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Key Points:13

• The IPCC AR6 WG1 states the “frequency and intensity of hot extremes have in-14

creased”.15

• The IPCC notes that the effect of increased greenhouse gas on high temperatures16

is moderated or amplified at local scales by other factors.17

• Confident quantitative attribution statements of the human influence on heatwaves18

are limited by our understanding of these local processes.19
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Abstract20

It sounds straightforward. As the Earth warms due to the increased concentration of green-21

house gases in the atmosphere, global temperatures rise and so heatwaves become warmer22

as well. This means that a fixed temperature threshold is passed more often: the prob-23

ability of extreme heat increases. However, land use changes, vegetation change, irriga-24

tion, air pollution and other changes also drive local and regional trends in heatwaves.25

Sometimes they enhance heatwave intensity, but they can also counteract the effects of26

climate change, and in some regions the mechanisms that impact on trends in heatwaves27

have not yet been fully identified. Climate models simulate heatwaves and the increased28

intensity and probability of extreme heat reasonably well on large scales. However, changes29

in annual daily maximum temperatures do not follow global warming over some regions,30

including the Eastern US and parts of Asia, reflecting the influence of local drivers as31

well as natural variability. Also, temperature variability is unrealistic in many models,32

and can fail standard quality checks. Therefore, reliable attribution and projection of33

change in heatwaves remains a major scientific challenge in many regions, particularly34

where the moisture budget is not well simulated, and where land surface changes, changes35

in short lived forcers and soil moisture interactions are important.36

Plain Language Summary37

Heatwaves are arguably the most deadly weather phenomena. As the earth warms38

due to higher concentrations of greenhouse gases, one would expect heatwaves to become39

worse as well, killing even more people unless they are better protected against the heat.40

However, it turns out that the world is not so simple and that many other factors also41

influence heatwaves. Land use changes, irrigation, air pollution and other changes also42

drive trends in heatwaves. Some of these cause much larger trends while some have coun-43

teracted the climate change driven trends up to now. In some regions the causes of high44

trends have not yet been identified. Current generation climate models often do not sim-45

ulate all these mechanisms correctly so will have to be improved before we can more con-46

fidently trust their description of past trends and projections of future trends in heat-47

waves.48

1 Introduction49

Extreme heat is one of the deadliest natural hazards (Harrington & Otto, 2020)50

and also is one where climate change really is a game changer. For instance, European51

heatwaves were diagnosed as the deadliest disaster of 2019 (Vautard et al., 2020). The52

recently released IPCC report concluded that “It is virtually certain that hot extremes53

(including heatwaves) have become more frequent and more intense across most land re-54

gions since the 1950s, with high confidence that human-induced climate change is the55

main driver of these changes. Some recent hot extremes observed over the past decade56

would have been extremely unlikely to occur without human influence on the climate sys-57

tem” (Seneviratne et al., 2021). However, challenges arise in the observed trends at the58

local to regional scales that matter for planning and adaptation. Although changes in59

heatwaves are widely thought to be simpler to attribute to anthropogenic climate change60

than precipitation events, there remain significant challenges. Recent work of the World61

Weather Attribution initiative (WWA) has highlighted the general issues in attributing62

regional changes in extreme weather (van Oldenborgh, van der Wiel, et al., 2021; Philip63

et al., 2020). This paper focuses on the specific problems that can be encountered when64

attributing the human influence on heatwaves.65

First, the observed trends in heatwave frequencies are not always positive, or at66

least do not closely follow global warming. Figure 1a shows the trends in the maximum67

temperature of the hottest day of the year (TXx) for the last century of GHCN-D v268

stations as a regression on smoothed global mean temperature. Apart from individual69
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station records showing breaks or spurious trends, there are coherent areas with nega-70

tive or zero trends. In the Central Plains of the United States, the highest temperatures71

were observed during the Dust Bowl of the 1930s (Cook et al., 2011; Donat et al., 2016;72

Cowan, Hegerl, et al., 2020), not in recent years, while in the Central-Eastern US, hot73

extremes are also not steadily increasing with global mean temperature during recent74

decades and daytime maxima show different trends from minima (Portmann et al., 2009a).75

In India, extreme high temperatures have no or very small trends since the 1970s (van76

Oldenborgh et al., 2018a) (Fig. 1b). This highlights that drivers other than anthropogenic77

GHG emissions also play an important role in heatwaves. Second, climate models do sim-78

ulate increasing frequencies and intensities in heatwaves on large geographical scales but79

their skill in simulating the observed trends on smaller scales is collectively poor across80

the world, notably in regions with good observational data and huge modelling efforts,81

e.g. Europe and North America. In an attribution study of the 2019 European record82

heatwaves, we found that the highest temperatures of the year in that region have in-83

creased in observations much more than in 44 analysed global and regional climate sim-84

ulations in this region (Vautard et al., 2020). Similar problems were already reported85

in previous generation regional climate models (Min et al., 2013), suggesting that model86

development has not addressed these deficiencies. In other regions, notably eastern North87

America and India (Donat et al., 2017; van Oldenborgh et al., 2018a; Cowan, Hegerl, et88

al., 2020), the problem is reversed with models considerably overestimating the observed89

trends. In addition, there is a lack of consistency in simulating the magnitude of trends90

in heat extremes in different model ensembles (regional EURO-CORDEX vs. global CMIP5)91

and model generations (CMIP5 vs. CMIP6) (Coppola et al., 2020). While there is lit-92

tle difference between the CMIP5 and CMIP6 ensembles in global skill metrics of their93

simulation quality of average TXx, many models fail to adequately simulate long period94

return values of extreme heat (Wehner et al., 2020). Comprehensive analyses relating95

such metrics to model performance in simulating trends have yet to be conducted.96

While there is no doubt that at very large spatial and temporal scales heatwaves97

are increasing and models do represent this, the change in daily maximum temperature,98

i.e., extreme heat, is very different on the scales where people live and decisions on pre-99

paredness are made. With the current generation of climate models we are unable to quan-100

tify this change reliably, which affects our ability to reliably attribute changes in prob-101

abilities of hot extremes on relevant spatial scales. Given these discrepancies in repre-102

senting the past, confidence in quantitative projections of heat extremes remains low.103

In the remainder of the paper we illustrate the problem, and discuss and test reasons for104

these discrepancies that have been suggested in the literature, ending with a set of pri-105

orities for future research.106

2 Heatwave characteristics107

We start our investigation by laying out basic properties of heatwaves, not all of108

which are well-known. Any assessment on changes in heatwaves depends strongly on how109

these are defined. Definitions frequently employed include continent-averaged seasonal110

mean temperature (e.g., Stott et al. (2004)), a quantity climate models are able to sim-111

ulate well, and that is strongly correlated to external forcing. Such a definition also max-112

imises the signal to noise ratio as natural variability is averaged out more than the anomaly113

corresponding to the event itself (Angélil et al., 2018). At the other end of the spectrum114

is the local instantaneous highest single day temperature in a year (often denoted by TXx).115

This definition corresponds to a broad understanding of heatwaves in the general pub-116

lic as the media usually reports daily records. It also corresponds to health impacts in117

places where the most vulnerable population is working outdoors, for instance outdoor118

labourers in India (Nag et al., 2009) or in Central California (Castillo et al., 2021). In119

Europe, a few days’ average of daily mean or maximum temperature describes the im-120

pacts of extreme heat on the population better, accounting for accumulation of the ef-121
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a)

b)

Figure 1. a) Trend in the highest maximum temperature of the year (TXx) as a regression on

4-yr smoothed global mean surface temperature (GMST). GHCN-D v2 stations with a minimum

radial separation of 2◦, and at least 50 years of data in 1900–2019 are shown. b) The same for

1970–2019 and at least 30 years of data. Units: ◦C per ◦C global warming.
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fect of heat with the most vulnerable population indoors (D’Ippoliti et al., 2010; Heav-122

iside et al., 2017). Here we consider annual maximum daily maximum temperature, TXx,123

generally the hottest summer afternoon each year, as it is very widely used (Hartmann124

et al., 2013) and can be well compared with station observations. We have previously125

found that using the maximum of the three-day running mean of daily mean temper-126

ature (TG3x) is more appropriate for health impacts in Europe and gives very similar127

results (Kew et al., 2019; Vautard et al., 2020).128

In general, the distribution of the temperature of the hottest afternoon of the year129

is described well by a general extreme value distribution (GEV), in agreement with ex-130

treme value theory (Coles, 2001). The distribution is not stationary but changes with131

global warming and other drivers of local temperature trends. An efficient and often re-132

alistic way to describe these changes is to assume the whole distribution shifts up with133

an indicator of climate change, for which the smoothed global mean surface tempera-134

ture (GMST) is an often used metric (Philip et al., 2020). This variable is well-estimated135

and updated in real time. The scale and shape parameters describing the variability and136

tail shape are thus assumed constant. As an example the observations and fit are shown137

in Fig. 2 for De Bilt in the Netherlands, which has a long homogenised record. The low-138

pass filtered time series resembles the well-known GMST increase, indicating that global139

warming is the dominant driver of the non-stationarity, thus justifying its use as a co-140

variate. A secondary driver might be local aerosols intercepting incoming solar radia-141

tion, but this averages out in the fit as the effects of dimming from the 1960s to 1980s142

and the subsequent brightening up to the 2000s cancel if the analysis period includes both.143

The curves in Fig. 2b denote the GEV for two values of the GMST, in a 1.2 ◦C cooler144

world (blue, early-industrial) and 2019 (red, the current climate during a recent extreme).145

For comparison the observations are shown for the early-industrial and current climates,146

shifted with the fitted trend from the actual smoothed GMST.147

The shape parameter of the GEV distribution is almost always found to be neg-148

ative in heatwave analyses, resulting in the distribution having an upper bound (Wehner149

et al., 2018). This shape of the tail implies that the probability of an event to occur de-150

creases rapidly as the upper bound is approached and is zero above it. We are not aware151

of a rigorous derivation of the origin of the upper bound in the literature. We think it152

could be a consequence of the non-linearities in the surface energy balance and its in-153

teraction with the water balance, plus convection as a moderating effect. Both the sen-154

sible and latent heat fluxes increase rapidly with temperature. The assumption of con-155

stant scale and shape parameters in the distribution implies that the upper bound shifts156

with the rest of the distribution, which is found in observations as well as historical model157

simulations (Vautard et al., 2020).158

This procedure of fitting a GEV shifting with GMST to the observed annual max-159

ima allows us to answer the questions how much hotter and more likely extreme heat160

is now than it was a century ago. Applying this method to the TXx at De Bilt observed161

on 27 July 2019, 37.5 ◦C, denoted by the purple line in Fig. 2b, we find that the record162

observed in 2019 would have been virtually impossible in the climate of 1900 (the pur-163

ple line is above the blue central curve representing the best fit). Taking the upper bound164

of the 95% confidence interval (obtained from bootstrapping (Philip et al., 2020)) gives165

a return time of at least 15,000 yr in the climate of 1900. In the warmer climate of to-166

day the return period of that event is about 30 yr, with a lower bound of 13 yr (inter-167

sections with the red curves), while the magnitude of a temperature extreme of this rar-168

ity is about 4.0±1.1 ◦C (2σ bounds) higher than it would have been in the early-industrial169

climate. Similar analyses have been done for areas where heatwaves have not increased170

at all in temperature (van Oldenborgh et al., 2018a). However, these observational anal-171

yses only detect a trend or its absence, they cannot attribute the causes of it.172
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a)

b)

Figure 2. a) Highest maximum temperature of the year (TXx) at De Bilt, the Netherlands.

The green curve denotes a ten-year running mean. b) Gumbel (return time) plot of a GEV fit

of TXx shifted with the smoothed GMST. The red lines indicate the fit and the 95% confidence

intervals in the current climate (2019), the blue lines in the early-industrial climate (1.2 ◦C lower

GMST). The observations are shown twice: once shifted to the early-industrial climate using the

fitted trend (blue stars), once shifted to the climate of 2019 (red pluses). The purple line denotes

the value observed in 2019, which is included in the fit.
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3 Potential causes of heatwave trends173

Long-term changes in heatwaves are influenced not only by globally well mixed green-174

house gases but also by more localised influences, including aerosol trends (Péré et al.,175

2011), land use changes (Cowan, Hegerl, et al., 2020), vegetation and soil moisture changes176

(Donat et al., 2017), irrigation (Thiery et al., 2017) and urbanisation effects (Heaviside177

et al., 2017). Furthermore, the meteorological conditions conducive to heatwaves could178

change regionally by potential changes in mean atmospheric circulation or in the frequency179

of specific weather patterns leading to extreme heat (Horton et al., 2015).180

Local circumstances such as the thermometer screen and its immediate surround-181

ings also influence TXx in observations disproportionately and must be homogenised be-182

fore observations can be compared to models. The De Bilt series has been homogenised183

for the change in screen and displacement to a less sheltered location in 1951 (Brandsma,184

2016). Urban heat effects could in theory also affect the highest temperatures, but in De185

Bilt they are small as record temperatures are always attained during southerly or south186

easterly wind directions with no urban areas within 10 km upstream. However, for other187

stations it might not be as straightforward to identify whether such local effects are small188

as, for instance many inner-city stations are in city parks. The anomalously large or small189

trends observed in these stations (e.g., Madrid Retiro and Dublin Phoenix Park) give190

the suspicion that they could be influenced more by changes in the lawn sprinkling sched-191

ules than global warming, so we avoid using these observations in our attribution anal-192

yses and would recommend not using them for model/observation comparisons. These193

issues call for a detailed investigation of station temperature homogeneity and a mas-194

sive effort in homogenisation in many places of the world.195

4 Climate model ensembles can misrepresent local heatwave trends196

To disentangle all these effects on heatwaves and isolate the change driven by an-197

thropogenic climate change, we have to turn to climate models. Fig. 3 shows the sim-198

ulated trend in TXx in the CMIP5 ensemble of opportunity (Sillmann et al., 2013) with199

a median resolution of about 200 km over roughly the same periods as Fig. 1. (We have200

excluded MIROC-ESM and MIROC-ESM-CHEM, as these have intermittent physically201

impossible high temperatures in the deserts.) The maps show less structure than the ob-202

served trends. This is partly due to the natural variability being averaged out and partly203

due to missing or misrepresented local forcings. Notably, in neither time period do the204

multi-model average represent the observed negative or neutral trends in TXx in cen-205

tral and eastern North America. The central great plains early heatwaves have been linked206

to rapid devegetation in the 1930s associated with the dustbowl drought, which led to207

record heatwaves at the time not yet superseded (Cowan, Hegerl, et al., 2020; Cowan,208

Undorf, et al., 2020). A factor in the negative trends in the eastern US may be down-209

stream effects of increasing irrigation further west (DeAngelis et al., 2010) from the 1950s210

onwards, coinciding with a positive precipitation trend (Portmann et al., 2009b; Kirt-211

man et al., 2013). Changes in agricultural practices leading to higher evaporation have212

also been implicated (Changnon et al., 2003). It has been speculated that revegetation213

after the decline of agriculture might also have been a factor (Portmann et al., 2009b).214

The CMIP5 models do not include cooling due to irrigation, which leads to biases in trends215

over the US, Iran, Pakistan, and India (Thiery et al., 2017; Mueller et al., 2016) although216

some specialized simulations do (Lobell & Bonfils, 2008; Lawston et al., 2020). They fur-217

thermore likely misrepresent the warming effect of black carbon and the cooling effect218

of sulfate aerosols over India (Padma Kumari et al., 2007) nor are they forced with rapid219

vegetation changes (Cowan, Undorf, et al., 2020).220

While Fig. 3 does show a stronger warming trend over Europe than in other parts221

of the world, the multi-model average does not accurately represent the much higher ob-222

served trends in western Europe (Min et al., 2013) or southeastern Australia (van Old-223
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a)

b)

Figure 3. Trend in the highest maximum temperature of the year (TXx) as a regression on

4-yr smoothed global mean surface temperature (GMST) as in Fig. 1a but the historical/RCP4.5

CMIP5 ensemble (Sillmann et al., 2013) for a) 1900–2019 and b) 1950–2019 using the ensemble

mean global mean temperature as covariate. Units: ◦C per ◦C global warming.
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a)                                                                                      b)                                                                                       c)

Figure 4. a) Histogram of the TXx trends at De Bilt in the CMIP5 (Taylor et al., 2011)

ensemble compared to the observed trend 1900–2019, both expressed as a regression on the

(modelled/observed) smoothed GMST. The standard deviation (s.d.) of natural variability is

estimated from models with three or more ensemble members. b) The same for 55 CORDEX

RCM/GCM combinations and observations using 1950-2019 or 1970-2019 depending on data

availability, and using observed GMST (1950-2019) as reference (Coppola et al., 2020). c) The

same for 30 realizations of the CESM Large Ensemble over the period 1920-2019 (Deser et al.,

2020). Units: ◦C per ◦C global warming.

enborgh, Krikken, et al., 2021). So far there has been little progress determining whether224

these discrepancies are due to missing or misrepresented local forcings (aerosols, land use,225

vegetation, irrigation), overly strong land surface drying in historical heatwaves, or due226

to natural variability, misrepresented feedbacks or changes in the observational meth-227

ods or their local surroundings. Two decades ago systematic errors in blocking frequency228

and persistence were a major source of biases in weather and climate models (Palmer229

et al., 1990), but in modern models these are realistic in the European summer (Vautard230

et al., 2020; Krikken et al., 2019; Iles et al., 2020) and thus not a reason for the persist-231

ing model deficiencies there.232

With respect to natural variability, we find in many locations that the discrepan-233

cies between observed and modelled trends are much larger than can be expected on the234

basis of natural variability and model spread alone. We use again De Bilt as an exam-235

ple, but the results are similar across Western Europe. Fig. 4a shows the histogram of236

trends in the CMIP5 models at the location of De Bilt over 1900-2019, with models with237

N runs each entered with weight 1/N so that all models have equal weight. Model re-238

sults show the grid cell enclosing the observation station. If that is an ocean cell, then239

the nearest cell to the east or west is used (van Oldenborgh, van der Wiel, et al., 2021).240

Only 6 of the 10 CSIRO ensemble members have trends higher than the observed one,241

all other models have lower trends. However, the CSIRO model places the Mediterranean242

warming trend too far north and underestimates the observed global warming trend by243

30%. Both these factors give a high trend in heatwaves relative to the global mean tem-244

perature rise, but for the wrong reasons: the climate of the Netherlands is not Mediter-245

ranean and the CSIRO global mean temperature rise is unrealistically low. The CMIP5246

ensemble thus fails to reproduce the observed trends, even though it includes all rele-247

vant natural variability, including possible low-frequency effects from the subpolar gyre248

(Haarsma et al., 2015) and the model spread as proxy for model uncertainty.249

Fig. 4b shows the same for 55 RCM/GCM combinations at 11 km resolution of the250

CORDEX ensemble (Coppola et al., 2020; Vautard et al., 2021) for Europe, over 1951–251

2019 or 1971–2019 (depending on the models’ data availability). In this comparison the252

observed trend is larger than all modelled trends. This again implies that in this case253

natural variability is unlikely to be the driver behind the strong increase in heatwaves254

that are at the moment not correctly represented in climate models. These models have255

–9–
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much higher resolution than the CMIP5 models (median resolution 200km) so the prob-256

lem is not simply solved by going to higher resolution, but also need other improvements.257

The recent development of large single model ensembles (Deser et al., 2020) pro-258

vides an opportunity to better quantify natural variability of extreme temperatures and259

place observed trends in that context (Tebaldi et al., 2021),. Fig. 4c shows that a his-260

togram of the 1920-2019 De Bilt temperature trends from the Community Earth Sys-261

tem Model Large Ensemble (CESM1 LENS) fails to include the observed trend. As for262

the CMIP5 and CORDEX multi-model ensembles, the modeled trends are lower than263

observed. We note that variability in mean temperature trends can be overestimated in264

large ensembles (McKinnon et al., 2017) further suggesting that important processes are265

missing. Nonetheless, we encourage the modeling community to expand large ensemble266

simulations to the DAMIP single forcing scenarios (Gillett et al., 2016) to aid in attri-267

bution studies.268

For other regions where ensembles of models do not reproduce the observed trends269

in heatwaves, either too high or too low, similar conclusions that factors in addition to270

natural variability must be considered, as for instance shown qualitatively in India (van271

Oldenborgh et al., 2018a). For eastern North America, the agreement of models includ-272

ing realistic land use changes with observations (Cowan, Hegerl, et al., 2020) suggests273

a limited role of natural decadal variability of the atmosphere, which is in agreement with274

the low correlation between the natural decadal variability and longer term trends in tem-275

perature extremes (van Oldenborgh et al., 2012). While the trends shown in figure 4 show276

that the actual probability of extreme heat in De Bilt is higher than the CMIP5, CORDEX277

and the CESM1 LENS ensembles can produce, often the opposite is the case. As Knutson278

(2017) discusses, statements of “attribution without detected changes” in observations279

can still be useful, albeit with lower confidence than when observed and simulated trends280

are mutually consistent.281

5 Biases in variability282

These biases in the trend are not the only problem. In particular, to accurately at-283

tribute change in probability of extreme events to anthropogenic climate change the vari-284

ability of the extremes in the model is as important as the trend. In the case of heat-285

waves the upper limit of the probability of an event in the current climate divided by286

its probability in a climate without global warming (commonly referred to as the prob-287

ability ratio, PR) rises with increasing variability (Philip et al., 2020). Almost all cli-288

mate models analysed have unrealistically high variability, with factors of 1.5 to 6 higher289

scale parameters in GEV fits of the high tail in Europe (Leach et al., 2020) and this bias290

is also apparent in subtropical and tropical regions (Freychet et al., 2021). Overestima-291

tion of the variability in extreme temperatures by climate models undermines confidence292

in our understanding of heatwave trends (Kew et al., 2019; Vautard et al., 2020; van Old-293

enborgh, Krikken, et al., 2021) as none of the models pass a frequently employed model294

evaluation test (Philip et al., 2020), demanding that the model GEV fits are compat-295

ible (within the sampling uncertainty) with the observed GEV fit of the observations.296

In such cases, best estimate attribution statements should not be made. However, this297

inconsistency between models and observations does not preclude placing conservative298

lower bounds on the human influence of heatwaves. The overestimation in the variabil-299

ity of extreme temperatures remains unexplained and could result from several processes,300

e.g., excessive land-atmosphere-cloud-precipitation feedbacks (Miralles et al., 2019).301

6 Conclusions302

While large scale changes in mean temperature are well understood, changes in lo-303

cal and regional heatwaves, particularly, daytime maxima, are much harder to simulate304

and hence attribute. This failure to understand today’s observed trends and the discrep-305
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ancies between the modelled and observed trends and variability also hinders confidence306

in projections of the future trends. The extrapolation of the observed trends shown in307

Fig. 1a is very different from the simulated trends from climate model output over the308

same period in Fig. 3.309

Heatwaves on the scales people experience them are strongly influenced by the lo-310

cal energy budget that determines the use of energy between evaporation and heating,311

set by the land surface, vegetation, irrigation and urbanisation. Other factors such as312

circulation changes or aerosols may also be important and feedbacks may well be mis-313

represented in climate models during these extreme circumstances. Many of these drivers314

and feedbacks are not well-simulated in current climate models as evidenced by strik-315

ing discrepancies between observed and modelled trends and variability in certain regions316

of the globe. We have shown above that the discrepancies cannot always be explained317

by natural variability and in some cases are well outside the range of CMIP historical318

simulations even in well understood regions (Cowan, Undorf, et al., 2020; van Oldenborgh319

et al., 2018b). Diffenbaugh et al. (2017) use four performance metrics to compare ob-320

served and simulated trends in TXx finding broad regions, mostly in Eurasia, where mod-321

els are deemed adequate. But they also reject the parts of North America we discussed322

in section 1. (India was not included in their analyses of TXx). We have also shown that323

the failure of climate models to represent trends in heatwaves does not change with the324

resolution of the model nor can a previously observed failure in climate models to rep-325

resent atmospheric blocking be identified in the current generation of models.326

On the other hand, process studies have indicated a strong role of surface condi-327

tions such as vegetation and moisture availability, suggesting that adapting local veg-328

etation and moisture conditions may be able to moderate, to an extent, extreme local329

heat (e.g., Stone Jr et al. (2014); Heaviside et al. (2017)). We have further highlighted330

that recent studies indicate that the overestimation of trends in regions like North Amer-331

ica and India could be due to a misrepresentation of local irrigation and aerosol effects.332

Given no corresponding trends in either of these drivers in regions where models con-333

siderably underestimate trends in extreme heat this cannot be the explanation for all de-334

ficiencies. Similarly, while changes in measurement technique and location can explain335

some discrepancies, they are very unlikely to explain the systematic and widespread dis-336

crepancies.337

This leaves still an uncomfortably large list of potential reasons for our current lack338

of understanding of the drivers of extreme heat, including land use changes and soil mois-339

ture, aerosol effects and atmosphere feedbacks as well as circulation effects other than340

blocking. Until we simulate realistic effects of all relevant drivers and feedbacks such that341

these properties agree within the uncertainties of natural variability of the weather in342

our climate model simulations, we cannot give confident estimates for the change in fre-343

quency and intensity in heatwaves due to anthropogenic global warming up to today in344

those areas where these missing processes are important, but only lower or upper bounds.345

Nor can we confidently trust the projections of future heatwaves there. There remain346

three possible broader reasons for divergence between observed and simulated heat ex-347

tremes at the scales that affect people. First, the possibility that the models are right,348

but are being given incomplete local information such as missing land surface feedbacks349

and use changes, etc. Second, the possibility that the models are truly incorrect and would350

not have captured observed trends even if these regionally-specific matters were fully in-351

corporated in the modeling framework. Third, that natural variability at local scales pre-352

dominates over anthropogenic forcing and that the models either do not simulate inter-353

nal variability correctly or our ensembles are not large enough to capture it. Careful sim-354

ulation and evaluation of historic events in the context of natural variability helps dis-355

tinguish these contributing factors. In our view it is thus an immensely important pri-356

ority for climate model development studies to focus on extreme heat, the deadliest and357

most immediate effect of human-induced climate change.358
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Eulogy359

Geert Jan van Oldenborgh passed away on October 12, 2021 before he could re-360

spond to the reviewers’ comments. While we mourn the loss of our friend and colleague,361

we celebrate his life in this, his final scientific paper. His contributions to the science of362

extreme weather event attribution were immense and will continue to influence us and363

many others as we continue to understand the effects of global warming on extreme weather.364
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