large page support and special privileges
are required for its use. In Linux from the other hand, a feature called
Transparent Huge Pages (THP), allows the automatic promotion
and demotion of page sizes without requiring special permissions.
In Linux build for x86-64 architectures, the typical page size used
with THP is 2MB. This particular page size is more than enough to
accurately map the memory to DRAM in various configurations, as
for example in the one listed in Figure 3.

Alternative to DRAM Mapping. Here the attacker just tries to
identify which addresses lead to Same Bank Different Rows (SBDR),
a term defined in [6]. This is expected to be the minimum require-
ment for launching a Rowhammer attack.

The first method for identifying addresses that map to SBDR is
based on a timing channel which was first described in [12] and
it’s based on the way DRAM works. A slight delay occurs when
different rows within the same bank are requested. This delay, even
though it’s very small, it can be identified by using high precision
timers?. Even without the possession of accurate counters, it is
possible to rely just on luck for hitting a particular bank. Given
that the total number of banks is often really small, by picking a
small set of addresses it’s very probable to have a pair that satisfies
the given requirements. This technique was used in one test-case
implementation by Seaborn and Dullien in [17].

3 INDUCING THE ROWHAMMMER BUG

The basic approach for the Rowhammer attack, is to first choose
a pair of addresses with the SBDR property as described in §2.1.2.
Then depending on the environment, a technique described in §2.1.1
should be chosen for bypassing the cache for each memory access
over the selected address pair. After that, the aggressor rows and the
expected victims are initialized with specific patterns. Traditionally,
the contents of aggressor rows are filled with 0 and the victim rows
with 255.

3.1 Hammmering Procedure

With everything in place, we start "hammering" by repeatedly ac-
cessing each SBDR pair. The process is depicted in Figure 1. The
efficiency of the attack heavily relies on the way the SBDR pair is
chosen and this is what we will discuss next.

3TLB basically acts like a cache for the virtual to physical address mappings. It
has a limited space and a TLB miss generally is a very expensive operation.

4CPU counters can be used for the task of high precision timing. For example, in
x86 processors, this can be achieved though the Time Stamp Counter (TSC), which is
a 64-bit register that counts the number of cycles since last reset.

Table 1: Code Snippet for Inducing the Rowhammer Vulner-
ability

repeat:

mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
jmp repeat

Single Sided Rowhammmer. In single-sided Rowhammer, the only
requirement for the selected address pair is to be SBDR. This was the
approach originally used in [11]. Even though this kind of address
selection has the minimum number of requirements, it is the least
efficient.

In the targeted approach, the selection of the SBDR addresses
depends on the difference of their corresponding row numbers in
DRAM. So for the success of this attack, it is necessary to have a
way to obtain the DRAM mapping as was described in §2.1.2.

As was discussed earlier, the crucial parameter in this attack, is
the distance between the targeted rows. When the distance is equal
to two, the targeted approach is called Double-Sided Rowhammer
and it was suggested initially in [17]. Through experimentations,
this hammering setup was found to be the most efficient and it is
considered to be the best method for performing the Rowhammer
attack. When the double-sided Rowhammer attack was performed,
it was observed that the most affected row (the most bitflips) was
the one between the two aggressor rows, even though a limited
number of bitflips had been observed in the neighboring rows as
well. The diagram of this attack can be seen in Figure 4

Researchers in [9] also explored the possibility of setting the row
distance equal to 1, or simply put, setting the aggressor rows to
adjacent rows. This attack was named Amplified Rowhammmer
Attack and even though it is less efficient than the double-sided
Rowhammer in the "bug" identification phase, it could be more ef-
fective in the exploitation phase. This is due to the fact that by using
adjacent rows on the page boundaries, it is possible to cause bit flips
in memory that is not currently allocated to the attacker. That way,

=C— agressor row 1
|[=€— victim row

, ~— agressor row 2
row activation

il

-— row buffer

| column selection

input signals enable input/output data enable

Figure 4: Double Sided Rowhammmer, Source: [1] (Modified)

in the exploitation phase, the attacker will not have to wait for the
victim row to get swapped in order to get it allocated to another pro-
cess. Of course, this assumes that the page spans over multiple rows
and that the attacker does not have into his disposal commands to
deallocate some memory selectively. This is true for example in the
Javascript environment which was the case studied in [9].

3.1.1 Rowhammmer Bit Flips Exploitation. The first documented
technique for exploiting bitflips was described originally by Govin-
davajhala et al. in [7], where they managed to break out of a Java VM
by heat induced bit flips. Their exploitation strategy was to target a
structure in memory which even with a single bit flip could break
the underlying security assumptions of the system. Even though
that particular attack was mostly theoretical, it became practical
with the Rowhammer vulnerability. So, by using similar exploita-
tion principles as the original paper, Mark Seaborn and Thomas
Dullien in [17] released the first exploit based on the flipped bits
induced by Rowhammer.

One important aspect of the attack is how to make the bit flips
occur in a location where a vulnerable memory structure is mapped.
There are two possibilities, either spray the whole memory with
that memory structure or the more targeted approach, in which
the attacker has the capability of mapping memory into specific
locations in DRAM. All the exploits presented on Rowhammer can
be classified based on these two attack primitives.

Spraying the Memory. One of the two exploits presented in [17]
was a sandbox evasion. The idea behind this exploit was to first cre-
ate a specially crafted piece of code. This piece of code should have
the property that even with a single bit flip would yield with high
probability a new code that would bypass the security assumptions
of the sandbox. The next step was to create multiple instances of that
code and wait until it eventually gets mapped into a vulnerable row.
In Table 2 we can see an illustration of this exploitation technique.

The other exploit presented in [17] aimed the Page Table struc-
ture. The first step in this attack was to repeatedly map a shared
region in memory. This repeated action caused the memory to reach
a state where it was mainly filled with Page Tables and the single
shared region where the Page Table Entries (PTEs) point onto. After
reaching that state, the rowhammer attack was utilized to alter a
translation entry of a PTE and gain access to an attacker’s Page Ta-
ble, something that is equivalent to full memory read/write access.

Table 2: Sandbox Evasion Example

Mlustration of the code provided in [17] for sandbox evasion
Original Code:

Opcodes | Instructions

83 E0 E1 | andl $~31, %eax // Truncate address to 32 bits

// and mask to be 32-byte-aligned.

4C @1 F8 | addq %r15, %rax // Add %r15, the sandbox base address.

FF EQ jmp *%rax // Indirect jump.

Code After Bit Flip:

Opcodes | Instructions

83 E2 E1 | andl $~31, %ecx // Truncate address to 32 bits

// and mask to be 32-byte-aligned.

4C @1 F8 | addq %r15, %rax // Add %r15, the sandbox base address.

FF EQ jmp *%rax // Indirect jump to unsanitized register

Targeted Approach. Memory deduplication is a commonly abused
feature in the context of Rowhammmer. This is due to the fact that
it could allow the placement of potentially sensitive data in rows
controlled by the attacker. Based on this technique, researchers in
[3] managed to take control of a Microsoft Edge Browser running
on Windows 10 without depending on any software vulnerabilities.
This technique was also utilized in [16], where researchers abused
the memory deduplication feature to map RSA public keys and
update urls on vulnerable to Rowhammer rows, which ultimately
allowed them to exploit both SSH as well as the update mechanism
of Debian based distributions. Even though memory deduplication
can be used very efficiently for the Rowhammer attack, it should be
noted that is not enabled by default in modern operating systems>.

Another targeted approach was shown in [19]. The researchers
abused the memory management conducted in Xen paravirtual-
ization environments which ultimately allowed them to replace a
whole page table with a forged one. With controlled access to a page
table structure they essentially managed to gain control of the whole
memory of the system, similarly to the attack presented in [17].

A more calculated approach was followed in [18]. They studied
the behavior of the physical memory allocator in Android phones
and through specific allocation patterns they managed to force it
to allocate memory from predictable regions of memory. By using
this predictable allocation patterns, they managed to launch the
Page Table attack and perform privilege escalation in ARM devices
without relying to system-dependent features.

3.2 Our Contributions

For the purpose of this paper we have implemented two Rowham-
mer testing tools that differentiate from the rest of the tools with
regards to the fact that they do not depend on the pagemap inter-
face. The first tool is based on the Transparent Huge Pages (THP)
feature and the other one on the SBDR timing channel.

The first tool is called hprh (huge page rowhammer)[13] and its
operation depends on having allocated big chunks of contiguous
physical memory (THP feature). Now, as we can see for example in
Figure 3, this requirement essentially allows us to map addresses
within that region in their exact bank. It does also provides us with
the three least significant bits of the row mapping within that spe-
cific bank, something that essentially allow us to know the relative
position of eight consecutive rows. From that point on, we have all
the necessary information to launch the double-sided rowhammer
attack and this is exactly what we do in our implementation. Since
the double-sided attack is considered to be the best way of iden-
tifying vulnerable rows, comparing our tool with the respective
implementation that required the use of pagemap interface yielded
about the same number of identified bit flips. In our implementation,
we do also take into account the fact that regular sized pages (4KB)
may be promoted in our case to 2MB pages only when a page-fault
occurs in a 2MB-aligned address. This is achieved by either explic-
itly requesting a 2MB aligned buffer or by manually aligning the
buffer to the boundary. That way, we can generate bit flips even
within smaller buffer sizes. In addition to our implementation, we

In Windows 10, memory deduplication is disabled by default as a mitigation
measure to the attack described in [3]

provide patches for the rowhammer-test[4] and hammertime[2] that
extend their functionality to utilize the THP feature.

The next tool we implemented is called tcrh[13] (timing channel
rowhammer). This tool is based on the timing channel in DRAM
described in §2.1.2. For its operation, it initially builds a set of ad-
dresses that map to the same bank. That way, the total number of
memory locations that have to be scanned for vulnerable rows is
immediately reduced to 1/16 (assuming uniform distribution of the
data across a single DRAM module with 16 banks). Next, we further
reduced the number of entries in that set by identifying memory
locations that mapped to the same rows. This was achieved by
utilizing the same timing channel that was used originally, with the
difference that for this case we pick address pairs that have small
access delay, since that signifies that the requests are served by the
row buffer and as such the address pairs must belong to the same
row. By using that procedure, we managed to reduce the number
of entries in the set by about 25%.

The original approach after getting done with the "sieving" phase
was to test the previously found set of memory location with each
other. This decision was based on the assumption that physical
frames were randomly allocated to the user. As such, we expected
that the more memory locations we got tested the higher would the
probability be to hit memory locations that mapped to nearby rows
and bruteforce in a sense the double-sided technique. As expected,
it required a significant amount of time for its operation even for
small buffers but even so, it was capable of generating bit flips. After
analysis of the logs generated by the program, it was observed that
a lot of target and victim rows were having the same distance
between them. This behavior could have only be explained in the
case where large chunks of contiguous memory were allocated to
our program. Since the THP feature was disabled for our tests, this
observation is speculated to be related to the way Linux allocates
memory (buddy allocator). With that in mind, we modified the
program to be efficient only when allocated chunks of contiguous
memory. We achieved that by testing only memory locations that
were positioned within a predefined distance from the currently
tested memory locations. That way, we lower the probability of
finding vulnerable rows in the case that the currently tested region
is not mapped contiguously. Nevertheless, in the other case that
the region is contiguously mapped, then we always manage to
identify vulnerable rows something that turned out to be much
more efficient than our original approach. At the end, using our
final implementation, we managed to induce a significant number
of bit flips not only in native but in virtualized environments as
well. Before closing this section we should also mention that for our
4-core Sandy Bridge configuration, we have discovered that the bit
21 shown in Figure 1 was also part of the rank selection function.

3.3 Experiments

For our experiments we used a DELL NH6K945 laptop, with Intel
Core i7-2760QM CPU @ 2.40GHz and a single 8GB DRAM module
with model number M471B1G73QH0-YKO. Our operating system
was Ubuntu 16.04.2 LTS with Kernel version 4.10.0-28. For the exper-
iments run within Virtual Machine we used VMware Workstation
and for the guest operating system we used Ubuntu with the same
Kernel version as the host machine. In Figure 3 we provide an

Table 3: The operational characteristics of the various tools
on Rowhammer testing. The ¢/ denotes that the underlying
operation can be completed in user space while the ¢ de-
notes that elevated permissions are required. The + signi-
fies that the given functionality is offered as an extension
throughout our repository. The tools marked with * are im-
plemented within the scope of this paper.

DRAM Mapping Cache Eviction
pagemap | THP | TC | CLFLUSH | CES
rowhammer-test[4] v +v - v v
rowhammerjs[8] v - - v v
hammertime[2] 4 +V - v -
hprh[13]* - v - v -
terh[13]* - - (%4 v -

overview of the tools and their features which they implement for
testing the Rowahammer attack.

3.4 Measurements

For the measurements, we assess all the tools under two different
settings. In the first one, we assess their efficiency of inducing the
rowhammer vulnerability while remaining stealthy, by utilizing a
small buffer (2MB) for a limited amount of time (one minute). For
the second one, there is a 256 MB buffer which the tools have at
their disposal to "rowhammer" for ten minutes. This test aims to
provide the information of which tool is best for inducing the bug
in general.

4 CONCLUSION

The Rowhammer attack revolves around a lot of concepts that get
complicated due to the lack of proper documentation. In this report
we aim to shed some light into those concepts, study the internals
of the Rowhammer attack and clarify the requirements on which
a successful attack really relies upon. We then provide two imple-
mentations that are capable of inducing the Rowhammer attack
in userspace as well as their performance evaluation. Through the
results, it becomes obvious that the pagemap interface can be effi-
ciently substituted by using the described techniques. Since those
techniques can be utilized in userspace, we open the way for further
research into the actual exploitation of the vulnerability.

REFERENCES

[1] Wikipedia - Row hammer. https://en.wikipedia.org/wiki/Row_hammer. [Ac-
cessed 22-July-2017].

[2] Tatar Andrei. Hammertime: a software suite for testing, profiling and simulating
the rowhammer DRAM defect. https://github.com/vusec/hammertime/, 2016.

[3] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Dedup est
machina: Memory deduplication as an advanced exploitation vector. In Security
and Privacy (SP), 2016 IEEE Symposium on, pages 987-1004. IEEE, 2016.

[4] Thomas Dullien and Mark Seaborn. Program for testing for the DRAM "rowham-
mer" problem. https://github.com/google/rowhammer-test, 2015.

[5] Thomas Dullien and Mark Seaborn. Exploiting the DRAM rowhammer bug
to gain kernel privileges. https://googleprojectzero.blogspot.co.uk/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html, 2015. [Accessed 28-July-2017].

[6] Thomas Dullien and Mark Seaborn. =~ How physical addresses map to
rows and banks in DRAM. http://lackingrhoticity.blogspot.co.uk/2015/05/
how-physical-addresses-map-to-rows-and-banks.html, 2015.

[7] Sudhakar Govindavajhala and Andrew W Appel. Using memory errors to attack
a virtual machine. In Security and Privacy, 2003. Proceedings. 2003 Symposium on,
pages 154-165. IEEE, 2003.

Table 4: Performance Results (Total Number of Induced Bit
Flips)

Based on pagemap
2MB_1MIN | 256MB_10MIN
Native | VM | Native | VM
rowhammer-test 0 0 8 0
rowhammer-js 0 0 1322 66
hammertime 0 0 25983 | 1177

Based on THP

2MB_1MIN | 256MB_10MIN
Native | VM | Native VM
rowhammer-ext 932 0 6016 5
hammertime-ext | 1911 0 25965 46
hprh 2301 0 25003 63

Based on the Timing Channel
2MB_1IMIN | 256MB_10MIN
Native | VM | Native | VM
terh 62 0 832 169

—

8] Daniel Gruss and Clémentine Maurice. Program for testing for the DRAM
"rowhammer" problem using eviction. https://github.com/IAIK/rowhammerjs,
2015. [Accessed 28-July-2017].

[9] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer. js: A

remote software-induced fault attack in javascript. In Detection of Intrusions and

Malware, and Vulnerability Assessment, pages 300-321. Springer, 2016.

Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side channel at-

tacks against kernel space aslr. In Security and Privacy (SP), 2013 IEEE Symposium

on, pages 191-205. IEEE, 2013.

[11] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without
accessing them: An experimental study of dram disturbance errors. In ACM
SIGARCH Computer Architecture News, volume 42, pages 361-372. IEEE Press,
2014.

[12] Thomas Moscibroda and Onur Mutlu. Memory performance attacks: Denial of
memory service in multi-core systems. In Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium, page 18. USENIX Association, 2007.

[13] Varnavas Papaioannou. User-Space Rowhammer Testing Tools. https://github.

com/vp777/Rowhammer, 2017. [Accessed 28-July-2017].

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan

Mangard. Drama: Exploiting dram addressing for cross-cpu attacks. In USENIX

Security Symposium, pages 565-581, 2016.

[15] Rui Qiao and Mark Seaborn. A new approach for rowhammer attacks. In
Hardware Oriented Security and Trust (HOST), 2016 IEEE International Symposium
on, pages 161-166. IEEE, 2016.

[16] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and
Herbert Bos. Flip feng shui: Hammering a needle in the software stack. In
USENIX Security Symposium, pages 1-18, 2016.

[17] Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer bug to gain
kernel privileges. Black Hat, 2015.

[18] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clé-
mentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano
Giuffrida. Drammer: Deterministic rowhammer attacks on mobile platforms. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 1675-1689. ACM, 2016.

[19] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and MR Teodorescu. One bit flips,

one cloud flops: Cross-vm row hammer attacks and privilege escalation. In

Proceedings of the 25th USENIX Security Symposium, 2016.

[10

[14

https://en.wikipedia.org/wiki/Row_hammer
https://github.com/vusec/hammertime/
https://github.com/google/rowhammer-test
https://googleprojectzero.blogspot.co.uk/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.co.uk/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://lackingrhoticity.blogspot.co.uk/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.co.uk/2015/05/how-physical-addresses-map-to-rows-and-banks.html
https://github.com/IAIK/rowhammerjs
https://github.com/vp777/Rowhammer
https://github.com/vp777/Rowhammer

	Abstract
	1 Background on Computer Memory
	1.1 DRAM

	2 The Rowhammmer Side Channel
	2.1 Attack Foundations

	3 Inducing the Rowhammmer Bug
	3.1 Hammmering Procedure
	3.2 Our Contributions
	3.3 Experiments
	3.4 Measurements

	4 Conclusion
	References

