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Abstract. Linear Cryptanalysis (LC) is an important code-breaking

method which has become popular in the 1990s and has roots in earlier

research [Shamir,Davies] in the 1980s. In this article we show evidence

that Linear Cryptanalysis is even older. According to documents from the

former Eastern German cipher authority ZCO, systematic study of linear

characteristics for non-linear Boolean functions was routinely performed

already in the 1970s. At the same period Eastern German cryptologists

have produced an excessively complex set of requirements known as KT1,

which the long term keys are required to satisfy and keys of this type were

in widespread use to encrypt communications in the 1980s. An interesting

question is then, to see if KT1 keys offer some level of protection against

linear cryptanalysis. In this article we demonstrate that (strangely) not

really. This is demonstrated by constructing specific counter-examples of

pathologically weak keys which satisfy all the requirements of KT1.

However, as T-310 is used in a stream cipher mode that uses only a

tiny part of the internal state for actual encryption, it remains unclear

whether this type of weak keys could lead to key recovery attacks on

T-310.
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1 Introduction

This article is about what we can learn about design and analysis of ciphers

in the Eastern block during the Cold War based on original documents found

in Eastern German state security archives. We focus on low level cryptanalysis

questions such as how bit-level linearity and non-linearity shape the security

of larger components. It is widely known that Differential Cryptanalysis was

known under the name of “tickle attack” in the 1970s, two decades before it was

studied in open academic community [12, 19]. In contrast not much is known

about the history of Linear Cryptanalysis. We have the early works of Davies [3]

and Shamir [29] from the 1980s, which are very incomplete and later works which

put earlier attacks in a new light [4, 1, 5] and show that all these facts are very

closely related to (nowadays standard) Linear Cryptanalysis [LC]. In this article

we show evidence that the study of linear characteristics was part of a routine

set of properties which were already carefully studied in the 1970s in Eastern

Germany [26] more than a decade before it was studied in the academia [29, 23,

20, 21]. At the same time we will show that the T-310 cipher can nevertheless

be extremely weak w.r.t. LC.

This article is organized as follows. In next Section 2 we outline the history

of East German cipher machines from 1970-1990. In Section 3 we show that

analysis of ciphers in terms [non-]linearity is indeed quite old. In Section 4 we

study the T-310 cipher in full detail and in Section 5 we study the constraints

which the cipher long-term setup was mandated to satisfy. In Section 6 we show

that the cipher can nevertheless be made very weak. In Section 7 we consider a

question of existence of a more general non-linear backdoor-like property. Finally

in Section 8 and in Conclusion section we discuss the potential implications of

our weak-key attacks.



2 History of SKS V/1 and T-310

SKS V/1 is an Eastern German electronic encryption device for teletype commu-

nication by radio and wire, mainly used in the late 1970s and 1980s, cf. [16, 17]

and scz.bplaced.net/old.html. All functions are implemented in hardware

by means of logic gates and flipflops. Other communist countries, namely the

Soviet Union, Bulgaria, Poland, Czechoslovakia, and Hungary, made use of the

SKS V/1, as well. The development of the SKS V/1 started in the early 1970s.

The SKS V/1 was developed by the Eastern German authority of cipher affairs,

Zentrales Chiffrierorgan (ZCO), which contributed the cryptologic expertise, and

the Institut für Regelungstechnik (IfR). Both organizations were located in East

Berlin. The development included a comprehensive security analysis of the ci-

pher algorithm used by the SKS V/1, which took place from 1973 to 1974. The

SKS V/1 seems to be an Eastern German development. The records contain

references to several consultation meetings with Soviet specialists.

Fig. 1. The main component of SKS V/1 cipher: a block cipher with 27-bit blocks.

After the IfR had built a number of prototypes, the serial production of the

SKS V/1 took place at VEB Steremat ”Hermann Schlimme” in East Berlin.

The first device was shipped in 1977. Five years later in 1982, a T-310 machine

which was the successor of the SKS V/1, was in serial production. Nevertheless,

an improved version of the SKS V/1, the SKS V/2 DISKRETA, was developed



starting in 1987. Usage of the SKS V/1 in Eastern Germany (and the develop-

ment of the SKS V/2 DISKRETA) probably ended in 1990 with the German

reunification and the merger between the Eastern German ZCO with its western

counterpart, the Zentralstelle für Informationssicherheit (ZfI) in Bonn. It is not

known, until when the SKS V/1 was used in other communist countries.

The SKS V/1 is not a single device, but a system consisting of numerous

components encased in solid metallic boxes which have different names such as

CE, DE2 or PG2 and which realize the whole handling of messages including

entering, encryption, transmission by cable or radio, receiving, decryption and

print. The cleartext is entered with a typewriter keyboard. The long-term key

consists of 32 hand-wired circuit boards. The short term key has 208 bits and is

entered via a punch card.

The T-310 is another Eastern German encryption machine and the successor

of the SKS V/1. T-310 is a complex electronic encryption machine built around

another block cipher with 36-bit blocks. Inside we find the exact same component

T () cf. Fig. 1 and later Fig. 2 and Fig. 4. It has a long-term key (a.k.a. LZS)

configured via printed circuit boards. The short-term key has 240 bits and is

entered via a punch card.

T-310 was used to encrypt teletype communications (by radio and wire)

during the last period of the Cold War. The T-310 is considered the most im-

portant Eastern German cipher machine of its time. It was designed by ZCO

crypto experts in the 1970s. Like the SKS V/1, the T-310 is an Eastern Ger-

man development with Soviet specialists being involved for analysis. It became

known to a larger English-speaking public since a paper published in Cryptologia

in 2006 [28]. The T-310 was used by the Ministry of State Security (also known

as ”Stasi”), the Ministry of National Defense, the Council of Ministers, the po-

lice, the youth organization FDJ, the trades union organization FDGB, and the

Central Committee of the SED (the SED was the leading political party). In

1989 there were some 3,800 copies in active service. There is no evidence that

the T-310 was used in countries other than Eastern Germany.



The first specification of the tactical and technical requirements for the T-

310 was available in 1973. ”Quasi-absolute security” was stated as a requirement.

In 1974 the design of the cryptographic algorithm (in some documents named

ARGON) began. Two cryptologists (both mathematicians) were commissioned

for one year. The development of the device began in 1976 at the IfR with first

prototypes being available in 1978. In 1980 cryptologists of the ZCO and from

the Soviet Union conducted an investigation of the security of the encryption

process. Two years later the T-310/50 model of T-310 was put into serial pro-

duction at VEB Steremat ”Hermann Schlimme”. In August 1990, shortly before

the German reunification, the ZCO handed over a T-310 device to their West-

ern German colleagues from the Zentralstelle für Informationssicherheit (ZfI),

which was later renamed to Bundesamt für Sicherheit in der Informationstech-

nik (BSI). With the reunification, the usage of the T-310 terminated. The BSI

later analyzed the encryption algorithm of the T-310. Officially, the BSI was not

authorized to say anything about the results, but unofficially, the device was

rated extremely secure.

3 Cipher Design, Boolean Functions and Linear

Cryptanalysis in the Eastern Bloc

Our study reveals that many fundamental questions related to security of ciphers

have a long history.

3.1 Boolean Functions and ANF

A standard way to represent a Boolean function in modern cryptography is

to use the Algebraic Normal Form (ANF). According to Wikipedia [31], this

method of algebraization of arbitrary Boolean functions was invented by the So-

viet mathematician Zhegalkin in 1927 [31]. ANFs or Zhegalkin polynomials are

simply “polynomials of ordinary high school algebra” which when interpreted

over the integers mod 2 become remarkably simple: “requiring neither coeffi-

cients nor exponents”, cf. [31]. Interestingly, it took nearly a decade for Western



mathematicians to also use this tool, and initially mathematicians proposed un-

necessarily complicated methods to “arithmetize” the Boolean algebra. Only in

1936 the U.S. mathematician Marshall Stone has reflected on the not quite “loose

analogy” between Boolean algebras and rings which has led to wider adoption

of ANF representations of Boolean functions cf. [31]. Not surprisingly we found

that the ANF (or Zhegalkin polynomials) is the default and routine tool consis-

tently used across numerous Eastern German cryptography documents we have

studied.

3.2 The Boolean Function in SKS V/1 and T-310 Ciphers

The principal cipher used in Eastern-German cryptography during the Cold War

is T-310 cf. [28]. The primary non-linear component of this cipher is a Boolean

function Z : IF6
2 → IF2. This function was in fact designed in the 1970s for SKS

V/1 cipher, the predecessor of T-310 [30, 27]. An exact specification of Z can be

found in [27] page 113 [27] and in page 39 of [30]. We have verified that both

Boolean functions are identical.

Z(e1, e2, e3, e4, e5, e6) = 1⊕ e1 ⊕ e5 ⊕ e6 ⊕ e1e4 ⊕ e2e3 ⊕ e2e5 ⊕ e4e5 ⊕ e5e6 ⊕

e1e3e4 ⊕ e1e3e6 ⊕ e1e4e5 ⊕ e2e3e6 ⊕ e2e4e6 ⊕ e3e5e6 ⊕

e1e2e3e4 ⊕ e1e2e3e5 ⊕ e1e2e5e6 ⊕ e2e3e4e6 ⊕ e1e2e3e4e5 ⊕ e1e3e4e5e6

In this article ⊕ denotes an XOR (addition modulo 2).

3.3 Design Criteria for the Boolean Function Z from 1973

We found a list of original design criteria which were mandated by Eastern-

German cryptologists in 1973 [25] for the (same) Boolean function Z() of the

earlier SKS V/1 cipher. They are listed on page 53 of [25] as follows:

(1) |{X = (X1, X2, . . . , X6)∈{0, 1}6|Z(X) = 0}| = 25

(2) |{X ∈{0, 1}6|Z(X) = 0, HW (X) = r}| ≈
(
6
r

)
· 12 , r = 0..6

(3) |{X ∈{0, 1}6|Z(X1, .., Xi, .., X6) = Z(X1, .., Xi ⊕ 1, .., X6)}| ≈ 25, i = 1..6

(4) Z is not symmetric



It is noteworthy that the criterion (3) is related to Differential Cryptanalysis

which was only officially studied in 1990s and these criteria are very old: they

come from the same period of time when DES was designed in the U.S. [5, 12].

3.4 Another Important Set of Requirements from 1976

We found another important document from 1976, which gives a different set

of points to study and requirements or criteria which the Boolean function Z

should satisfy, cf. page 30 in [15]. It also clearly states that these properties were

specified one year earlier and that they are studied in full detail in [26]. We

provide a translation below:

1. All derivations of Z were computed as Zhegalkin polynomials1 and as value

tables.

2. Frequency of the function result being ‘1’ with k fixed values was computed

for (k = 1, 2, 3).

3. The statistic structure of the Boolean function was computed.

4. Z is not symmetric. This means that the function value changes if the argu-

ments are permuted, if one or several arguments are negated, if the function

is negated or if a combination of these three changes is applied.

The meaning of statistic structure. An examination of pages 17 and

18 in [26] makes it crystal clear that term statistic structure refers exactly to

computing a full set of linear characteristics for this Boolean function Z cf. our

Table 1 page 8 below.

Further statements. The original document [15] contains further preci-

sions. It says that 1. and 2. are important requirements for further examination.

Then it expands on 3. which again is precisely about Linear Cryptanalysis ap-

proximations cf. Section 3.5 and our Table 1 below, a.k.a. statistic structure (of

Z). It says that it did not reveal any cryptographic “advantages” resulting from

an approximation of the function Z via Boolean functions. Finally it explains

1 Again this is the same as Algebraic Normal Form (ANF), cf. Section 3.1] and [31].



(in relation to 4.) that due to the asymmetry (property demonstrated on pages

19-20 in [26]) of Z the equivalence of long-term keys will be limited.

3.5 Linear Characteristics of Z

In this article we show that Linear Cryptanalysis was studied in a systematic

way in the 1970s. A complete study of all possible 26 linear characteristics of Z is

done on pages 17-18 of [26] under the name of “Statistische Struktur” (statistical

structure) of the Boolean function Z.

Table 1. Fragment of Table 3.1-2 in page 18 of [26] dated 1976 which contains a

complete set of linear characteristics of Z. In this table L denotes 1.

On page 17 a suitable definition is provided: the goal is to compute ∆Z
α for

any2 α ∈ {0, 1}6, which function is defined precisely as:

∆Z
α = 26−1 − ||Z(x)−

6∑
i=1

αixi||

where ||g(x)|| is the number of times g(x) = 1. We can also remark that

2 Here α ∈ {0, 1}6 and should not be confused with the notation α ∈ {1, . . . , 36} which

is used to specify a part of the T-310 long-term key in [28, 13].



∆Z
α = t− 26−1

where t is the number of times g(x) = 0 with g(x) = Z(x)−
∑6
i=1 αixi as above

(and where sign ‘−’ is the same as ‘+’ modulo 2).

Observations. This table suggests that systematic computation of linear

characteristics was already a routine task for cipher designers in 1976, a decade

before [29, 23]. The presence of sign ‘−’ suggests that similar or more general

definitions in fields or rings other than GF (2) were studied. Moreover, in [26] it is

clearly indicated that this definition comes from a yet earlier source. Namely the

authors say that the definition comes from Section 2 inside Chapter 2 “Boolean

Functions” from classified lecture notes on cryptography delivered by Soviet

specialists, known under reference number 2243 and not dated.

On Modern Notion of Non-Linearity. From here standard cryptographic

literature would define the nonlinearity of the Boolean function Z as the Ham-

ming distance from the set of all affine functions which in this case will be equal

to:

N (Z) = Min ( Minα(||g(x)||) , Minα(t) )

The earliest reference in the open academic literature which contains this defini-

tion is Pieprzyk and Finkelstein, cf. Def. 7 page 326 in [23] from 1987/88 which

cites an earlier paper from 1985 by the first author published in a more obscure

publication in Poland.



4 The T-310 Cipher

T-310 or T-310/50 is a cipher machine which was the primary encryption method

used in East Germany throughout the 1980s [16, 28]. The encryption method it

uses is a peculiar form of a synchronous stream cipher which is also a mode

of operation of a block cipher. A keystream is derived from the internal state

obtained by iteration of a quite complex block cipher which we call “the T-310

block cipher”. This should be compared to the original method of encryption

invented by Feistel around 1971 [18], where the cipher state is divided in two

“branches”. Eastern block cipher designers had already in the 1970s [25, 28]

mandated substantially more complex ciphers. SKS V/1 and T-310 can be seen

as particular variants of the concept of “Contracting Unbalanced Feistel cipher”

[22] with 3 and 4 branches respectively, cf. Fig. 1 and 2.

Fig. 2. Outline of one round of T-310.

This block cipher has a 240-bit secret key and the block size is 36 bits.

It also takes an Initialization Vector (IV) of 61 bits which are generated at

random by the sender and sent in cleartext (and which will be different for each

transmission).



The encryption method used is in fact highly non-standard cf. [28]. The

block cipher is basically never used directly to encrypt, and it is iterated a large

number of times depending on the length of the data to be encrypted. Some

13 · 127 = 1651 block cipher rounds are performed in order to extract as few as

10 bits from the block cipher state, which will then be used to encrypt just one

5-bit character of the plaintext, cf. [28, 13, 14] for more details.

The secret key is s1−120,1−2 which is 240 bits. The two key bits used in

different encryption rounds m are sm,1−2, m ≥ 1 which repeat every 120 steps:

sm+120,1−2 = sm,1−2.

In contrast the IV bits are expanded in a less regular way, not periodic. The

expansion is based on the following LFSR which produces a sequence with a

very large prime [27] period of 261 − 1:

fi = fi−61 ⊕ fi−60 ⊕ fi−59 ⊕ fi−56.

This peculiar aperiodic expansion makes T-310 stronger than for example

GOST or KeeLoq, which is a source of numerous self-similarity attacks [8, 10].

A detailed description of T-310 can be found in [13].

4.1 The Long-Term Keys

As in previous works the vulnerability of the cipher against attacks [13, 14] will

strongly depend on the so-called long-term key, in German Langzeitschlüssel,

a.k.a LZS. This LZS is defined by two mappings D,P which D : {1 − 9} →

{0 − 36} and P : {1 − 27} → {1 − 36} which define the internal connections

of the cipher and it also comprises a constant α ∈ 1 − 36, the index at which

data may be extracted for encryption. The long-term key LZS is precisely which

defines how much the actual structure will diverge from a simple “Contracting

Unbalanced” scheme with 4 branches, cf. [22] and Fig. 5. The designers of T-

310 mandated numerous technical conditions which the LZS should satisfy, cf.

Section 5 below.



Fig. 3. T-310 Cipher.



Following [28] we denote by um,1−36 the 36-bit state of the cipher at mo-

ment m = 0, 1, . . .. The numbering in the cipher is such that the bits numbered

1, 5, 9, . . . , 33 will be those created in one encryption round, and the bits num-

bered 4, 8, . . . , 36 are those which are replaced, and all of the other bits get

shifted by one position i.e. um+1,i+1 = um,i for any i 6= 4k. Let U1−9 be the 9

newly created bits. By definition after one round we have

(um+1,1, um+1,5, um+1,9, . . . , um+1,29, um+1,33) = (U1, U2, U3, . . . , U8, U9)

4.2 One Block Cipher Round

It remains to specify how the U1−9 are computed inside one round. The tra-

ditional method to define the round function is to first define a compression

component T : IF2+27
2 → IF9

2 cf. Fig. 2 and [27, 28]. Then the 9 outputs are

XORed with 9 bits specified by D(). In this article we adopt a particularly com-

pact way to describe the whole round which is composed of T () and final XORs

directly. We present a series of formulas which allow to compute the Ui directly

in order u0, U9, . . . , U1 which is computed last. This is also illustrated in Fig. 4

below and on Fig. 6 page 20. These compact notations require a special conven-

tion such that if D(i) = 0 for one of the i, we put um+1,0
def
= sm,1, m ≥ 0,

which is part of the secret key and a constant for any given round. The Boolean

Z : IF6
2 → IF2 was specified in earlier Section 3.2.

u0
def
= s1

U9 = uD(9) ⊕ f

U8 = uD(8) ⊕ U9 ⊕ uD(9) ⊕Z(s2, uP (1−5))

U7 = uD(7) ⊕ U8 ⊕ uD(8) ⊕uP (6)

U6 = uD(6) ⊕ U7 ⊕ uD(7) ⊕Z(uP (7−12))

U5 = uD(5) ⊕ U6 ⊕ uD(6) ⊕uP (13)

U4 = uD(4) ⊕ U5 ⊕ uD(5) ⊕Z(uP (14−19))⊕ s2
U3 = uD(3) ⊕ U4 ⊕ uD(4) ⊕uP (20)

U2 = uD(2) ⊕ U3 ⊕ uD(3) ⊕Z(uP (21−26))

U1 = uD(1) ⊕ U2 ⊕ uD(2) ⊕uP (27)



Fig. 4. Internal structure and T inside one round of T-310.

Example. For example P (27) = 1 means that we connect rightmost output U1

(or state bit u1 or 1 in green from I4 on Fig. 5) to input v27 in the next round cf.

Fig. 4. Then D(9) = 4 means that first bit u4 from I1 on Fig. 5 was XORed to

the state when computing U9, which U9 becomes bit 33 of I4 in the next round.

4.3 Design Criteria for the Round Function

We denote by S1 any of 120 key bits sm,1, m ≥ 1 and S2 any of the sm,2. We

observe that only S2 bits are used as input to Z(). cf. Fig. 4. We found a docu-

ment [25] which explains the origin why S2 is used twice inside this component

cf. Fig. 4. More precisely on page 54 of [25] from 1973 we discovered an earlier

(weaker) design for the component T () where S2 is used only once, cf. Fig. 4.

The authors report that for exactly half of the inputs of the round function φ,

the 9-bit output would be independent of the key input S2 which is avoided in

SKS V/1 and T-310 ciphers.



4.4 On Weakness of the T-310 Round Function

A comparison between the structure of T () and many modern block ciphers

suggests that it is potentially weaker. Informally, the non-linear functions on

Fig. 4 do not “mask” the input bits completely. Even though, none of 27 inputs

vi are copied directly at the output, they somewhat pass through and we can

fear that the apparent complexity of T () cf. Fig. 4 can potentially be undone or

reduced by elimination.

One type of interesting fact is that for example T1⊕T2 reveals the output of

first Z() which could be biased under some conditions and reveal some informa-

tion to the attacker. Our research shows that correlation attacks are quite well

defended against in T-310 by mandating a bijective round function cf. [13, 14].

Another type of property of interest is that for example T2 ⊕ T3 reveals

the input v6, and similarly T8 ⊕ T9 reveals the input v27. This property will

be exacerbated by the fact that the KT1 keys which we will study in Section

5 below, do specifically allow a large number of outputs of D to be identical

to outputs of P , which is forbidden for KT2 keys cf. [14]. Therefore additional

cancellations can be imagined as the Ti are later XORed to some of the vD(i)

and cancellations are permitted cf. round function formulas and Fig. 4. In this

article we are going to show that this indeed is a problem and that KT1 keys

can be indeed very weak, cf. Lemma 6.0.1 page 19.

5 On KT1 Keys and Their Security

The original documentation of T-310 specifies some 20 or more very technical

conditions which the T-310 keys should satisfy, cf. [27] and [14]. We focus on the

KT1 class of keys which was the primary type of keys used in actual historical

communications in 1979-1990 (cf. Def. 5.0.1 below and [28, 17, 14]).



Fig. 5. With KT1 keys D uses 8 bits from the left branch I1, one is dropped and

replaced by one of the key bits sm,1. P can take extra bits from I1.

Definition 5.0.1 (KT1 key). We say that a triple D,P, α belongs to KT1

class of keys if all the following conditions are simultaneously satisfied:

D and P are injective, P (3) = 33, P (7) = 5, P (9) = 9, P (15) = 21, P (18) = 25,

P (24) = 29, Let W = {5, 9, 21, 25, 29, 33}∀1≥i≥9 D(i) /∈W and α /∈W and,

Let T = ({0, 1, . . . , 12}\W ) ∩ ({P (1), P (2), . . . , P (24)} ∪ {D(4), D(5), . . . , D(9)} ∪ {α})

Let U = ({13, . . . , 36}\W ) ∩ ({P (26), P (27)} ∪ {D(1), D(2), D(3)}) then we require

that: |T\{P (25)}|+ |U\{P (25)}| ≤ 12, D(1) = 0 and, there exist {j1, j2, . . . , j7, j8}

a permutation of {2, 3, . . . , 9} which defines D(i) for every i ∈ {2, 3, . . . , 9}

as follows: D(j1) = 4, D(j2) = 4j1, D(j3) = 4j2, . . . , D(j8) = 4j7 and P (20) = 4j8

(D(5), D(6)) ∈ {8, 12, 16} × {20, 28, 32} ∪ {24, 28, 32} × {8, 12, 16} and,

P (6) = D(8), P (13) = D(7), P (27) 6= 0 mod 4,∀1≥l≥9∃1≥i≥26P (i) = 4 · l

D(3) ∈ {P (1), P (2), P (4), P (5)} and D(4) /∈ {P (14), P (16), P (17), P (19)}

{P (8), P (10), P (11), P (12)} ∩ {D(4), D(5), D(6)} = ∅



5.1 Examination of Real-Life Keys

In [17] we find 7 keys from the period of 1979-1990 numbered 14,21,26,30,31,32,33.

We have verified that these 7 keys satisfy all the conditions of Def. 5.0.1.

5.2 Key Observation About KT1 Keys

We have discovered the following property:

Theorem 5.2.1 (KT1 Cycling Theorem). For every key in the class KT1

if we replace the first value d[1] = 0 by P (20) and we divide all values by 4, we

obtain a permutation E of the set {1, . . . , 9} with exactly one cycle.

Proof: Following the definition of KT1, there exist {j1, j2, . . . , j7, j8} a permuta-

tion of {2, 3, . . . , 9} such that D(j1) = 4, D(j2) = 4j1, D(j3) = 4j2, . . . , D(j8) =

4j7 and P (20) = 4j8 We claim that then, the following permutation E repre-

sented as 1 single cycle [in order], is what we are looking for: 1, j8, j7, . . . , j2, j1, 1

which closes the cycle. Indeed 1 is mapped to j8 due to P (20) = 4j8, then we

have D(j8) = 4j7 which implies that j7 must follow position j8 etc, finally j1 is

mapped to 1 due to D(j1) = 4.

Moreover we also have

Theorem 5.2.2 (KT1-D Counting Theorem). There exist exactly 18 · 6!

valid choices for an injective D : {1 − 9} → {0, 4, 8, 12, . . . , 36} such that

(D(5), D(6)) ∈ {8, 12, 16} × {20, 28, 32} ∪ {24, 28, 32} × {8, 12, 16} and such

that a suitable j[] exists.

Proof: In principle there are 9! choices for D : {1 − 9}. However we have only

18 = 2·32 choices which are allowed for D(5), D(6). Then in theory we have 18·7!

possibilities for D left, from which we need however to exclude all those where the

one single cycle property of Thm. 5.2.1 is not valid, as this property is required3.

We need then to see that in every of 18 cases, for example D(5) = 8 = 4 · 2 and

D(6) = 20 = 5 · 4 exactly 1/7 of all possible permutations have one single

cycle. We need to count permutations E of {1 − 9} such that E(5) = 2 and

E(6) = 5 where E(x) = D(x)/4 and such that E has one single cycle. We also

3 From inspection of KT1 conditions the proof of Thm. 5.2.1 actually uses.



need to check that none of 18 cases allowed for E(5 − 6) leads to a situation

of type E(x) = y and E(y) = x. In contrast situations of type E(6) = 5 and

E(5) = 2 which would be consecutive in a cycle are allowed but these do not

prevent the complete permutation form having just one cycle. In the case of type

E(6) = 5 and E(5) = 2 we just complete the cycle by deciding E(5) = x out

of 6 possibilities, excluding 2,6,5, then E(x) can take 5 values, etc, overall we

get 6! way of completing the cycle. In the case of type E(6) = 7 and E(5) = 2

which is not connected, we have 5 numbers 1-9 not yet used. There are 6 ways to

decide how many elements need to be inserted after 7 and before 5, any number

between 0 and 5, and then there are 5! ways to place remaining 5 elements then

after 7 and after 2 to form a single cycle. Again we have 6! possibilities. This

gives the desired result of 18 · 6! possibilities for the number of possible D which

are allowed by the KT1 rules.

Remark. We have checked by computer simulation that all of 18 ·6! possibilities

are taken, and each leads to a vast number of actual valid KT1 keys.

5.3 KT1 Key Generation

We provide a simple and efficient method aimed at enumerating KT1 keys with-

out any special properties, approximately uniformly, and at random.

1. We select one of 18 · 6! valid choices of D() from Thm. 5.2.1. A full list is

pre-computed and stored.

2. We determine P (20) as the only value of type 4k, 0 < k ≤ 9 not taken by D()

and we put P (3) = 33, P (7) = 5, P (9) = 9, P (15) = 21, P (18) = 25, P (24) =

29 and P (6) = D(8), P (13) = D(7).

3. Now for all value of P () not yet decided, we place D(3) so that D(3) ∈

{P (1), P (2), P (4), P (5)} and also place all multiples of 4 not already taken

so that ∀1≥l≥9∃1≥i≥26P (i) = 4 · l.

4. Now we generate other values P (i) at random avoiding values already taken

to insure injectivity.

5. For all other KT1 conditions we restart all steps until a valid KT1 key is

found, which occurs with a relatively large probability of about 0.19.



5.4 KT1 Key Symmetries and Entropy

We now evaluate the size of KT1 long-term key space.

Lemma 5.4.1 (KT1 key size). The size of the space of KT1 keys is approxi-

mately 283.2 elements.

Justification: The best evaluation previously known was that the key space for

D,P only and without α is between 78.1 and 79.7 bits, cf. page 56 in [27]. In

addition there are about log2(36 − |W |) ≈ 24.9 possibilities for α in each case

which gives a range of between 83.0 and 84.6 bits total. Can we provide a more

precise figure? From the definition of KT1 above, and by careful inspection we

observe that if we permute in arbitrary way {P (1), P (2), P (4), P (5)} we always

get a valid KT1 key as the definition never makes any distinction between these

indices. The same applies to {P (8), P (10), P (11), P (12)} and also to the pair

{P (21), P (23)}. Given than P is injective, it is therefore sufficient to count KT1

keys in which the values in each of these 4 sets are ordered in an increasing order,

and multiply the result by 2(4!)2 = 210.2. This makes our set of keys smaller and

easier to study. First we have exactly 18 · 6! ≈ 213.7 valid choices of D() from

Thm. 5.2.1 which always pass step 2, 3, 4 and will enter step 5. Then for each

of 213.7 cases we know the full d and we need to see how many valid versions of

p exist so that their combination is a valid key. Our simulations show that the

number of possibilities for p[1− 16] is about 230.3 and for p[17− 27] about 232.1.

Moreover, we found that the probability that such two halves of the description

of p can be combined to form a valid KT1 key is about 2−8.0. Overall we conclude

that the key space of KT1 keys has about 210.2+13.7+30.2+32.1−8.0+4.9 ≈ 283.2 for

complete LZS with D,P, α.

6 How to Make T-310 Weak w.r.t. Linear Cryptanalysis

We now present an explicit constructive method to weaken the T-310 cipher.

Lemma 6.0.1 (Weak Setup for T-310). For every long-term key in T-310

such that D(1) = 0, D(2) = 4 and P (27) = 6 the T-310 block cipher has two

invariant linear approximations for 2 rounds true with probability 1 which are



[1, 3, 5]→ [1, 3, 5] and [2, 4, 6]→ [2, 4, 6]. Here state bits are numbered 1, 2, . . . 36

as in [28, 27] and the notation [1, 3, 5] means that we XOR bits 1,3 and 5 together.

Proof: We recall the last equation of Section 4.2:

um+1,1 = uD(1) ⊕ um+1,5 ⊕ uD(2) ⊕ uP (27)

We have D(1) = 0 which makes that um,0 = sm+1,1 and D(2) = 4 and

P (27) = 6. Therefore we have

um+1,1 = sm,1 ⊕ um+1,5 ⊕ um,4 ⊕ um,6,

Fig. 6. For convenience we show the bits involved here, cf. also Fig. 4.

and this leads to the following linear approximation for one round:

[4, 6]→ [1, 5] 1R P = 1

Numerous similar linear approximations exist and in isolation they have very

limited value, if they cannot be connected to some other well-chosen approxima-

tions. Using that fact that bits 6= 4k are just shifted in our Feistel cipher with 4

branches, this can be trivially extended for one round before as follows:

[3, 5]→ [1, 5] 2R P = 1

Finally we have [1]→ [2]→ [3] for two rounds also with certainty, which property

can be combined with the previous one and we obtain finally that:

[1, 3, 5]→ [1, 3, 5] 2R P = 1

Similarly we also have

[2, 4, 6]→ [2, 4, 6] 2R P = 1

Moreover all this can indeed happen for the KT1 keys, see for example our

key 783 specified below. We will call such keys “LC-weak” keys:



Definition 6.0.2 (LC-weak keys).

We say that a long-term key LZS is LC-weak if it exhibits at least one invariant

linear characteristics true with probability 1.

6.1 Vulnerability Assessment of KT1 Keys

How many keys are concerned by this vulnerability? In this article we show:

Lemma 6.1.1 (Weak KT1 key size bound). The probability that a KT1

chosen at random has at least two invariant linear approximations true with

probability 1 is at least 0.3%.

Justification: We recall from Section 5 that for the KT1 keys we always have

D(0) = 1 and D(j1) = 4. Therefore in order to make a KT1 keys satisfy our

linear attack of Lemma 6.0.1 we just need to satisfy 2 (and not 3) conditions:

j1 = 2 and P (27) = 6. Which fraction of 283.2 keys of Lemma 5.4.1 satisfy these

conditions. The first condition j1 = 2 occurs with probability of about 1/8 ≈ 2−3.

The probability that second condition knowing that j1 = 2 is a bit harder to

evaluate. Therefore an approximative estimation would be 1/8·1/36·283.2 ≈ 275.0

weak KT1 keys or 0.3% of all KT1 keys.

6.2 Weak KT1 Keys with Multiple Linear Invariants

We have tested many other KT1 keys generated essentially at random (cf. Section

5.3) and discovered that some keys are even weaker than what we expect from

Lemma 6.0.1. For some KT1 keys the vulnerability is stronger and we get more

than two invariant linear approximations true with probability as high as 1,

which can propagate for an arbitrary number of rounds. Below we give three

examples of vulnerable KT1 keys we discovered.

Currently the most pathological KT1 key known is 784. This key 784 can be

characterized in a very simple way as follows. It exhibits simultaneously the same

8-round periodic linear characteristic as key 788 AND exactly the same 2-round

periodic linear characteristic as key 783. Moreover these involve two disjoint and

linearly independent sets of linear combinations with 10=8+2 total of linear

invariant properties, which happen to work with probability 1 for all keys and



Table 2. KT1 keys with multiple invariant linear characteristics for T-310.

LZS nb D P rounds solutions

783 0,4,8,32,28,16,12,20,24 8,32,33,11,1,20,5,26,9,24,4,7,12,2,21,

34,28,25,3,36,31,13,18,29,19,16,6

2 2

788 0,4,36,32,24,8,12,20,16 26,19,33,36,4,20,5,27,9,17,2,11,12,31,

21,22,1,25,7,28,16,24,32,29,8,30,34

8 8

784 0,4,32,28,24,8,12,20,16 3,1,33,11,32,20,5,26,9,2,4,7,12,24,21,

34,31,25,8,36,28,13,18,29,19,16,6

8 10

IVs. Below we provide full internal details about both periodic properties which

are self-explanatory and also show which exact key/IV bits are used:

[1,3,5]-s1->[2,4,6]->[1,3,5]

[9,13]->[10,14]->[11,15]->[12,16]->[25,29,33]-f->

[26,30,34]->[27,31,35]->[28,32,36]->[9,13]

6.3 More Weak KT1 Keys

A more detailed study done by ourselves with help of UCL students doing a

COMPGA18 Cryptanalysis project on this topic in 2018, shows that there exist

numerous other ways to achieve a similar result. Overall we found that about

3% of all KT1 keys are LC-weak (i.e. they admit linear approximations true

with probability 1). This is 10 times more than properties studied in this article

cf. Lemma 6.1.1. Extensive computer simulations show that among all possible

8! = 40320 values for {j1, j2, . . . , j7, j8} in KT1 keys, some 4549 which is 11.3%

are potentially compatible with LC-weak keys.

6.4 On Importance of LC-Weak KT1 Keys

Weak keys do not matter... unless their frequency is quite large, see [10, 11]

for specific examples of weak keys which do have an impact on the security

evaluation of a cipher because their frequency is sufficiently large. With KT1

keys in T-310 the weak long-term keys are also of concern: 3% chance means

that weak keys could have been accidentally generated and used to encrypt

government communications. A detailed examination of all real-life keys from

[17], shows that this has not happened. This brings a further question whether



our weak-key attack can be generalized to include yet more weak keys, which

question we study in Section 7 below.

7 Non-Linear Algebraic Backdoors and Related Research

A natural generalization of the linear invariant properties which are demon-

strated to exist for a substantial fraction of KT1 keys in T-310, are higher degree

non-linear invariant properties. Current literature on this topic [24, 6, 7] shows

several constructions of weak ciphers with multivariate equations of degree 2 [6]

or higher. A recent PhD thesis [2] contains a construction of a toy block cipher

operating on 6 bits with a non-linear trapdoor due to a hidden vector space law

which is not apparent to the attacker and will not be detected by routine Linear

Cryptanalysis.

We conjecture that it should be possible to embed a non-linear “backdoor” or

weakness in T-310 with KT1 keys or similar standard setup. In the current article

we achieve this objective for linear equations. More generally we ask the following

question: Is it possible to find a non-linear function f() such that the value of f()

is an invariant preserved after an arbitrarily large number of rounds of T-310?

A non-linear f would allow for a construction of stronger forms of “backdoors”

or deliberate weakness in T-310, which could be substantially harder to detect.

8 Is Linear Cryptanalysis Relevant to T-310?

This is an interesting and highly non-trivial question. In this article we ignored

the question of how exactly the block cipher inside T-310 is used in encryption.

It turns out that Eastern German cryptologists have mandated a specific and

remarkably strong encryption operation mode for their block cipher. Extremely

few bits from the cipher state are used for encryption: less than 1 bit every 127

rounds, cf. [28, 13, 14]. The cryptanalytic literature knows extremely few attacks

which operate under such extremely difficult circumstances cf. Section 2.1. in

[13] and [9].



Our linear cryptanalysis weakness we construct in this article can concern

linear combinations up to 10 bits out of 36 in each round, yet it does not in

the slightest lead to any property involving single bits. For this reason it is not

clear how much T-310 is actually weakened by such a modification. Potentially

one could prove that no bias exists on individual bits used for encryption and

therefore potentially we are not yet able to break T-310 used in encryption in

any meaningful way.

9 Conclusion

In this article we show that Linear Cryptanalysis and systematic study of ciphers

in terms of non-linearity and Boolean polynomials [a.k.a. ANF] are quite old.

We show that a careful systematic study of these properties was a routine task in

Eastern Germany in the 1970s. An interesting question is then why the designers

of East German T-310 cipher machine has NOT made resistance against linear

attacks obligatory for their rather carefully designed class of KT1 keys. In this

article we show a specific counter-example: we construct weak keys which are

100% compliant with the KT1 specification. Our Lemma 6.1.1 shows that at

least 0.3% out of 283 KT1 keys are weak w.r.t. LC, and further study shows that

some 3% are weak. Therefore it is plausible that weak keys could be generated

and used in the real life. A careful examination of principal real life keys from

1979-1990 cf. Section 5.1 and [17], shows that none of these keys are vulnerable.

Some of our linear vulnerabilities seem quite strong, up to 10 out of 36

linear combinations of internal state bits can be known to the attacker for any

number of rounds. However these still do not really allow to decrypt T-310

communications as far as we can see. This is due to the fact the T-310 uses

extremely few bits of the internal state for the actual encryption. It remains an

open question if or how such (strong) linear vulnerabilities could (or not) be

exploited in order to decrypt T-310 communications. In Section 7 we suggest a

higher-degree non-linear generalization of our weak-key attack.
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22. Jacques Patarin, Valérie Nachef, Côme Berbain: Generic Attacks on Unbalanced

Feistel Schemes with Contracting Functions, in Asiacrypt 2006, pp. 396-411, LNCS

4284, Springer 2006.

23. J. Pieprzyk and G. Finkelstein: Towards effective nonlinear cryptosystem design,

IEE proceedings E - Computers and Digital Techniques, Vol. 135 Iss. 6, November

1988, pp. 325-335, ISSN 0143-7062.

24. Vincent Rijmen and Bart Preneel, A family of trapdoor ciphers, In FSE’97, pp.

139–148, Springer, 1997.

25. Archive document known as MfS-Abt-XI-183, which contains a selection of pages

extracted from MfS-020-Nr. 747/73, 1973.

26. ZCO: Charakterisierung der Booleschen Funktion Z, handwritten document, MfS-

020-XI/493/76, 24 pages, 1976.



27. Referat 11: Kryptologische Analyse des Chiffriergerätes T-310/50. Central Cipher
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