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Abstract: With the advantages of high accuracy, high spatial resolution, and long measurement range,
LiDAR is considered as the most suitable measurement technique to deliver quantitative imaging
of wind fields. However, for complex wind fields, such as monitoring wind turbine wakes where
both the temporal resolution and reconstruction speed are of great significance, the conventional
LiDAR system lacks the temporal resolution to capture the fast changes of wind turbine wake fields.
In this paper, a novel dynamic wind retrieval method is developed to improve temporal resolution
using the unsynchronised dual-LiDAR scanning scheme. By exploiting the temporal redundancy
information of the LiDAR Line-of-Sight (LoS) data in successive frames, a reduced number of LiDAR
scanning points is required for the 2D horizontal wind field retrieval with the help of unsynchronised
dual-LiDAR wind scanning scheme, low-rank data up-sampling and a divergence-free regularised
wind retrieval algorithm. Numerical simulation is performed to validate the proposed method.
Results show that the temporal resolution of LiDAR wind retrieval can be improved by a factor of 2
to 8 and provide acceptable results with good spatial resolution.

Keywords: unsynchronised dual-LiDAR; fast imaging; dynamic wind retrieval; turbine wake

1. Introduction

As a result of an increasing demand for renewable wind energy, modern wind turbines
and large-scale wind farms are being developed at a rapid rate. Due to the space limitation
for wind farms, wind turbines are implemented into dense clusters [1] so that the efficiency
of the wind turbines are affected by the turbine wake flows, which reduces the energy
production and increases the probability of fatigue on the turbine components [2,3]. To
address this problem, accurate and fast monitoring of the wind field is a key point to
provide essential data for wind farm layout, real-time control and maintenance [4]. One
of the most promising techniques for imaging wind fields is the Doppler light detection
and ranging (LiDAR). Compared to other techniques, LiDAR has the advantages of high
accuracy, high spatial resolution, and long measurement range [5], which makes it the most
suitable measurement technique to image turbine wakes in wind fields [6].

Wind LiDAR can only measure the radial velocity in the direction of the laser beams
but ignores the wind component transversal to the laser beams. Therefore, a single LiDAR
system cannot provide sufficient data to fully retrieve a 2D/3D wind field [7,8]. A com-
mon practice of industrial application assumes flow homogeneity, which is not suitable
for turbine wake wind field imaging due to complex wind conditions [9,10]. Cherukuru
developed a 2D VAR wind retrieval method [9]. Using radial velocity advection equa-
tion as an additional constraint, the proposed method was able to retrieve a 2D wind
field from measurements based on a single LiDAR. However, this method lacks accuracy
due to the complexity of wind fields and the low signal-to-noise ratio (SNR) of LiDAR
measurements [11].
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To overcome this problem, a research group at the Technical University of Denmark
(DTU) investigated multiple LiDAR system, which utilised spatially coordinated and
temporally synchronised Doppler LiDAR units to scan over the same area from different
locations and retrieve wind images from three radial velocities [12,13]. Specifically, when
dual-LiDAR observations were used in 2D VAR retrievals, the accuracy largely increased
compared to the single LiDAR system [14]. However, the high-quality wind retrieval of
multiple LiDAR systems is at the cost of high equipment and operation cost [15].

Alternatively, van Dooren proposed a Multiple-LiDAR Wind Field Evaluation Algo-
rithm (MuLiWEA) [7]. With the help of grid interpolation, the proposed wind retrieval
method did not require a set of fully synchronised dual-LiDAR measurements. The two
LiDAR systems can scan the sensing area individually without synchronisation of LiDAR
beams for intersecting points’ radial velocity measurement [7]. Hon from Hong Kong Ob-
servatory presented a fast dual-Doppler LiDAR retrieval method, which utilised data from
two unsynchronised LiDAR systems to scan the boundary layer wind profile over Hong
Kong International Airport. This algorithm offers the possibility to use measurements from
scanning scenarios with low complexity and fast area coverage. However, this method also
requires the frozen field assumption that the wind field remains constant during the whole
LiDAR scanning process, which may not be suitable for the fast-changing turbine wake
wind field.

The unsynchronised LiDAR system also offers the flexibility for spatial and temporal
resolution adjustment [16]. Unlike the synchronised dual-LiDAR system, whose scanning
trajectories are predesigned for intersecting points in the sensing area, the unsynchronised
LiDAR system can easily change the scanning pattern and interval for optimised spatial-
temporal resolution. Beck studied the dual-LiDAR spatial-temporal conversion method for
LiDAR measurement up-sampling, which increased the temporal resolution of the LiDAR
data by a factor of 2.4 to 40 [17].

Despite the improvement in temporal resolution, Beck’s up-sampling method is com-
putationally expensive. During the spatial-temporal conversion, the interpolation is com-
puted based on the temporal evolution of wind field in a point-wise and iterative fashion,
which is time consuming and memory intensive [17]. After each interpolation, wind veloci-
ties on the regular cartesian grids are displaced to an irregular grid. A post interpolation
process is needed, which maps the wind velocities onto the initial grid using natural-
neighbour interpolation. Consequently, this will not only cause additional computational
cost, but also cause shift error within the retrieved wind velocity.

In order to improve the temporal resolution of LiDAR wind retrieval and capture
the dynamic characteristics of the fast-changing turbine wake wind field, in this study,
a novel approach is proposed to reduce the number of LiDAR scans for fast wind field
imaging using dual-LiDAR system. There are two research objectives to be achieved: (1)
To improve the temporal resolution of wind retrievals to catch fast wind field changes; (2)
to quantitatively assure the spatial resolution of wind images for revealing the detailed
wind field. To achieve the proposed objectives, the following steps are implemented: (1)
Obtain Line of Sight (LoS) data from an unsynchronised dual-LiDAR system and align
the two LoS dataset into pre-set grids, then apply matrix completion for LoS data up-
sampling; (2) design spatial regularisation for 2D horizontal wind field, then apply a robust
reconstruction algorithm for wind retrieval. The novelties of the proposed method are to
use low-rank matrix completion for LoS data up-sampling and build a spatial regularisation
with vector Laplacian and divergence-free term for better wind retrieval quality. Compared
to other LiDAR up-sampling strategies, such as Beck’s method, the proposed method
does not require the calculation of wind field evolution and a post interpolation process,
therefore it has the advantages of high flexibility in up-sampling factors and reduction in
computational cost due to the fast LoS data matrix completion process. A simulation study
is carried out to validate the performance of the proposed method.
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2. Methods
2.1. Forward Modelling of LiDAR

The forward problem of LiDAR wind retrieval defines the relationship between the
Line-of-Sight (LoS) radial velocity vr and wind speed components u, v, and w in x-, y-
and z-direction. In this paper, the vertical wind speed component w is ignored because
the elevation angles ϕ of the PPI scans applied are commonly small, and, therefore, only
horizontal wind velocity components u, and v are considered. Therefore, the radial velocity
vr is defined as [18]:

vr = u cos(ϕ) cos(θ) + v cos(ϕ) sin(θ) (1)

where θ is the azimuth angle.
In addition, the flow is discretised into N square grids with side length of d, which is

the spatial resolution of LiDAR wind retrieval. Given the scanning trajectory, the forward
model is defined in matrix form as:

vr = APu + BPv (2)

where vr ∈ RM×1 is the radial velocity and M denotes the number of scanning points,
u ∈ RN×1 and v ∈ RN×1 are the discretised wind speed components and P ∈ RM×N is the
selection matrix built according to the LiDAR scanning points, which is defined as:

Pi,j =

{
1 i f scanj in pixeli
0 else

(3)

where A ∈ RM×M and B ∈ RM×M are the measurement matrices that transform the wind
velocity components to the radial velocity, whose elements are defined as:

Ai = cos(ϕi) sin(θi)
Bi = cos(ϕi) cos(θi)

(4)

The forward model defined above is based on the frozen field assumption that the
wind field remains constant during the whole LiDAR scanning process, without considering
the dynamic flow characteristic when the M number of scanning points are collected. As
a result, the retrieved wind field will be dominated by the retrieval error and the wind
velocity changes cannot be resolved. An example is shown in Figure 1.

Figure 1. The original wind field (a) and the retrieved wind field (b) when the LiDAR system lacks
the temporal resolution for fast changing wind field.

Differently, in this paper, the wind velocity is considered to be stationary for a short
time period t, which is the temporal resolution of the target LiDAR wind retrieval. There-
fore, the dynamic forward problem can be modified. Specifically, the radial velocities
and wind velocity for each time interval can be stacked as columns and denoted as
Vr = [vr,1, vr,2, . . . , vr,T ], V = [v1, v2, . . . , vT ] and U = [u1, u2, . . . , uT ], where T is the num-
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ber of time intervals, and vr,1 ∈ RM×1 is the radial velocities measured within each
time interval.

Each column refers to one time interval. Then, the forward problem for successive
LiDAR measurements can be written as:

Vr = AU + BV (5)

where the block diagonal matrices are given as A = diag(A1P1, A2P2, . . . , ATPT) and
B = diag(B1P1, B2P2, . . . , BTPT).

2.2. Dual-LiDAR Wind Retrieval

To resolve the 2D horizontal wind field, a dual-LiDAR system is applied. Inspired by
van Dooren’s research [7], the two LiDARs work in a unsynchronised way, that performs
PPI scans independently to cover the sensing area, as shown in Figure 2.

Figure 2. The dual-LiDAR unsynchronised PPI scan. The square with dashed blue line represents
the sensing area. The black dots and the dashed line represent the scanning points and trajectories,
respectively. The two red circles indicate the positions of LiDAR. The black line and circle represent
two LoS measurements of two LiDAR at the same time.

Radial velocities from the dual-LiDAR system can be used to reconstruct the 2D wind
field by solving the following inverse problem:

min
U,V
‖Vr,1−A1U− B1V‖2

2 + ‖Vr,2−A2U− B2V‖2
2 + R(U, V) (6)

where R(U,V) denotes the regularisation term, which consists of the divergence-free regu-
larisation and the Tikhonov regularisation.

Firstly, the 2D horizontal wind velocity field can be considered as a divergence-free
vector field. This assumption is valid, as the stratification in the atmosphere caused by
gravity makes the horizontal velocity u and v greater than the vertical velocity w by a factor
of 10–100 [19]. Usually for the wind data used here, w can be ignored, and (u,v) becomes a
divergence-free vector field [19]. Therefore, we can apply a divergence-free constraint in
the reconstruction of wind velocity field.

Secondly, vector Laplacian regularisation is applied to pose a smoothness constraint
to the wind components in x- and y-axis, respectively, which stabilises the retrieval process
when the inverse problem is solved.

Generally, the R(U,V) is defined as [20]:

R(U, V) = α1‖∇·(U, V)‖1 + α2

∥∥∥∇2(U, V)
∥∥∥2

2
(7)
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where α1 and α2 are the regularisation parameters for each regularisation term. The
regularisation parameters are determined empirically based on the simulation results and
kept constant when solving the inverse problem of wind retrieval, given all the different
datasets [1,2]. The vector divergence term and vector Laplacian can be determined by the
following equations.

∇ · (U, V) =
T

∑
t=1
∇ · (ut,vt) =

T

∑
t=1

Dxut + Dyvt (8)

∇2(U, V) =
T
∑

t=1
∇2(ut,vt) =

T
∑

t=1

(
∂2ut
∂x2 + ∂2ut

∂y2 + ∂2vt
∂x2 + ∂2vt

∂y2

)
=

T
∑

t=1

(
(DxDx+DyDy)ut + (DxDx+DyDy)vt

) (9)

where Dx, Dy ∈ RN×N are the two directional discrete operators along x- and y-axis for the
calculation of the vector divergence and Laplacian, which is defined as a finite differential
approximation. The discrete 2nd order finite differential approximation is used inside the
sensing area and 1st order differential for boundary pixel.

∇x
i,j · v =


vx(i−1,j)+vx(i+1,j)−2vx(i,j)

2d
vx(i−1,j)−vx(i,j)

d
vx(i+1,j)−vx(i,j)

d

left boundary
right boundary

(10)

Consequently, u and v in Equation (10) can be solved jointly and efficiently using the
interior-point method [21], which is implemented by the MOSEK optimisation suite in
MATLAB [22].

2.3. Spatial-Temporal Conversion and Up-Sampling

The temporal resolution of LiDAR wind retrieval is determined by the length of the
measurement time window, which should be chosen based on the time scale of the wind
field evolving. Therefore, for the fast-changing turbine wake wind field, the short time
window allows a reduced number of LiDAR scans. As shown in Figure 3, within each
time interval, only a small number of radial velocities can be obtained. Due to the missing
scanning points, the retrieved accuracy of the wind field for each time step is greatly affected.
To solve this problem, Beck proposed a temporal up-sampling method using spatial-
temporal conversion. However, their method relies on the backwards-oriented propagation,
which is computational expensive during the calculation of wind field evolution. Differently,
in this paper, we present a temporal up-sampling method for LiDAR dataset based on the
classic matrix completion algorithm. The general idea is to calculate the missing scanning
data within each time step based on the spatial and temporal correlations of the radial
velocity, as shown in Figure 3b. Our target is to maintain quantitative accuracy during the
data interpolation, without spending too many computational resources on calculating
wind flow propagation.

To illustrate the up-sampling method, we only consider a simple case when a recon-
structed wind field uses single the LiDAR dataset, but it is straightforward to extend the
proposed method for the dual-LiDAR system.

To begin with, LiDAR dataset is a K by T radial velocity matrix Vr containing a total of
M radial velocity measurements. To reconstruct the dynamic wind field with T time steps,
the fully sampled M by T radial velocity matrix VFr =

[
vfr,1, vfr,2, . . . , vfr,T

]
is needed.

Therefore, the problem is to calculate the M by T fully sampled data, given a K by T
subset Vr.
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Figure 3. The time-resolved PPI scans with azimuth angle change from −45◦ to 45◦ with sampling
frequency of 1 Hz. As shown in (a), the scanning points (red points) are within each 5 s time interval
(blue dashed line). If the temporal resolution for wind retrieval is selected as 5 s, then the scanning
points will be aligned to different time window as shown in (b). Each frame only has 5 scans available
for wind retrieval.

The key to matrix completion is to exploit the correlations of the radial velocities in
the spatial and temporal domain. Figure 4a shows the fully sampled radial velocity map
calculated from 60 successive frames of wind field. The corresponding singular values
are shown in Figure 4b, which shows that the fully sampled radial velocity matrix is rank
deficient. Therefore, low-rank prior can be applied here for matrix completion, which
solves the following problem as:

min
VF
‖VF‖∗

s.t.VF(i, j) = vr(i, j)∀i, j ∈ scanning
(11)

Figure 4. The fully sampled radial velocity map (a) and its singular values (b).

The classic Riemannian Optimisation [23] method is used to solve Equation (11).

2.4. Summary of the Time-Resolved Dual-LiDAR Imaging

The flow chart of the time-resolved dual-LiDAR imaging system is shown in Figure 5,
and details of the flowchart are listed as follows:

• The data collection step of the time-resolved dual-LiDAR imaging system. The region
of interest is covered by the two PPI scans using the dual-LiDAR system. Then, the
corresponding LoS data are collected;

• Align the two LoS datasets into different time slots and scanning position to form two
LoS velocity matrices Vr with missing entities. Then, low-rank matrix completion is
conducted to fill the missing entities in the Vr matrix;
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• Perform wind field retrieval from the up-sampled datasets based on the divergence-
free regularised reconstruction algorithm.

Figure 5. The flowchart of the time-resolved dual-LiDAR imaging system.

3. Results
3.1. Simulation Setup

In this section, the performance of the proposed method is evaluated with a series
of numerical simulations, including the simulation for the 2D horizontal wind fields of
turbine wake, the forward modelling which calculates the LoS data from the wind fields,
and the wind retrieval based on the two unsynchronised LoS data.

For the simulation of turbine wake wind field, we consider a rectangular area with
length and width of 60 m and 30 m, respectively. The wind turbine pile is represented by a
circle with diameter of 4 m, located in the centre of a 26 m by 5 m rectangular area. The 2D
horizontal wind field of the turbine wake is simulated in the Fluent. The region of interest
is discretised with triangular mesh, using 25,594 nodes and 55,098 faces. The simulation
duration is 40 s, with a 0.1 s time interval. A horizontal inlet wind with velocity of 5 m/s is
generated on the left boundary and the background diffusivity is set as 0.001. As shown in
Figure 6, the Kármán vortex dynamics occur due to the wind flow passing the turbine pile.

Figure 6. The simulated wind field of wind flow passing the turbine pile.
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With the wind fields in hand, the corresponding LoS velocities can be evaluated
numerically based on two unsynchronised LiDAR scan. The RoI of unsynchronised LiDAR
scan is a 20 m by 20 m square area, which is covered by the overlapped area of the two PPI
scans. For simplicity, the simulated 2D wind field is resampled into a cartesian grid based
on linear interpolation. Then, the wind velocities vx and vy on each scanning point are used
to calculate LoS velocities.

These empirical reconstruction parameters are given in Table 1. The 20 × 20 m sensing
area is segmented into 400 pixels in the image reconstruction process, and the dimension of
each pixel is 1 × 1 m.

Table 1. Reconstruction parameters used in simulation.

Parameter Value

T 60
N 400
M 272
K 68
α1 0.01
α2 0.1

3.2. Matrix Completion for LoS Data Up-Sampling

In the simulation, there are 272 scanning points in each frame for the fully sampled
LiDAR LoS data. In order to improve the temporal resolution of LiDAR by a factor of 8,
only 34 of LoS data are used for wind retrieval of each frame, as shown in Figure 7.

Figure 7. The under-sampled LiDAR LoS data.

The first step of wind retrieval is to recover the fully sampled LiDAR LoS data from
the under-sampled 34 LoS data based on the matrix completion, where the ratio of the
up-sampling is eight. Additionally, to quantitatively evaluate the overall wind retrieval
quality, relative mean square error (RMSE) is adopted.

Figures 8 and 9 show the recovered fully sampled LoS data and the RMSE of up-
sampling process for each scanning point and frame. Overall, the up-sampled LoS data
shown in Figure 8 is recovered with good accuracy compared with the radial velocity map
shown in Figure 4a. The averaged RMSE for the matrix completion of the LoS data matrix
is 4.47% for this simulated dataset. For each scanning point, the averaged RMSE is 3.21%.
The maximum RMSE (10.8%) is located within frame 20 to frame 30, because during these
frames, an unstable wind field changes occurs. For each scanning point, the averaged
RMSE is 4.55%. Large RMSE and ripples occurs due to the discontinuous vectorization
process of the 2D grid.

The up-sampling ratio plays a vital role in this process. Increasing the up-sampling
ratio will help to improve the temporal resolution of LiDAR system, but at the same time,
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it will also affect the accuracy of LoS data matrix completion and affect the accuracy of
wind retrieval. An example of averaged RMSE of up-sampling for different ratios is shown
in Figure 10. The ratio of eight is at the corner of the curve, which tends to be an optimal
selection. However, the optimal selection of the ratio is data dependent. Therefore, in
practical applications, the selection of ratio is a trial and error process.

Figure 8. The recovered fully sampled LoS data from down-sampled LoS data.

Figure 9. The RMSE of up-sampling process for each scanning points (a) and frames (b).

Figure 10. The averaged RMSE of different up-sampling ratio.

Additionally, to test the noise robustness of the proposed method, the under-sampled
LoS velocities are contaminated with white Gaussian random noise at different noise levels.
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Figure 11 shows the averaged RMSE of matrix competition under different noise levels.
The low-rank regularised matrix competition is able to provide good recovery accuracy
when the SNR of under-sampled LoS velocities are larger than 30 dB.

Figure 11. The averaged RMSE under different measurement SNR.

3.3. Wind Retrieval of Dual-LiDAR

In the simulation, two up-sampled LoS datasets using the dual-LiDAR scanning
scheme are used to retrieve the wind field of 366 frames. For each frame, two LoS dataset
with 2 × 272 = 544 scanning points are used to reconstruct a wind field with 20 by 20 grids.
To quantitatively evaluate the accuracy of the reconstructed vector field, the relative wind
retrieval error between the reconstructed wind velocity and the true phantom are employed,
which are defined as follows:

IEu =
‖Vre −V‖2

2

‖V‖2
2

(12)

where V represents the retrieved wind velocity vector of both wind velocity components.
Figure 12 shows some examples of the retrieved wind fields using the up-sampled

data and the fully sampled data. The reconstruction result correctly shows the vortex shape
and centre positions. Some artefacts and small discontinuities on the magnitude of the
velocity field appear. The reconstruction image error (IE) of the wind field is plotted in
Figure 13. For all the 366 retrieved wind field frames, the averaged IE is 15.12%, and the
relative wind retrieval error is within 20% for all the cases. The wind retrieval accuracy
using the up-sampled data is acceptable considering the averaged IE of the wind retrieval
results using the original fully sampled data is 13.9%.

Figure 12. The original wind field (a) and the corresponding retrieved wind field (b); the arrows
represent the direction of the wind and the colours indicate its amplitude.
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Figure 13. The wind retrieved error of different frames using the up-sampled data (blue) and the
fully sampled data (red).

4. Conclusions

In this paper, a novel dynamic wind retrieval method is developed to improve the
temporal resolution of the unsynchronised dual-LiDAR system. By exploiting the temporal
redundancy information of the LiDAR LoS data of successive frames, a reduced number of
LiDAR scanning points is required for the 2D horizontal wind field retrieval with the help
of an unsynchronised dual-LiDAR wind scan scheme and a low-rank data up-sampling
and divergence-free regularised wind retrieval algorithm. Numerical simulation results
show that the proposed method can improve the temporal resolution by a factor of eight.

However, the improvement of the temporal resolution relies on the redundancy of
LiDAR data between successive frames. Therefore, the performance of the proposed
method is largely data dependent. Some of the parameters such as the up-sampling ratio
may not be optimal for all different wind fields, and the wind retrieval accuracy may also
vary for different cases. Future work should consider the adaptive up-sampling ratio and
advanced LoS data up-sampling algorithm for specific applications.
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