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Memory-Aware Functional IR for Higher-Level

Synthesis of Accelerators

CHRISTOF SCHLAAK, University of Edinburgh, United Kingdom

TZUNG-HAN JUANG and CHRISTOPHE DUBACH, McGill University, Canada

Specialized accelerators deliver orders of a magnitude of higher performance than general-purpose proces-
sors. The ever-changing nature of modern workloads is pushing the adoption of FPGAs (Field Programmable
Gate Arrays) as the substrate of choice. However, FPGAs are hard to program directly using HDLs (Hard-
ware Description Languages). Even modern high-level HDLs, e.g., Spatial and Chisel, still require hardware
expertise.

This article adopts functional programming concepts to provide a hardware-agnostic higher-level pro-
gramming abstraction. During synthesis, these abstractions are mechanically lowered into a functional IR
(Intermediate Representation) that defines a specific hardware design point. This novel IR expresses different
forms of parallelism and standard memory features such as asynchronous off-chip memories or synchronous
on-chip buffers. Exposing such features at the IR level is essential for achieving high performance.

The viability of this approach is demonstrated on two stencil computations and by exploring the optimiza-
tion space of matrix-matrix multiplication. Starting from a high-level representation for these algorithms,
our compiler produces low-level VHDL (VHSIC Hardware Description Language) code automatically. Sev-
eral design points are evaluated on an Intel Arria 10 FPGA, demonstrating the ability of the IR to exploit
different hardware features. This article also shows that the designs produced are competitive with highly
tuned OpenCL implementations and outperform hardware-agnostic OpenCL code.
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languages; Source code generation;
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1 INTRODUCTION

Designing new accelerators is a manual, time consuming, and error-prone process. Current HDLs
are not suitable for a rapid-development cycle and there is a lack of high-level languages and ab-
stractions for efficient hardware design. Languages such as Spatial [18], Chisel [2] or OpenCL
reduce the amount of boiler plate code required, but remain fairly low-level. Many hardware
concepts are still transpiring through the high-level abstractions offered by these languages. To
fully automate accelerator design, we need programming abstractions that hide all hardware
details.

Recent years have seen a push towards functional approaches for high-performance computing.
Delite [36], Lift [34] and Futhark [12] have demonstrated that high-level abstractions and high-
performance can go hand in hand. More recently, Lift-hls [19] and Aetherling [10] have demon-
strated that the functional approach is viable for producing accelerators.

Lift-hls and Aetherling use a multi-level IR. By rewriting, the IR is lowered into a form suitable
for the generation of an efficient accelerator. The highest IR level exposes algorithmic concepts
while the lower levels expose hardware paradigms such as pipeline or spatial parallelism. These
multiple levels enable a clear separation of concerns between algorithmic and hardware transfor-
mations when exploring the design space. Furthermore, this process is transparent from the pro-
grammer and leads to an elegant compiler design where transformations are expressed as simple
rewrites.

Lift-hls and Aetherling have pioneered the use of functional IRs and rewrite rules for generating
hardware. These approaches can express different scheduling strategies and parallelism in the IR.
However, they lack explicit support for memory operations which severally restricts their use on
real hardware. Aetherling, for instance, has only produced results in simulation with an overly
simplified memory model. Maximizing performance requires the use of on-chip and off-chip mem-
ories, as well as the use of asynchronous transfers. Given that such concepts are absent from these
IRs, their associated compilers are unable to use these capabilities.

This article presents Shir, a multi-level IR inspired by Lift-hls and Aetherling. Uniquely, Shir
represents memory concepts such as asynchronous data transfers to off-chip memories explicitly
in the IR. Through a formally defined lowering process, the Shir compiler turns the high-level
IR into a low-level form where memory operations are explicit. The low-level IR is then turned
straightforwardly into VHDL code that is synthesizable on real hardware. The generated designs
exploit hardware parallelism, off-chip memories, as well as on-chip block-ram to maximize perfor-
mance.

Shir is meant to be used as an intermediate language and its code could be generated from any
front-end library or framework. TensorFlow would be a good example given that tensor operations
can be easily mapped onto the Shir primitives.

The validity of the presented approach is demonstrated using stencil computations and matrix-
matrix-multiplication (MxM). Although being easy to understand, MxM exhibits many interesting
optimization choices that exercise all the features presented in this article. Starting from a simple
hardware-agnostic description, the program representation is automatically lowered, synthesized,
and run on an Intel Arria 10 FPGA. Our results shows that the Shir compiler produces correct and
efficient hardware that is competitive with OpenCL implementations.

This article makes the following contributions:

• it presents an explicit encoding of memory operations in the IR to enable their efficient use;
• it formalizes the lowering process, turning high-level programs into a form suitable for hard-

ware synthesis;
• it demonstrates this approach on a real FPGA and compares the performance to OpenCL.
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Fig. 1. Compilation flow from Shir algorithmic code to VHDL code through different IRs.

Fig. 2. Shir representation at three different levels for the program “sum of an array”.

The rest of this article is organized as follows: Section 2 presents an overview. Section 3 intro-
duces the core Shir language and the algorithmic IR level. Section 4 presents the lower levels IRs.
Section 5 presents the lowering and compilation process with rewriting steps for optimization.
Section 6 evaluates the approach on a real FPGA. Section 7 presents related work while Section 8
concludes the article.

2 OVERVIEW AND EXAMPLE

Figure 1 presents an overview of our approach. The Shir compiler transforms high-level code into
multiple levels of IRs. Each level exposes more hardware details and allows optimizations via a
rewrite mechanism. The functional IR is first turned into a data-flow IR and then into VHDL code
for FPGA synthesis using vendor tools. Before diving into the IR’s levels and the lowering process,
a brief example illustrates how a simple program “sum of an array” is represented at the three
levels.

At the Algorithmic Level, programs are represented in a hardware-agnostic way using common
built-ins such as Map, Reduce or Zip. The sum of an array of N 32-bit integers is expressed as in
Figure 2(a), where Input simply represents an input which will be allocated in memory.

The Abstract Memory Level exposes memory operations. The compiler turns the high-level algo-
rithmic code into the expression seen in Figure 2(b). Memory for the program’s input is allocated
in line 1. A counter generates a stream of addresses from 0 to N − 1 in line 5. MapStm calls, for
each address, the Read memory function. The MapStm outputs a stream of data that is reduced to
produce the sum. For the sake of simplicity, we omitted details about the program’s output, but a
similar process takes place where explicit write operations are used. While no specific hardware
details are yet exposed in the IR, memory operations are now explicit.

The Hardware Memory Level is the last IR level and exposes all the hardware features di-
rectly, as shown in Figure 2(c), allowing an easy translation to VHDL code. During lowering,
a HostRamReadCtrl function is inserted in place of the abstract MemAlloc concept. This read
controller is directly connected to the DMA (Direct Memory Access) engine on the FPGA. The
ReadAsync on line 5 takes the read controller in and two other inputs: the base address 0x00000000

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 16. Publication date: February 2022.
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Fig. 3. Shir core design.

of the input data allocation in memory (determined by the compiler); and a stream of offsets pro-
duced by the counter. There are two main differences here compared to the previous level.

First, ReadAsync asynchronously requests data from the hardware DMA controller, which re-
sponds at a later time with the desired data. Since the controller accepts multiple pending requests,
an asynchronous read takes a stream of offsets as an input, which are requested concurrently.

Second, the transferred data is on a cache line size granularity (512 bits in our hardware). For N
32-bit values we need to read only N / 512

32 cache lines, which are returned by ReadAsync in a stream.
In line 4, this data is reshaped with a SplitVec into pieces of 32 bits before reducing. Finally, a
JoinStm is used to merge the two outer dimensions of the stream and produce a single stream of
32-bit integers that are fed into the reduction.

3 CORE SHIR IR AND ALGORITHMIC LEVEL

The core of the Shir language and the high-level algorithmic primitives are inspired by Lift [34],
a functional data-parallel language based on typed lambda calculus. The major difference is the
support of subtyping, in the style of System F with Subtyping (F<) [7]. This enables an intuitive-
type hierarchy and building up new constructions within the language, while the unified type
system confirms that the implementation’s types are correct.

3.1 Core Types

All types in Shir are implemented as classes in Scala. Their constructors are referred to as type con-

structors. We developed a type checker for Shir, that uses unification and a constraint solver where
sub-typing relationship are expressed as constraints. The object oriented manner of these imple-
mentations facilitates extensions to new types, without requiring any modification of the core type
system or the type checker. When dealing with sub-typing relationship, the type constructors ar-
guments are all covariant except for function types, where it is contravariant in its input type.

Figure 3(a) shows the Shir core types hierarchy. The root of the hierarchy is AnyT. From there,
the types are separated into value types and meta types.

Data and Function Types are both value types; i.e., types that are taken as input to, or returned by,
functions. The data types are presented in Section 4 since they are not part of the core language.
The function type constructor is FunT(inTV alueT ,outTV alueT ) where inT is the function input
type and outT its output type. The superscript denotes a sub-typing relationship, i.e., inT must be
a subtype of ValueT . In the rest of this article, the function type is represented as: inT → outT .

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 16. Publication date: February 2022.
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Meta Types represent meta-information that is embedded inside other types and treated as types.
In the core language, the only concrete meta type is NatT, the type representing natural numbers.
As we will see in Section 4, this type is used to specify the length of arrays (or other collections).

Type-Function Types are used to implement generic (or templated) functions. Its type constructor
takes a type variable and a return type where the type variable can appear. The following notation
TVT �→ U declares a type variable TV , subtype of T , that might appear in type U .

3.2 Core IR

Type. Figure 3(b) shows the grammar for the core expressions of the Shir language. As can be seen,
each expression has a type. When building expressions, their types do not have to be explicitly
provided, a type variable (TypeVarT) can be used instead of a concrete type. Again, the superscript
notation can be used to indicate that a type variable must be a subtype of another type. During type
checking, they will eventually be replaced by a concrete type (if the program is correctly typed).

Param, Lambda, FunCall, Let. These expressions are traditionally found in any implementation
of lambda calculus. Lambda is an anonymous function that has a Param as argument and an Expr
as body where Param can appear. FunCall is simply a function call to a lambda. Let binds an
expression to a Param that is shared among all of the Param’s appearances in the body.

Primitive. The Primitive IR node represents built-in functions call, (e.g., Add) or built-in con-
stants (e.g., 2.0f). Built-in functions can have any number of Expr as arguments. For instance, the
following code shows a function f used with two arguments, x and y: λx => λy => f (x ,y).

TypeLambda is used to create generic expressions whose type might depend on a type variable.
TypeFunCall is used when instantiating a generic TypeLambda. During type-checking, the effect
of a TypeFunCall is to substitute the type variable by the call argument type.

3.3 Algorithmic Extensions

Types. The high-level algorithmic types are shown in Figure 3(a), outside of the dashed box. The
array type stores both the element type T and the array length N , as seen in its type constructor
ArrayT(TDataT ,N N atT ). From now on, we will use the following shortcut syntax to represent
array types: [T ]N . For tuple types (TupleT), the short form is (type1, type2, ...). Common half,
single, and double precision float types are supported in Shir. In contrast to Lift, the integer type
stores the number of bits used to represent the integer value. The allowed bit-widths are not limited
to powers of two, the Shir compiler supports arbitrary precision. The integer-type constructor
reflects this flexibility: IntT(numBitsN atT ). This enables efficient area usage especially on FPGAs,
because they are re-configurable and not constrained by a specific operator bit-width.

Primitives. The algorithmic IR primitives, listed in Figure 4, are common high-level functional
primitives such as Map, Reduce, Slide, Split, Join, and Zip. The Constant primitive takes a
static NatT that specifies its value. The Input primitive represents the input data coming from
memory. It also supports multidimensional data, which is omitted in Figure 4 for simplicity.

3.4 Summary

The core Shir language is standard, similar to typed lambda calculus, augmented with support for
generics and sub-typing. The high-level algorithmic primitives currently supported by Shir are
introduced. In the next section, this language is extended to enable hardware synthesis.

4 ARCHITECTURE LEVEL

On its way to hardware, the algorithmic representation is lowered through different IR levels.
The Architecture Level remains functional, facilitating the application of transformations that

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 16. Publication date: February 2022.
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Fig. 4. Algorithmic primitives and their types. These definitions are read from left to right: First, the type
variables (T and U ) are specified for each generic primitive. They are concatenated with the �→ symbol and

have a superscripted super type, e.g., T ScalarT means that T is a subtype of ScalarT . After that, the input
value types are listed, separated by a→ symbol. The rightmost value type is the return type of the primitive.

Fig. 5. Types at the architecture level.

crucially affect the resulting hardware design and performance without needing to operate on
a low HDL-like level. This level introduces a slight notion of timing, as seen in the collection
types in Figure 5(a). Figure 5(b) shows the core language types, this time extended with all the
architecture types.

4.1 Scalar and Tuple

Tuples and scalar types are similar to the Algorithmic Level, with the addition of LogicT, which
represents a single bit. The TupleT type is slightly different and only accepts elements of type
T BasicDataT . The BasicDataT ensures data is always available in a single clock cycle. This contrasts
with stream and ramarray, which require multiple cycles to read their entire content. Primitives
that operate on scalars (Add, Mul, Id, Constant and Tuple) are similar to the ones in Figure 4.

4.2 Stream

Type. The type constructor StreamT(T N onRamArr ayT ,N N atT ) (short form notation

S
T

M [T ]N ) rep-

resents a sequence of N elements of type T , where T cannot be a ramarray. This data type can be

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 16. Publication date: February 2022.
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Fig. 6. Architecture Level primitives operating on streams.

used to model flow of data in general and pipelining. A new element is produced at each clock
cycle unless the stream is stalled. Once a piece of data has been consumed, it cannot be recalled.

Primitives. The high-level algorithmic primitives are refined for streams. MapStm, ReduceStm,
ZipStm, SplitStm, and JoinStm all operate on streams, as listed in Figure 6. These new prim-
itives provide more details about how their functionality is implemented. MapStm, for example,
instantiates the given function and feeds the individual elements of the stream into it, one at a
time. Depending on the function, this generates a pipeline in the hardware. ReduceStm will gener-
ate an accumulator, which accumulates all incoming elements of the stream using a given function
(e.g., add). SlideStm is implemented in hardware by feeding the input stream into a shift-register
and sending out all the register’s contents as a vector, whenever a new input value arrives. Counter
emits a stream of incrementing integers, which is useful for generating memory addresses as seen
in the example of Section 2. StmToVec converts a stream of data into a vector, using a shift-register
in hardware.

4.3 Vector

Type. The type constructor VectorT(T BasicDataT ,N N atT ) (short-form notation

V
E

C [T ]N ) creates

a vector type with support for parallel access to all its N elements of typeT in a single clock cycle.
This type is similar to the tuple type, with the key difference that the vector’s elements must all be
of the same type. A vector is ideal for parallelization, a common strategy to improve performance.

Primitives. The common high-level primitives also have a counterpart for vectors: MapVec,
ZipVec, SplitVec, and JoinVec, as listed in Figure 7. Additionally, the VecToStm primitive
converts a vector into a stream of data, by emitting the vector’s elements one after the other.
VecToTuple converts a vector into a tuple to feed the data into tuple-based operations like Add.
MapVec exploits spatial parallelism by instantiating the given function once for each vector ele-
ment. SlideVec simply generates wires in hardware to rearrange the data to create a vector of
vectors.

There is no explicit primitive for ReduceVec. Instead, the same functionality is achieved with
a smart constructor of the same name, which automatically generates an efficient reduction tree
from a combination of MapVec and VecToTuple. The tree performs N − 1 operations in log2 N
steps.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 16. Publication date: February 2022.
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Fig. 7. Architecture Level primitives operating on vectors.

4.4 Memory

There are two different ways to represent memory in Shir, as explained below. First, the Abstract
Memory Level, which provides an intuitive and user-friendly interface to memory. Second, the
Hardware Memory Level, which exposes how memory is implemented in hardware.

4.4.1 Abstract Memory Level.

Type. The type constructor RamArrayT(T BasicDataT ,N N atT ,MLMemLocT ) (short-form notation

R
A

M [T ]ML
N

) represents a ramarray of N elements of typeT , which can only be accessed one at a time,

however, random-order access is possible. Shir features a flat memory model and forbids nesting
of RamArrayT. Multi-dimensional data is stored in memory by joining (i.e., flattening) the data
before writing to memory and then splitting it after reading. The ramarray’s MemLocT indicates
whether host RAM (Random Access Memory) HostRamT or on-chip block RAM BlockRamT is used
to hold the data. This type also contains an identifier to distinguish between multiple block RAM
instances.

Primitives. Figure 8 shows the Abstract Memory Level primitives. MemAlloc allocates memory
space for N elements of type T and returns a ramarray. A MemLocT is required, to identify the
memory used. Given a ramarray, the Read primitive returns an element at the specified address of
type A. The bit-width b of the address depends on the ramarray’s length, with b = �log2 N �.

The Write primitive enables the reverse operation: writing a new element at a given position
in a ramarray. Similar to the concept of monads in functional programming, this primitive returns
the updated ramarray. However, the later generated hardware implementation updates the data
in-place. Thus, an interesting pattern of code is enabled: By wrapping Write into a ReduceStm,
an entire stream can be buffered in a ramarray. In practice, this is beneficial when the ramarray
resides on-chip and the stream is read multiple times. The following code illustrates this important
use-case, where the stream inputData is stored in a ramarray, and then read again:

1 Let allocatedBuffer = MemAlloc(N, dataType , memLocType) in
2 Let updatedBuffer =
3 ReduceStm(
4 λ mem => λ data => Write(mem , data), allocatedBuffer ,
5 ZipStm(inputData , Counter(N-1))) in
6 MapStm(λ addr => Read(updatedBuffer , addr), Counter(N-1))

4.4.2 Hardware Memory Level.

Types. At the Hardware Memory Level, the ramarray types disappear, because memory is rep-
resented as functions. This corresponds to the hardware paradigm that interaction with memory
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Fig. 8. Primitives to express abstract memory. Types named A denote integer based types for addresses,
where the bit-width depends on the address space of the memory.

Fig. 9. Memory-related primitives on the Hardware Memory Level. Types named A denote integer based
types for addresses. Types R represent integer based types for request ids, which map the responses in
asynchronous communication to the previously sent requests.

is performed through functional units. Depending on the type of memory involved, on-chip ver-
sus off-chip, the function is either synchronous (data is returned immediately) or asynchronous
(requested data is returned later and not in order).

To capture this in the type system, the IR is expanded with a new function type. Its type con-
structor is ArchFunT(inTV alueT ,outTV alueT , cCommT ). In short-form notation, we use inT

s−→ outT

for synchronous communication (where c is SyncT) and inT
a−→ outT f or asynchronous commu-

nication (c is AsyncT).

Primitives for Synchronous Block RAM. At this level, there is no abstract MemAlloc primitive but
a more specialized BlockRam primitive, shown in Figure 9, to model synchronous on-chip RAM as
functions. When called, this primitive returns a function that accepts a piece of data, an address
and a write-enable flag which determines whether we want to read or write. This functional design
is in line with its resulting hardware implementation.

Additionally, memory controllers are introduced, which extract only a certain capability of the
memory interface. The ReadSyncMemCtrl primitive takes a BlockRam and provides an interface
which only allows us to read data. The write enable flag is not accessible any longer from the
outside and is fixed to false internally. The WriteSyncMemCtrl extracts a write interface, setting
the write enable to true internally. The provided interface from WriteSyncMemCtrl, takes a value
and an address and returns the same value after writing.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 16. Publication date: February 2022.
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ReadSync uses the ReadSyncMemCtrl to read a value at a certain address from the block RAM
memory, which is behind the memory controller. This primitive calculates the actual requested
address by adding the given base address and given offset, both subtypes of integer. The WriteSync
primitive works in a similar way, but instead takes a tuple of data and offset as input.

Primitives for Asynchronous Host RAM. The notion of host RAM is always present in the system
and there is no need to allocate it. Therefore, there is no counterpart primitive to the BlockRam. The
Hardware Memory Level provides memory controllers for both reading and writing asynchronous
memory. During hardware generation, these controllers are connected to the DMA interface of
the FPGA which talks to the host RAM via the PCIe (Peripheral Component Interconnect Express)
bus.

Each asynchronous memory access must specify a unique request id (R in the type) to link a
response to the requested read or write operation. ReadHostMemCtrl provides an asynchronous
function, which takes a tuple of address and request id and returns a tuple of data and request id.
The asynchronous function of the WriteHostMemCtrl takes a tuple of address, data, and request id
and just returns the same request id, when the data has been written to the address in host RAM.

The host memory controller’s signature for reading and writing depends on the FPGA DMA
interface specifications. The Intel Arria 10 in our system transfers cache lines of 512 bits via DMA.
Smaller pieces of data must be packed and possibly padded with zeros to fill an entire line. For this
case, Shir offers a smart converter that creates a combination of split, join and other reshaping
primitives to convert cache lines into any desired type of data with arbitrary precision and back.
For 7-bit values each cache line contains �512/7� = 73 elements with (512 mod 7) = 1 padding bit.

The primitives for reading and writing are refined to enable concurrent memory requests. They
take the corresponding memory controller and a base address as input. In addition, ReadAsync
consumes a stream of addresses, while WriteAsync consumes a stream of tuples of address and
data. Without waiting for the responses of previous requests (non-blocking), these asynchronous
primitives send new requests to memory one by one, as soon as a new value from the input stream
arrives. Thus, throughput between the host and the FPGA is maximized using multiple in-flight
requests. The input stream’s length of ReadAsync and WriteAsync determines the maximum num-
ber of possible parallel requests. Once the requested data is loaded, the host sends a response with
the payload attached. WriteAsync returns the base address, when all the write operations to this
memory region are completed and confirmed by the memory controller.

While the IR design looks complicated on the surface, it directly maps to hardware concepts and
provides great flexibility in terms of expressible hardware designs.

4.5 Summary

In summary, these collection types are powerful tools to express different points in the hardware
design space. A stream, for example, can easily be rewritten as a vector to parallelize computations,
using additional logic elements on the FPGA. Furthermore, a stream can be replaced by a ramarray
to buffer the stream’s data for faster repeated access at the cost of on-chip RAM.

5 COMPILING A SHIR PROGRAM

A Shir program is expressed using high-level primitives of the Algorithmic IR. From this abstract
level, the compiler performs several rewriting and lowering steps before generating VHDL code.

5.1 Lowering to the Architecture Level

In order to rewrite an expression from the Algorithmic IR, the Shir compiler traverses it
and automatically replaces each occurrence of an algorithmic expression by an equivalent
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Fig. 10. Lowering LA of Algorithmic Level to Architecture Level primitives with a flat memory representation.
Expressions are represented by e , e1, e2, and f . T is a Value type and N is a Nat type.

expression from the Architecture IR. This procedure is rule-based and does not require any
manual input from the user. The lowering instructions LA are captured in the recursive rules in
Figure 10.

The lowering starts in Equation (40). Here, the provided algorithm is wrapped in an expression
that allocates memory in host RAM and writes the data returned by expression e back to it. De-
pending on the type of expression e this might require multiple nested maps, which is represented
by the MapStm∗ keyword. Data that is to be written back to host RAM must be based on the cache
line size. Shir can generate the data type conversion from the given type of e to a cache line-based
type automatically, as mentioned in Section 4.4.2. For simplicity, this conversion step is omitted in
Figure 10.

In most cases there is a simple one to one translation, as in Equation (41) to Equation (51). Note
that, whenever possible the primitives are lowered to their stream-based counterpart, e.g., Map
becomes MapStm in this lowering process. Thus, the very initially generated lower-level design
will always be a fully stream-based, minimal area implementation with no parallel computation.
However, once the Architecture Level is reached, rewriting can take effect and trade in the FPGA’s
area for performance, as described in Section 5.2 and demonstrated in Section 6.

The Input primitive in Equation (52) is lowered to an expression, that reads the input data from
host RAM. Again, depending on the specified input type, a conversion from a cache-line-based type
to this desired data type may become necessary. In this case, the automatic conversion generator
is employed again. The number of cache lines required for the input data does not necessarily
have to match the number of input elements, due to the conversion. That is why the counter in
Equation (52) counts up to N ∗, which is derived from N but not always equal. If the desired input
has multiple dimensions, nested MapStm are required, as indicated by MapStm∗.

5.2 Optimizing with Rewrites on the Architecture Level

5.2.1 Parallelize Computation. As described in Section 5.1, the initial expression on the Archi-
tecture Level is a stream-based design with minimal area usage, depicted in Figure 11. To exploit
more of the available resources on the FPGA, the compiler automatically applies a set of rewrite
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Fig. 11. Stream-based dotproduct implementation.

Fig. 12. Vector-based dotproduct implementation.

rules to parallelize the computation. This converts the input stream into a vector and replaces the
stream-based operators by their vector-based counterparts, as visualized in Figure 12.

The level of parallelism can be controlled by reshaping the dot product’s input. In order to
process N values in parallel, the input is split into chunks of size N in advance. The overall com-
putation of the dot product then happens in a pipelining (stream) of parallel computations on
vectors:

1 ReduceStm( // outer stream -based reduction
2 λ a => λ b => Add(Tuple(a, b)), 0,
3 MapStm(
4 λ p =>
5 ReduceVec( // inner parallel dot product with reduction tree
6 λ a => λ b => Add(Tuple(a, b)), 0,
7 MapVec(λ m => Mul(m), ZipVec(p))), // inner parallel multiplication
8 ZipStm(inputA , inputB)))

5.2.2 Data Reusage. Whenever data is reread multiple times, buffering the data on-chip avoids
repeatedly requesting that data from the slow host RAM. This generally applies, when an expres-
sion similar to the following one occurs (where f is any binary operation on two streams):

1 MapStm(λ a => MapStm(λ b => f(a, b), inputB), inputA)
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Shir detects these specific combinations of expressions automatically and applies rewrite rules
to create more efficient solutions, by inserting buffers as follows:

1 MapStm(λ a =>
2 MapStm(λ b =>
3 f( // begin memory buffer
4 Let bram = MemAlloc(N, ..., BlockRamT) in
5 Let buffered = ReduceStm( λ mem => λ data => Write(mem , data),
6 bram , ZipStm(a, Counter(N-1))) in
7 MapStm( λ addr => Read(buffered , addr),
8 Counter(N-1) // gen addrs to read
9 ) // end memory buffer

10 , b
11 ), inputB
12 ), inputA)

In matrix-matrix-multiplication of two NxN matrices A and B, both matrices are read N times
(2N 2 rows to read in total). Here, the buffer rewriting rule improves the performance. If the rows of
A are buffered, the number of rows to read from host RAM decreases to N 2+N . The same happens,
when the entire matrix B is buffered. However, if both the rows of matrix A and the entire matrix
B are buffered, the overall number of rows to read from host RAM is drastically reduced to 2N .

Apart from that, the rewrite rules for buffer insertion offer the ability to scale the input and
output width of the memory. That way, more data can be read from the buffer in parallel. This
optimization is crucial to enable highly parallel computation, which requires a faster supply with
input data. If the computation was more parallel than the provided input data, the compute el-
ements would not be used efficiently, due to waiting times. The sweet spot for matrix-matrix-
multiplication is reached when both the output vector of the memory and the input vector to the
computation (e.g., dot product) have the same width.

5.2.3 Timing Correction. When a Shir program is lowered and rewritten, a sequence of com-
plex operations may be created that generate long combinational paths in the synthesized FPGA
design. Reduction trees, created by ReduceVec are predestined to be affected by this issue. These
long paths either force a slowdown of the FPGA’s clock frequency, which is bad for performance,
or worse, they result in faulty hardware operations. Shir contains rewrite rules that prevent this,
by automatically inserting a Registered expression into the IR to form a pipeline after synthesis:

Reдister ed : T Basic Dat aT �→ T → T . (53)

In hardware, the inserted registers divide the long data path into several shorter sections, allow-
ing the synthesizer to meet the desired target clock frequency.

5.3 Lowering Memory Primitives

Prior to the lowering from Abstract Memory Level to Hardware Memory Level, ramarray data is
mapped into memory regions. In case there is more than one allocation in the same memory (e.g.,
multiple inputs from host RAM), the required memory regions are laid out one after another, by
mapping an incremented base address to each of these allocations.

After that, the Shir compiler traverses the given expression in a recursive way and the lower-
ing instructions LM in Figure 13 are followed. Again, no manual user input is required for this
rule-based procedure. Some of these rules contain additional if-conditions, that must hold to al-
low the substitution. If none of the first lowering instructions are applicable, the very last one,
Equation (63), ensures that the recursive descent of LM is continued.
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Fig. 13. Lowering LM of Memory primitives. put, get, memId and memloc are helper functions to keep this
description short and readable. Additional if-conditions restrict the application of certain rules. The remain-
ing lower case terms are expressions, wheremem is a MemAlloc expression.

The lowering procedure always starts with an initial step, described in Equation (54), that cre-
ates the read and write memory controllers for the host RAM. In order to keep track of memory
controllers and use these shared functions again at a later step in the lowering process, the read
controllers are put into the map container rdCtrls and the write controllers are put into wrCtrls .
The helper function put (m, id,mc ) stores the memory controller mc in map m, while дet (m, id )
returns the previously stored memory controller with id id . Furthermore, to keep the rules short,
memId (e ) represents the id of a MemLocT of the ramarray type of the expression e . The shortcut
memloc (e ) returns the MemLocT of the ramarray type of the expression e .

Whenever Let is encountered with a MemAlloc for a memory location, that has not been visited
before during traversal, the rule Equation (55) is applied. This creates a block RAM and the cor-
responding read and write memory controllers, which are put in the rdCtrls and wrCtrls maps.
The block RAM access is shared among the two controllers. In Equation (56), the MemAlloc itself
is replaced by a Constant that returns the allocated base address, defined in the first step of this
lowering procedure.

The following rules lower the abstract Read and Write primitives to the more specific ReadAsync
and WriteAsync for asynchronous memory and ReadSync and WriteSync for synchronous mem-
ory. In Equations (57) and (58), the substitution will result in expressions for reading and writing
with concurrent memory requests. This requires the former Read and Write expressions to be
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Fig. 14. Example lowering from abstract memory usage (a) to a block RAM buffering (b) of stream s . Blue
boxes are primitives. Let expressions are not shown for simplicity.

nested in a MapStm, resp. a ReduceStm. If this is not the case, an inefficient implementation of only
one read or write request at a time is generated, as in Equation (59) and Equation (60). For this
case, the primitive Repeat is used to generate an address stream of length N = 1 from the given
single input address.

Figure 14 depicts how a stream buffer on the Abstract Memory Level is lowered to the Hardware
Memory Level. In this example, we assume that MemAlloc allocates memory in block RAM. Hence,
on the Hardware Memory Level in Figure 14(b) a BlockRam is added and shared among the two
read and write controllers. Due to the synchronous fashion of block RAM access, the controllers are
connected to the ReadSync and WriteSync primitives. The MemAlloc from the Abstract Memory
Level is replaced by a Constant, that provides the base address of the allocated memory region.

5.4 Optimizing with Rewrites on the Hardware Memory Level

5.4.1 Concurrent DMA Requests. The throughput of host RAM access via DMA depends heavily
on the number of concurrently pending read and write requests. The more requests in the queue,
the higher the throughput. As mentioned in Section 4.4.2, the length of ReadAsync’s input stream
determines the maximum number of possible parallel requests. Shir contains a rewrite rule to
reshape the input stream with splits and joins and thus change the number of concurrent requests.

5.4.2 Double Buffering Inputs. A common strategy to improve throughput is double buffering,
where filling and consuming operations alternate between two buffers. At any time, one of the
buffers is busy receiving new data, while the other one is working to send out the available data.
That way, Shir can exploit pipeline parallelism to fetch data and run computations simultaneously.

The Alternate primitive helps to realize this functionality, by alternately feeding its inputs to
one of its functions, while emitting the output of the other function:

Alternate : T N onRamAr r ayT �→ U N onRamAr r ayT �→ (T
s−→ U )

s−→ (T
s−→ U )

s−→ T
s−→ U . (64)

Shir contains a rewrite rule, which applies this improvement by replacing a single ReadAsync
from host RAM with the following expression:

1 Alternate( λ offsets => ReadAsync(rdCtrl , baseAddr , offsets),
2 λ offsets => ReadAsync(rdCtrl , baseAddr , offsets))

5.5 VHDL Code Generation

Once lowering has taken place, the domain of functional IR is left behind, to generate VHDL code
for FPGAs. This is achieved by turning the IR into a dataflow graph before emitting VHDL code.

On the dataflow level, the program is modeled as a directed graph with hierarchical nodes
and connections. This representation looks like the block diagrams seen earlier, in Figures 11(b)
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Fig. 15. Direct host RAM access from the FPGA via PCIe. The FPGA offers a DMA controller with separate
read and write interfaces that are connected to the corresponding controllers of the design. The computa-
tional block, e.g., MxM here, may have more than one input. Therefore, an arbiter (dashed orange box) is
inserted to distribute access to the ReadHostMemCtrl controller.

and 12(b), where each block is a node in the graph. Communication between nodes is synchro-
nized with a simple handshake protocol, similar to [19], resulting in a dynamic schedule. A dy-
namic schedule enables the support of asynchronous features such as host RAM access. While
this requires some additional control logic, we did not observe any negative impact on the overall
throughput or latency, because the control signals are only 1 bit wide and the control logic remains
very simple.

Data flows between components when the valid and ready signals are both active. Sequential
combinational operations are combined and processed in one cycle to reduce cycle count.

More complex operations may contain internal state machines (e.g., StmToVec) and have regis-
tered inputs and outputs (e.g., Mul), which add some latency to the overall design.

5.5.1 Arbitration of Shared Resources. Whenever a Let expression occurs, where the parame-
ter is used multiple times, a resource, e.g., memory, is shared among its clients. This happens for
example, when the high-level program on the Algorithmic Level contains more than one Input
expression, or multiple ReadAsync expressions occur on the Hardware Memory Level after lower-
ing. In this case, the host RAM read controller is shared among all the reading clients. Additonally,
for on-chip buffering a Let expression is used to share the block RAM instance for both read and
write access.

Shared resources can only be accessed by one client at any given time. A compiler pass detects
such a sharing and introduces arbiter nodes into the dataflow graph, as the dashed orange box
in Figure 15 shows. A round robin scheduling strategy is used to fairly distribute access among
the clients. Only the currently selected client is connected to the resource’s data and handshake
signals.

All in all, arbiters are an essential feature to enable the memory usage as modelled in the Shir IR.

5.5.2 VHDL Code Templates. Based on the information from the dataflow graph, the required
VHDL templates are loaded from a database. All the graph’s edges are translated into VHDL state-
ments and written into a “wrapper” file at the top level of the design hierarchy (see Figure 15).

Shir contains more than 50 fine granular, composable VHDL templates to achieve the user’s
desired behaviour for the FPGA. There are complex templates like ReadAsync and WriteAsync
with several hundred lines of code, but also simple ones, two of which are presented here:

First, the template for the Add expression, which only uses combinational logic to add the two
integer values of the incoming tuple.
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1 architecture behavioral of add_int is
2 begin
3 port_out_data <= std_logic_vector(
4 unsigned(port_in_data.t0) + unsigned(port_in_data.t1));
5 port_out_valid <= port_in_valid;
6 port_in_ready <= port_out_ready;
7 end behavioral;

Second, the Counter template, which is used in particular to generate addresses for memory
access. The cnt value is increased, only if the following module in the pipeline sends back a ready
signal to indicate that the current value has been consumed.

1 architecture behavioral of counter is
2 signal cnt: natural range 0 to limit := 0;
3 begin
4 port_out_data <= std_logic_vector(to_unsigned(cnt , port_out_data 'length));
5 port_out_valid <= '1'; -- counters always produce valid outputs
6

7 process(clk)
8 begin
9 if rising_edge(clk) then

10 if reset = '1' then
11 cnt <= 0;
12 else
13 if port_out_ready = '1' then
14 if cnt <= limit - 1 then
15 cnt <= cnt + 1;
16 else
17 cnt <= 0;
18 end if;
19 end if; end if; end if;
20 end process;
21 end behavioral;

These examples show the decision for a uniform port design. The port’s structure is consistent
across all the templates to allow simple connection of the generated VHDL modules. Each port has
a valid signal to indicate that the data signal contains valid information; and a ready signal, sent
by the consumer, if the data has been processed.

5.5.3 Interfacing to Host. The generated top-level wrapper VHDL file contains the entire hard-
ware design, while only the two outgoing ports of the read and write host memory controllers are
exposed, as seen in Figure 15. These ports are connected to the FPGA’s DMA engine.

On the software side of the host machine, a small C program loads the initial memory image
into a pinned memory page in the host RAM. The base address of this memory region is sent to
the FPGA via MMIO (Memory-mapped I/O). Now, all the requested addresses, from the FPGA, are
offset by this base address value. The software sends a “go” signal to make the FPGA start the
memory transfers and the computation. Once the FPGA has finished, a certain MMIO register is
written, which is polled by the software program.

6 EVALUATION

This work focuses on expressing memory features found in real hardware. We opted for evaluat-
ing two well-known classes of applications on a real system, rather than going for a variety of
benchmarks on a simulator (a much easier task). In real systems, data received from off-chip RAM
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using DMA come in random order, and at random time, due to traffic on the bus. In contrast, a sim-
ulator will exhibit a deterministic behavior hiding many possible timing issues with the generated
hardware, and major issues with the design of the compiler or IR. Furthermore, physical timing
issues caused by long signal paths on the FPGA do not occur in simulation.

6.1 Experimental Setup

We use an Intel Arria 10 GX FPGA (at 200 Mhz), connected via PCIe Gen 3 x8, on an Intel Xeon host
machine. The bitstream for the FPGA is synthesized with Quartus Prime Version 17.1.1 from the
VHDL files generated by the Shir compiler. All the designs produced meet the timing requirements,
and in all the experiments, the results are verified against a reference CPU implementation.

6.1.1 Benchmarks. The first set of experiments in Section 6.2 is based on a memcopy bench-
mark. The following experiments in Section 6.3 perform stencil computations for a 2D Convolution
and a 2D Jacobi iteration. Matrix-matrix-multiplications (MxM) are performed in Section 6.4.

The Shir compiler generates the VHDL code for these benchmarks in less than a minute. As
a preparation for the experiments, the software side loads the input data (e.g., matrices) into
host RAM. In Section 6.5, we compare the performance of Shir and OpenCL generated hardware
designs.

6.1.2 Design Space Exploration. The optimization process in Shir is based on simple heuristics.
The default strategy is to parallelize as much as possible and to apply buffering whenever sufficient
on-chip memory is available. We target various points in the design space, by manually disabling
different optimization rewrite rules in the compiler. This helps to show the performance impact
of certain optimizations. In usual compiler operation, this manual interaction with the rules is not
required and the only input provided by the user is the high-level hardware-agnostic expression.

Shir is able to explore more of the design space than what is covered in this section. We omit-
ted these designs, because they are not in the Pareto frontier with desirable area/throughput
trade-offs.

6.2 Memcopy

The experiments in this section show how the maximum number of concurrently pending memory
read requests via DMA affects memory throughput. They cover the range of 1 to 64 concurrent
requests, because the Intel Arria 10 FPGA has a hardware limit of 64. Furthermore, the impact of
double buffering the input in on-chip ram as introduced in Section 5.4.2 is also considered.

To demonstrate this, a very simple memcopy-like Shir program is used, which copies data from
host RAM to the FPGA and back. This program is expressed on the Algorithmic Level with an
Id expression and the input specification, which determines the amount of data to copy (512 MB
in these experiments). The Shir compiler automatically lowers this expression into the Hardware
Memory Level. After that, further rewriting automatically substitutes the single buffered reading
with a double buffered implementation. To explore weaker design points with fewer concurrent
read requests, we manually modified the rewrite rules in the compiler flow.

The results of this benchmark are presented in Figure 16(a). As expected, the best performance
is achieved when the maximum number of concurrent requests is 64 and on-chip double buffering
is enabled. Furthermore, the figure allows us to observe two interesting details.

First, the effectiveness of double buffering: Using N concurrent requests with double buffer-
ing performs significantly better than using 2N concurrent requests without double buffering,
although these two designs have the same overall limit of pending concurrent requests.

Second, a tendency towards memory bandwidth saturation: The throughput for memcopy with
double buffering increases by ∼1.7x from 16 concurrent requests to 32 concurrent requests. For the
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Fig. 16. Memcopy with different concurrent read requests and MxM with varying levels of parallelism.

next doubling of concurrent requests, the throughput is only increases by∼1.3x . With a throughput
of 6.5 GB/s, the best memcopy experiment is close to the PCIe interface’s theoretical maximum of
7.875 GB/s at the physical layer. The remaining performance gap is due to PCIe protocol overheads
and the mixed read and write access in our memcopy experiment. Similar DMA benchmarks [26]
show similar speeds of up to 6.25 GB/s for DMA with mixed read and write access.

All the following experiments use 64 concurrent requests to maximize memory throughput and
on-chip double buffering to exploit pipeline parallelism for data fetching and computation.

6.3 Stencil Computation

The following benchmarks perform stencil computations on an input matrix of 1024x128 8-bit
integers. Since these operations are memory bound, we measure the efficiency by comparing the
throughput to the best memcopy experiment of the previous Section 6.2. On the Algorithmic Level
in Shir, this kind of computation is expressed as follows:

1 Map(λ rowGroup =>
2 Map(λ group =>
3 f(group) // application specific operation 'f' on the data group
4 ), Slide(rowGroup , windowWidth)
5 ), Slide(image , windowHeight))

6.3.1 2D Convolution. For 2D Convolution, the inner function f in the code above computes
a dot product with weights. The experiment shown in Table 1 uses a 3x3 kernel size. The Shir
compiler automatically buffers some rows of the input data, so that each row has only to be read
once in the entire runtime. The computation of each output element is fully parallelized. With a
throughput of 6.4 GB/s the design generated by Shir is as fast as memcopy, saturating the memory
bandwidth. Larger input sizes exhibit the same performance.

6.3.2 2D Jacobi. In this benchmark, a single iteration of 2D Jacobi with a 4-point stencil is per-
formed. Here, the inner function f in the code above computes the average value of the 4 adjacent
points. Again, Shir inserts input row buffers to maximize the performance. The generated hard-
ware does not employ any DSPs, since the algorithm only divides by 4, which is automatically
rewritten as a shift operation by the compiler. Nevertheless, the design generated by Shir is very
efficient, because it reaches a throughput similar to that of memcopy, as shown in Table 1.
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Table 1. Performance and Area Usage of Logic (ALMs (Adaptive Logic Modules)), RAM and DSPs
(Digital Signal Processors) for Benchmarks with Stencil Operations on Input Matrices of

1024x128 8-bit Integers

Configuration Performance Resource usage

Operation throughput efficiency∗ ALM on-chip RAM DSP blocks

2D Convolution 6.4 GB/s 99% 18% 3% 75%
2D Jacobi 6.4 GB/s 99% 8% 4% 0%
∗efficiency is the ratio of the experiment’s measured throughput to the maximum throughput of memcopy

(6.5 GB/s).

Table 2. Experiments for Matrix-Matrix-Multiplication of Two 1024x1024 Matrices with 8-bit Elements

Configuration Performance Resource usage

exp. buffers par. host RAM GOPS OPC effi- ALM on-chip DSP
no. Arow B comp. reads ciency∗ RAM blocks

1 64 33,554,432 1.4 7 11.2 9% 3% 4%
2 � 64 16,793,600 1.6 7 12.3 9% 3% 4%
3 � 64 16,793,600 1.7 8 13.0 9% 20% 4%
4 � � 64 32,768 12.7 63 98.9 10% 20% 4%
5 � � 128 32,768 25.1 125 98.2 11% 20% 8%
6 � � 256 32,768 49.4 247 96.5 15% 20% 17%
7 � � 512 32,768 95.7 478 93.5 22% 20% 34%
8 � � 1024 32,768 173.7 868 84.8 36% 20% 67%

Designs differ in buffering strategies and levels of parallel computation, which affect the performance: Host RAM read

requests via DMA, GOPS (Giga Operations Per Second) (i.e., 109 multiply-add per second), Operations Per Cycle (OPC),

and DSP usage efficiency. Furthermore, the area usage of logic (ALMs), RAM and DSPs is listed.
∗efficiency is measured as the ratio of active cycles of a DSP to overall cycles for the experiment. With fewer idle cycles, the

DSPs work more efficiently. At 100% efficiency they produce a new value each cycle and never have to wait for input data.

Both of the above stencil computations are memory bound and therefore leave not many design
choices for interesting optimizations. The more challenging design space for MxM is explored in
the next section.

6.4 Matrix-matrix-multiplication

For MxM, the input matrices consist of 1024x1024 8-bit integers. The experiments are listed in
Table 2. We assume here that the matrix B is already transposed on the host to simplify the ex-
pression. The MxM experiments are based on the following Algorithmic Level expression, which
is the only user input required by the Shir compiler:

1 Map(λ rowA =>
2 Map(λ colB =>
3 Reduce(λ a => λ b => Add(Tuple(a, b)), 0, Map(λ m => Mul(m), Zip(rowA ,

colB)) // dot product
4 ), Input(IntT (8), N, N) // matrix B
5 ), Input(IntT (8), N, N)) // matrix A

6.4.1 Data Reusage. The experiments 1-4 in Table 2 show how different buffering strategies
affect the performance and on-chip RAM usage. In order to avoid artificial slowdown of the
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Fig. 17. Performance comparison of naive and optimized OpenCL code to Shir implementations.

designs, one cache line has to be processed in parallel, so that no time-consuming vector to stream
conversion occurs. That is why the computation is parallelized by 64, which corresponds to the
number of 8-bit elements in a single cache line.

In the first experiment, no buffering is employed. If data is repeated in the computation, it has
to be read from host RAM again. This leads to 2N 2 rows to be read. Each row consists of 1,024
elements and therefore 1024/64 = 16 cache lines. The total number of cache lines read in this
experiment is 2 ∗ 10242 ∗ 16 = 33,554,432.

The second experiment applies the rewrite rule explained in Section 5.2.2. The row of matrix A
is buffered, which reduces the number of cache lines read by ∼50% to 16,793,600 for N 2 + N rows.
There is no significant performance improvement in terms of GOPS, because the matrix B still has
to be read from slow host RAM.

For experiment 3, the entire matrix B is buffered with a similar result to the previous experiment.
However, the on-chip RAM usage increased to 20%, because the buffer for the matrix requires
1,024 times more memory than a row buffer.

In experiment 4, the buffer for the rows of matrix A and the buffer for matrix B can finally
leverage the performance (∼9x better than experiment 1). The number of rows to read is decreased
to 2N , which corresponds to 32,768 cache lines.

In these experiments, no tiling is necessary because the entire tile fits in the FPGA’s on-chip
memory. All the following experiments buffer both the rows of matrix A and the entire matrix B.

6.4.2 Parallelize Computation. In this section, the rewrite rules from Section 5.2.1 and Sec-
tion 5.2.2 are applied to evaluate the impact of parallelizing the computational part of MxM. Ex-
periments 4-8 in Table 2 cover the range from 64x to 1,024x parallel multiply-add operations. The
connection of the on-chip input buffers to the computational part are rewritten to allow more
parallel data access, as mentioned in Section 5.2.2.

Figure 16(b) shows that performance scales with the degree of parallelism. The DSPs are used
efficiently, because they perform valid multiply-add operations for 85% to 99% of the overall run-
time, which includes the data transfer between host RAM and FPGA. In experiment 4, the DSPs
receive new input data almost every cycle.

6.5 Comparison to OpenCL

In this section, we compare the performance of the generated hardware implementations from
Shir and OpenCL on the same Intel Arria 10 FPGA. The results are shown in Figure 17.

For the OpenCL implementations, we use two versions: A naive parallel OpenCL code, written in
a hardware-agnostic way; and an optimized OpenCL code with hardware-specific pragmas as well
as explicit local memory usage. Neither Shir’s Algorithmic Level code nor the naive OpenCL code
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contain any explicit unrolling, local buffers, or other hardware-related optimizations. Still, Shir’s
generated designs outperform the naive OpenCL versions by up to ∼100x , as shown in Figure 17.
This is because Shir automatically introduces hardware optimizations by applying rewrite rules.

Matrix-matrix-multiplication. The optimized OpenCL MxM implementation comes from Intel.1

The generated hardware performs as good as the Shir version. However, with ∼30 LOC (Lines
of Code), this OpenCL code is more verbose compared to the truly hardware-agnostic Shir input
code.

Stencil Computation. For the optimized OpenCL design for 2D Convolution and 2D Jacobi, we
follow the techniques mentioned in [13] and [15], such as unrolling and local buffering. To further
improve the parallelism and the pipeline efficiency, we choose optimal pragmas and optimization
flags. In addition, the memory access is improved by tuning the cache settings in the compiler.
We observed some communication overhead in OpenCL for small input sizes of about 128 KB and
increased it to 2 GB for better OpenCL results and a fairer comparison.

After exploring all the above-mentioned optimizations, the best OpenCL designs achieve
4.6 GB/s for 2D Convolution and 5.2 GB/s for 2D Jacobi. Again, the Shir code is truly hardware-
agnostic and much more compact in comparison to the ∼20 LOC of the optimized OpenCL imple-
mentation. Moreover, this time even the performance of the Shir generated hardware outperforms
the optimized OpenCL version by up to ∼1.4x .

6.6 Summary

The goal of Shir is to offer the best of two worlds: high-level hardware-agnostic abstractions
for developers and high-performance hardware accelerator implementations. In this evaluation
section, we have shown that a multi-level functional IR is well suited to generate efficient FPGA
implementations. Although limited, the experiments presented in this article are prime examples
demonstrating the potential for such an approach.

7 RELATED WORK

Hardware Design Languages. Historically, hardware is programmed using low level, close to the
gates, languages such as Verilog and VHDL. Slightly higher level languages exist such as Blue-
spec [28], Esterel [11], or more recently Chisel [2], Fleet [37], and Cλash [1], offering higher-level
abstractions. Bluespec features functional programming but remains quite verbose. Chisel is em-
bedded in Scala and takes advantage of modern features such as polymorphism and higher order
functions. However, these approaches still require programmers to understand hardware concepts,
a major obstacle for non-experts.

High-Level Synthesis. High-level synthesis includes approaches that use C-like annotated code,
such as Intel’s OpenCL SDK, Vivado HLS, SDAccel, LegUp [6] or SOFF [16]. Writing such codes
requires many hardware-specific manual optimizations [25].

Another approach is to use functional languages like AnyHSL [29] and [24, 38] or dataflow lan-
guages as in [14, 17, 35] and LiquidMetal [3]. Delite [36] uses a functional language and also targets
FPGAs in [30]. They employ parameterized hardware templates, which have the disadvantage that
they hide memory implementation details. In contrast to Shir, the memory usage in [30] is not
exposed in the high-level IR, which prevents optimizations with high-level rewrite rules.

1https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-

software/opencl/matrix-multiplication.html.
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Its successor, Spatial [18], raises the programming abstraction, but remains lower level and more
verbose compared to Shir. Furthermore, Spatial already includes key performance decisions at
their highest abstraction level, where Shir only focuses on the algorithm itself.

HeteroCL [20] features an abstract algorithm specification similar to Shir. It has a general back-
end, one for stencil patterns, called SODA [8], and a PolySa [9] back-end for systolic array ar-
chitectures. All these back-ends generate OpenCL or C-like code, which still lacks predictability
[27], portability [29] and suffers from bugs and unsupported features [16]. Furthermore, these
approaches do not leverage multi-level IRs with rewrite rules the way Shir does.

DNNWeaver [33] and [23] present parameterized deep learning accelerator architectures. They
can handle different CNN configurations with various input matrix and weight sizes, as well as low
data precision, by adjusting the parameters of the architecture template accordingly. However, the
general structure of their monolithic hardware design is fixed, while Shir uses fine-grained multi-
purpose templates, that can be composed to implement the desired behaviour. Shir’s approach is
beneficial for the expressiveness, maintainability, and modularity, according to [4].

This paper follows the track of functional programming abstractions but uses a high-level
hardware-agnostic language as an entry point and lets the compiler explore the design space. The
use of rewriting for expressing design choices also guarantees correctness by construction.

Domain-Specific Synthesis. With Spiral [22, 32], linear signal processing transforms can be au-
tomatically compiled into RTL for FPGAs and ASICs (Application-Specific Integrated Circuits). It
supports a similar notion of stream-based data to enable pipelining and it applies rewrite rules
to optimize the design. Halide-HLS [31] is another domain specific approach focused on image
processing. In contrast to these works, our approach aims at being generic and domain-agnostic.

Multi-Level IRs. Recently, MLIR [21] has shown the advantages of a compiler infrastructure with
multiple IRs on different abstractions levels. Shir’s infrastructure shares many ideas of MLIR. Sim-
ilar to MLIR’s tensors, Shir models high-level data in n-dimensional arrays. Both compilers lower
these into less abstract types like vectors for SIMD tasks or ramarrays (memrefs in MLIR) for
buffering. Shir’s memory operators could as well be implemented as an MLIR dialect. However,
this is an implementation detail and orthogonal to the concept introduced by Shir.

High-Level Synthesis with Functional IRs. HML [39] and Lava [5] exploit functional-based lan-
guages for hardware generation. However, they are not really high-level since hardware concepts
are exposed at the highest level, requiring hardware expertise.

Lift-hls [19], Cλash [1] and Aetherling [10] have recently shown the advantages of functional
IR. Similar to Shir’s vector and stream types, these two feature space- and time-aware types to
express parallelism and pipelining on a high level of abstraction.

Lift-hls [19] supports some limited form of memory operations but relies on an ad-hoc approach
to move data to/from the FPGA and has also not discussed how this is achieved.

Aetherling [10] has presented results on a larger set of applications. However, they have
only demonstrated results in simulation using a simple memory model and have not discussed
how memory would be handled on a real hardware. In contrast, we evaluate matrix-matrix-
multiplication, which brings some major challenges, for example, the “repetition” of rows from the
first matrix. Moreover, all our designs produced have been run on real hardware. To our knowledge,
Aetherling is unable to handle blocking communication or express asynchronous communication,
which are necessary when targeting a real FPGA.

8 CONCLUSIONS AND FUTURE WORK

This article has presented the Shir multi-level IR which exposes lower-level architectural features
explicitly. Uniquely, the Shir IR exposes low-level memory operations which is necessary to
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produce hardware that can run on real FPGAs. Such low-level operations include the use of
off-chip memories via asynchronous communication, the use of synchronous on-chip memory as
well as the ability to exploit a double-buffering mechanism.

Starting from a high-level algorithmic description of a program, the Shir compiler lowers the
IR mechanically, step by step. The rewrite operations for lowering have been formalized in this
work and always lead to a valid hardware implementation. Another set of rewrites is also used
(formalization not shown for space reason) to explore some interesting optimization choices such
as exploiting spatial parallelism or use of block RAM memories for data reusage.

The approach has been evaluated on real hardware, using an Intel Arria 10 FPGA, for two sten-
cil computations and a small-scale design space exploration has been conducted using matrix-
multiplication. As demonstrated, the hardware designs generated are able to effectively exploit all
the hardware features available and are competitive with OpenCL implementations, with a much
higher level programming abstraction.

In the future, the VHDL template for reduction will be enhanced to support accumulating matri-
ces. Thus, Shir can apply tiling methods to reduce the off-chip RAM access for programs with large
input data. While the presented memory concepts remain applicable and the memory primitives
can be reused as they are, this future work still requires some hardware implementation effort.

Another plan is to implement more complex programs with Shir. These will offer larger design
spaces to be explored with many more different ways to apply the optimization rewrite rules. For
these more complex applications, we can imagine a constraint solving method to identify the best
rewrite rule targets in the IR. Since the effect of optimizations on the performance of the generated
hardware designs are fairly predictable, no interfacing with machine learning is necessary.

We also aim to target other FPGAs, like devices from Xilinx, in the near future. The development
efforts required for this is mainly engineering work, as some of the hardware templates have to
be adjusted to the new interfaces of the FPGA.
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