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Abstract. T-310 is an important Cold War cipher [Cryptologia 2006].
In a recent article [Cryptologia 2018], researchers show that in spite of
specifying numerous very technical requirements, the designers do not
protect the cipher against linear cryptanalysis and some 3 % of the keys
are very weak. However such a weakness does not necessarily allow to
break the cipher, because it is extremely complex and extremely few
bits from the internal state are used for the actual encryption. In this
article we finally show a method which allows to recover a part of the
secret key for about half of such weak keys in a quasi-realistic setting.
For this purpose we revisit another recent article from Cryptologia from
2018 and introduce a new peculiar variant of the decryption oracle slide
attack with d = 0.
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1 Introduction

T-310 is an important historical cipher which was used in East Germany during
the last period of the Cold War cf. [1, 4, 15] and shortly before the German
reunification there were some 3,800 of T-310 cipher machines in active service.

T-310 is a synchronous stream cipher which derives its keystream from the
iteration of a relatively complex block cipher. The main component of T-310 is
a keyed permutation which also takes an IV which we will call “the T-310 block
cipher”. The block size in T-310 is 36 bits only, the secret key has 240 bits. The
IV has 61 bits, is generated at random by the sender and transmitted in clear
text. T-310 has a long-term key a.k.a. LZS, in German Langzeitschlüssel which
is valid for example for 1 year, and a short-term key on 240 bits which is valid
and used for 1 week typically [4]. This key is stored on punch cards.

1.1 Recent Research - Long Term Keys And Security

Eastern German cipher designers have very carefully engineered a complex set of
conditions known as KT1, which the LZS must satisfy. A recent article contains
a mathematical proof that the KT1 spec implies resistance to a particularly pow-
erful ciphertext-only attack [5]. Does this mean that keys which satisfy the KT1
conditions are secure? Not quite! A recent article yet to appear in Cryptologia
in 2018 [6] shows that a proportion of about 3 % of all KT1 keys can exhibit
linear properties true with probability 1. However the question HOW at all these
properties of [6] can be used in cryptanalysis remained open. This is because the



T-310 encryption mode is extremely strong: only up to 1 bit of the cipher state
for every 127 rounds of the block cipher is used for the actual encryption. In
this article we will show that for a good proportion of these 3 % of KT1 keys
there is a way to exploit them in key recovery attacks. We are going in fact to
propose a new simple variant of a decryption oracle slide attack such as recently
described in [3] and this allows eventually to exploit some of the weak LZS for
the purpose of recovering some part of the 240-bit encryption key.

2 Encryption with T-310

The T-310 has a block cipher which is not used directly to encrypt the data, but
it is iterated a large number of times in a stream encryption mode with a low
data rate. Some 13 · 127 = 1651 block cipher rounds are performed in order to
extract as few as 10 bits called (Bj , rj) from the cipher’s internal state, which
will then be used to encrypt just one 5-bit character of the plaintext by a sort
of double one-time pad cf. Section 2.2.

The initial key is s1−120,1−2 which is 240 bits. The key used in different
encryption rounds repeats every 120 steps:

sm+120,1−2 = sm,1−2.

In contrast the IV bits are expanded in an aperiodic way from an initial set of
61 bits chosen at random by the sender. The expansion is based on the following
LFSR which produces a sequence with a very large prime [14] period of 261 − 1:

fi = fi−61 ⊕ fi−60 ⊕ fi−59 ⊕ fi−56.
This peculiar aperiodic expansion makes T-310 stronger than for example

GOST where the same permutation is repeated many times, which is a source
of numerous self-similarity attacks [7, 9, 10].

T-310 mandates a peculiar variant of a so-called “Contracting Unbalanced
Feistel cipher” with 4 branches, cf. [13]. The original Feistel cipher construction
had 2 branches and was invented around 1971 [11]. Then East German cipher
designers had already in 1970s mandated a substantially more complex structure
[1]. The actual connections depend on the LZS (cf. Section 1.1).

2.1 Block Cipher Inside T-310

Following [15] we denote by um,1−36 the 36-bit state of the cipher at moment
m = 0, 1, . . .. We start with u0,1...36 =0xC5A13E396. We denote by φ : {0, 1}3×
{0, 1}36 → {0, 1}36 the function of one round. We have

(um,1−36) = φ (sm,1, sm,2, fm; um−1,1−36) .

The numbering in the cipher is such that the bits numbered 1, 5, 9, . . . , 33 will
be those created in one encryption round, and the bits numbered 4, 8, . . . , 36 are
those which are replaced, and all the other bits get shifted by one position i.e.
um+1,i+1 = um,i for any i 6= 4k, k ∈ IN, i.e. for any i not being a multiple of 4.



Fig. 1. T-310 mandates a very peculiar variant of a Feistel cipher with 4 branches with
further particularities such as replacing one bit by a key-dependent constant s1 when
we use a long-term key of type KT1.

It remains to specify how the U1−9 are computed inside one round. In a typical

KT1 case cf. [6] we have D(i) = 0 and we assign input um,0
def
= sm+1,1, m ≥ 0

which is part of the 240-bit secret key and a constant for any given round.
Overall for all KT1 keys we have the following equations (1-9):

U1 ⊕ s1 = U2 ⊕ uD(2) ⊕uP (27) (1)

U2 ⊕ uD(2) = U3 ⊕ uD(3) ⊕Z4(uP (21−26)) (2)

U3 ⊕ uD(3) = U4 ⊕ uD(4) ⊕uP (20) (3)

U4 ⊕ uD(4) = U5 ⊕ uD(5) ⊕Z3(uP (14−19))⊕ s2 (4)

U5 ⊕ uD(5) = U6 ⊕ uD(6) ⊕uP (13) (5)

U6 ⊕ uD(6) = U7 ⊕ uD(7) ⊕Z2(uP (7−12)) (6)

U7 ⊕ uD(7) = U8 ⊕ uD(8) ⊕uP (6) (7)

U8 ⊕ uD(8) = U9 ⊕ uD(9) ⊕Z1(s2, uP (1−5)) (8)

U9 ⊕ uD(9) = f (9)



Fig. 2. Internal structure of one round of T-310. Input vi will be connected to bit P (i).

Finally, in the above, Z1 − Z4 are what could be called “the T-310 S-boxes”,
which however have only 1 output bit, and are four identical copies of the fol-
lowing Boolean function Z:
Z(e1, e2, e3, e4, e5, e6) = e1 ⊕ e5 ⊕ e6 ⊕ e1e4 ⊕ e2e3 ⊕ e2e5 ⊕ e4e5 ⊕ e5e6 ⊕ e1e3e4 ⊕ e1e3e6 ⊕ e1e4e5 ⊕

e2e3e6 ⊕ e2e4e6 ⊕ e3e5e6 ⊕ e1e2e3e4 ⊕ e1e2e3e5 ⊕ e1e2e5e6 ⊕ e2e3e4e6 ⊕ e1e2e3e4e5 ⊕ e1e3e4e5e6

2.2 How Encryption is Performed - Double One-Time Pad

From our iterated block cipher we extract just 1 bit per 127 rounds. Traditionally
in numerous ciphers a one time-pad is applied, where the plaintext would be
XORed with the keystream. Here the process is more complex and an additional
matrix multiplication is used. We have a sort of “double one-time pad” where
the plaintext bits are actually “masked” twice, presumably aiming at improved

security. More precisely, let ai
def
= u127i,α for any i. Out of these bits, for every 13

bits we discard 3 and use only 5+5 bits to encrypt one character of the plaintext
as follows:

Cj = (Pj ⊕Bj) ·Mrj ,

where Pj/Cj is the plaintext/ciphertext character on 5 bits, respectively, then
Bj = (a7+13(j−1), . . . , a11+13(j−1)) are 5 consecutive bits out of the 13 above, and
rj is are derived from another subset of consecutive 5 bits as follows:

rj =

0 if Rj = (0, 0, 0, 0, 0)
0 if Rj = (1, 1, 1, 1, 1)
31− r if Rj ·Mr = (1, 1, 1, 1, 1)

where Rj
def
= (a1+13(j−1), . . . , a5+13(j−1)) and

M =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

 , which is such that M31 = Id.



2.3 Decryption Oracle Attacks

Given a decryption oracle the attacker can send any IV of his choice and the
ciphertext, and obtain the plaintext. We assume that the encrypted text has k
characters (which are on 5 bits each). For the j-th character we have:

Cj = Pj ·Mrj ⊕Bj ·Mrj

In particular he can decrypt two different ciphertexts under the same setting
with the same rj and Bj , i.e.

Cj ⊕ C ′j = (Pj ⊕ P ′j) ·Mrj for all 0 ≤ j < k.

From this we recover Mrj uniquely almost always (avoiding the ambiguity be-
tween Rj = (0, 0, 0, 0, 0) and Rj = (1, 1, 1, 1, 1)) and then determine also Bj .
More precisely:

Theorem 2.3.1 (Simple Decryption Oracle Attack). For every IV chosen
by the attacker, and for every k ≥ 1, the attacker can obtain a proportion of
about 73 % of the internal keystream bits ai with a tiny computation cost and
with only 2 “Chosen IV and Chosen Ciphertext” decryption queries.
Proof: As above or see Thm. 3.0.1. page 197 in [3].



3 A New Simplified Slide Attack on T-310

A recent article [3] describes a decryption oracle slide attack on T-310 which
works basically as follows:

Sa The attacker is able to inject any ciphertexts and any 61-bit IV and obtain
the corresponding plaintext.

Sb The attacker produces numerous ciphertexts with different IV which differ
by clocking the IV LFSR by 120 · s steps for a certain integer s.

Sc From decryptions of multiple ciphertexts under a single key and IV the

attacker recovers the bits ai
def
= u127i,α which are used for encryption [only

for certain integers i actually used], cf. Thm. 2.3.1 or Thm 3.0.1. in [3].
Sd Then the attacker hopes that in the two encryptions he has created the

internal block cipher states will become identical (this can only happen es-
sentially at random with probability 2−36) at exact places where the IVs
become aligned after 120s steps.

Se Then the attacker uses a correlation attack in order to confirm in each cases
the internal states are identical.

Sf Finally the attacker uses a SAT solver to recover the key on 240 bits.

There are several serious problems in this attack approach of [3]:

1. The article [3] does NOT show that this attack is feasible for any even
remotely realistic setup. This is essentially due to Step Se: only one LZS
named 701 is shown to exhibit a suitable correlation. And key 701 does not
have a bijective round φ and therefore it is expected to be broken by a
substantially better attack of [5].

2. Due to Step Sf, in [3] we have a key recovery attack on 120s rounds, and then
s = 1 seems obligatory for such an attack to succeed in practice. Breaking a
large multiple of 120 rounds in this way seems completely unrealistic.

3. In order for the step Sf to work and for the key to be uniquely defined, at
least 8 slide pairs such as obtained in previous steps were needed in [3].

In this article we show that for a proportion of LZS keys we can have large s
and step Sf will not be necessary. The fundamental equation in [3] is:

120 · s = 127 · t+ d

where the attacker produces two IVs being 120 · s steps away and hopes that
d is small and that suitable correlations exit to make Step Sf work. Now if we
are only allowed to have s = 1 we get d = −7 which leads to Step Sf using
correlations on the cipher state 7 steps away and we found that extremely few
such correlations exist in T-310. In this article we consider s = 120 exactly and
this gives d = 0. Here there is no need for correlations (at least if we can recover
the keystream cf. Step Sc). The keystream bits will be identical IF the two states
on 36 bits are identical. The attacker is able to identify “slid pairs” - technical
term for 2 identical encryptions with identical states which carries on and on
forever, and at no cost whatsoever.

Remark. The reason why the case d = 0 was not exploited in [3] is that
all that the attacker gets are P/C pairs for a blockcipher with at least 120 · 127



rounds and 240-bit key. This has seemed extremely difficult to attack so far.
In this article we will show that this can in fact be attacked and that key bits
[or rather their linear combinations] can be recovered by the attacker. This is
essentially due to the power of LC-weak keys: linear properties in question are
true with probability 1 and propagate for an arbitrarily large number of rounds.

4 A Key Recovery Attack On Vulnerable LZS

The main claim in this article is that:

Theorem 4.0.1 (Slide Attack with LC-weak Keys). If an LZS is subject
to an LC invariant property which involves some s1 key bits, and some f/IV
bits, then the attacker can recover from an access to a decryption oracle at least
one linear equation on a subset of 240 the key bits which is guaranteed to be
correct.

Proof: To make this argument more concrete and compelling we are going to
assume that our LZS has the following property which for example1 occurs for
key 706:

706: P=8,2,33,4,13,20,5,14,9,22,30,31,16,19,21,32,3,25,28,36,

27,11,23,29,12,24,10 D=0,28,8,4,24,12,16,20,32

[1,5,15,33]-s1f->[2,6,16,34]->[3,7,25,29,35]->[4,8,26,30,36]->

[9,13,27,31]->[10,14,28,32]->[1,5,15,33]

The attacker proceeds as follows:

Sab Again the attacker produces numerous ciphertexts with one IV chosen at
random and IV’ which differs by clocking the IV LFSR backwards by 120 · s
steps for s = 127. He obtains the corresponding plaintexts [from the printer
for example].

Sc1 This is done 2+2 times, 2 times for IV and 2 times for IV’. Due Thm. 2.3.1
the attacker can determine about 73 % of the potential keystream bits uα·i
for IV, and also about 73 % of the u′α·i for IV’.

Sc2 We assume that the ciphertexts used with IV have 5 characters, and those
used with IV’ have about 1205 characters so that after 120 · 127 steps of the
cipher with IV’ consuming less than 120 · 10 · 13 to process 1200 characters,
we have still at least 5 characters which will have at least 5 · 13 = 65 bits of
type uα·i in the overlapping part where the cipher key, IV and offsets of bits
used for encryption overlap perfectly.

Sc3 Overall for each pair IV, IV ′ the attacker recovers two sequences of some 65
bits out of which there will be about 35 ≈ 65 ∗ 0.73 ∗ 0.73 locations where
the bit uα·i and the same u′α·i is known for both IV and IV’.

Sc4 If on this subset of 35 locations i out of 65, all bits are identical i.e. uα·i =
u′α·i, the attacker will conclude that the state u′120·127,1−36 of the cipher is
identical to u0,1−36 =0xC5A13E396.

1 In Thm. A.0.1 in Appendix we show that same happens for many other keys.



Sc5 In order for such an event to actually happen, the attacker tries some 236

different pairs of IV, IV ′ and obtains (2+2)·236 = 238 decrypted ciphertexts.
Sd Overall the attacker tries about 236 different pairs IV, IV ′ until the 35 bits

are identical and he can conclude that u′120·127,1−36 =0xC5A13E396 with
probability at least 50 %.

Se’ Here we do not follow the previous attack anymore. Now using the property
of key 706 that [1,5,15,33]→[1,5,15,33] for 6 rounds, and 5 other related
properties of type [2,6,16,34]→[2,6,16,34] etc, the attacker computes 6 parity
equations on the key bits S1.

The complexity of our attack is about 238 decryption queries and running time is
roughly also proportional to 238. The data complexity is large and probably can
be substantially reduced for certain LZS where the attacker would submit queries
with well chosen IVs such that both IV and IV’ would be valid simultaneously
in several different cases saving the time spent finding suitable pairs. This point
would depend on additional fine details about the weak LZS in question.

5 Attack Summary and Discussion of Vulnerable Keys

Our main result is that if the long term key has a linear property for K rounds
and if this property involves S1 and f bits, then K linear combination of secret
key bits can be recovered by the attacker. Importantly, the complex specification
KT1 which was enacted by the designers of T-310 in 1970s [14, 4] does NOT
protect against this attack and up to K = 6 key bits can be recovered for example
with key 706, and countless other KT1 keys with added the exact conditions of
our Thm. A.0.1 in Appendix A. With these conditions we can define a class of
keys which will be fully compliant with KT1 spec and therefore could have been
approved and used to encrypt real-life communications, yet the attacker with
access to a decryption oracle can recover a number of key bits.



5.1 More Vulnerable Keys within KT1 Space

Furthermore it is possible to show that keys which are “like” 706, cf. Thm.
A.0.1, are a small proportion inside a vast space of other types of long-term keys
vulnerable to our attack. To show this we have conducted a series of computer
simulations and have identified numerous distinct classes of LZS vulnerable to
our attack. Below we give some concrete examples with K = 3, 5, 6 and 8 rounds.

3R [1-6,33-36+1S1F+2S1F+3S1F] D=0,36,24,32,8,28,20,12,4, P=

36,8,33,24,17,12,5,4,9,26,23,31,20,2,21,1,3,25,22,16,28,13,35,29,18,32,6

6R [10,14,20,24+1S1F] D=0,24,36,4,32,12,16,28,20 P=

32,20,33,4,36,28,5,13,9,26,22,10,16,18,21,27,24,25,1,8,23,12,2,29,7,11,30

5R [1-10,13-16,25-36+1S1F+2S1F+3S1F+4S1F+5S1F] D=0,32,36,4,24,12,16,20,28

P=11,36,33,1,7,20,5,23,9,28,13,27,16,12,21,17,15,25,34,8,32,2,4,29,24,14,10

8R [1,3,5,17,21+3F+5F+7S1] D=0,36,16,32,24,8,20,28,4

P=36,4,33,16,30,28,5,17,9,19,11,23,20,26,21,24,22,25,1,12,35,8,31,29,32,7,6

Here the notation XS1+YF means that the property uses simultaneously bit s1
of the key at round X and f bit of IV at round Y . Overall we found countless
distinct cases with smaller K = 1, 2, . . . which also have linear properties involv-
ing s1 and f and in a computer simulation we found that for about 53 % of all
KT1 keys with linear properties, these properties contain both f and s1 parts
for some K. Knowing that it was estimated that about 3 % of all KT1 keys have
some linear properties cf. [6], we see that overall about 1.5 % of all KT1 keys
are vulnerable to the attack described in this article.

Table 1. Fraction of LC-weak keys and the highest possible K value such that they
exhibit a linear property for K rounds containing simultaneously s1 and f .

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K ≥ 7 total

0.000 0.46 0.06 0.003 0.001 0.001 0.0001 0.53

In our simulations 46 % of weak KT1 keys have K = 2 and we have never seen
a property with K = 1 s.t. another better property with K ≥ 2 would not exist.

Remark. For some other keys, which are no longer of type KT1, we can
have higher K = 12 cf. Appendix B.



6 Conclusion

T-310 is an important Cold War cipher. It is essentially a block cipher from which
we extract extremely few bits for the actual encryption. This property and its
incredibly large gate complexity, cf. [1], makes that T-310 looks substantially
stronger than any other cipher from the same historical period such as DES
or RC2. Cryptanalytic literature knows extremely few examples of key recovery
attacks under such difficult circumstances, cf. [4, 8]. Our main result is to show
how to recover a part of the 240-bit key of T-310 when the long term keys LZS
are somewhat weak2, in a somewhat realistic decryption oracle attack scenario.
This article combines two different attacks recently published on T-310: a linear
attack and a slide attack. None of these attacks was able to recover any key bits
so far and even less so, if the keys are expected to follow all the strict KT1 rules
mandated by the designers. This ambitious goal we eventually achieved here.
For a substantial fraction of about 1.5 % of all possible KT1 keys, cf. Section
5.1, yet none3 of the actual historical keys, we are able to recover up to 8 bits of
the secret key. For some other keys we can recover up to 12 bits, cf. Appendix
B.

6.1 Further Research - Combination Attacks

It is easy to see that the attack described in this paper can be further combined
with the previous slide-correlation attacks with d > 0 in [3]. It is easy to see
that many of the weak keys studied in this article allow to easily improve the
previous slide attacks in [3], by making it easier for the attacker to know when 2
states in 2 different encryptions are likely to be identical. In this type of attack
scenarios the attacker should in fact prefer another (disjoint) set of weak LZS,
those which do not use s1. A wider variety of examples of weak keys can be
found in [4].

2 Weak keys in cryptanalysis do not matter in general, except if their relative fre-
quency is quite large. In such cases, which is the case here and also in [9, 10], it is
important to see the complexity of the best single key attack will not be an (even
remotely) accurate method to evaluate the security of the cipher.

3 Unfortunately 1.5 % is not yet that large, or we are not lucky, and following [6]
neither our attack, nor another strong linear property, do not work for any actual
Cold War LZS.



6.2 Recovering More Key Bits and Non-Linear Invariant Attacks

At this moment we have an academic key recovery attack on T-310 which is
only able to recover a part of the secret key. It remains an open problem if
any further key bits or linear combinations could also be obtained and if any
further than 1.5 % of all KT1 keys could also be weak. In particular until now
we have no attack able to recover any bits from the other half s2 whatsoever.
We conjecture that this will not work with the simple linear invariant attacks
such as studied in this article. The answer to all these questions lies in non-
linear invariant attacks which are a highly non-trivial generalization of linear
attacks we study suggested in Section 7 of [6]. However no truly relevant and
realistic example of such attack was yet found. A recent article shows that such
invariants do exist and shows how they can be constructed and made to work
for T-310. A nice proof of concept example which shows that invariants using S2
very specifically are actually possible is the key 771 in Section 8.3. in [2]. This
example is directly applicable to our attacks. Non-linear invariants are very likely
to improve on our 1.5 % of vulnerable KT1 keys. However constructing solutions
with specific features or even checking if such solutions do at all exist remains
difficult and requires more research. In addition the solution 771 of [2] is not yet
quite satisfactory. It only works when the Boolean function Z is modified.

Overall recovering more than 6 bits of the key in our linear attacks or more
advanced non-linear invariant attacks, and/or for a larger proportion of LZS,
and/or in realistic attack scenarios (with the original Boolean function) remains
an open problem.



References

1. Nicolas Courtois, Jörg Drobick and Klaus Schmeh: Feistel ciphers in East Germany
in the communist era, In Cryptologia, vol. 42, Iss. 6, 2018, pp. 427–444.

2. Nicolas T. Courtois: On the Existence of Non-Linear Invariants and Al-
gebraic Polynomial Constructive Approach to Backdoors in Block Ciphers,
https://eprint.iacr.org/2018/807.pdf, received 1 Sep 2018, last revised 3 Dec
2018.

3. Nicolas T. Courtois: Decryption oracle slide attacks on T-
310, In Cryptologia, vol. 42, Iss. 3, 2018, pp. 191-204.
http://www.tandfonline.com/doi/full/10.1080/01611194.2017.1362062

4. Nicolas T. Courtois, Klaus Schmeh, Jörg Drobick, Jacques Patarin, Maria-Bristena
Oprisanu, Matteo Scarlata, Om Bhallamudi: Cryptographic Security Analysis of
T-310, Monography study on the T-310 block cipher, 132 pages, received 20 May
2017, last revised 29 June 2018, https://eprint.iacr.org/2017/440.pdf

5. Nicolas T. Courtois, Maria-Bristena Oprisanu: Ciphertext-only attacks and weak
long-term keys in T-310, in Cryptologia, vol 42, iss. 4, pp. 316-336, May 2018.
http://www.tandfonline.com/doi/full/10.1080/01611194.2017.1362065.

6. Nicolas Courtois, Maria-Bristena Oprisanu and Klaus Schmeh: Linear cryptanaly-
sis and block cipher design in East Germany in the 1970s, will appear in Cryptologia
in 2018.

7. Nicolas Courtois: Security Evaluation of GOST 28147-89 In View Of International
Standardisation, in Cryptologia, volume 36, issue 1, pp. 2-13, 2012.

8. Nicolas T. Courtois: The Dark Side of Security by Obscurity and Cloning MiFare
Classic Rail and Building Passes Anywhere, Anytime, In SECRYPT 2009 – Inter-
national Conference on Security and Cryptography: pp. 331-338. INSTICC Press
2009, ISBN 978-989-674-005-4.

9. Nicolas Courtois: Algebraic Complexity Reduction and Cryptanalysis of GOST,
Monograph study on GOST cipher, 2010-2014, 224 pages, available at
http://eprint.iacr.org/2011/626.

10. Nicolas Courtois: On Multiple Symmetric Fixed Points in GOST, in Cryptologia,
Iss. 4, vol 39, 2015, pp. 322-334.

11. H. Feistel, W.A. Notz, J.L. Smith, Cryptographic Techniques for Machine to Ma-
chine Data Communications, Dec. 27, 1971, Report RC-3663, IBM T.J.Watson
Research.

12. Mitsuru Matsui: Linear Cryptanalysis Method for DES Cipher, Eurocrypt’93,
LNCS 765, Springer, pp. 386-397, 1993.
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A Appendix - A Detailed Result for 6 Rounds of T-310

The key 706 is not the only key which exhibits an invariant property for 6 rounds
with probability 1 and which depends on s1 part of key bits. The same happens
for all keys which satisfy a number of conditions as follows:

Theorem A.0.1 (A class of 6R properties). For each long term KT1 key
such that D(7) = 16, {D(3)/D(4), P (20)} ⊂ {4, 8, 36}, P (27) = 10 and finally
{D(2), D(9)} ⊂ {28, 32} and for any short term key on 240 bits, and for any

initial state on 36 bits, we have the linear approximation [1, 5, 15, 33, s
(6)
1 , f (6)]→

[1, 5, 15, 33] which is true with probability exactly 1.0 for 6 rounds.

Proof: We will show that the following holds:

rounds input → output probability

2 [1,5,15,33] → [3,7,25,29,35] 1.0
2 [3,7,25,29,35] → [9,13,27,31] 1.0
2 [9,13,27,31] → [1,5,15,33] 1.0

Let X(i) denote values inside round i. We recall a subset of equations from
Section 2.1:

U1 ⊕ s1 = U2 ⊕ uD(2) ⊕ uP (27) (1)

U3 ⊕ uD(3) = U4 ⊕ uD(4) ⊕ uP (20) (3)

U7 ⊕ uD(7) = U8 ⊕ uD(8) ⊕ uP (6) (7)

U9 ⊕ uD(9) = f (9)

First of all, we observe that [1]→ [3], [5]→ [7] and [33]→ [35] for 2 rounds.

We also see that [15]→ [16] for 1 round. So u
(1)
1 = u

(3)
3 , u

(1)
5 = u

(3)
7 , u

(1)
33 = u

(3)
35

and u
(1)
15 = u

(2)
16 .

Fig. 3. Explanations for our proof for key 706.

From the KT1 properties in [4], we know that for all KT1 keys P (6) = D(8).
We also assumed D(7) = 16. Hence, equation (7) becomes

u
(3)
25 ⊕ u

(3)
29 = u

(2)
16



Thus, we have [16] → [25, 29] for 1 round and, combining all the linear
properties discussed so far, [1, 5, 15, 33]→ [3, 7, 25, 29, 35] for 2 rounds.

Then we observe that u
(3)
25 = u

(5)
27 , u

(3)
29 = u

(5)
31 , u

(3)
3 = u

(4)
4 , u

(3)
7 = u

(4)
8 and

u
(3)
35 = u

(4)
36 . We assumed {D(3)/D(4), P (20)} ⊂ {4, 8, 36}. Therefore, equation

(3) becomes
u
(4)
4 ⊕ u

(4)
8 ⊕ u

(4)
36 = u

(5)
9 ⊕ u

(5)
13 (10)

Thus, we have shown that [3, 7, 25, 29, 35]→ [9, 13, 27, 31] for 2 rounds.

We recall that our goal is to show the following sequence of linear equalities:
[1,5,15,33]s1f→[2,6,16,34]→[3,7,25,29,35]→

[4,8,26,30,36]→ [9,13,27,31]→[10,14,28,32]→[1,5,15,33]

Fig. 4. Further illustration for our proof.

We proceed to the final part of the proof as follows: It is clear that u
(5)
13 = u

(7)
15 ,

u
(5)
9 = u

(6)
10 , u

(5)
27 = u

(6)
28 , and u

(5)
31 = u

(6)
32 . The remaining conditions from the

theorem A.0.1 hypothesis are P (27) = 10 and {D(2), D(9)} ⊂ {28, 32}. Hence,
equation (1) becomes

u
(6)
10 ⊕ s

(6)
1 ⊕ u

(6)
D(2) = u

(7)
1 ⊕ u

(7)
5

and equation (9) becomes
u
(6)
D(9) ⊕ u

(7)
33 = f (6)

Finally

u
(6)
10 ⊕ u

(6)
D(2) ⊕ u

(6)
D(9) ⊕ s

(6)
1 ⊕ f (6) = u

(7)
1 ⊕ u

(7)
5 ⊕ u

(7)
33 (11)

It follows that if {D(2), D(9)} ⊂ {28, 32} we have [10, 28, 32, s
(6)
1 , f (6)] →

[1, 5, 33] for 1 round. Finally, we have also shown that [9, 13, 27, 31]→ [1, 5, 15, 33]
for 2 rounds. This ends the proof that if the conditions of the theorem are

satisfied, we have [1, 5, 15, 33, s
(6)
1 , f (6)]→ [1, 5, 15, 33] for 6 rounds.



B Appendix B - Further Vulnerable Keys Not KT1

In this section we show that if we drop certain requirements of the class KT1
we are able to construct even weaker keys with larger K being up to K = 13.
Here are two examples of such keys with K = 12 and K = 13 respectively with
full details of the linear properties obtained.

712: P=28,26,33,32,30,24,5,15,9,8,22,13,4,6,21,10,20,25,

16,36,11,31,27,29,17,18,12 D=0,16,28,32,12,20,4,24,8

[1,5,27,31,35]->[2,6,28,32,36]->[3,7,9,13]->[4,8,10,14]->

[11,15,25,29,33]-f->[12,16,26,30,34]->[1,5,27,31,35]-s1->

[2,6,28,32,36]->[3,7,9,13]->[4,8,10,14]->[11,15,25,29,33]

-f->[12,16,26,30,34]->[1,5,27,31,35]

813: P=8,18,17,13,29,33,26,28,12,32,30,19,9,27,10,34,16,5,

35,11,1,6,31,23,14,25,15 D=32,28,4,8,36,12,20,24,16

[4,8,35]->[9,12-13,36]->[14,17,21]->[15,18,22]->[16,19,23]

->[20,24,33]-f->[25,29]->[26,30]->[27,31]->[28,32]

->[1,5,16]->[2,6,33]-f->[3,7,34]->[4,8,35]

These keys have been generated in 1 hour approximately by our proprietary
software which uses a SAT solver in order to generate keys with arbitrary spec-
ified characteristics together with a full formal mathematical proof of a linear
property. The key 813 is problematic: s1 is not used inside the linear property
therefore we do not get a key recovery attack. The key 712 is the strongest ex-
ample of key which uses s1 and f and therefore the attack of Section 4 can be
applied and K = 12 linear equations on secret key can be obtained.


