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Learning Selective Sensor Fusion for
States Estimation

Changhao Chen*, Stefano Rosa, Chris Xiaoxuan Lu, Bing Wang, Niki Trigoni, Andrew Markham

Abstract—Autonomous vehicles and mobile robotic systems are
typically equipped with multiple sensors to provide redundancy.
By integrating the observations from different sensors, these
mobile agents are able to perceive the environment and estimate
system states, e.g. locations and orientations. Although deep
learning approaches for multimodal odometry estimation and
localization have gained traction, they rarely focus on the issue
of robust sensor fusion - a necessary consideration to deal
with noisy or incomplete sensor observations in the real world.
Moreover, current deep odometry models suffer from a lack of
interpretability. To this extent, we propose SelectFusion, an end-
to-end selective sensor fusion module which can be applied to
useful pairs of sensor modalities such as monocular images and
inertial measurements, depth images and LIDAR point clouds.
Our model is a uniform framework that is not restricted to
specific modality or task. During prediction, the network is able
to assess the reliability of the latent features from different
sensor modalities and estimate trajectory both at scale and
global pose. In particular, we propose two fusion modules -
a deterministic soft fusion and a stochastic hard fusion, and
offer a comprehensive study of the new strategies compared to
trivial direct fusion. We extensively evaluate all fusion strategies
in both public datasets and on progressively degraded datasets
that present synthetic occlusions, noisy and missing data and
time misalignment between sensors, and we investigate the
effectiveness of the different fusion strategies in attending the
most reliable features, which in itself, provides insights into the
operation of the various models.

Index Terms—Sensor Fusion, Localization, Feature Selection,
Deep Neural Networks, Multimodal Learning, Visual-Inertial
Odometry, Point Cloud Odometry, Robot Navigation

I. INTRODUCTION

Mobile agents are often outfitted with multiple sensors. For
example, a self-driving vehicle is equipped with a combination
of GPS, IMUs, cameras, and LIDAR. Making such mobile
agents fully autonomous and intelligent requires the ability
of sensor fusion, a method that can effectively exploit the
individual strengths of distinct sensors and coherently estimate
the system states. Multimodal sensor fusion has long been
a central problem in robotics and computer vision [41],
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Fig. 1: An overview of the general framework to learn system
states from multiple sensor modalities. Our framework can
selectively utilize the suitable features for solving problems to
improve both the accuracy and robustness.

with applications to perception, planning and control. Despite
different application scenarios, the rationale for sensor fusion
is more or less the same: many system state variables are
not always fully observable by a single sensor modality, and
combining different sensors that are complementary to each
other can reduce the overall uncertainty, improving accuracy
and/or robustness. Conventional sensor fusion methods resort
to handcrafted design that heavily relies on human experience
and domain knowledge. Consequently, the developed fusion
methods are often modality-specific and/or task-specific.

Recently, there are growing interests in applying deep neural
networks (DNNs) for learning to estimate system states in
an end-to-end manner, for example, solving Visual Odometry
(VO) [20], [45], [53], Visual-Inertial Odometry (VIO) [7],
[35] or camera relocalization [6], [22]. Instead of building
analytical models by hand, they are achieved by learning
complex mapping functions directly from raw sensory data
to target values. These end-to-end approaches are appealing
due to the capability of deep networks to automatically extract
features from high-dimensional raw data. However, despite the
long history of classical sensor fusion techniques, there is a
lack of effective fusion strategies working on the deep feature
space, especially for the tasks of localization and odometry
estimation. These previous learning-based methods are not
explicitly modelling error sources in real-world usage. Without
considering possible sensor errors, all features are directly fed
into other modules for further pose regression in [1], [6], [22],
or simply concatenated as in [7]. These factors can possibly

ar
X

iv
:1

91
2.

13
07

7v
2 

 [
cs

.C
V

] 
 1

8 
M

ay
 2

02
2



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. X, NO. X, MAY 2022 2

cause troubles to the accuracy and safety of neural systems,
when input data are corrupted or missing. Moreover, the fea-
tures from different modalities are considered equally impor-
tant in these methods, although the complementary property
of different modalities requires systems to utilise deep features
with regard to observation uncertainties or self/environmental
dynamics.

For this reason, we present a generic framework that models
feature selection for robust sensor fusion, as illustrated in
Figure 1. This work mainly considers the problem of using
a pair of sensor modalities, although it can be extended
naturally to three or more modalities. As a case study, two
tasks - learning global localization and ego-motion estimation,
are chosen to demonstrate the effectiveness of our proposed
selective sensor fusion. Our system is not restricted to specific
modality, performing feature selection from four different
sensor data, i.e. RGB-images, inertial measurements, LIDAR
point clouds and depth images. The selection process is
conditioned on the measurement reliability and the dynamics
of both self-motion and environment. Two alternative feature
weighting strategies are presented: soft fusion, implemented
in a deterministic fashion; and hard fusion, which introduces
stochastic noise and intuitively learns to keep the most relevant
feature representations, while discarding useless or misleading
information.

By explicitly modelling the selection process, we are able to
demonstrate the strong correlation between selected features
and environmental/measurement dynamics by visualizing the
sensor fusion masks, as illustrated in Figure 9. In the case
of estimating visual-inertial odometry, our results show that
features extracted from different modalities (i.e., vision and
inertial motion) are complementary in various conditions: iner-
tial features contribute more in presence of fast rotation, while
visual features are preferred during large translations (Figure
11). Thus, the selective sensor fusion provides insights into the
underlying strengths of each sensor modality, guiding future
multimodal system design. We demonstrate how incorporating
selective sensor fusion makes neural models robust to data
corruption typically encountered in real-world scenarios.

This paper builds on the work published in [4], and presents
a generic framework for selective sensor fusion in multimodal
deep pose estimation. This work extends the fusion strategies
from visual-inertial odometry to the problem of learning
LIDAR-visual odometry and RGB-depth relocalization. To
summarise, the novel contributions of this work are as follows:
• We present SelectFusion, a novel generic framework

to learn selective sensor fusion enabling more robust
and accurate odometry and localization in real-world
scenarios.

• We show how our selective sensor fusion can be incorpo-
rated into a uniform framework, not restricted by specific
modality or task, by learning odometry estimation or
relocalization on fusing a pair of modalities from vision,
depth, inertial and LIDAR data.

• Our SelectFusion masks can be visualized and in-
terpreted, providing deeper insights into the relative
strengths of each stream, and guiding future system
design.

• We create challenging datasets on top of current public
datasets by considering seven different sources of sensor
degradation, and conduct a new and complete study on
the accuracy and robustness of deep sensor fusion in
presence of corrupted data.

The reminder of the paper is organized as follows: Section
II contains a survey of related work; Section III presents a
generic framework for multimodal sensor fusion; Section IV
introduces our proposed selective sensor fusion mechanism;
Section V evaluates SelectFusion applied to three multimodal
models for relocalization and trajectory estimation through
extensive experiments; Section VI finally draws conclusions.

II. BACKGROUND AND RELATED WORK

A. Learning-based Pose Estimation

Visual-inertial Odometry: Recent work shows how it is
possible to learn to estimate odometry from inertial data using
recurrent neural networks [3], making deep visual-inertial
odometry estimation possible. VINet [7] uses neural network
to learn visual-inertial odometry, by directly concatenating
visual and inertial features. VIOLearner [35] presents an online
error correction module for deep visual-inertial odometry that
estimates the trajectory by fusing RGB-D images with inertial
data. DeepVIO [15] recently proposes a fusion network to
fuse visual and inertial features. This network is trained with
a dedicated loss. However, this way of learning sensor fusion
does not expose the behaviour of the fusion module, while we
propose the use of an interpretable mask, that offers insight
into the usefulness of the input at any time. We observe
that previous methods do not properly address the problem
of learning a meaningful sensor fusion strategy, but simply
concatenate visual and inertial features in latent space.
LIDAR Odometry: Learning LIDAR odometry has been
explored by LO-Net [26], which exploits geometric consis-
tency for scan-to-scan motion estimation, while also learning
pose correction similarly to deep SLAM approaches, and can
achieve accuracy comparable to traditional approaches [29].
Fusion of LIDAR and visual information has been investigated
in [13], which proposes to fuse LIDAR and visual information,
but in their work the learning is limited to training a model
for removal of moving objects rather than localization.
Camera Relocalization Deep approaches have also been
devoted to visual localization. Posenet [22] is the first work
to use Convolutional Neural Networks (CNNs) for 6-DoF
pose regression from monocular images. PoseNet has been
further improved by combining CNNs and LSTMs for feature
correlation [43], introducing temporal information [6], incor-
porating spatial constraints [1] or by adding additional co-
visibility constraints based on local maps and the estimated
odometry [49]. MS-Transformer [36] is a recent relocalization
work based on transformer architecture, achieving the state-
of-the-art results.

B. Multimodal Learning

Multimodal learning aims to solve machine learning prob-
lems involving multiple data modalities. They are generally
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categorized into aggregation-based and alignment-based fusion
methods. The success of multimodal learning has been demon-
strated in a wide range of applications, e.g. video captioning
[39], medical image retrieval [14], face recognition [8], ma-
nipulation [23], autonomous navigation [27] and body-sensor-
networks [44]. Recently, [46] designs a Channel-Exchanging-
Network (CEN) that fuses multiple modalities by dynamically
exchanging the channels of sub-networks. [25] proposes a
residual fusion network (RFN) based framework that auto-
matically extracts features and fuses multi-scale features. In
[38], [40], a shared layer is designed to transfer cross-modal
features, in which an inner product function of extracted
features from two modalities is adopted to combine them for
domain transferring. This inner product method is similar to
our soft fusion but for different purposes. However, there is a
lack of systematic study into the sensor fusion for deep state
estimation, especially in learning based localization and pose
estimation, as discussed in Section II-A.

C. Attention Mechanism

Our proposed selective sensor fusion is particularly related
to attention mechanisms, that have been widely applied in
neural machine translation [10], image caption generation [48],
visual question answering [28] and video description [17].
Limited by the fixed-length vector in embedding space, these
attention mechanisms compute a focus map to help the de-
coder, when generating a sequence of words. This is different
from our design intention that the features selection works
to fuse multimodal sensor fusion for deep pose estimation,
and cope with more complex error resources, and self-motion
dynamics.

III. LEARNING MULTIMODAL REPRESENTATIONS

This section presents a uniform framework to learn mul-
timodal representation for state estimation, which lays the
foundation for selective sensor fusion. Figure 2, 3 and 4, show
a modular overview of the architecture, consisting of feature
encoders, feature fusion, temporal modelling and task solver.

A. Feature Encoders

1) Visual Feature Encoders: As visual feature encoders are
used in both global relocalization and odometry estimation,
they are designed with respect to the property of each task for
better feature extraction and utilization.

For a relative pose (odometry) estimation, latent represen-
tations are extracted from a set of two consecutive monocular
images xV . Ideally, we want our visual encoder fvision to
learn geometrically meaningful features rather than features
overfitted with appearance or context. For this reason, in-
stead of using a PoseNet model [22], as commonly found
in other DL-based VO approaches [50], [51], [53], we use
a FlowNet-style architecture, i.e. FlowNetSimple [9] as our
feature encoder. Flownet provides features that are suited for
optical flow prediction, which highly contributes to the ego-
motion detection. The network consists of nine convolutional
layers. The size of the receptive fields gradually reduces from

7×7 to 5×5 and finally 3×3, with stride two for the first
six layers. Each layer is followed by a ReLU nonlinearity
except for the last one, and we use the features from the last
convolutional layer aV as our visual feature. We initialize the
visual encoder with the weights of a model that was pre-trained
on the FlyingChairs dataset1, since training from scratch would
require a larger amount of data compared with our dataset size.

For a global relocalization task, we instead use Residual
Neural Network (ResNet) [16] to extract features from a
set of single images. Both structure and appearance features
contribute to the retrieval of absolute poses in the 3D scene
that has been visited before. Hence, visual features should
capture the entire scene. We adopt ResNet18, consisting of 18
layers convolutional layers with skip connections, and modify
it by introducing an average pooling layer and a full-connected
layer at the end, that transform the features after ResNet18 to
a d dimension visual feature aV .

In summary, given a set of images xV , we are able to extract
visual features aV ∈ Rd suited to the task via the Visual
Encoder (FlowNet) or (ResNet) fvision:

aV = fvision(xV ). (1)

2) Inertial Feature Encoder: Inertial data streams have a
strong temporal component, and are generally available at
higher frequency (∼100 Hz) than images (∼10 Hz). In order
to model the temporal dependencies of consecutive inertial
measurements, we use a two-layer Bi-directional LSTM with
128 hidden states as the Inertial Feature Encoder finertial. In the
deep VIO model, as shown in Figure 4, a window of inertial
measurements xI between each two images is fed to the
inertial feature encoder in order to extract the d dimensional
feature vector aI ∈ Rd:

aI = finertial(xI). (2)

3) Depth Feature Encoder: In our work, depth image is
exploited to solve the task of vision-depth based relocalization,
as shown in Figure 2. Similar to the visual encoder designed
for relocalization, we also use ResNet18 as depth feature
encoder, but replace the first layer of ResNet model with a 1-
channel convolutional network, considering that depth image
is 1-channel rather than 3-channels. Hence, the input is a
set of 1-channel depth images xD, and transformed into a
d dimensional features vector aD ∈ Rd via the depth encoder
fdepth:

aD = fdepth(xD). (3)

4) Pointcloud Feature Encoder: The point clouds are a set
of data in Cartesian coordinates, representing 3D structure
in space. They are produced normally by LIDAR devices.
The sparse structure and irregular format of point cloud data
make them hard to be processed directly by neural networks.
To allow convolutional neural networks (CNNs) to effectively
process point cloud data, we convert them into a regular point
cloud matrix via the cylindrical projection [5], [26]:

α = arctan(y/x)/∆α (4)

1https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html
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β = arcsin(z/
√
x2 + y2 + z2)/∆β (5)

where (x, y, z) are original coordinates in LIDAR coordinate
system, and (α, β) are new coordinates in the point cloud
matrix. The new point cloud matrix is with a size of H×W ×
C. The position (α, β) of matrix is filled with the range value
r =

√
x2 + y2 + z2 from the position (x, y, z) of original

point cloud.
In this work, point cloud data are used to learn vision-

LIDAR odometry, as shown in Figure 3 and hence we also
use the FlowNet visual encoder to transform the input matrix
xP into a d dimensional point cloud feature aP ∈ Rd:

aP = fpointcloud(xP ). (6)

B. Fusion Function

We now combine the high-level representation produced
by each feature encoder from raw data sequences, with a
fusion function g that combines information from a pair of
sensor modalities to extract the useful combined feature z for
a regression task:

z = g(a1,a2), (7)

where (a1,a2) is any pair of sensor modality features from
visual aV , inertial aI , depth aD, and point cloud aP channels.
In this work, we specifically investigate the problem of fusing
two sensor modalities for better demonstration on existing
datasets, although our framework can extend naturally to
exploit three or more modalities.

There are several different ways to implement this fusion
function. The current approach is to directly concatenate the
two features together into one feature space (we call this
method direct fusion gdirect). However, in order to learn a
robust sensor fusion model, we propose two fusion schemes –
deterministic soft fusion gsoft and stochastic hard fusion ghard,
which explicitly model the feature selection process according
to the current environment dynamics and the reliability of the
data input. The fusion network is another deep neural network
module. Details will be discussed in Section IV.

C. Temporal Modelling and Task Solvers

The fundamental tenet of state estimation requires mod-
elling temporal dependencies to derive accurate system states,
e.g. relative poses. In the past, a state-space-model (SSM)
describes this temporal relation and evolution of system states.
Similarly, in our learning model, a recurrent neural network,
i.e. Long Short-Term Memory (LSTM) network takes in the
input combined feature representation zt at time step t and
its previous hidden states ht−1 and models the dynamics
and connections between a sequence of features. The hidden
states ht contain the history of the features relevant to the
task. After the recurrent network, a fully-connected layer
serves as the regressor, transforming the features to a system
state yt, i.e. pose transformation or global pose, representing
the motion transformation over a time window or a global
location/orientation.

Hence, the relation between the final system states yt and
the input features zt can be described via a recurrent neural
network and previous hidden states ht−1:

yt = RNN(zt,ht−1). (8)

We implemented three tasks based on this multimodal rep-
resentation learning framework to estimate key system states
from pairs of raw sensory data.

1) Task 1: Learning Vision-Depth Relocalization: The first
task is to exploit monocular RGB images and depth images
to perform global relocalization in the scenarios that have
been visited before. As illustrated in Figure 2, depth and
RGB images are encoded into features by the Depth Encoder
and Visual Encoder (ResNet), fused as new features through
Feature Fusion modules, and converted into global poses via
temporal modelling and task regression modules. The global
pose y = [p,q] is composed by a 3-D position vector p ∈ R3

and a quaternion q ∈ R4 for orientation. The objective is
to minimize the L1 distance between the groundtruth values
[p̂, q̂] and predicted values [p,q] with the loss function:

L(θ)1 = |p̂− p|+ λ1

∣∣∣q̂− q
||q||

∣∣∣ , (9)

where λ1 is a balance factor, which we choose as λ1 = 10 in
our experiment. Here, L1 loss is chosen rather than L2 loss,
because L1 loss performs better and more stable [21].

2) Task 2: Learning Lidar-Vision Odometry: The second
task is to learn LIDAR-vision odometry. Different from global
relocalization, odometry estimation produces relative poses
between two frames of images, which can adapt to new scenar-
ios. Global pose is achieved by integrating pose transforma-
tions. As shown in Figure 3, the framework consists of Point
Cloud Encoder and Visual Encoder (FlowNet) that extract
features from LIDAR point cloud data and RGB images,
Feature Fusion that combines LIDAR and visual features as a
new feature vector, and Temporal Modelling and Task Solver
modules to transform features as system states. The network
outputs relative poses y = [p, r], consisting of a 3-dimensional
translation vector p ∈ R3, and a 3-dimensional Euler rotation
vector r ∈ R3. The objective is to minimize the Mean Square
Error (MSE) of the relative poses to recover optimal neural
networks parameters θ:

L(θ)2 = ||p̂− p||2 + λ2||̂r− r||2, (10)

where [p̂, r̂] are groundtruth values, and λ2 is a scale factor
to balance between translational error and rotational error. λ2
is chosen as 100 in our experiment.

3) Task 3: Learning Visual-Inertial Odometry: The third
task is to learn visual-inertial odometry, providing accurate
pose estimation by using visual and inertial sensors, which
are widely deployed in mobile robotics, self-driving vehicles
and drones. Similar to LIDAR-vision odometry, our model
outputs the relative poses between two frames of images.
Figure 4 shows that visual and inertial features are extracted
from consecutive monocular images, and a sequence of inertial
data between two frames of images by FlowNet based Visual
Encoder and LSTM based Inertial Encoder. The features are
combined as new features via Feature Fusion, and converted
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into system states through Temporal Modelling and Task Re-
gressor. The network produces pose transformation y = [p, r]
with a 3-dimensional translation vector p ∈ R3, and a 3-
dimensional rotation vector r ∈ R3 (the rotation vector is rep-
resented by 3-dimensional Euler angles). By minimizing the
MSE of the predicted relative poses, the optimal parameters θ
are recovered via:

L(θ)3 = ||p̂− p||2 + λ3||̂r− r̂||2, (11)

where [p̂, r̂] are true relative poses, [p, r] are predicted values,
and λ3 is a scale factor to balance between translational error
and rotational error. In our case, we choose λ3 as 100.

IV. SELECTIVE SENSOR FUSION

In this section, we propose SelectFusion, a generic frame-
work to selectively learn multisensory representation from raw
data. Intuitively, the features from each modality offer different
strengths for the task of state estimation. Our perspective is
that simply considering all features as that they are equally
important and correct, without any consideration of degrada-
tion and self/environmental dynamics, is unwise and will lead
to unrecoverable drifts and errors. Therefore, we propose two
different selective sensor fusion schemes for explicitly learning
the feature selection process: soft (deterministic) fusion, and
hard (stochastic) fusion, as illustrated in Figure 6. In addition,
we also present a straightforward sensor fusion scheme – direct
fusion – as a baseline model for comparison.

A. Direct Fusion

A straightforward approach for implementing sensor fusion
consists in the use of Multi-Layer Perceptrons (MLPs) to
combine the features from the two sensor modality channels.
Ideally, the system learns to discriminate relevant features for
prediction in an end-to-end fashion. Hence, direct fusion is
modelled as:

gdirect(a1,a2) = [a1;a2] (12)

where [a1;a2] denotes an operation function that concatenates
features a1 and a2, which are extracted from the Modality One
and Two respectively.

B. Soft Fusion (Deterministic)

We now propose a soft fusion scheme that explicitly and de-
terministically models feature selection. Similar to the widely
applied attention mechanism [17], [42], [48], this function re-
weights each feature by conditioning on both sensor modality
channels, allowing the feature selection process to be jointly
trained with other modules. The function is deterministic and
differentiable.

Here, a pair of continuous masks s1 and s2 are introduced
to implement soft selection of the extracted feature represen-
tations, before these features are passed to temporal modelling
and task solver:

s1 = Sigmoid(MLP1([a1;a2])) (13)
s2 = Sigmoid(MLP2([a1;a2])) (14)

where [a1;a2] denotes an operation function that concate-
nates features a1 and a2. MLP is multilayer perceptron, a
feedforward neural network that transforms features to fusion
mask space. The Sigmoid function makes sure that each of the
features will be re-weighted in the range [0, 1]. This process
is deterministically parameterised by the neural networks,
conditioned on both the features a1 and features a2. s1 and
s2 represent soft masks applied to the features extracted from
Modality One and Modality Two respectively.

Then, the visual and inertial features are element-wise
multiplied with their corresponding soft masks as the new
re-weighted vectors. The selective soft fusion function is
modelled as

gsoft(a1,a2) = [a1 � s1;a2 � s2]. (15)

C. Hard Fusion (Stochastic)

In addition to the soft fusion introduced above, we propose
a variant of the fusion scheme – hard fusion. Instead of re-
weighting each feature with a continuous value, hard fusion
learns a stochastic function that generates a binary mask that
either propagates the feature or blocks it. This mechanism
can be viewed as a switcher for each component of the
feature map, which is a stochastic layer implemented by a
parametrised Bernoulli distributions.

However, the stochastic layer cannot be trained directly
by back-propagation, as gradients will not propagate through
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discrete latent variables. To tackle this, the REINFORCE
algorithm [32], [47] is generally used to construct the gra-
dient estimator. In our case, we propose to employ a more
lightweight method – Gumbel-Softmax resampling [19], [30]
to infer the stochastic layer of hard fusion, so that our hard
fusion module can be trained in an end-to-end fashion as well.

Before training the model, the distribution of hard mask is
unknown. As each element of this mask s(i) is a single stochas-
tic variable, we assume it to be under Bernoulli distribution,
which takes the value 1 with probability p and the value 0
with probability q = 1−p. As the entire mask s consists of n
elements, it is under the binomial distribution with parameters
n, which is the discrete probability distribution of the number
of successes in a sequence of n independent experiments.
Therefore, instead of learning masks deterministically from
features, hard masks s1 and s2, representing the binary mask
for the features from two modalities, are re-sampled from
a discrete Binomial distribution. This discrete distribution is
parameterized by ααα, which is learned by deep neural networks
and conditioned on features but with the addition of stochastic
noise:

s1 ∼ p(s1|a1,a2) = Binomial(ααα) (16)
s2 ∼ p(s2|a1,a2) = Binomial(ααα), (17)

where each mask s = [s(1), ..., s(n)] is a n-dimensional binary
vector s(i). Each element of hard mask s(i) is a 2-dimensional
categorical variable, deciding whether to select the ith feature
or not. The total number of features is n. The element s(i) can
be viewed as resampling from a Bernoulli distribution:

s(i) ∼ Bernoulli(ααα(i)). (18)

Similar to soft fusion, the features from two modalities are
element-wise multiplied with their corresponding hard masks
as new reweighted vectors. The stochastic hard fusion function
is modelled as

ghard(a1,a2) = [a1 � s1;a2 � s2]. (19)

Now we come to solve the problem of inferring this discrete
distribution in order to generate hard mask s. We apply the
so-called Gumbel-Softmax trick to convert the non-continuous
function into a continuous approximation by using the fact that
the distribution of a discrete random variable P (x = k) can
be reparameterized by a random variable πk and a Gumbel
random variable εk via

x = arg max
k

(log πk + εk). (20)

In practical, it is simple to implement this reparameteri-
zation trick into our model. Figure 6 (b) shows the detailed
workflow of our proposed Gumbel-Softmax resampling based
hard fusion. The Gumbel-max trick [31] allows us to effi-
ciently draw a hard mask s(i) from a categorical distribution
given the class vector π(i)

k and a Gumbel random variable ε(i)k ,
and then an one-hot encoding performs ’binarization’ of the
category:

s(i) = one hot(arg max
k

[ε
(i)
k + log π

(i)
k ]), (21)

where i ∈ [1, .., n] is the index of feature, k ∈ [1, 2]
is the index of class vector for each feature. In this case,
there are only two categories, indicating whether to select a
particular feature or not. This can be viewed as a process of
adding independent Gumbel perturbations to the discrete class
variable. In practice, the random variable εεε is sampled from
a Gumbel distribution, which is a continuous distribution on
the simplex that can approximate categorical samples:

ε = − log(− log(u)), u ∼ Uniform(0, 1). (22)

In Equation 21 the argmax operation is not differentiable, so
softmax function is used as an approximation:

h(i) =
exp((log(π

(i)
k + ε

(i)
k )/τ)∑2

j=1 exp((log(π
(i)
k ) + ε

(i)
k )/τ)

, k = 1, 2 (23)

where τ > 0 is the temperature that modulates the re-sampling
process. Finally, h(i) is transformed into a binary mask s(i)

through the one hot function.
The π(i)

k is jointly learned by deep neural networks in our
models, and formulated as the parameters ααα = (πi

k)|i=1..n
k=1,2 ,

conditioned on the concatenated feature vectors [a1;a2] from
two modalities:

ααα = ReLU(FC([a1;a2])), (24)

where FC is full-connected layer, to map concatenated features
into k ∗ 2 dimensional class vectors. ReLU is to impose
nonlinearity and ensures the class vectors to be nonnegative.

In our approach, we find that modulating the temperature
with respect to the training procedure can enable better
performance in selective sensor fusion. This is because the
temperature determines the samples and gradients: when the
temperature is high, the variance of the gradients is small,
while the samples are more smooth; at low temperatures,
the variance of the gradients is high, while the samples are
more discrete, which means it will fit well into the discrete
distribution of the fusion mask. Thus we start the temperature
from a higher value, i.e. 1 in our case, and gradually decrease
it towards 0.5 over each epoch of the training process.
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V. EXPERIMENTS

We conducted extensive experiments above four well-known
public datasets to learn from different pairs of sensor modal-
ities: the 7-Scenes dataset [37] for vision-depth based re-
localization (Task 1), the KITTI odometry dataset [11] for
vision-LIDAR odometry estimation (Task 2), the KITTI raw
dataset [11] and the EuRoC MAV dataset [2] for visual-inertial
odometry (Task 3).

A. Experimental Setups

Our frameworks were implemented with PyTorch and
trained on a NVIDIA Titan X GPU. As the main focus
of this work is a study of the general multimodal fusion
problem, we want to investigate the performance of the two
SelectFusion strategies compared to pre-existing models. In
each task, we always choose a deep vision-only model and
a deep multimodal model with direct fusion as the common
baselines. Additionally, specific representative works were
chosen as task baselines, according to each specific task. All of
our networks including common baselines were trained with
a batch size of 16 using the Adam optimizer, with a learning
rate lr = 1e−4, for a fair comparison. All model were trained
for 100 epochs, and the sequence length is chosen as 5.

1) Common Baselines: Common baselines share the same
basic framework as our proposed SelectFusion framework. For
a fair comparison, the hyper-parameters of proposed network
and common baselines are identical, including batch size,
learning rate, and the dimension of hidden states. The vision-
only model is composed of the same visual encoder, temporal
modelling and task solver modules as our framework. The
multimodal model with direct fusion uses the same structure
as our proposed framework, except for the fusion component,
which is a simple concatenation of the multimodal features.
The single modality model and multimodal model with direct
fusion can be viewed as ablated variants of our proposed ap-
proach. In addition, we also compare with a recent multimodal
fusion work, i.e. Residual Fusion Network (RFN) [25], which
is based on the nest connection incorporated into a residual
neural network. In the task of depth-vision relocalization and
LIDAR-vision odometry, RFN is employed into a framework
with the same feature extractors as our select fusion for a fair
comparison, but fusion module is replaced with the residual
network that aggregates and fuses the features from each
extractor. RFN is not employed in visual-inertial odometry,
as inertial data are processed with an LSTM, which is not
suitable to this CNN based RFN.

2) Vision-Depth Relocalization: 7-Scenes Dataset (vi-
sion+depth): The 7-Scenes dataset [37] contains RGB images
and depth data captured by a handheld Microsoft Kinect
camera from seven indoor scenarios. Each scene provides
several sequences, and each sequence is with 500-1000 frames
of colour and depth images. We follow the official data split
to train and test our models above this dataset.
Task Baselines: Our SelectFusion model is built as an end-to-
end relocalization model, and thus we compare with LSTM-
Pose [43], VidLoc [6], and MS-Transformer [36] which are
representative within this category of learning techniques.

3) LIDAR-Vision Odometry: KITTI Odometry Dataset
(vision+LIDAR) The KITTI Odometry dataset [11] provides
11 sequences (00-10) with visual images, LIDAR point cloud
and groundtruth. It has been extensively adopted as VO/SLAM
benchmark. We use this dataset to fuse the visual and point
cloud data to estimate relative pose (odometry) and reconstruct
trajectory. Sequences 00, 01, 02, 03, 04, 06, 08, 09 are used
for training DNN models, while the rest Sequences 05, 07,
and 10 are relatively long and used for evaluation. All images
are resized to 512× 256.
Task Baselines: We use three representative works that are
evaluated and widely adopted on the KITTI odometry bench-
mark, as our task baselines, i.e. VISO2 M [12], ORB-SLAM
[33], and ELO [52]. VISO2 M is a monocular VO algorithm,
in which a fixed camera height, (i.e. a predefined 1.7 meters
in the KITTI dataset) is given to recover the absolute scale
of generated trajectories. We also adopt ELO [52], a recent
LIDAR odometry work.

4) Visual-Inertial Odometry: KITTI RAW dataset (vi-
sual+inertial) The KITTI Raw dataset [11] contains the raw
data collection from car-driving scenarios. High-frequency
inertial data (100 Hz) are only available in the raw unsynchro-
nized data package. We manually synchronize inertial data and
images according to their timestamps, in order to exploit the
visual and inertial data to learn odometry estimation. We use
Sequences 00, 01, 02, 04, 06, 08, 09 for training and tested the
network on Sequences 05, 07, and 10, excluding sequence 03
as the corresponding raw file is unavailable. The images and
ground-truth provided by GPS are collected at 10 Hz, while
the IMU data are at 100 Hz.
EuRoC MAV dataset (visual+inertial) The EuRoC dataset
[2] contains tightly synchronized video streams from a Mi-
cro Aerial Vehicle (MAV), carrying a stereo camera and
an IMU, and is composed by 11 flight trajectories in two
environments, exhibiting complex motion. We used Sequence
MH 05 difficult for testing, and left the other sequences for
training. We downsample the images and IMUs to 10 Hz and
100 Hz respectively.
Task Baselines: We choose four representative VIO pipelines,
i.e. MSCKF [18], OKVIS [24], mono-VINS [34] and VIO-
Learner [35] as task baselines to compare with our deep VIOs:
MSCKF [18] is an Extended Kalman Filter based solution;
OKVIS [24] is a keyframe based VIO with sliding window
nonlinear optimization; mono-VINS [34] uses sliding window
nonlinear optimization and IMU preintegration. VIOLearner
[35] is a learning based VIO with online error correction.

B. Runtime and Parameters Sensitivity

This section analyzes the runtime and parameters sensitivity
of our proposed fusion mechanisms.

We first test direct fusion, soft fusion and hard fusion in
the task of learning visual-inertial odometry, to collect their
prediction time on a NVIDIA RTX 3080Ti GPU and an Intel
Xeon 2.4GHz CPU. Fig 7 reports the averaged results over the
per-frame testing time on the Sequence 5 of the KITTI dataset.
It is clear to see that no matter our soft fusion or hard fusion
only increases the computation burden slightly, compared with
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TABLE I: Vision-depth relocalization (Task 1) on the 7-Scenes dataset, reported in position error (m) and orientation error (◦)

Scene LSTM-Pose VidLoc(V+D) MS-Transformer RFN Direct Fusion Soft (Ours) Hard (Ours)
Chess 0.24 m, 5.77◦ 0.16 m, NA 0.11 m, 4.66◦ 0.17 m, 5.67◦ 0.16 m, 5.30◦ 0.15 m, 5.46◦ 0.14 m, 5.02◦

Fire 0.34 m, 11.9◦ 0.19 m, NA 0.24 m, 9.60◦ 0.27 m, 10.3◦ 0.26 m, 10.2◦ 0.28 m, 10.3◦ 0.26 m, 9.80◦

Heads 0.21 m, 13.7◦ 0.13 m, NA 0.14 m, 12.2◦ 0.14 m, 12.0◦ 0.16 m, 12.5◦ 0.15 m, 12.1◦ 0.15 m, 12.4◦

Office 0.30 m, 8.08◦ 0.24 m, NA 0.17 m, 5.66◦ 0.26 m, 7.22◦ 0.24 m, 6.78◦ 0.22 m, 6.79◦ 0.23 m, 6.39◦

Pumpkin 0.33 m, 7.00◦ 0.33 m, NA 0.18 m, 4.44◦ 0.27 m, 5.81◦ 0.22 m, 5.10◦ 0.21 m, 4.97◦ 0.21 m, 4.93◦

Red Kitchen 0.37 m, 8.83◦ 0.28 m, NA 0.17 m, 5.94◦ 0.31 m, 6.76◦ 0.25 m, 6.41◦ 0.26 m, 6.36◦ 0.25 m , 6.76◦

Stairs 0.40 m, 13.7◦ 0.24 m, NA 0.26 m, 8.45◦ 0.34 m, 10.8◦ 0.37 m, 11.8◦ 0.35 m, 11.9◦ 0.30 m, 11.3◦

Average 0.31 m, 9.85◦ 0.23 m, NA 0.18 m, 7.28◦ 0.25 m, 8.37◦ 0.24 m, 8.30◦ 0.23 m, 8.27◦ 0.22 m, 8.08◦

• For a fair comparison, the bold character highlights the best results among our proposed approaches and common baselines, excluding task baselines.

Fig. 7: The runtime of direct fusion, soft fusion and hard fusion
model on a GPU (Geforce RTX 3080Ti) and a CPU (Intel
Xeon 2.4G Hz) in the task of learning visual-inertial odometry.

direct fusion. For hard fusion model, the runtime of each
prediction is 12.76 ms and 63.15 ms on a GPU and CPU
respectively. Thus, it can achieve 78 frames per second on a
GPU and 15 frames per second on a CPU, which would satisfy
the real-time requirement of most robotic applications.

One of the main hyper-parameters inside SelectFusion and
baseline frameworks is the feature dimension of fusion mod-
ule. It determines the dimension of extracted features in the
feature extractors and the dimension of hidden states in the
recurrent neural networks. To study the influence of this hyper-
parameter, we test hard fusion model in the task of visual-
inertial odometry with five different feature dimensions from
32 to 1024. Fig. 8 shows a comparison of the validation
losses in terms of training epochs. Clearly, when increasing
the feature dimension from 32 to 128, the validation loss is
reduced dramatically. Further, the validation loss decreases
slightly, when augmenting the feature dimension to 256, and
512. There is no clear change on validation loss if the feature
dim is selected as 1024. Considering both model performance
and memory storage, we thus use 512 as the feature dimension
of fusion module in the following experiments.

C. Task 1: Global Relocalization using Vision and Depth

We first employ selective sensor fusion to combine visual
and depth information for a global localization task in indoor
scenarios. The features are extracted from RGB and depth
images using the visual and depth feature encoders discussed
in Section III. Our models, including the common baseline
(direct fusion), are trained and evaluated on the 7-Scenes
dataset. For each scene, we follow the official data split to
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Fig. 8: The validation losses of proposed hard fusion model
in terms of training epochs, with different feature dimensions
of fusion module.

train and test our models, and report for each model the median
position and orientation error, according to the convention of
prior works [1], [6], [22], [43].

Table I shows the results for the common baseline (Direct
Fusion) and our proposed SelectFusion frameworks, i.e. soft
fusion ( Soft (Ours) and hard fusion (Hard (Ours)). For a fair
comparison, the only difference in three models is the feature
fusion part. Clearly, our proposed SelectFusion strategies
outperform the common baselines, i.e. direct fusion and RFN.
In particular hard fusion further improves the performance
of the direct fusion with a gain of 8.33% in the position
and 2.65% in the orientation. Although RFN performs best
in the Heads scene and achieves most accurate orientation
prediction in the Stairs scene, other fusion mechanisms still
outperform it in the other scenes and averaged results. This
shows the effectiveness of SelectFusion in learning multimodal
representation for global relocalization.

In addition to the common baselines, we also choose three
representative visual localization approaches as task baselines,
i.e. LSTM-Pose [43], VidLoc [6] and MS-Transformer [36].
VidLoc can be viewed as a simple direct fusion, but it
uses full-size images, and different feature encoders. Our
proposed hard fusion model outperforms LSTM-Pose [43] and
VidLoc [6], showing that our models can achieve competitive
performance over previous works using only the uniform
framework and proposed fusion strategies. Our method still
can not compete with the state-of-the-art relocalization model,
i.e. MS-Transformer with the transformer based architecture.
It demonstrates that the performance of our fusion model can
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TABLE II: The results of LIDAR-vision odometry (Task 2) on the KITTI Odometry dataset

Seq. VISO2 M ELO Vision Only LIDAR Only RFN Direct Fusion Soft (Ours) Hard (Ours)
05 19.2%, 17.6◦ 0.75%, 0.51◦ 6.14%, 2.84◦ 9.55%, 3.60◦ 5.55%, 2.22◦ 4.73%, 1.82◦ 4.65%, 1.83◦ 4.25%, 1.67◦

07 23.6%, 29.1◦ 0.60%, 0.48◦ 6.41%, 2.76◦ 8.63%, 3.75◦ 4.19%, 1.61◦ 4.31%, 2.34◦ 4.36%, 2.19◦ 4.46%, 2.17◦

10 41.6%, 33.0◦ 2.57%, 0.84◦ 6.93%, 2.97◦ 15.6%, 4.77◦ 10.3%, 2.42◦ 5.92%, 1.73◦ 8.35%, 2.01◦ 5.81%, 1.55◦

Ave. 28.1%, 26.7◦ 1.31%, 0.61◦ 6.49%, 2.85◦ 11.3%, 4.04◦ 6.69%, 2.08◦ 4.99%, 1.96◦ 5.78%, 2.01◦ 4.84%, 1.80◦

• trel(%) and rrel(
◦) are the average translational and rotational RMSE drift (%) on lengths of 100m-800m.

• Vision-Only, LIDAR Only, RFN, Direct Fusion, Soft, and Hard models are trained on Sequence 00, 01, 02, 03, 04, 06, 08 and 09
• For a fair comparison, the bold character highlights the best results among our proposed approaches and common baselines, excluding task baselines.
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Fig. 9: Visualization of the learned hard and soft fusion masks under different conditions for Task 3 Deep VIO on self-driving
scenarios (left: normal data; middle and right: corrupted data). The number (hard) or weights (soft) of selected features in the
visual and inertial sides can reflect the self-motion dynamics (increasing importance of inertial features during turning), and
data corruption conditions.

be improved with the advances in feature encoders.

D. Task 2: Deep LIDAR-Vision Odometry

We now focus on the problem of learning LIDAR-vision
odometry in a car-driving scenario. The models are trained
on the KITTI Odometry dataset and tested on three new
sequences, i.e. Sequence 05, 07 and 10. Then the relative
poses produced by the neural networks are integrated into
global trajectories, which are further evaluated according to
the official KITTI VO/SLAM evaluation metrics [11]. This
metric is calculated by averaging the Root Mean Square
Errors (RMSEs) of the translation and rotation for all the sub-
sequences of lengths (100,..., 800) meters.

Table II shows the results of our deep LIDAR-vision
odometry on the KITTI Odometry dataset. Vision Only and
LIDAR Only models represent the model using only vision
or LIDAR data to estimate ego-motion. Compared with them,
fusing vision and LIDAR features (Direct Fusion) contributes
to a large improvement no matter in translation or rotation.
Soft (Ours) and Hard (Ours) are our frameworks with soft
fusion and hard fusion. Our proposed hard fusion is capable

of improving the performance over the naive fusion model
(i.e. the direct fusion) about 3.0% in translation and 8.2% in
orientation. RFN is able to predict the translation of Sequence
07 accurately, but its overall performance is not as good as
other fusion mechanisms in this task. Note that these models
are built on the same modules, except the feature fusion part
for a fair comparison.

Meanwhile, three classical methods, i.e. VISO M (Monoc-
ular Visual Odometry) [12], and ELO [52] are chosen as task
baselines to compare with our data-driven approaches. As we
can see, the learning based methods greatly outperform the
two monocular visual odometry algorithms, but still have a
large performance gap with respect to the traditional LIDAR
odometry, i.e. ELO [52]. The model based methods are tailored
to the specific visual odometry or LIDAR odometry problem:
ELO is built on scene geometry information and quite accurate
with good-quality point cloud data; the monocular visual
odometry (VISO M) relies on hand-crafted features and it
is quite challenging to perform using high-dimensional raw
images directly. In comparison, the data-driven models can
automatically extract suitable features, which means that they
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TABLE III: The results of visual-inertial odometry (Task 3) on the KITTI Raw dataset (car-driving scenario)

Seq. MSCKF VINS VIOLearner Vision Only VIO (Direct) VIO (Soft) VIO (Hard)
05 19.0%, 82.5◦ 11.6%, 1.26◦ 3.00%, 1.40◦ 6.14%, 2.84◦ 4.18%, 1.57◦ 4.44%, 1.69◦ 4.11%, 1.49◦

07 89.9%, 126◦ 10.0%, 1.72◦ 3.60%, 2.06◦ 6.41%, 2.76◦ 3.39%, 1.79◦ 2.95%, 1.32◦ 3.44%, 1.86◦

10 42.0%, 134◦ 16.5%, 2.34◦ 2.04%, 1.37◦ 6.93%, 2.97◦ 2.80%, 1.69◦ 2.85%, 1.22◦ 1.51%, 0.91◦

Ave. 50.3%, 114◦ 12.7%, 1.77◦ 2.88%, 1.61◦ 6.49%, 2.85◦ 3.45%, 1.69◦ 3.41%, 1.41◦ 3.02%, 1.42◦

• trel(%) and rrel(
◦) are the average translational (%) and rotational (◦/100m) RMSE drift on lengths of 100m-800m.

• Vision-Only, VIO Direct, VIO Soft, and VIO Hard models are trained on Sequence 00, 01, 02, 04, 06, 08 and 09
• For a fair comparison, the bold character highlights the best results among our proposed approaches and common baselines, excluding task baselines.

are not restricted to a specific sensor modality or task, hence
with the potential to explore an universal framework for deep
state estimation.

E. Task 3: Deep VIO on UAV and self-driving scenarios

Finally, we come to evaluate our proposed model on the
KITTI raw dataset (self-driving scenario) and EuRoC MAV
dataset (UAV scenario) on learning visual-inertial odometry
(VIO). These two datasets are challenging, as some real-world
sensor degradations are contained in the original data: in the
KITTI dataset, some IMU data are missing for a number
of timesteps; IMU and camera streams are not tightly time-
synchronized, which causes temporal sensor degradation; there
are moving vehicles which act to partially occlude the camera;
also in the Euroc dataset, there is significant motion blur and
camera occlusion. Except the real sensor degradations, we also
generate synthetic data degradations above the public datasets
to study the robustness of learning models.

1) Synthetic Data Degradation: In order to provide an
extensive study of the effects of sensor data degradation and
to evaluate the performances of the proposed approach, we
generate a degraded dataset, as shown in Figure 9, by adding
various types of noise and occlusion to the original data, as
described in the following.

1) Vision Degradation.
Occlusions: we overlay a mask of dimensions 128×128

pixels on top of the sample images, at random locations for
each sample. Occlusions can happen due to dust or dirt on the
sensor or stationary objects close to the sensor.

Motion Blur: we introduce motion blur to represent the cam-
era blur caused by fast ego-motion or fast object movements.
This motion blur is generated by estimating the relative motion
of the scene, and producing corresponding blur above original
images. Motion blur can happen when the camera or the light
condition changes substantially.

Missing data: we randomly remove 10% of the input
images. This can occur when packets are dropped from the bus
due to excess load or temporary sensor disconnection. It can
also occur if we pass through an area of very poor illumination
e.g. a tunnel or underpass.

2) IMU Degradation.
Noise+bias: on top of the already noisy sensor data we add

additive white noise to the accelerometer data and a fixed
bias on the gyroscope data. This can occur due to increased
sensor temperature and mechanical shocks, causing inevitable
thermo-mechanical white noise and random walking noise.

Missing data: we randomly remove windows of inertial
samples between two consecutive random visual frames. This

TABLE IV: The results (m) of deep visual-inertial odometry
(Task 3) on the EuRoC dataset (UAV scenario).

Original Vision Degrad. All Degrad.
MSCKF 0.48 30.37 fail
OKVIS 0.47 1.42 fail

mono-VINS 0.35 fail fail
Vision Only 2.42 2.44 1.99
VIO Direct 0.99 1.14 1.15
VIO Soft 1.06 1.18 1.21
VIO Hard 0.84 1.04 1.12

• The results (m) are reported the root mean squared error (RMSE) of
the absolute translation error (ATE).

• Vision-Only, VIO Direct, VIO Soft, and VIO Hard models are trained
on the sequences except MH 05 difficult of EuRoC MAV dataset [2]
and tested on Sequence MH 05 difficult.

• For a fair comparison, the bold character highlights the best results
among our approaches and common baselines, excluding task baselines.

TABLE V: The results of deep visual-inertial odometry (Task
3) on the KITII dataset (autonomous driving scenario)

Original Vision Degrad. All Degrad.
Vision Only 6.49%, 2.85◦ 11.8%, 3.53◦ 8.06%, 3.18◦

VIO Direct 3.45%, 1.69◦ 5.06%, 1.29◦ 3.62%, 1.28◦

VIO Soft 3.41%, 1.41◦ 4.39%, 1.84◦ 3.49%, 1.40◦

VIO Hard 3.02%, 1.42◦ 4.76%, 1.12◦ 3.27%, 1.29◦

• trel(%) and rrel(
◦) are the average translational (%) and rotational

(◦/100m) RMSE drift on lengths of 100m-800m.
• Vision-Only, Direct, Soft, and Hard models are trained on Sequence

00, 01, 02, 04, 06, 08 and 09 of KITTI raw dataset [11] and tested on
Sequence 05, 07 and 10.

• For a fair comparison, the bold character highlights the best results
among our approaches and common baselines, excluding task baselines.

can occur when the IMU measuring is unstable or packets are
dropped.

3) Cross-Sensor Degradation.
Spatial misalignment: we randomly alter the relative rotation

between the camera and the IMU, compared to the initial
extrinsic calibration. This can occur due to axis misalignment
and the incorrect sensor calibration. We uniformly model up
to 10 degrees of misalignment .

Temporal misalignment: we apply a time shift between
windows of input images and windows of inertial measure-
ments. This can happen due to relative drifts in clocks between
independent sensor subsystems.

2) Experiment on the EuRoC Dataset: In the experiment
of EuRoC dataset, we report the root mean squared error
(RMSE) of the absolute translation error (ATE) of our models
and baselines. This evaluation metric is commonly adopted by
previous classical VIO works [18], [24], [34], so that our pro-
posed frameworks can be compared with them directly. Table
IV reports the performance of learning models (i.e. Vision-
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TABLE VI: Effectiveness of different sensor fusion strategies in presence of different kinds of sensor data corruption for deep
VIO

Vision Degradation IMU Degradation Sensor Degradation
Model Occlusion Blur Missing Noise and bias Missing Spatial Temporal

Vision Only 7.23%, 2.81◦ 7.76%, 2.59◦ 27.6%, 9.20◦ 6.49%, 2.85◦ 6.49%, 2.85◦ 6.49%, 2.85◦ 6.49%, 2.85◦

VIO Direct 4.24%, 1.77◦ 4.28%, 1.85◦ 5.61%, 1.32◦ 3.74%, 1.30◦ 3.59%, 1.74◦ 4.12%, 2.00◦ 3.27%, 1.55◦

VIO Soft (Ours) 3.85%, 1.59◦ 3.82%, 1.48◦ 6.42%, 2.02◦ 3.72%, 1.20◦ 3.50%, 1.59◦ 3.45%, 1.46◦ 3.43%, 1.72◦

VIO Hard (Ours) 3.77%, 1.74◦ 3.75%, 1.33◦ 5.45%, 1.26◦ 3.16%, 1.64◦ 3.18%, 1.47◦ 3.22%, 1.57◦ 3.20%, 1.31◦

• trel(%) is the average translational RMSE drift (%) on lengths of 100m-800m.
• rrel(

◦) is the average rotational RMSE drift (◦/100m) on lengths of 100m-800m.
• The Vision-Only, VIO Direct, VIO Soft, and VIO Hard models are trained on Sequence 00, 01, 02, 04, 06, 08 and 09 of KITTI raw dataset [11] with

same hyperparameters for a fair comparison, and tested on Sequence 05, 07 and 10.

Only (DeepVO), VIO Direct (VINet)), and classical algorithms
(i.e. MSCKF [18], OKVIS [24] and mono-VINS [34]) on
the trajectory MH 05 Difficult in presence of normal data,
all combined visual degradation (10% occlusion, 10% motion
blur, and 10% missing data) and all combined visual+inertial
degradation (5% for each). Note that learning models share
the same framework and hyper-parameters, while the only
difference is the fusion strategy. Details of data degradations
can be found at the Section V-E1.

We can see that hard fusion consistently outperforms other
learning models in all three scenarios, demonstrating the
effectiveness of our proposed fusion strategy. In the normal set,
hard fusion improves the direct fusion (our common baseline)
by 15.15% in ATE. Another notable point is that OKVIS only
shows a large performance decrease in the vision degradations,
and fails on the all degradations, while mono-VINS fails on
both degradation scenarios. In contrast, learning models all can
work on degradation scenarios. This indicates that learning
models are capable of overcoming sensor degradations to
perform more robustly. Learning models still can not compete
with the classical algorithms in normal set. This is due to two
reasons: 1) in the EuRoC dataset, the groundtruth values of
motion tracking (from a Vicon system) and sensor data (from
a UAV) are collected from two time systems, and hence the
training of learning models is limited because of the probable
errors on ground-truth labels; 2) this deep VIO framework
is still a basic framework, while extensions and constraints
relevant to specific properties of visual and inertial sensors
can be added onto it to further enhance the performance, e.g.
Bundle adjustment.

3) Experiment on the KITTI Dataset: On the KITTI dataset,
we use the official KITTI VO/SLAM evaluation metrics. This
metric is to calculate the averaged RMSE of the translation
and rotation for all the sub-sequences of lengths (100, ..., 800)
meters, which can reflect both the global and local drifts of
odometry estimation.

Table III reports the performance of our proposed hard
fusion and soft fusion on the trajectories 05, 07 and 10 of
normal dataset, together with two classical VIO algorithms
(i.e. MSCKF and VINS) and three learning models, i.e. vision
only (DeepVO), VIO direct (VINet) and VIOlearner. Our
proposed selective sensor fusion (hard) further improves the
averaged performance of the direct fusion by 12.46% in
translation and 15.98% in orientation, while soft fusion shows
an improvement of 1.16% and 16.57% in translation and
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Fig. 10: A comparison of visual and inertial features selection
rate in seven data degradation scenarios for Task 3.

rotation. Due to the real issue of bad time synchronization
between images and IMUs, OKVIS and mono-VINS failed on
the KITTI raw dataset. We then compare with a MSCKF im-
plementation based on [18]2. This approach, differently from
OKVIS or VINS-Mono, is based on a trifocal tensor matching
between triplets of successive frames, in order to get an ego-
motion estimate, which is then fused with inertial information
via a multi-state constraint Kalman filter to refine the estimates
of the camera poses for each triplet. This sliding approach
arguably makes it more robust to IMU de-synchronisation. It
is clear to see that the learning based VIO models, including
VIO (direct), VIO (soft) and VIO (hard) outperform MSCKF
and VINS by a large margin. This is because MSCKF and
VINS are limited by the bad time synchronization of two
sensors, whilst the learning models are generally more robust
to overcome such data degradations caused by real-world
issues (data collection). Note that the original VIOlearner is
trained on Sequence 00-08, and tested on Sequence 09 and
10 of the KITTI dataset, and thus it is not fairly to compare
with our method directly. But our VIO (hard) still outperforms
VIOLearner on Sequence 07 and 10.

Table V and VI show the performance of the proposed
data fusion strategies, compared with the common baselines
on the KITTI raw dataset. In particular, we compare with a
DeepVO [45] (Vision-Only) implementation, and finally with

2The code can be found at https://uk.mathworks.com/matlabcentral/
fileexchange/43218-visual-inertial-odometry
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(a) Inertial-Rotation
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(c) Inertial-Translation
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Fig. 11: Task 3: Correlations between the number of iner-
tial/visual features and amount of rotation/translation show that
the inertial features contribute more with rotation rates, e.g.
turning, while more visual features are selected with increasing
linear velocity.

an implementation of VINet [7] (VIO Direct), which uses
a naı̈ve fusion strategy by concatenating visual and inertial
features. In the vision degraded set the input images are
randomly degraded by adding occlusion, motion blurring and
removing images, with 10% probability for each degradation.
In the full degradation set, images and IMU sequences from
the dataset are corrupted by all seven types of degradation
with a probability of 5% each. Table V reports the results of
deep VIO models in the presence of combined visual degra-
dations, and all degradations. As we can see, our proposed
selective sensor fusion, especially hard fusion, achieves better
performance than the learning models without our proposed
fusion module in these sensor degradation scenarios. In each
data degradation, as illustrated in Table VI, our proposed
selective sensor fusion, especially hard fusion consistently
outperforms other baselines. This demonstrates to what extent
our proposed SelectFusion can tolerant the perturbations of
each data degradation, showing that SelectFusion is more
robust to the issues caused by data degradations compared
with other baselines.

F. Interpretation of Selective Fusion

Incorporating the hard mask into our framework enables us
to quantitatively and qualitatively interpret the fusion process.
Firstly, we analyse the contribution of each individual modality
in different scenarios for deep visual-inertial odometry (Task
3). Since hard fusion blocks some features according to
their reliability, in order to interpret the ”feature selection”
mechanism we simply compare the ratio of the non-blocked
features for each modality. Figure 10 shows that visual features
dominate compared with inertial features in most scenarios.

Non-blocked visual features are more than 60%, underlining
the importance of this modality. We see no obvious change
when facing small visual degradation, such as image blur,
because the FlowNet extractor can deal with such disturbances.
However, when the visual degradation becomes stronger the
role of inertial features becomes significant. Notably, the two
modalities contribute equally in presence of occlusion. As it
would be expected, inertial features dominate (by more than
90%) with missing images.

In Figure 11 we analyze the correlation between amount
of linear and angular velocity and the selected features. These
results also show how the belief on inertial features is stronger
in presence of large rotations, e.g. turning, while visual fea-
tures are more reliable with increasing linear translations. It
is interesting to see that at low translational velocity (0.5m /
0.1s) only 50% to 60% visual features are activated, while at
high speed (1.5m / 0.1s) 60 % to 75 % visual features are
used.

VI. CONCLUSION AND FUTURE RESEARCH

We present a generic multimodal sensor fusion framework
for deep states estimation, in support of odometry estimation
and global relocalization tasks. Motivated by the need for
robust interpretable sensor fusion in real-world applications,
we propose two variants of selective fusion modules, i.e. a
deterministric soft fusion and a Gumbel-softmax based hard
fusion, that can be integrated in different neural network
frameworks. It can learn to perform sensor fusion on feature
space from pairs of different modalities, e.g. vision-depth,
vision-LIDAR and vision-inertial data, conditioned on the
input data itself. Extensive experiments illustrate that our
proposed models outperform learning based single modality
and multimodal model with direct fusion baselines, and also
show competitive performance over other classical approaches,
though the performance is still inferior to the domain-specific
state-of-the-art in some cases. It also demonstrates that learn-
ing models are generally more robust than conventional hand-
designed algorithms, and our proposed SelectFusion can fur-
ther improve the performance of basic learning models, and
achieve more accurate results than other baselines in these
degraded sets. By interpreting the learned fusion masks, we
investigate the influence of different modalities with different
types of motion and different levels of sensor degradation.
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