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Abstract 

Genetic, environmental and pharmacological interventions into the aging process 

can confer resistance to a multiple age-related diseases in laboratory animals, 

including rhesus monkeys. These findings imply that mechanisms of aging might 

contribute to patterns of multimorbidity in humans, and hence could be targeted to 

prevent multiple conditions simultaneously. To address this question, we text mined 

917,645 literature abstracts followed by manual curation, and found strong, non-

random associations between age-related diseases and aging mechanisms, 

confirmed by gene set enrichment analysis of GWAS data. Integration of these 

associations with clinical data from 3.01 million patients showed that age-related 

diseases associated with each of five aging mechanisms were more likely than 

chance to be present together in patients. Genetic evidence revealed that innate and 

adaptive immunity, the intrinsic apoptotic signalling pathway and activity of the 

ERK1/2 pathway played a significant role across multiple aging mechanisms and 

multiple, diverse age-related diseases. Mechanisms of aging therefore contribute to 

multiple age-related diseases and to patterns of human age-related multimorbidity, 

and could potentially be targeted to prevent more than one age-related condition in 

the same patient. 
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Introduction 

Age-associated accumulation of molecular and cellular damage leads to an 

increased susceptibility to loss of function, disease and death1. Aging is the major 

risk factor for many chronic and fatal human diseases, including Alzheimer’s 

disease, multiple cancers, cardiovascular diseases and type 2 diabetes mellitus 

(T2DM), which are collectively known as age-related diseases (ARDs)2. However, 

genetic3, environmental4 and pharmacological5 interventions can ameliorate loss of 

function during aging and confer resistance to multiple age-related diseases in 

laboratory animals. Age-related multimorbidity, the presence of more than one ARD 

in an individual, is posing a major and increasing challenge to health care systems 

worldwide6. An important, open question, therefore, is whether mechanisms of aging 

in humans contribute to multimorbidity in patients, and hence whether intervention 

into these mechanisms could prevent or treat more than one ARD simultaneously7.  

Specific biological mechanisms begin to fail as an individual ages1. Nine 

major aging processes were summarised as “The Hallmarks of Aging”1: genomic 

instability, telomere shortening, epigenetic changes, impaired protein homeostasis, 

impaired mitochondrial function, deregulated nutrient sensing, cellular senescence, 

exhaustion of stem cells and altered intercellular communication (Fig 1). Individual 

aging hallmarks are present in the development or disordered physiology of specific 

ARDs8. For example, loss of proteostasis appears to have a prominent role in 

neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases, which 

are associated with protein aggregates composed of amyloid-beta and 𝛼-synuclein, 

respectively9. Genomic instability and epigenetic alterations frequently contribute to 

development of cancers of, for example, the breast and bowel10. The role of genes in 

individual human ARDs and ARD multimorbidity has been studied extensively11-13, 
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as has the link between aging hallmarks and individual ARDs11,14. For example, 

previous studies have demonstrated that multiple, individual human ARDs share 

gene ontology (GO) terms linked to mechanisms of aging, specifically aging 

hallmarks11. However, whether these underlying mechanisms of aging contribute to 

the occurrence of multimorbidity in patients has not previously been investigated. 

Here, we explore the notion that the same aging hallmark may contribute to risk of 

multiple ARDs and, therefore, results in their co-occurrence in the same individual 

(i.e., ARD multimorbidity). In model organisms, altering the activity of signalling 

pathways, such as the insulin/ insulin-like growth factor signalling (IIS) pathway1, 

Ras-ERK pathway15, immune pathways16 or p53 pathways17, can delay ARD and/ or 

extend lifespan. These pathways are also intertwined with the aging hallmarks1.  

Therefore, we also explored the notion that common signalling pathways are shared 

across all aging hallmarks and, thus, multiple, aging hallmark-associated ARDs. 

We integrated evidence derived from the scientific literature abstracts, 

genome wide association (GWA) studies and electronic health records to explore the 

role of aging hallmarks in human ARD multimorbidities. We began by scoring co-

mentions of aging hallmarks and ARDs in 917,645 scientific literature abstracts and 

verified the aging hallmark-ARD associations that emerged using manual curation. 

Using the scores of verified literature aging hallmark-ARD associations, we identified 

the top 30 ranked ARDs (i.e., top 30 ARDs) associated with each aging hallmark (Fig 

2a). To confirm these associations independently, we used publicly available GWAS 

data to explore whether annotations of proteins encoded by genes associated with 

the top 30 ARDs were enriched for processes related to the same hallmark (Fig 2b). 

GO annotation of the GWAS data also indicated that diverse, aging hallmark-

associated ARDs were linked with common signalling pathways. Next, clinical data 
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from 3.01 million patients was used to construct networks of aging-related 

multimorbidities, which were developed previously18,19. We used the patient data to 

examine whether the top 30 ARDs associated with each aging hallmark were more 

frequent multimorbidities in individual patients than expected by chance (Fig 2c). We 

also investigated whether aging hallmarks contribute to ARDs with incompletely 

understood mechanisms of development (Fig 2d). 

We found strong, non-random associations between ARDs and aging 

hallmarks, confirmed by manual curation. This enabled us to identify the ARDs with 

highest evidence of association with each aging hallmark, which were verified using 

gene set enrichment analysis (GSEA). The genetic data also implicated roles of 

innate and adaptive immune, Ras-ERK, and the intrinsic apoptotic signalling 

pathways in the aetiology of multiple, diverse, aging-hallmark-associated ARDs. We 

found that ARDs with the highest evidence of association with five of the nine aging 

hallmarks were more likely than expected by chance to occur in patients as 

multimorbidities, and these associations were stable over 10-year age ranges from 

age 50. We also identified that aging hallmarks may provide a mechanism for the 

aetiology of ARDs with incompletely understood pathogenesis and/ or 

pathophysiology. 

 

Results 

Associations between aging hallmarks and ARDs in the biomedical literature 

Each aging hallmark has a greater role in the development and disordered 

physiology of certain ARDs and a lesser role in others1,8. If an aging hallmark and 

ARD are frequently co-mentioned in the scientific literature, this association could 

indicate a causal connection between them. We therefore applied text mining to the 
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biomedical literature to identify the ARDs with the highest co-mentions with each 

aging hallmark (Fig 2a). As the associations derived from text mining could be 

confounded by another factor, we verified that the aging hallmark-ARD associations 

derived from text mining were direct, using manual curation and confirmation from 

GWAS data (Fig 2b). 

Our text data consisted of 1.85 million abstracts on human aging extracted 

from PubMed, termed the “human aging corpus”, and was separated into 20.48 

million sentences (Fig 2a). Synonyms of the aging hallmarks and ARDs were needed 

to maximize identification of relevant sentences in the text data20. We therefore 

developed an aging hallmark taxonomy, so that synonyms and subclasses of an 

original aging hallmark could be brought into a dictionary for the nine aging hallmarks 

(Fig 1)21. The starting point for the aging hallmark taxonomy was “The Hallmarks of 

Aging”1 paper and the rationale for selection of each taxonomy term is shown in 

Table S1. Overall, the original nine aging hallmarks1 were expanded into a taxonomy 

of 65 related terms and four levels (Fig 1). For the development of the ARD 

dictionary, we used a previously developed definition, yielding a list of 207 ARDs 

meeting the criteria18 from which four ARDs that were not specific enough for 

scientific literature mining were excluded (Table S2). We then determined if each 

original aging hallmark synonym and/ or ARD synonym was mentioned in each of 

the 20.48 million sentences (see Methods, Fig 2a). We excluded 19 ARDs that had 

fewer than 250 associated sentences from abstracts in the human aging corpus 

(Table S2). As a co-occurrence score to quantify aging hallmark-ARD associations 

for the remaining 184 ARDs, we used the Ochiai coefficient22, which scores 

sentences mentioning and co-mentioning an aging hallmark and an ARD, and 

adjusts for uneven study density of each aging hallmark and ARD. 
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ARDs and aging hallmarks with higher Ochiai coefficients are likely to be 

related in some way, but the type of relationship, for instance a causal connection, is 

not known23. Therefore, we manually examined sentences co-mentioning aging 

hallmarks and ARDs for each represented aging hallmark-ARD pair to determine the 

type of relationship24. For each aging hallmark-ARD pair, we manually examined co-

mentioning sentences until we had encountered a sufficient number (see Methods) 

that correctly reported an aging hallmark had a role in the development or disordered 

physiology of a disease (Table S4). Aging hallmark-ARD combinations with 

insufficient evidence of association from manual curation were set to zero and the 

Ochiai coefficient associating each aging hallmark and ARD was updated. Next, the 

updated Ochiai coefficients were sorted in descending order to provide a rank for 

association of each ARD with each aging hallmark (Fig 3a). We selected the top 30 

ARDs associated with each aging hallmark based on the updated Ochiai coefficients 

(Fig 2a, 3b) as a sufficiently large number to explore in multimorbidity networks, 

while also prioritising the ARDs with the greatest literature evidence of association 

with an aging hallmark. 

There were clear patterns of association between specific aging hallmarks 

and ARDs (Fig 3a & b). For instance, disorders frequently mentioned in association 

with genomic instability and epigenetic alterations were primary malignancies, such 

as lung cancer, bowel cancer and leukaemia (Fig 3b). This was as expected, since 

“genomic instability and mutation” are hallmarks of cancer and epigenetic alterations 

are important in cancer development and progression10,25. Highly ranked ARDs for 

telomere attrition and stem cell exhaustion were haematological disorders, including 

aplastic anaemia, anaemia and myelodysplasia (Fig 3b)1. There were strong 

associations between proteostasis and neurodegenerative disorders including 
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dementia, Parkinson’s disease and motor neurone disease (MND), which are indeed 

associated with amyloid-beta aggregates, ∝-synuclein aggregates and dipeptide-

repeat polymers, respectively (Fig 3b)9,26. Mitochondrial dysfunction was strongly 

associated with neurodegenerative disorders and cardiomyopathy, again showing 

that our approach could recapture established associations (Fig 3b)8,27. Highly 

ranked ARDs for cellular senescence included immunodeficiency, which is 

associated with immunosenescence, and cancers, which are exacerbated by the 

senescence-associated secretory phenotype (Fig 3b)28,29. Highly ranked disorders 

for deregulated nutrient sensing were high triglycerides, low high-density lipoprotein 

(HDL) cholesterol, hypertension and type 2 diabetes mellitus (T2DM) (Fig 3b). These 

ARDs comprise the metabolic syndrome, which is strongly associated with insulin 

resistance30. Altered intercellular communication was associated with specific 

malignancies and autoimmune disorders, such as prostate cancer and rheumatoid 

arthritis (RA), respectively (Fig 3b)31. Thus, our text mining approach correctly 

captured many molecular and cellular processes known to be involved in the 

respective ARD aetiology and confirmed that aging hallmark-ARD associations were 

highly non-random. 

 

Confirmation of ARD-aging hallmark associations from GWAS data 

We next used genetic information to obtain confirmation of the aging hallmark-ARD 

associations derived from text mining. This was based on the notion that proteins 

encoded by genes associated with top 30 ARDs should show significant enrichment 

of GO terms related to the same aging hallmark on GSEA (Fig 2b). We linked the top 

30 ARDs per aging hallmark to genes using the GWAS catalog32 (Fig 2b). We thus 

formed nine lists representing the union of genes linked to these top 30 ARDs (Fig 
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2b). As GO terms are mapped to gene products, we mapped each of the protein-

coding genes to a single protein typically representing the canonical isoform, 

resulting in nine “protein lists” (Table 1a)33. We then carried out GSEA to test for 

significant enrichment of biological process GO terms related to the same aging 

hallmark (Fig 2b, Fig S1a-i). The GWAS catalog is associated with PMIDs and we 

avoided any risk of circularity by removing the PMIDs that intersected between 

studies included from the GWAS catalog and the 917,645 scientific titles/ abstracts 

mentioning aging hallmarks and/ or ARDs. Thus, this approach to verifying aging 

hallmark-ARD associations was independent of the literature-based method. 

We next tested whether biological processes related to each aging hallmark 

were indeed significantly enriched in the protein list representing the top 30 ARDs 

associated with that hallmark (Fig 2b, Fig S1a-i). Between 511 and 1,212 proteins 

were associated with each of the aging hallmarks (Table 1a). We carried out GSEA 

and searched for GO terms related to each aging hallmark (Fig S1a-i). We identified 

significant enrichment of terms related to the same aging hallmark as was 

associated to the ARDs via text mining (Fig S1a-i). For example, “DNA damage 

response”, “telomere maintenance”, “regulation of autophagy”, “replicative 

senescence”, “glucose homeostasis”, “regulation of mitochondrion fission” and “stem 

cell differentiation” were significantly enriched in the genomic instability, telomere 

attrition, loss of proteostasis, cellular senescence, deregulated nutrient sensing, 

mitochondrial dysfunction and stem cell exhaustion protein lists, respectively (Fig 

S1a, b, d-h). The altered intercellular communication protein list showed significant 

enrichment of processes related to hormone synthesis and inflammatory response 

while the epigenetic alterations protein list showed significant enrichment of terms 

related to histone acetylation (Fig S1c, i). Thus, the protein lists derived from the 
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aging hallmark-associated gene lists were significantly enriched for annotations 

related to their own aging hallmark. Therefore, analysis of GWAS data confirmed the 

specific associations between aging hallmarks and ARDs that had been found from 

the literature co-occurrence scores (Fig 2a, b). 

 

Enrichment of signalling pathways across all aging hallmarks 

Our literature mining revealed highly specific associations between ARDs and aging 

hallmarks, and these were independently confirmed by GWAS data. However, 

hallmarks of aging are part of a complex nexus of failure of molecular and cellular 

processes, are not independent of each other, and may share some common 

underlying signalling pathways. Therefore, we explored whether common signalling 

pathways were shared across all aging hallmark protein lists and, thus, contribute to 

the development of multiple aging hallmark-associated ARDs. Strikingly, for the 

ARDs that were associated with specific hallmarks and that were present in our 

GWAS analysis, there was clear evidence from the GWAS data for commonalities in 

the signalling cascades and pathways across all aging hallmark protein lists (Fig 4a). 

GSEA followed by search for GO terms mentioning “pathway” or “cascade” showed 

that five pathways were significantly enriched in all aging hallmark protein lists (Fig 

4a, Table 1b-f). Three were linked to the innate and adaptive immune system, 

including the “interferon-g-mediated signaling pathway” and the “T-cell receptor 

signaling pathway” and to its “positive regulation” (Fig 4a, Table 1b-d). These 

pathways are interconnected, as interferon-g is a cytokine produced by multiple 

immune cells including cells of the adaptive immune system, such as T-cells34. 

“Positive regulation of the ERK1/2 cascade” and the “intrinsic apoptotic signalling 
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pathway in response to DNA damage by a p53 class mediator” were also 

significantly enriched across all aging hallmark protein lists (Fig 4a, Table 1e, f). 

To explore these common pathways further, we derived the union of proteins 

associated with each of the GO terms across all aging hallmarks, mapped them to 

their underlying genes and linked them to their associated ARDs (Table 1b-f). A total 

of 21 ARDs were linked to 25 genes encoding proteins associated with the 

interferon-g pathway (Fig 4b, Table 1b), 19 to 30 genes encoding proteins associated 

with the T-cell receptor signalling pathway (Fig 4c, Table 1c), 9 to 5 genes encoding 

proteins associated with positive regulation of the T-cell receptor signalling pathway 

(Fig 4d, Table 1d), 22 to 40 genes encoding proteins associated with the ERK1/2 

cascade (Fig 4e, Table 1e) and 11 to 9 genes encoding proteins associated with the 

intrinsic apoptotic signalling pathway (Fig 4f, Table 1f). These signalling cascades 

are therefore implicated in the aetiology of these diverse, aging-hallmark-associated 

ARDs. 

 

Association of aging hallmarks with ARD multimorbidities 

The results of our literature mining revealed specific associations between aging 

hallmarks and ARDs, and these were independently confirmed by GWAS data. We 

next explored the possible role of aging hallmarks in the co-occurrence of two ARDs 

in the same patient, known as multimorbidity (Fig 2c). To do this, we assessed 

whether ARDs associated with the same aging hallmark occurred more frequently in 

the same patient than random pairs of ARDs. We used previously created 

multimorbidity networks19 reflecting non-random co-occurrence of two diseases in 

the same patient. The multimorbidity networks were created for different age classes 

by binning electronic health records of 3.01 million individuals into nine 10-year age 
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intervals18,19,35. Within each age interval, significantly co-occurring disease pairs 

were linked in the respective network (see Methods)19. The stratification by age 

accounts for the fact that occurrence35 and co-occurrence19 of diseases change with 

age. Since we were particularly interested in ARDs, we used the four networks for 

the age groups of 50 years and over for subsequent analyses because 170 of the 

184 ARDs had a median age of onset ≥ 50 years (Fig 2c)18. Thereby, we obtained 

four networks of 184 ARDs (Table S6)18,19. 

We assessed whether the ARDs associated with each aging hallmark were 

more likely to occur as multimorbidities than expected by chance. If multimorbidities 

were at least partially explained by common underlying hallmarks, we would expect 

that ARDs targeted by the same hallmark should be more tightly connected in the 

multimorbidity networks. To test that notion, we selected the top 30 ARDs for each 

aging hallmark and extracted the subnetworks consisting of those 30 diseases (Fig 

2c; Fig 3b), resulting in 36 subnetworks for the four age-specific ARD multimorbidity 

networks and the nine aging hallmarks. A higher observed network density than 

expected by chance indicates that there are more edges than expected, and hence 

that the ARDs within the subnetwork are more frequently multimorbidities than 

random ARD sets of the same size. To calculate the p-value, we compared the 

observed network density of the subnetwork with the network density expected by 

chance using permutation tests. 

For five of nine aging hallmarks, namely deregulated nutrient sensing (p < 

0.0001), mitochondrial dysfunction (p < 0.05), cellular senescence (p < 0.05), stem 

cell exhaustion (p < 0.001) and altered intercellular communication (p < 0.01), the 

nodes representing the top 30 associated ARDs were connected by more edges 

than expected by chance across all age categories (Table 2, Fig 2c). The ARDs 
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associated with these five aging hallmarks thus co-occurred in individual patients 

more frequently than expected by chance and these associations were stable over 

10-year age ranges	from age 50 years (Fig 5a-e, Table 2). For example, the 

deregulated nutrient sensing multimorbidity subnetwork contained nodes connected 

by edges representing the progression of known multimorbidities, such as type 2 

diabetes mellitus with fatty liver (Fig 5a)36. These non-random associations suggest 

that these five aging hallmarks do indeed have a role in the development of ARD 

multimorbidity in patients (Table 2). 

 
Associations of aging hallmarks with ARDs with incompletely understood 

pathogenesis or pathophysiology 

The analysis above suggests that ARDs that are tightly connected in the 

multimorbidity networks are more likely affected by the same hallmark than random 

pairs of diseases. Thus, we speculated that this association could be used to identify 

hallmark-ARD associations that were so far unknown, i.e. based on the fact that 

many neighbouring ARDs in the network are associated with a common hallmark 

(‘guilt by association’)37. Therefore, we focused on ARDs with incompletely 

understood pathogenesis or pathophysiology, that were not originally ranked in the 

top 30 ARDs associated with a hallmark, but where the hallmark may nonetheless 

contribute to aetiology. 

For each aging hallmark, we superimposed the aging hallmark-ARD co-

occurrence scores (or updated Ochiai coefficients) from text mining onto the 

respective ARD nodes in each of the four multimorbidity networks (Fig 2d). The 

scores were then smoothed over the network, which amplifies regions where ARDs 

have higher co-occurrence scores with a given aging hallmark and dampens regions 

with lower scores37 and thus assigns relatively high scores to ARDs that are 
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surrounded in the network by ARDs associated with a common hallmark. Since this 

process changes the ARD-hallmark associations of all diseases in the network, it 

also changes the ranking of ARDs associated with each aging hallmark (Fig 2d). We 

identified those subnetworks with a significantly greater network density than random 

expectation and identified newly prioritized ARDs within them (Table S7). 

Two ARDs with incompletely understood mechanism of pathogenesis or 

pathophysiology were newly ranked among the top 30 ARDs, namely essential 

tremor and Bell’s Palsy (Table S7, Fig S2a & b)38,39. Essential tremor is a 

neurological disorder characterised by an involuntary, rhythmic tremor and was 

newly prioritized as a top 30 ARD associated with mitochondrial dysfunction (Fig 

S2a). It has previously been associated with mitochondrial abnormalities; however, 

the degree of their role is unclear40. This disorder also has genetic evidence of 

association with five genes (i.e., STK32B, NAT2, LINGO1, CTNNA3 and LRRTM3) 

at genome wide significance. However, we cannot exclude that the association is a 

consequence of initial misdiagnosis, such as of Parkinson’s disease as essential 

tremor41. Bell’s palsy was newly prioritized as a top 30 ARD associated with 

deregulated nutrient sensing, which has previously been reported to be associated 

with prognosis of the Bell’s palsy42. However, the association may also be a 

consequence of initial misdiagnosis of diabetic mononeuropathy as Bell’s palsy (Fig 

S2b)43. There were no reported genetic associations with Bell’s palsy in the GWAS 

catalog at genome wide significance. Overall, our findings indicate that aging 

hallmarks may contribute to a better understanding of disease aetiology. 
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Discussion 

The contribution of aging hallmarks to development of ARD multimorbidities in 

humans is largely unexplored. We have combined aging hallmark-ARD associations 

derived from text mining, verified using genetic data, with disease networks derived 

from electronic health records, to explore whether mechanisms of aging contribute to 

ARD multimorbidities in humans, and might therefore be targeted to prevent or treat 

more than one ARD simultaneously. 

First, using two independent approaches, we explored patterns of association 

between specific aging hallmarks and ARDs. We text mined 917,645 literature 

abstracts, followed by manual curation, and found strong, non-random associations 

between ARDs and aging hallmarks. We verified the associations that emerged by 

GSEA using GO annotations of proteins encoded by genes linked to the top 30 

ARDs. By integrating our findings with networks of multimorbidities, we found that 

five aging hallmarks were indeed associated with human ARD multimorbidities.  

Deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem 

cell exhaustion and altered intercellular communication, were associated with the co-

occurrence of ARDs in individual patients more than expected by chance. 

Reassuringly, these aging hallmarks were associated with ARD multimorbidity 

across all four decadal age-ranges, and the associations were often highly 

significant. Overall, these findings indicate that therapies targeted at each of these 

five aging hallmarks may prove to be beneficial in the prevention of the associated 

ARD multimorbidities in humans. For instance, sirolimus and related compounds 

inhibit the TORC1 complex in the nutrient-sensing network44, and can both extend 

healthy lifespan in model organisms45 and boost the response to vaccination against 

influenza in elderly people46. Senolytics and senescence associated secretory 
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phenotype (SASP) modulators eliminate senescent cells and inhibit the SASP 

respectively, and thus target the cellular senescence hallmark28, and can both 

improve tissue health during aging and increase lifespan in mice47 and may prevent 

cellular senescence-associated ARD multimorbidities48. 

In model organisms, targeting common signalling pathways delays the onset 

of ARDs and extends lifespan1,15-17. Specific signalling pathways are intertwined with 

the aging hallmarks, for example, the IIS pathway is associated with the deregulated 

nutrient sensing aging hallmark1. Aging hallmarks are not independent of each other 

with, for instance, DNA damage and telomere shortening contributing to cellular 

senescence49 and loss of stem cell function50. Thus, aging hallmarks may share 

some common underlying pathways, which also contribute to the development of 

multiple aging hallmark-associated ARDs. Strikingly, five signalling pathways/ 

cascades were significantly enriched across the protein lists for all nine aging 

hallmarks. These pathways are therefore likely to play a key role in the aetiology of 

ARDs. Among these five signalling pathways, three were involved in the innate and/ 

or adaptive immune response. The underlying genes were derived from ARDs 

comprising metabolic syndrome disorders, auto-immune disorders and cancers, thus 

highlighting the importance of the immune response across multiple ARDs11. The 

“intrinsic apoptotic signalling pathway in response to DNA damage by a p53 class 

mediator” was also significantly enriched across all aging hallmark protein lists. The 

underlying genes were derived from multiple cancers and metabolic syndrome 

disorders10,51.The ERK1/2 pathway regulates many processes including cell survival, 

metabolism and inflammation52 and was significantly enriched across all aging 

hallmark protein lists. The underlying genes were derived from 22 aging hallmark- 

associated ARDs (Fig 4e) and indeed activation of the ERK1/2 pathway has been 
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suggested to play a role in these ARDs either directly or through their risk factors. 

For example, increased activity of the ERK1/2 pathway has been identified in type 2 

diabetes mellitus53 and hypertension54, which are major risk factors for 

cardiovascular disorders. Additionally, activating mutations upstream of ERK1/2 

contribute to over fifty percent of human cancers55. Increased phosphorylation of 

cellular ERKs has also been identified in the thyroid disorder, hypothyroidism56, and 

in atrial fibrillation57. Furthermore, ERK1/2 inhibition reduces beta-amyloid 

neurotoxicity in Alzheimer’s disease52, decreases inflammation and apoptosis in 

stroke patients52 and prevents rheumatoid arthritis in mouse models58. Interestingly, 

the ERK1/2 cascade is linked to aging in model organisms and the MEK inhibitor, 

Trametinib, prolongs lifespan in Drosophila15. Thus our analysis suggests that 

inhibition of the ERK1/2 pathway could prevent up to 22 human aging hallmark-

associated ARDs. 

Using network propagation, we identified ARDs with incompletely understood 

pathogenesis where aging hallmarks may contribute to their development. Essential 

tremor has previously been associated with mitochondrial abnormalities, but the 

degree of their role is unclear39,40. We found that essential tremor co-occurred with 

many ARDs strongly linked to mitochondrial dysfunction implying this is in fact a key 

pathogenic mechanism in essential tremor. However, we cannot exclude the 

association is a consequence of initial misdiagnosis, such as of Parkinson’s disease 

as essential tremor41. Our findings were also supported by genetic data, as essential 

tremor is also associated with the variant N-acetyltransferase 2 (NAT2) gene. NAT2 

is associated with insulin resistance59, and deficiency of the mouse orthologue (i.e., 

NAT1) has also been associated with mitochondrial dysfunction60. Therefore, aging 
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hallmarks may contribute to the development of ARDs with incompletely understood 

mechanisms of development. 

A potential limitation is that, because certain ARDs occupy more of the 

scientific research effort, there is a risk that they would be more frequently included 

in the top 30 ARDs associated with aging hallmark and, therefore, included in 

multimorbidity subnetworks. We used four approaches to reduce the risk of this, 

which were (i) adjusting for uneven study density on each ARD by using a co-

occurrence score, (ii) excluding ARDs with less than 250 associated sentences from 

abstracts in the human aging corpus, (iii) keeping only aging hallmark-ARD 

associations verified by manual curation and (iv) verifying aging hallmark-ARD 

associations using genetic data. An additional potential limitation is that ARD 

multimorbidities may be connected in electronic health records due to incorrect initial 

diagnosis, which may complicate the evaluation of incompletely explained ARDs. 

These limitations will be overcome as our knowledge of the aging hallmarks, ARD 

multimorbidities and genes underlying ARDs improves.  

Our study provides evidence for the role of aging hallmarks in the aetiology of 

human ARD multimorbidities and ARDs with incompletely understood pathogenesis. 

We also raise the possibility that multiple ARDs may be prevented by targeting 

common signalling pathways, such as the innate and adaptive immune pathways, 

the intrinsic apoptotic signalling pathway and the ERK1/2 pathway. Future work will 

determine whether a prophylactic agent or cure for human ARD multimorbidities can 

be developed by targeting each of five aging hallmarks. 
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Methods 

The methods are summarised in Figure 2. 

Information retrieval of the ‘human aging corpus’ 

A set of primary research articles (or corpus) on human aging was required for text 

mining. Our corpus was developed by defining inclusion and exclusion criteria 

followed by retrieving 1.93 million PubMed identifiers (PMIDs) of abstracts meeting 

those criteria from PubMed (Table S8a, b). The 1.93 PMIDs representing title/ 

abstracts on human aging meeting our search criteria were retrieved from the 

PubMed database using the Biopython Entrez application programming interface61 

on 10th April 2020. Next, the 2019 PubMed baseline contains over 29 million 

abstracts and was downloaded in Extensible Mark-up Language (XML) format. Data 

was extracted from the XML files to produce separate, comma-separated values 

(CSV) files containing 29,138,919 million rows and six columns including titles, 

abstracts and PMIDs. The rows containing the 1.93 million PMIDs of the human 

aging corpus were identified. PMIDs associated with missing data were eliminated  

and, subsequently, the text data was cleaned. This gave 1.85 million abstracts 

representing the “human aging corpus”, which were tokenized into 20.48 million 

sentences. 

 

Information extraction by dictionary-based methods with co-occurrence scoring  

Aging hallmark dictionary. An aging hallmark taxonomy was developed to 

maximize retrieval of relevant literature on each aging hallmark from PubMed (Fig 1). 

We modelled our methodology on the approach used previously to develop a cancer 

hallmarks taxonomy10,21. The starting point for the taxonomy was the original “The 

Hallmarks of Aging”1 paper from which we selected relevant subcategories of the 
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nine original aging hallmarks; however, occasionally, we inferred a particular 

taxonomy term that was not specifically stated in original paper (Fig 1, Table S1). 

Additional taxonomy levels represented increasingly specific biological processes 

within a subclass (Table S1). Synonyms for each aging hallmark taxonomy term 

were retrieved from the Unified Medical Language System (UMLS) Metathesaurus62 

from the U.S. National Library of Medicine (NLM) and relevant review articles. The 

aging hallmark taxonomy term synonyms were combined to form an aging hallmark 

dictionary and then linked to the corresponding original aging hallmarks. 

Age-related disease dictionary. The ARD definition was developed previously by 

applying a hierarchical agglomerative clustering algorithm to clinical data on 278 

diseases18. Four of nine “main” clusters contained 207 diseases and these diseases 

also had an adjusted R2 of greater than 0.85 on the Gompertz-Makeham model18. 

These 207 diseases were defined as ARDs (Table S2)18. Four ARDs that did not 

translate effectively to scientific text mining approaches were eliminated from further 

analysis (Table S2). We next retrieved synonyms for each of the remaining 203 

ARDs from the MeSH thesaurus from the NLM63. The Comparative Toxicogenomics 

Database’s ‘merged disease vocabulary’64 was downloaded on 21st March 2019. It 

contains the MeSH diseases hierarchy processed in a CSV file. Supplementary 

concepts and animal diseases were excluded. This left 4,789 human diseases 

mapped to 28,638 entry terms, or synonyms, after processing. MeSH terms were 

assigned to the 188 of 203 ARDs from the 4,789 diseases. The 188 ARDs were 

mapped to a hierarchical tree of 1,427 rows containing MeSH term subclasses of 

assigned MeSH terms, of which, 545 relevant subclasses were kept. The synonyms 

to each subclass were edited manually and then merged for each ARD. For the 

remaining 15 ARDs, synonyms were derived from the Unified Medical Language 
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System (UMLS) Metathesaurus62. The synonyms were merged to form an ARD 

dictionary and then linked to the corresponding 203 ARDs. 

Calculating the Ochiai coefficient. The aging hallmark dictionary and human ARD 

dictionary were matched against the 20.48 million sentences from PubMed titles and 

abstracts. 19 ARDs with less than 250 associated sentences were eliminated (Table 

S2). The co-occurrence of the nine aging hallmarks with the remaining 184 ARDs 

was scored at the sentence level using the Ochiai coefficient22 (Equation 1). The 

Ochiai coefficient (𝑂𝐶(",$)) adjusts for the fact that certain ARDs are frequently 

studied in the biomedical literature while others are infrequently studied. For a given 

aging hallmark and ARD, nHD is the total number of sentences that co-mention the 

aging hallmark and ARD. nD and nH are the total number of sentences that mention 

the ARD and aging hallmark, respectively (Equation 1)65.  

𝑂𝐶(",$) = - nHD&

nH ∙ nD																								
(1)		 

Verifying extracted associations by manual curation. ARDs and aging hallmarks 

with higher Ochiai coefficients are likely to be related in some way, but the type of 

relationship is not known23. Therefore, we manually assessed the sentences co-

mentioning aging hallmarks and ARDs to determine whether they correctly reported 

an association between the aging hallmark and ARD (Table S5)24. Our approach to 

manual curation was to define co-mentioning sentences as either (1) “confirmed 

association” where an aging hallmark is reported (or inferred) to have a role in the 

ARD development or persistence, (2) “no association”, (3) “irrelevant” or (4) “error”66 

(Table S3). For aging hallmarks with less than 2,500 co-mentioning sentences, we 

manually examined all sentences co-mentioning a given aging hallmark-ARD pair 

until we found one sentence that satisfied the criteria of “confirmed association” 
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(Table S3 & S5). For the remaining aging hallmarks, three sentences that satisfied 

the criteria of “confirmed association” were required (Table S3 & S5). If an aging 

hallmark-ARD pair could not be confirmed by a sufficient number of sentences, its 

Ochiai coefficient was set to zero to increase the reliability of our findings. The 30 

highest scoring ARDs were selected for each aging hallmark. 

 

Analysis of aging hallmark-associated multimorbidity subnetworks and 

network propagation 

Multimorbidity Networks. We used multimorbidity networks derived from previously 

analysed clinical data on 289 diseases, including the 184 ARDs, in 3.01 million 

individuals18,19. The clinical data was obtained from Clinical Practice Research 

Datalink (CPRD), which was linked to the Hospital Episode Statistics admitted 

patient care (HES APC) dataset and accessed via the CALIBER research 

platform18,19. From the multimorbidity network data, we derived an undirected ARD 

network, where the nodes represent the 184 ARDs which were connected by edges. 

Edges linked ARD nodes if they were linked by a positive, significant partial 

correlation (after Bonferroni correction). The partial correlation was used as the edge 

weight18,19. 170 of the 184 ARDs had a median age of first recorded diagnosis 50 

years or older18,19. Therefore, we used four multimorbidity networks for the 184 

ARDs representing age categories from 50 years (Table S6)18,19. 

Network analysis of top 30 ranked aging hallmark-associated ARDs. We 

selected the top 30 ranking nodes for each aging hallmark from each of the four 

multimorbidity networks and, therefore, plotted 36 subgraphs. The network density 

(D) was calculated for each subnetwork using the algorithm shown in Equation 2 
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where 𝐸 is the number of edges in a subnetwork and 𝑉 is the number of nodes in a 

subnetwork . 

𝐷 =	
2𝐸

𝑉(𝑉 − 1)									(2)	 

For each aging hallmark and age category, we shuffled the updated Ochiai 

coefficient associated with the 184 ARDs 20,000 times. At each shuffle, we selected 

the top 30 ARD nodes to form a subnetwork and calculated their network density. 

For a given permutation, each time the random network density (𝐷') was greater 

than or equal to the actual network density (𝐷() we added a score of 1, and 

otherwise 0. The p-value (𝑝) for the network density was derived using Equation 3 

where 𝐾 is the total number of permutations67. 

𝑝 =
∑ 𝐼(𝐷𝒌*
'+, ≥ 𝐷()

𝐾 									(3)	 

The p-value was corrected for multiple testing across the 4 age categories per aging 

hallmark using the Benjamini-Hochberg procedure68.  

Network propagation onto multimorbidity networks. For each aging hallmark and 

age category, the updated Ochiai coefficient scores (𝐹-) were superimposed onto 

each of the ARD nodes of the multimorbidity network. Using a Random Walk with 

Restart (RWR) algorithm the scores were smoothed over the network (Equation 4) 

from the R package BioNetSmooth version 1.0.0 to derive the posterior score69. 

𝐹. 	= 	𝛼𝑊’𝐹./, +		 (1 − 𝛼)𝐹-										(4)	 

In the RWR algorithm, F. and F./, are the posterior evidence of association of an 

aging hallmark with an ARD at smoothing iteration,	𝑖 and 𝑖 -1, respectively, and we 

iterated until convergence (𝑖 = 30). The degree row-normalized adjacency matrix of 

the weighted disease network is represented by 𝑊0. The entries in the adjacency 

matrix (i.e. 𝑊 ′
	 = [𝑤 ′′2,3		]) are defined in Equation 5,  
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𝑤′2,3	 = E
4!,#
5!
, 𝑖𝑓	𝑣2 	𝑖𝑠	𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡	𝑡𝑜	𝑣3
	0,															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

							(5)     

where 𝑑2 is the degree of the ARD node 𝑣2 and the edge weight between ARD node 

𝑣2 and ARD node 𝑣3 is 𝑤2,3. Alpha (𝛼) was set at 0.5. The top 30 ARDs with the 

highest posterior score after network propagation were selected to form a 

subnetwork. Significant subnetworks were identified using the approach described 

previously (Equation 3) with correction for multiple testing68. We identified ARDs 

newly prioritized in the top 30 ARDs associated with an aging hallmark in these 

subnetworks, which also had an incompletely understood pathogenesis or 

pathophysiology. 

 

Identification of functionally enriched biological processes using genetic data 

Genes underlying ARDs. The NHGRI-EBI GWAS Catalog32 was downloaded on 

26th February 2020. 103 of the 203 defined ARDs were represented in the GWAS 

catalog32. These 103 ARDs were mapped to 181 ‘Mapped Traits’, which are terms 

from the Experimental Factor Ontology that are assigned to each GWAS and 

represent, for example, the disease investigated32. Single nucleotide polymorphisms 

(SNPs) with a p-value of < 5 x 10-8 associating them to ARDs were kept. GWAS 

studies in European populations were included; however, certain groups were 

excluded (e.g., Amish). SNPs located were assigned to genes (i.e., Ensembl Gene 

IDs) if they were located within a gene or intergenic SNPs less than 50 kilobase pairs 

(kbp) from a gene. For newly prioritized ARDs after network propagation, intergenic 

SNPs were assigned to genes at a distance of 75 kbp to maximize retrieval of 

relevant genes. The Ensembl gene IDs were mapped to National Centre for 

Biotechnology Information (NCBI) Gene IDs, where available, using the NCBI Gene 
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database of Homo sapiens70. Thus, 2,364 NCBI Gene IDs were linked to 84 ARDs 

and 135 Mapped Traits subclasses.  

Functional enrichment of biological processes for top 30 ARDs mapped to 

aging hallmarks. We identified the union of genes linked to the top 30 ARDs per 

aging hallmark (based on text mining) (Fig 2b). The NCBI Gene IDs for protein-

coding genes were mapped to “stringId”s using the STRING database forming nine 

protein lists33. Of all 86 ARDs included in top 30 ranked node subnetworks, 55 were 

associated with 1,698 NCBI Gene IDs and mapped to 1,693 stringId. The 

background set was also downloaded from the STRING database on 27th January 

201933, which contained 16,598 stringIds mapped to the biological process GO 

terms. 1,560 of 1,693 stringIds were also in the background set11. We used topGO71 

with the Fisher’s exact test to identify biologically enriched processes against the 

background set and applied the ‘weight01’ algorithm to reduce redundancy of GO 

terms. The final p-value cut-off was 0.05 and the minimum node size was 5. Using 

our previously created aging hallmark dictionary, we searched for GO terms related 

to the aging hallmarks. Shortened synonyms and abbreviations were appended to 

the dictionary for specific aging hallmarks. We also searched for GO terms related to 

“pathway” and “cascade” and we kept only the pathways that were significantly 

enriched across all aging hallmark protein lists. 

 

Computational analyses & images 

Computational analyses were carried out in Python 3.7.0 and R Version 3.3.0 and 

3.6.0. Aging hallmark and ARD images were downloaded from Adobe Stock and 

Shutterstock after obtaining a standard license. 
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Tables  
 
Table 1. Number of proteins in each aging hallmark protein list and number of proteins 
in each list linked to the five significant signalling pathways. We identified the genes 
linked to each of the top 30 ARDs associated with an aging hallmark from text mining. We took 
the union of genes leading to nine gene lists. Protein-coding genes within each gene list were 
mapped to proteins forming nine protein lists. (a) Total number of proteins in each protein list. 
The associated aging hallmark from text mining represents the rows in the ‘aging hallmark’ 
column (i.e., genomic instability (GI), telomere attrition (TA), epigenetic alterations (EA), loss of 
proteostasis (LOP), cellular senescence (CS), deregulated nutrient sensing (DNS), 
mitochondrial dysfunction (MD), stem cell exhaustion (SCE) and altered intercellular 
communication (AIC)). We next carried out GSEA followed by a search for GO terms 
mentioning “pathway” or “cascade”, which showed significant enrichment of five pathways 
across all aging hallmark protein lists represented in (b-f). The number of proteins in each 
protein list linked to the GO terms: (b) ‘IFN-g-mediated signaling pathway’, (c) ‘T-cell receptor 
signaling pathway’, (d) ‘positive regulation of T-cell receptor signaling pathway’, (e) ‘positive 
regulation of the ERK1/2 cascade’ and (f) ‘intrinsic apoptotic signaling pathways in response to 
DNA damage by p53 class mediator’, compared to the expected number (*p<0.05, ** p<0.01, 
***p<0.001, ****p<0.0001). The ‘total’ rows show the union of proteins from all nine protein lists 
and the union of mapped ARDs. 

Aging 
hallmark 

 

a. Total 
number 

of 
proteins 

in protein 
list 

Number of proteins in protein list linked to signalling pathway  
(expected number) 

b. IFN-g c. T-cell d. T-cell 
(positive 

regulation) 

e. ERK1/2 
(positive 

regulation) 

f. intrinsic 
apoptotic 

GI 511 9 (2.7)*** 13 (3.7)*** 3 (0.4)** 15 (6.0)** 7 (1.4)*** 
TA 872 19 (4.7)**** 21 (6.3)*** 5 (0.7)*** 27 (10.3)**** 8 (2.4)*** 
EA 658 14 (3.5)**** 20 (4.7)**** 4 (0.5)** 17 (7.8)** 7 (1.8)*** 

LOP 817 16 (4.4)**** 17 (5.9)*** 4 (0.6)** 26 (9.7)**** 6 (2.2)* 
DNS 1,212 20 (6.5)** 26 (8.7)**** 4 (1.0)* 31 (14.3)**** 7 (3.3)* 
MD 1,058 20 (5.7)**** 24 (7.6)*** 5 (0.8)*** 31 (12.5)**** 8 (2.9)** 
CS 594 10 (3.2)** 17 (4.3)*** 3 (0.5)** 16 (7.0)** 9 (1.6)**** 

SCE 680 17 (3.7)**** 17 (4.9)** 4 (0.5)** 23 (8.0)**** 7 (1.8)*** 
AIC 809 14 (4.3)*** 19 (5.8)*** 3 (0.6)* 24 (9.6)**** 7 (2.2)** 

Total (union of 
encoded proteins) 

25 30 5 40 9 

Total (union of mapped 
ARDs) 

21 19 9 22 11 
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Table 2. Network density of subnetworks of the top 30 ranking ARD nodes compared 
to random expectation for age categories 50-59 years, 60-69 years, 70-79 years and 
≥80 years. The number of times the network density from permutations (n = 20,000) was 
greater than or equal to the true network density for that aging hallmark was used to 
calculate the p-value. The p-value was corrected for multiple testing across the 4 age 
categories per aging hallmark using the Benjamini-Hochberg procedure (*p < 0.05, ** p 
<0.01, *** p <0.001, ****p<0.0001). 

Aging Hallmark ARD Network Density 
50-59 years 60-69 years 70-79 years ≥80 years 

Genomic Instability 0.0805 0.0989 0.0897 0.0782 
Telomere Attrition 0.1126 0.1218 0.1103 0.1011 
Epigenetic Alterations 0.0851 0.0759 0.0782 0.0713 
Loss of Proteostasis 0.0897 0.0805 0.0828 0.0552 
Deregulated Nutrient Sensing 0.2598**** 0.2644**** 0.2368**** 0.2207**** 
Mitochondrial Dysfunction 0.1655* 0.1471* 0.1356* 0.1080* 
Cellular Senescence 0.1379* 0.1494* 0.1195* 0.0989* 
Stem Cell Exhaustion 0.2092*** 0.2000*** 0.1724*** 0.1609**** 
Altered Intercellular Comm. 0.2000*** 0.1839** 0.1540** 0.1333** 
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Figure Legends 

Figure 1. The “Hallmarks of Aging” expanded into a taxonomy. The nine original 

aging hallmarks were expanded into a taxonomy of 65 related terms and four levels. 

Figure adapted from López-Otin et al. (2013). Abbreviations: Table S9. 

 

Figure 2. Summary of the methods. (a) Associating aging hallmarks (AHs) with 

ARDs using text mining. From 1.85 million scientific abstracts, we extracted 

sentences mentioning and co-mentioning aging hallmarks and ARDs to derive a 

score of their association. We kept scores verified using manual curation. The scores 

were used to identify the top 30 ranked ARDs linked to each aging hallmark. (b) 

Confirming ARD-aging hallmark associations using GWAS data and 

investigating enrichment of specific signalling pathways across all aging 

hallmarks. We identified the genes linked to each of the top 30 ARDs associated 

with an aging hallmark from text mining and took the union of genes, which were 

mapped to encoded proteins forming nine protein lists. We carried out GSEA to 

identify whether there was significant enrichment of GO terms related to the same 

aging hallmark as the ARDs were linked to in text mining. We also assessed whether 

there were significantly enriched signalling pathways across all aging hallmarks. (c) 

Association of aging hallmarks with ARD multimorbidities. The input data were 

the top 30 ARDs per aging hallmark from text mining and four ARD multimorbidity 

networks from age 50 years. We selected subnetworks of the top 30 ARDs per aging 

hallmark and compared the network density in these subnetworks to random 

expectation. (d) Associations of aging hallmarks to ARDs with incompletely 

understood pathogenesis or pathophysiology. We superimposed the aging 

hallmark-ARD scored associations from text mining onto the four ARD multimorbidity 
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networks and iterated until convergence. We selected the top 30 ARDs based on the 

score of the nodes after network propagation and identified significant subnetworks. 

We identified ARDs with incompletely understood pathogenesis or pathophysiology 

newly associated with aging hallmarks (green) in the subnetworks and explored 

genetic data for links to the same aging hallmark. 

 

Figure 3. Aging hallmark-ARD associations from text mining. (a) Aging 

hallmark-ARD associations based on the logarithm of the updated Ochiai coefficient. 

The highest ranked ARDs are in red and lowest ranked in yellow. ARDs with no 

association are shown in white. (b) The top 30 ranked ARDs for each aging hallmark. 

1st (dark red) to 30th (light yellow) ranked ARDs for a given aging hallmark are 

highlighted. ARDs not ranked in the top 30 are shown in white. Abbreviations: Table 

S9. 

 

Figure 4. Significantly enriched signalling pathways across all aging hallmark 

protein lists. (a) P-values of enriched signalling pathways across all aging 

hallmarks. We identified the genes linked to each of the top 30 ARDs associated with 

an aging hallmark from text mining and took the union of genes. These were mapped 

to encoded proteins forming nine protein lists. The associated aging hallmark from 

text mining represents the column labels of the heatmap. We carried out GSEA and 

searched for GO terms related to signalling pathways. Five signalling pathways were 

significantly enriched across all aging hallmark protein lists. (b-f) The union of 

proteins/ genes associated with each of the five significantly enriched pathways was 

derived and they were linked to their associated ARDs. These are shown in the 

circos plots representing: (b) IFN-g-mediated signalling pathway, (c) T-cell receptor 
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signalling pathway, (d) positive regulation of T-cell receptor signalling pathway, (e) 

positive regulation of the ERK1/2 cascade, and (f) the intrinsic apoptotic signalling 

pathway in response to DNA damage by p53 class mediator. Abbreviations: Table 

S9. 

 

Figure 5. Subnetworks containing nodes representing the top 30 ranked ARDs 

for each aging hallmark (50-59 year age category). The (a) deregulated nutrient 

sensing, (b) mitochondrial dysfunction, (c) cellular senescence, (d) stem cell 

exhaustion, and (e) altered intercellular communication subnetworks. Nodes are 

coloured by ARD ranking for a given aging hallmark: the 1st to 10th ranked in red, the 

11th to 20th ranked in orange and the 21st to 30th ranked in yellow. Abbreviations: 

Table S9. 

 

Supporting information 

Table S1-S9 and Figures S1-S2 can be found in the attached file.  

 

Ethical compliance 

The multimorbidity networks were created previously using clinical data18,19. The 

clinical data was obtained from the CPRD, which was linked to HES APC dataset. 

These studies were approved Independent Scientific Advisory Committee (ISAC) for 

the Medicines and Healthcare products Regulatory Agency (MHRA) under “protocol 

16_022”. At the time of data collection, participant consent was obtained and does 

not need to be repeated for every study. 
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Figure 1. The “Hallmarks of Aging” expanded into a taxonomy. The nine original aging hallmarks were 
expanded into a taxonomy of 65 related terms and four levels. Figure adapted from López-Otin et al. 
(2013). Abbreviations: Table S9. 
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Figure 2. Summary of the methods. The full figure legend is provided on the following page. AH: aging hallmark. 
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Figure 2. Summary of the methods. (a) Associating aging hallmarks (AHs) with ARDs using text 
mining. From 1.85 million scientific abstracts, we extracted sentences mentioning and co-mentioning aging 
hallmarks and ARDs to derive a score of their association. We kept scores verified using manual curation. 
The scores were used to identify the top 30 ranked ARDs linked to each aging hallmark. (b) Confirming 
ARD-aging hallmark associations using GWAS data and investigating enrichment of specific 
signalling pathways across all aging hallmarks. We identified the genes linked to each of the top 30 
ARDs associated with an aging hallmark from text mining and took the union of genes, which were mapped 
to encoded proteins forming nine protein lists. We carried out GSEA to identify whether there was 
significant enrichment of GO terms related to the same aging hallmark as the ARDs were linked to in text 
mining. We also assessed whether there were significantly enriched signalling pathways across all aging 
hallmarks. (c) Association of aging hallmarks with ARD multimorbidities. The input data were the top 
30 ARDs per aging hallmark from text mining and four ARD multimorbidity networks from age 50 years. We 
selected subnetworks of the top 30 ARDs per aging hallmark and compared the network density in these 
subnetworks to random expectation. (d) Associations of aging hallmarks to ARDs with incompletely 
understood pathogenesis or pathophysiology. We superimposed the aging hallmark-ARD scored 
associations from text mining onto the four ARD multimorbidity networks and iterated until convergence. 
We selected the top 30 ARDs based on the score of the nodes after network propagation and identified 
significant subnetworks. We identified ARDs with incompletely understood pathogenesis or 
pathophysiology newly associated with aging hallmarks (green) in the subnetworks and explored genetic 
data for links to the same aging hallmark. 
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Figure 3. Aging hallmark-ARD associations from text 
mining. (a) Aging hallmark-ARD associations based on 
the logarithm of the updated Ochiai coefficient. The 
highest ranked ARDs are in red and lowest ranked in 
yellow. ARDs with no association are shown in white. (b) 
The top 30 ranked ARDs for each aging hallmark. 1st 
(dark red) to 30th (light yellow) ranked ARDs for a given 
aging hallmark are highlighted. ARDs not ranked in the 
top 30 are shown in white. Abbreviations: Table S9. 
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 5 

Figure 4. Significantly enriched signalling pathways across all aging hallmark protein lists. (a) P-values of enriched signalling pathways 
across all aging hallmarks. We identified the genes linked to each of the top 30 ARDs associated with an aging hallmark from text mining and 
took the union of genes. These were mapped to encoded proteins forming nine protein lists. The associated aging hallmark from text mining 
represents the column labels of the heatmap. We carried out GSEA and searched for GO terms related to signalling pathways. Five signalling 
pathways were significantly enriched across all aging hallmark protein lists. (b-f) The union of proteins/ genes associated with each of the five 
significantly enriched pathways was derived and they were linked to their associated ARDs. These are shown in the circos plots representing: 
(b) IFN-g-mediated signalling pathway, (c) T-cell receptor signalling pathway, (d) positive regulation of T-cell receptor signalling pathway, (e) 
positive regulation of the ERK1/2 cascade, and (f) the intrinsic apoptotic signalling pathway in response to DNA damage by p53 class mediator. 
Abbreviations: Table S9. 
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(f) Intrinsic apoptotic signaling pathway  
in response to DNA damage by p53 class mediator 

(e) Positive regulation of the ERK1/2 cascade 
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 8 

Figure 5. Subnetworks containing nodes representing the top 30 ranked ARDs for each aging hallmark (50-59 year age category). The 
(a) deregulated nutrient sensing, (b) mitochondrial dysfunction, (c) cellular senescence, (d) stem cell exhaustion, and (e) altered intercellular 
communication subnetworks. Nodes are coloured by ARD ranking for a given aging hallmark: the 1st to 10th ranked in red, the 11th to 20th 
ranked in orange and the 21st to 30th ranked in yellow. Abbreviations: Table S9. 
 
 
 
 
  

(a) Deregulated nutrient sensing: p<0.0001 (b) Mitochondrial dysfunction: p<0.05 
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(c) Cellular senescence: p<0.05 (d) Stem cell exhaustion: p<0.001 
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(e) Altered intercellular communication: p<0.01 
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