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Abstract
The likelihood function plays a crucial role in statistical inference and experimen-
tal design. However, it is computationally intractable for several important classes 
of statistical models, including energy-based models and simulator-based models. 
Contrastive learning is an intuitive and computationally feasible alternative to like-
lihood-based learning. We here first provide an introduction to contrastive learning 
and then show how we can use it to derive methods for diverse statistical problems, 
namely parameter estimation for energy-based models, Bayesian inference for simu-
lator-based models, as well as experimental design.

Keywords Contrastive learning · Energy-based models · Simulator-based models · 
Parameter estimation · Bayesian inference · Bayesian experimental design

1 Introduction

Contrastive or self-supervised learning is an intuitive learning principle that is being 
used with much success in a broad range of domains, e.g. natural language process-
ing (Mnih and Kavukcuoglu 2013; Kong et al. 2020), image modelling (Gutmann 
and Hyvärinen 2013; Aneja et al. 2021) and representation learning (Gutmann and 
Hyvärinen 2009; van den Oord et al. 2018; Chen et al. 2020) to name a few. It is a 
computationally feasible yet statistically principled alternative to likelihood-based 
learning when the likelihood function is too expensive to compute and, thus, has 
wide applicability.
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In this paper, we focus on the statistical side of contrastive learning rather than on 
a particular application domain. We first explain the principles of contrastive learn-
ing and then show how we can use it to solve a diverse set of difficult statistical 
tasks, namely (1) parameter estimation for energy-based models, (2) Bayesian infer-
ence for simulator-based models, as well as (3) experimental design. We will intro-
duce these problems in detail and explain when and why likelihood-based learning 
becomes computationally infeasible. The three problems involve different models as 
well as tasks—inference versus experimental design. They are, thus, notably differ-
ent from each other, which highlights the broad usage of contrastive learning. Yet, 
they share common technical barriers which we will work out and show how con-
trastive learning tackles them.

We focus on contrastive learning, but this should not give the impression that it 
is the only statistical technique that may be used to deal with any one of the three 
problems mentioned above. We will not have space to review alternatives in detail 
and refer the reader in the relevant sections to related work that deals with each of 
the statistical problems on their own.

The paper is organised as follows: In Sect.  2, we provide background on like-
lihood-based learning and experimental design, and then introduce energy-based 
and simulator-based models, explaining why they both typically lead to intractable 
likelihood functions. In Sect.  3, we introduce contrastive learning, explaining the 
basic idea and introducing its two main ingredients, namely the loss function and the 
construction of the contrasting reference data. In Sect. 4, we then apply contrastive 
learning to the three aforementioned statistical problems.

2  Computational issues with likelihood‑based learning and design

We first briefly review the likelihood function and its use in learning and experi-
mental design. We then introduce two different classes of statistical models, namely 
energy-based models and simulator-based models, and explain why their likelihood 
function is typically intractable.

2.1  Likelihood function

The likelihood function L(�) is classically the main workhorse to solve inference and 
design tasks. Loosely speaking, it is proportional to the probability that the model 
generates data � that is similar to the observed data �o when using parameter value 
� . Here, � , as well as as �o , denotes generic data that may be a collection of inde-
pendent data points or e.g. a time series. More formally, the likelihood function can 
be expressed as the limit

where B�(�o) is an �-ball around the observed data �o and c� is a normalising term 
that ensures that L(�) is non-zero if Pr(� ∈ B�(�o)|�) tends to zero for � → 0.

(1)L(�) = lim
�→0

c� Pr(� ∈ B�(�o)|�),
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For models expressed as a family of probability density functions (pdfs) {p(�|�)} 
indexed by � , the likelihood function is simply given by

For maximum likelihood estimation, we then solve the optimisation problem

while for Bayesian inference with a prior pdf p(�) , we compute the conditional pdf

or sample from it via Markov chain Monte Carlo (MCMC, e.g. Green et al. 2015). 
Both maximum likelihood estimation and Bayesian inference are generally compu-
tationally intensive unless p(�|�) exhibits structure (e.g. independencies or func-
tional forms) that can be exploited.

For experimental design, we include a dependency on the design variable � in 
our model, so that the family of model pdfs is given by {p(�|�, �)} . Whilst there are 
multiple approaches to experimental design (Chaloner and Verdinelli 1995; Ryan 
et al. 2016), we here consider the case of Bayesian experimental design for param-
eter estimation with the mutual information between data and parameters as the util-
ity function. The design task is then to determine the values of � that achieve maxi-
mal mutual information, i.e. to determine the design � that is likely to yield data that 
is most informative about the parameters. The design problem can be expressed as 
the following optimisation problem

where KL denotes the Kullback–Leibler divergence and MI� the mutual information 
for design � . The mutual information is defined via expectations (integrals), namely 
the outer expectation over the joint p(�,�|�) as well as the expectation defining the 
marginal p(�|�) in the denominator, i.e.

where we have assumed that the prior p(�) does not depend on the design � as com-
monly done in experimental design. These expectations usually need to be approxi-
mated, e.g. via a sample average.

Learning, i.e. parameter estimation or Bayesian inference, and experimental 
design typically have high computational cost for any given family of pdfs p(�|�) 

(2)L(�) ∝ p(�o|�).

(3)�̂ = argmax
�
p(�

o
|�);

(4)p(�|�o) =
p(�o|�)
p(�o)

p(�), p(�o) = ∫ p(�o|�)p(�)d�,

(5)�̂ = argmax�MI�(�,�),

(6)MI�(�,�) = KL(p(�, �|�)||p(�|�)p(�|�))

(7)= �p(�,�|�) log

[
p(�|�, �)
p(�|�)

]
,

(8)p(�|�) = ∫ p(�|�, �)p(�)d�,
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or p(�|�, �) . However, not all statistical models are specified in terms of a family 
of pdfs. Two important classes that we deal with in this paper are the energy-based 
and the simulator-based models (also called unnormalised and implicit models, 
respectively). The two models are rather different but their common point is that 
high-dimensional integrals needed to be computed to evaluate their pdf, and hence 
the likelihood. These integrals render standard likelihood-based learning and experi-
mental design as reviewed above computationally intractable.

2.2  Energy‑based model

Energy-based models (EBMs) are used in various domains, for instance to model 
images (e.g. Gutmann and Hyvärinen 2013; Du and Mordatch 2019; Song et  al. 
2019) or natural language (e.g. Mnih and Kavukcuoglu 2013; Mikolov et al. 2013), 
and have applications beyond modelling in out-of-distribution detection (Liu et al. 
2020). They are specified by a real-valued energy function E(�;�) that defines the 
model up to a proportionality factor, i.e.

The exponential transform ensures that �(�;�) ≥ 0 and strict inequality holds for 
finite energies. Note that larger values of E(�;�) correspond to smaller values of 
p(�|�) . The quantity �(�;�) is called an unnormalised model. This is because the 
integral

is typically not equal to one for all values of � . The integral is a function of � called 
the partition function. It can be used to formally convert the unnormalised model 
�(�;�) into the normalised model p(�;�) via

However, this relationship is only a formal one since the integral defining the parti-
tion function Z(�) can typically not be solved analytically in closed form and deter-
ministic numerical integration becomes quickly infeasible as the dimensionality of 
� grows (e.g. four or five dimensions are often computationally too costly already).

EBMs make modelling simpler because specifying a parametrised energy 
function E(�;�) is often much simpler than specifying p(�|�) . The reason is that 
we indeed do not need to be concerned with the normalisation condition that 
∫ p(�|�)d� = 1 for all values of � . This enables us, for instance, to use deep neural 
networks to specify E(�;�) . The flip side of this relaxation in the modelling con-
straint is that Z(�) can generally not be computed, which means that p(�|�) and the 
likelihood function L(�) are computationally intractable. An additional issue with 
energy-based models is that sampling from them typically requires MCMC methods, 

(9)p(�|�) ∝ �(�;�), �(�;�) = exp(−E(�;�)).

(10)Z(�) = ∫ �(�;�)d�

(11)p(�|�) = �(�;�)

Z(�)
.
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which is difficult to scale to the data dimensions of, e.g. text or images (Nijkamp 
et al. 2020; Grathwohl et al. 2021).

To see the importance of the partition function, consider the simple toy example

with x ∈ ℝ and parameter 𝜎 > 0 . This corresponds to an unnormalised Gaussian 
model. The partition function here is well known and equals

For n data points {x1,… , xn} , the log-likelihood �(�) , thus, is

Note that the term from the partition function does not depend on the data but on 
the parameter � , which crucially contributes to the log-likelihood function. It mono-
tonically decreases as � increases while the data-dependent term from the energy 
monotonically increases. This leads to a log-likelihood function with a well-defined 
optimum as illustrated in Fig. 1.

The contribution of the (log) partition function on the (log) likelihood function 
has two consequences: First, we cannot simply ignore the partition function if it 
is difficult to compute. In the simple Gaussian example in Fig. 1, the maximum of 
the term due to the energy is achieved for � → ∞ irrespective of the data, which 
is not a meaningful estimator. Second, if we approximate the partition function, 
possible errors in the approximation may shift the location of the maximum, and 
hence affect the quality of the estimate.

2.3  Simulator‑based model

Simulator-based models (SBMs) are another widely used class of models. They 
occur in multiple fields, for instance genetics (e.g. Beaumont et  al. 2002; Mar-
ttinen et  al. 2015), epidemiology (e.g. Allen 2017; Parisi et  al. 2021), systems 
biology (e.g. Wilkinson 2018), cosmology (e.g. Schafer and Freeman 2012) or 

(12)p(x;�) =
exp(−E(x;�))

Z(�)
, E(x;�) =

x2

2�2

(13)Z(�) =
√
2��2.

(14)�(�) = log

n∏

i=1

exp(−E(xi;�))

Z(�)

(15)= −n log Z(�) −

n∑

i=1

E(xi;�)

(16)
= −

n

2
log(2��2)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
from partition function

−
1

2�2

n∑

i=1

x2
i

⏟⏞⏞⏟⏞⏞⏟
from the energy

.
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econometrics (e.g. Gouriéroux and Monfort 1996), just to name a few. Different 
research communities use different names so that SBMs are also known as e.g. 
implicit models (Diggle and Gratton 1984) or stochastic simulation models (Har-
tig et al. 2011).

SBMs are specified via a measurable function g that is typically not known in 
closed form but implemented as a computer programme. The function g maps 
parameters � and realisations of some base random variable � to data � , i.e.

where p(�) denotes the pdf of � . Without loss of generality, we can assume that � 
are a collection of independent random variables uniformly distributed on the unit 
interval.

The distribution of � is defined by g and the distribution of � : The probability 
that � takes on some values in a set A is defined as

where the probability on the right-hand side is computed with respect to the distri-
bution of � . The randomness of � implies the randomness on the level of � and the 
function g is, thus, said to “push forward” the distribution of � to � . Determining the 

(17)� = g(�,�), � ∼ p(�),

(18)Pr(� ∈ A|�) = Pr({� ∶ g(�,�) ∈ A}),

Fig. 1  The log-likelihood function �(�) has two components that balance each other: the term due to 
the partition function monotonically decreases; while the term due to the energy function monotonically 
increases. The balance between the two terms leads to a likelihood function �(�) with a well-defined 
optimum
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set of all � that are mapped to A for a given � corresponds to the problem of deter-
mining the inverse image of A under g, see Fig. 2.

Whilst the distribution of � is well defined for a given value of � (assuming 
that some technical measure-theoretical conditions on g hold), writing down or 
computing the conditional pdf p(�|�) given the pdf p(�) becomes quickly prob-
lematic when g is not invertible. Moreover, in case of simulator-based models, 
we typically do not know a closed-form expression for g, which makes comput-
ing, or exactly evaluating, p(�|�) impossible.

The main advantage of SBMs is that they neatly connect the natural sciences 
with statistics and machine learning. We can use principled tools from statistics 
and machine learning to perform inference and experimental design for models 
from the natural sciences. The flip side, however, is that the likelihood func-
tion—the key workhorse for inference and experimental design—is typically 
intractable because the conditional pdf p(�|�) is intractable.

Fig. 2  The distribution of � in a simulator-based model is defined by the inverse image of the intractable 
mapping g(�,�) that maps base random variables � to data � , and the inverse image changes when � is 
varied. The mapping g is typically not known in closed form but implemented as a computer programme. 
This setup makes evaluating p(�|�) typically impossible
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3  Contrastive learning

Contrastive learning is an alternative to likelihood-based learning when the 
model pdf and hence likelihood function is intractable. We first explain the basic 
idea and then discuss the two main ingredients of contrastive learning: the loss 
function and the choice of the contrast, or reference data.

3.1  Basic idea

The basic idea in contrastive learning is to learn the difference between the data 
of interest and some reference data. The properties of the reference are typically 
known or not of interest; by learning the difference, we, thus, focus the (computa-
tional) resources on learning what matters.

Assuming that we are interested in a quantity a and that our reference is b, we 
can deduce a from b when we know the difference between them:

This straightforward equation captures much of the essence of contrastive learning. 
This means that if we have some reference b available, we can learn about a by con-
trasting a with b rather than by starting from scratch.

There is an immediate link to (log) ratio estimation (e.g. Sugiyama et  al. 
2012a) when we let the quantity of interest and reference be log pa and log pb , 
respectively,

Here, contrasting a with b means learning the log-ratio log pa − log pb . This con-
nects to logistic regression, and hence classification, which we will heavily exploit 
in this paper. The connection to classification makes intuitive sense since learning 
the difference between data sets is indeed what we need to do when solving a clas-
sification problem.

Denoting the log-ratio log pa − log pb by h, let us write the above equation as

We can, thus, express pa as a change of measure from pb where the learned log-ratio 
(difference) h determines the change of measure.

There is also a direct connection to Bayesian inference because Bayes’ rule

can be rewritten in the style of (20) as

(19)
b

⏟⏟⏟
reference

+ a − b
⏟⏟⏟
difference

⇒ a
⏟⏟⏟
interest

.

(20)
log pb
⏟⏟⏟
reference

+ log pa − log pb
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

difference

⇒ log pa
⏟⏟⏟
interest

.

(21)pa = exp(h)pb.

(22)p(�|�) = p(�, �)

p(�)
=

p(�|�)p(�)
p(�)
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with the log posterior as our quantity of interest log pb , the log prior as our reference 
log pa , and their difference (the “contrast”) proportional to the log likelihood. This 
reflects the role of the likelihood function in Bayesian inference as the quantity that 
transforms the prior belief into an unnormalised posterior belief.

3.2  Loss functions

In the following, we focus on the logistic, or log, loss as done in early work on 
contrastive learning to estimate energy-based models, i.e. noise-contrastive esti-
mation (NCE, Gutmann and Hyvärinen 2010, 2012). However, other loss func-
tions can be used, e.g. Bregman divergences (Gutmann and Hirayama 2011; Sugi-
yama et al. 2012b) or f-divergences (Nowozin et al. 2016), see also Mohamed and 
Lakshminarayanan (2017), Poole et al. (2019).

Given data of interest �o = {�1,… , �n} , with �i ∼ p (iid), and reference data 
{�1,… , �m} , �i ∼ q (iid), let us label the data points as follows. The �i become 
tuples (�i, 1) and the �i become tuples (�i, 0) . Learning the difference between the 
�i and �i can then be cast as a problem of predicting the label for test points, 
which corresponds to classification.

A popular loss function for classification is the logistic loss, which means that 
we perform classification via (nonlinear) logistic regression. We denote this loss, 
normalised by the number of data points n, by J(h),

where � = m∕n and the parameter of the loss is the function h. The minimal loss 
is achieved for a function h that assigns large positive numbers to the �i and large 
negative numbers to the �i . It can be shown (e.g. Gutmann and Hyvärinen 2012; 
Thomas et al. 2020) that for large sample sizes n and m (and fixed ratio � ), the opti-
mal regression function h equals

This means that by solving the classification problem via logistic regression we 
learn the density ratio between p and q. This important result reflects the connec-
tion between the different concepts discussed above, namely contrastive learning, 
classification via logistic regression, and density ratio estimation. The result implies 
consistency of the estimator for parametric models and finite amount of data under 
some technical conditions (e.g. Amemiya 1985, Chapter 4).

Further important properties of the logistic loss are: 

1. The optimal h∗ in (25) is “automagically” the difference between two log densi-
ties. This holds without us having to specify that h should take this particular 

(23)
log p(�)
⏟⏟⏟
reference

+ log p(�|�) − log p(�)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

difference

⇒ log p(�|�)
⏟⏞⏞⏟⏞⏞⏟

interest

,

(24)J(h) =
1

n

n∑

i=1

log
[
1 + � exp(−h(�i))

]
+

�

m

m∑

i=1

log
[
1 +

1

�
exp(h(�i))

]
,

(25)h∗ = log p − log q.
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form. We will exploit this property in the estimation of unnormalised models, as 
well as in the Bayesian inference and experimental design for simulator-based 
models.

2. We only need samples from p and q; we do not need their densities or models. 
This is important because we do not need to specify properly normalised pdfs as 
in likelihood-based learning and experimental design. However, we do need to 
model their ratio. This can be exploited as a modelling tool because it may often 
be easier to specify how the data of interest differs from the reference rather than 
specifying a parametric family of pdfs from scratch.

Both properties will be heavily exploited in the applications of contrastive learning to 
statistical inference and experimental design. Other loss functions mentioned above 
have the same properties.

When the sample sizes n and m are arbitrarily large, by the law of large numbers, the 
sample averages over �i and �i in (24) become expectations with respect to the densities 
p and q, respectively. Denote the corresponding limiting loss function of J(h) in (24) by 
J̄𝜈(h) . Below, we will denote the limiting loss function in case of � = 1 by J̄(h).

It is illustrative to consider the minimal loss J̄𝜈(h∗) that is achieved by h∗,

Setting � = 1 and introducing the mixture density m = (p + q)∕2 , we can write the 
above in terms of two Kullback–Leibler divergences, which furthermore can be 
expressed as the Jensen–Shannon divergence (JSD) between p and q,

Since J̄(h) ≥ J̄(h∗) , we have the following bound

We can, thus, think that minimising J̄(h) with respect to h leads to a variational esti-
mate of the negative Jensen–Shannon divergence between p and q up to a known 

(26)J̄𝜈(h
∗) = ��∼p log

[
1 + 𝜈

q(�)

p(�)

]
+ 𝜈��∼q log

[
1 +

p(�)

𝜈q(�)

]

(27)= ��∼p log

[
p(�) + �q(�)

p(�)

]
+ ���∼q log

[
�q(�) + p(�)

�q(�)

]

(28)= −��∼p log

[
p(�)

p(�) + �q(�)

]
− ���∼q log

[
�q(�)

�q(�) + p(�)

]
.

(29)J̄(h∗)
𝜈=1
= −��∼p log

[
p(�)

p(�) + q(�)

]
− ��∼q log

[
q(�)

q(�) + p(�)

]

(30)= −KL(p||m) − KL(q||m) + 2 log 2

(31)= −JSD(p, q) + 2 log 2.

(32)J̄(h) ≥ −JSD(p, q) + 2 log 2.
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additive constant, which can be used to quantify the difference between p and q in 
the constructed classification problem.

3.3  Reference data

Much of the creative aspect of contrastive learning lies in the choice of the ref-
erence data. The choice depends on the application of contrastive learning, e.g. 
whether we are interested in model estimation or Bayesian inference. While 
intuition can partly guide the choice, establishing optimality results is an open 
research direction.

A simple option is to fit a preliminary model to the observed data �o and to use 
data generated from the model as the reference. This has been done in the first work 
on estimating energy-based models with contrastive learning (noise-contrastive 
estimation, Gutmann and Hyvärinen 2012). An extension is to iterate the above 
approach so that the fitted model in one iteration becomes the reference distribution 
in the next. Simulation results by Gutmann and Hyvärinen (2010) showed that this 
improved estimation accuracy compared to the “static” approach where the refer-
ence (noise) distribution was kept fixed. The reason for this is that at the start of a 
new iteration, the reference data includes all the information of the real data that was 
captured by the model so far, and a model-based classifier would not be able to dis-
tinguish between the reference data and the real data. The iteration forces the system 
to focus on the aspects of the real data that have not yet been captured by the model.

A further option is to create the reference data conditional on each observed data 
point so that each reference data point is paired with an observed data point. This is 
useful if the observed data lie on a lower-dimensional manifold for which fitting a 
preliminary model may be difficult (Ceylan and Gutmann 2018).

In the iterative scheme above, each iteration essentially resets the classifica-
tion performance to a 50% chance level. However, rather than periodically reset-
ting the classification performance, one can also continuously update the reference 
distribution to push the classification performance towards chance level. This kind 
of iterative adaptive approach, which is known as “adversarial training”, has been 
used to estimate the parameters of a generative model specified by a neural network 
(Goodfellow et  al. 2014, generative adversarial networks,). The generative model 
can be seen to correspond to a simulator-based model where the function g in (17) 
is given by a neural network and the parameters � that we would like to estimate are 
its weights. A similar adaptive scheme has been proposed by Gutmann et al. (2014, 
2018) for both point and posterior estimation of general simulator-based models, see 
also the review by Mohamed and Lakshminarayanan (2017).

A complementary perspective is given by the variational bound in (32): learning 
the nonlinear regression function h provides us with an estimate of the Jensen–Shan-
non divergence between the data distribution and the reference, and the adap-
tive updating of the reference distribution q corresponds to a further optimisation 
that pushes the reference distribution q towards the data distribution p so that the 
Jensen–Shannon divergence between them is minimised.
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Gao et al. (2020) used such an iterative adaptive scheme to learn an energy-based 
model choosing as reference distribution a normalising flow (see Papamakarios et al. 
2021, for a comprehensive introduction to normalising flows). The normalising flow 
is continuously updated with the learning of the energy-based model to provide a 
strong reference distribution. As in case of the generative adversarial network above, 
the complementary perspective is that the flow is learned by (approximately) mini-
mising the Jensen–Shannon to the data distribution. The benefit of this approach 
is twofold: On the one hand, the method enables the learning of an energy-based 
model in high-dimensions and is well suited for semi-supervised learning. On the 
other hand, the learned flow is by itself of interest since (a) it allows for exact sam-
pling and (b) it is normalised and, thus, allows for likelihood evaluations.

When modelling time-series data, Hyvärinen and Morioka (2016) proposed to 
use windows of the time-series itself as the reference data. Under certain assump-
tions, this approach was shown to enable the estimation of independent components 
in a nonlinear time-series model (Hyvärinen and Morioka 2016).

For Bayesian inference and experimental design, a natural choice of the reference 
data is to use the prior predictive distribution in line with the intuition in Sect. 3.1. 
This can be used to estimate the posterior distribution for simulator-based models 
and to perform experimental design as we will discuss below.

Fig. 3  Logistic loss to learn the difference between a standard normal distribution and a Gaussian with 
standard deviation � in 10 dimensions. The log-ratio was parametrised by one free parameter acting on 
the squared norm of the random variables. The loss function becomes flatter around the optimum as � 
increases, i.e. as the two distributions become more different
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A major difficulty in contrastive learning with logistic regression is that learning 
the difference between the reference and data distribution accurately is difficult if 
they are very different. Intuitively, highly different distributions correspond to easy 
classification problems so that the classifier does not need to learn a lot about the 
structure of the data sets to achieve good performance. Another view is that several 
different classification boundaries can achieve similar performance, so that the loss 
function is flat around the optimum, which causes a larger estimation error. Figure 3 
illustrates this behaviour in case of the logistic loss: the data follows a standard nor-
mal distribution and the reference is a Gaussian distribution with standard deviation 
𝛼 > 1 (in 10 dimensions). As � becomes larger, the reference distribution becomes 
more dissimilar from the data distribution and the loss function flatter around the 
optimum even though the scale of the loss function is about the same (and for large 
� , the optimal parameter value equals 0.5 for all �).

Rhodes et al. (2020) called this issues the “density chasm” problem and proposed 
a divide-and-conquer strategy to learn the ratio: Rather than attempting to learn the 
difference between pa and pb in one go, they introduce auxiliary distributions that 
anneal between pa and pb . The auxiliary distributions are constructed so that the 
differences between them are sufficiently small so that their ratio can be better esti-
mated, and the different estimates are then combined via a telescoping product (or 
sum in the log domain), i.e.

where the pi are the auxiliary densities. The functional form or a model of the auxil-
iary distributions does not need to be known since the method only requires samples 
from them. It is further possible to derive a limiting objective function when the 
number of auxiliary distributions K goes to infinity, which was shown to lead to 
improved performance and removes the need to choose K (Choi et al. 2021).

Telescoping density-ratio estimation by Rhodes et al. (2020), Choi et al. (2021) 
deals with the density chasm and the flat loss landscape by re-formulating the con-
trastive problem. A complementary algorithmic approach was taken by Liu et  al. 
(2021) who asked whether optimisation techniques can deal with the flat optimisa-
tion landscape of the logistic loss when there is a density chasm. They found that, 
in case of exponential families, normalised gradient descent can deal with the issue. 
Moreover, they showed that a polynomial convergence guarantee can be obtained 
when working with the exponential rather than the logistic loss. The exponential 
loss is, like the logistic loss, a Bregman divergence that was shown to provide a 
large family of loss functions for the contrastive learning of energy-based models 
(Gutmann and Hirayama 2011). The result by Liu et al. (2021) highlights that for 
some models, particular instances of the family of loss functions are more suitable 
than others.

(33)

log pa − log pb
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

large gap

= log pa − log p1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

small gap

+

K−1∑

k=1

(log pk − log pk+1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

small gap

+ log pm − log pb
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

small gap

,
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4  Applications in statistical inference and experimental design

We here show how we can use contrastive learning to estimate energy-based mod-
els and perform Bayesian inference and experimental design for simulator-based 
models.

4.1  Estimating energy‑based models

We introduced energy-based models (EBMs) in Sect. 2.2, pointing out that they 
are unnormalised models �(�;�) = exp(−E(�;�)) that are specified by an energy 
function E(�;�) . We have seen that standard maximum likelihood estimation can-
not be used to learn the parameters � if the partition function Z(�) in (10) is not 
available analytically in closed form.

Contrastive learning can be used to estimate energy-based models from data 
�o = (�1,… , �n) , �i ∼ p (iid) by introducing reference data (�1,… , �m) , �i ∼ q 
(iid) and estimating the log-ratio h∗ = log p − log q . An estimate ĥ , thus, provides 
an estimate of p when q is known,

where the factor exp(ĥ) is a form of exponential tilting or a change of measure from 
q to p in line with (21).

There are different ways to parametrise h: If we would like to estimate an 
energy-based model where �(�;�) has a specific form, we parametrise h as

From (34), we can see that q cancels out and hence

The parameter c allows for scaling of �(�;�) and can optionally be included if �(�;�) 
is not flexible enough. On the other hand, if we are not interested in estimating a 
specific model of a particular form, we may also parametrise h directly, e.g. as a 
deep neural network in unsupervised deep learning.

This principle to learn energy-based models was proposed by Gutmann and 
Hyvärinen (2010, 2012) using the logistic loss. They called the reference distri-
bution “noise” and the estimation principle hence “noise-contrastive-estimation”. 
The term “noise” should not be mis-understood to refer to unstructured data. As 
explained in Sect.  3, it can be structured and reflect our current understanding 
of the properties of the observed data �o . The above equations highlight two key 
conditions for the reference (noise) distribution q: (1) we need to be able to sam-
ple from it, (2) we need to know an analytical expression for it (strictly speaking, 
up to the normalisation constant only).

The fact that the model does not need to be normalised is due to property 1 of 
the logistic loss, namely that it yields the difference between two log densities, 
as in (25), without any normalisation constraints. Further loss functions with this 

(34)p̂ = exp(ĥ)q,

(35)h(�;�, c) = log�(�;�) − log q(�) + c.

(36)p̂(�) = exp(ĉ)𝜙(�;�̂).
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property were proposed by Pihlaja et al. (2010), Gutmann and Hirayama (2011), 
and Uehara et  al. (2020). Moreover, the telescoping approach by Rhodes et  al. 
(2020), and Choi et al. (2021) can also be used to learn h, improving upon the sin-
gle-ratio methods. For an overview of further methods to estimate energy-based 
models, we refer the reader to the recent review by Song and Kingma (2021), 
and for the case of energy-based models with latent (unobserved) variables to the 
work by Rhodes and Gutmann (2019).

In Sect.  3.3, we discussed an iterative approach where the estimated model 
from a previous iteration is used as reference (Gutmann and Hyvärinen 2010). 
Goodfellow (2014) related this approach to maximum likelihood estimation. We 
here provide a simplified proof of the relationship. Let the log-ratio h be para-
metrised by � and consider the loss function in (24) as function of �,

with �i ∼ q (iid) and � = m∕n . The gradient with respect to � is

Assume now that the reference data � follows the distribution of the model at itera-
tion t, i.e. p(.;�t) . For a parametrisation of h as in (35), we then have

and the �i ∼ p(.;�t) . The gradient of h(�;�, c) with respect to � is

and hence,

with �i ∼ p(.;�t) . Let us update � by gradient descent on J(�) via

where � is a small step-size. Note that in the evaluation of the gradient at �t , with 
(39), h(�i;�t, c) = h(�i;�t, c) = c + log Z(�t) , which is independent of �i and 
�i . Let us denote its value by bt . It measures the error in the normalisation of the 

(37)J(�) =
1

n

n∑

i=1

log
[
1 + � exp(−h(�i;�))

]
+

�

m

m∑

i=1

log
[
1 +

1

�
exp(h(�i;�))

]
,

(38)

∇
�
J(�) =

1

n

n∑

i=1

−� exp(−h(�i;�))

1 + � exp(−h(�i;�))
∇

�
h(�i;�)

+
1

m

m∑

i=1

exp(h(�i;�))

1 +
1

�
exp(h(�i;�))

∇
�
h(�i;�).

(39)h(�;�, c) = log�(�;�) − log p(�;�t) + c

(40)∇
�
h(�;�, c) = ∇

�
log�(�;�)

(41)

∇
�
J(�) =

1

n

n∑

i=1

−� exp(−h(�i;�))

1 + � exp(−h(�i;�))
∇

�
log�(�i;�)

+
1

m

m∑

i=1

exp(h(�i;�))

1 +
1

�
exp(h(�i;�))

∇
�
log�(�i;�)

(42)�t+1 = �t − �∇
�
J(�)||�=�t ,
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unnormalised model: bt is close to zero if the parameter c is close to the logarithm of 
the inverse partition function at �t , e.g. towards the end of the optimisation. Moreo-
ver, bt would be always zero in the special case of normalised models.

We, thus, obtain

and hence,

On the other hand, the gradient of the negative log-likelihood is

The average over the �i ∼ p(.;�t) in (45) is a Monte Carlo estimate of the derivative 
of the log-partition function, which is the second term in (46). Hence for bt = 0 , 
e.g. in case of normalised models, the gradient for contrastive learning with the 
logistic loss and p(.;�t) as reference distribution is a Monte Carlo approximation 
of the gradient of the negative log-likelihood (up to constant scaling factor that can 
be absorbed into the step-size). There is, thus, a clear connection between contras-
tive learning and maximum likelihood estimation: if, at every gradient step, we use 
the current model p(.;�t) as reference distribution, we follow noisy gradients of the 
(negative) log-likelihood.

This scheme, however, is typically computationally not feasible since sampling from 
p(.;�t) is prohibitively expensive. But we are not required to use at every iteration the 
current model. In contrastive learning, we are allowed to use the same “old” p(.;�t) to 
update the parameter � in the subsequent iterations. This results in a valid estimator 
(as in standard noise-contrastive estimation with a fixed reference distribution), but the 
gradient updates would not correspond to Monte Carlo approximations of the gradient 
of the negative log-likelihood.

A possibly simpler connection to maximum likelihood estimation can be obtained 
by considering the case of large � . Gutmann and Hyvärinen (2012) showed that for nor-
malised models, noise-contrastive estimation is asymptotically equivalent to maximum 
likelihood estimation in the sense that the estimator has the same distribution irrespec-
tive of the choice of the reference distribution q (as long as it satisfies some weak tech-
nical conditions). Moreover, Mnih and Kavukcuoglu (2013) showed that the gradient 

(43)
−� exp(−h(�i;�))

1 + � exp(−h(�i;�))
=

−� exp(−bt)

1 + � exp(−bt)

(44)
exp(h(�i;�))

1 +
1

�
exp(h(�i;�))

=
�

1 + � exp(−bt)

(45)

∇
�
J(�)||�=�t =

−�

1 + �e−bt

(
e−bt

n

n∑

i=1

∇
�
log�(�i;�) −

1

m

m∑
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∇
�
log�(�i;�)
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|||�=�t

.
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−∇
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converges to the gradient of the negative log-likelihood. We can see this from (38) for 
� → ∞ : With h(.;�) = log�(.;�) − log q(.) , and

taking the limit of � → ∞ in (38), thus, gives

where where have used that for � → ∞ , m = �n becomes arbitrarily large too, so 
that the average over the �i becomes an expectation with respect to q(�) . A more 
general result was established by Riou-Durand and Chopin (2018). Moreover, they 
further considered the case of finite � , but large sample sizes n, and showed that the 
variance of the noise-contrastive estimator is always smaller than the variance of the 
Monte Carlo MLE estimator (Geyer 1994) where the partition function is approxi-
mated with a sample average, assuming in both cases that the auxiliary/reference 
distributions were fixed.

4.2  Bayesian inference for simulator‑based models

Simulator-based models are specified by a stochastic simulator that is parametrised 
by a parameter � . While we can generate (sample) data � by running the simulator, 
the conditional pdf p(�|�) of the generated data is typically not known in closed 
form, see Sect. 2.3. This makes standard likelihood-based learning of the parameters 
� impossible. The problem of estimating plausible values of � from some observed 
data �o is called approximate Bayesian computation, likelihood-free inference, or 
simulator/simulation-based inference depending on the research community. For an 
introduction to the field, see the review papers by Lintusaari et  al. (2017); Sisson 
et al. (2018); Cranmer et al. (2020).

We related contrastive learning to Bayes’ rule in Sect. 3.1. This connection is not 
merely conceptual but can be turned into an inference method to estimate the poste-
rior pdf of the parameters � given observed data �o . Starting from Bayes’ rule in the 
log-domain,

(47)lim
�→∞

−� exp(−h(�;�))

1 + � exp(−h(�;�))
= −1

(48)lim
�→∞

exp(h(�;�))
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1
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,

(49)lim
�→∞

∇
�
J(�) = −

1

n

n∑

i=1

∇
�
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log�(�;�)

]
,

(51)log p(�|�) = log p(�) + log p(�|�) − log p(�),
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we can estimate p(�|�) by learning the difference (log-ratio) 
log p(�|�) − log p(�) = log p(�,�) − log[p(�)p(�)] by contrastive learning and then 
combining it with the prior. To learn the difference, we can exploit that the model 
is specified in terms of a simulator that generates data from p(�|�) , and hence also 
from the marginal (prior predictive) pdf p(�) = ∫ p(�)p(�|�)d� , which provides all 
the data that we need to learn the log-ratio. This approach to estimate the posterior 
was introduced by Thomas et al. (2016, 2020) and called “likelihood-free inference 
by ratio estimation”. An interesting property of this approach is that the learning 
of h can be performed offline, prior to seeing the observed data �o , which enables 
amortisation of the inference.

The logistic loss in (24) is among the several loss functions that can be used for 
contrastive learning of the posterior. A simple approach is to minimise

with �i ∼ p(�|�) (iid) and �i ∼ q (iid) with the contrastive distribution q being 
equal to the marginal p(�) . Due to (25), the optimal h is then indeed the desired 
log p(�|�) − log p(�) for any value of � . Note that we are here again exploiting prop-
erties 1 and 2 of the logistic loss highlighted in Sect. 3.2.

Since the optimal h is given by log p(�|�) − log p(�) for any � , we can further 
amortise the inference with respect to � by averaging the loss function over differ-
ent values of � . When averaging over samples from the prior p(�) , this amounts to 
contrasting samples (�,�) ∼ p(�|�)p(�) with samples (�,�) ∼ p(�)p(�) , which was 
used by Hermans et al. (2020) together with MCMC to perform Bayesian inference.

In the approach described above, we contrasted simulated data with simulated 
data in order to essentially learn the intractable model pdf p(�|�) . However, it is 
also possible to contrast the simulated data with the observed data to infer plausible 
values of � (Gutmann et al. 2014, 2018). For further information and connections 
to other work, including the learning of summary statistics, we refer the reader to 
(Pham et al. 2014; Thomas et al. 2016, 2020; Dinev and Gutmann 2018; Hermans 
et al. 2020; Durkan et al. 2020; Chen et al. 2021).

4.3  Bayesian experimental design for simulator‑based models

Let us now consider Bayesian experimental design for simulator-based models 
where the utility of an experiment is measured by the mutual information (MI) 
between the data and the quantity of interest (Chaloner and Verdinelli 1995; Ryan 
et al. 2016). For simplicity, we here consider the situation where we are interested in 
the parameters � of a model. For other cases such as model discrimination, see, e.g. 
(Ryan et al. 2016; Kleinegesse and Gutmann 2021).

With (7), we, thus, would like to solve the following optimisation problem

(52)J(h) =
1

n
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i=1

log
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1 + � exp(−h(�i))
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log
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]
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where � denotes the vector of design parameters. Since we are dealing with simula-
tor-based models, the densities in the log-ratio are not available in closed form. This 
is the same issue as in case of Bayesian inference for simulator-based models con-
sidered above. But the problem is exacerbated by the following two further issues: 

1. We need to know or evaluate the log ratio log p(�|�, �) − log p(�|�) for (theo-
retically) infinitely many � due to the expected value in (53), and not only the 
observed data �o as in Bayesian inference.

2. Furthermore, we not only need to evaluate the expected value of 
log p(�|�, �) − log p(�|�) but also maximise it with respect to � . This is typically 
done iteratively, which means that the log-ratios and expected values need to to 
re-estimated as � changes.

These issues make experimental design for simulator-based models by mutual infor-
mation maximisation a highly difficult problem.

Kleinegesse and Gutmann (2019) proposed to build on the properties of the like-
lihood-free inference by ratio estimation framework (Thomas et al. 2016, 2020) to 
deal with the issues. As discussed in Sect. 4.2, the method yields an amortised log-
ratio log p(�|�, �) − log p(�|�) where, depending on the setup, the amortisation is 
with respect to � and � , but not � , which allowed them to estimate the expected 
value in (53) via a sample average over the learned log-ratios. This approach partly 
deals with the first issue above. For the optimisation (issue 2), Kleinegesse and Gut-
mann (2019) used Bayesian optimisation (e.g. Shahriari et al. 2016), which enables 
gradient-free optimisation and smoothes out Monte Carlo errors due to the sample 
average.

The work by Kleinegesse and Gutmann (2019) considered the static setting where 
prior to the experiment, we would determine the complete design. The methodology 
was extended to the sequential setting where we have the possibility to update our 
belief about � as we sequentially acquire the experimental data, see (Kleinegesse 
et al. 2021) for further information.

Learning the log ratios and accurately approximating the MI is computation-
ally costly. However, we do not actually need to estimate the MI accurately every-
where. First, we are interested in the argument �̂ that maximises the MI rather than 
its value. Secondly, it is sufficient to be accurate around the optimum; cheaper but 
noisy or biased estimates of the MI and its gradient are sufficient during the search 
as long they lead us to �̂.

Such an approach was taken by Kleinegesse and Gutmann (2020, 2021) who con-
currently tightened a variational lower bound on the mutual information (or proxy 
quantities) and maximised the (proxy) MI. Important related work is Foster et  al. 
(2019, 2020). This approach to experimental design for simulator-based models 
achieves large computational gains because we avoid approximating the mutual 
information accurately for values of � away from �̂ . Kleinegesse and Gutmann 
(2021) showed that a large class off variational bounds are applicable and can be 
used for experimental design with various goal, e.g. parameter estimation or model 
discrimination.
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Let us consider a special case of the framework that uses contrastive learning via 
the logistic loss and the bound in (32). Reordering the terms gives the following 
lower bound on the Jensen–Shannon divergence between the two densities p and q,

where J̄(h) is the logistic loss in (24) for � = 1 and n,m → ∞ . Whilst the mutual 
information between data and parameters is defined in terms of the Kullback–Leibler 
(KL) divergence between the p(�, �|�) and p(�|�)p(�|�) , see (7), the Jensen–Shan-
non divergence has been found to be a practical alternative to the KL divergence due 
to its increased robustness (e.g. Hjelm et al. 2018).

The lower bound in (54) allows us to perform experimental design for simulator-
based models by letting p(�, �|�) and p(�|�)p(�|�) play the role of p and q, which 
means that J̄(h) becomes a function of h and implicitly also of � . Thus maximising 
−J̄(h) , or minimising the logistic loss J̄(h) , jointly with respect to h and � allows us 
to concurrently tighten the bound and find the optimal design �̂ . The optimisation of 
the logistic loss with respect to h essentially corresponds to likelihood-free inference 
by ratio estimation that we discussed in Sect. 4.2. Thus, we here obtain not only the 
optimal design �̂ but also an amortised estimate of the posterior p(�|�, �̂) , see (Klei-
negesse and Gutmann 2020, 2021) for further details.

Figure 4 illustrates this approach for the design of experiments to estimate the 
parameters of a stochastic SIR model from epidemiology. The model has two 
parameters: the rate � at which individuals are infected, and the rate � at which they 
recover. The model generates stochastic time-series of the number of infected and 

(54)JSD(p, q) ≥ −J̄(h) + 2 log 2,

Fig. 4  Experimental design and posterior inference by maximising a lower bound on the Jensen–Shan-
non divergence (JSD) via the logistic loss. The example considers the design of measurement points in 
a stochastic SIR model in epidemiology. The quantities of interest are the infection rate and the recovery 
rate. Left top row: optimisation of the JSD lower bound. Left bottom row: learning trajectories of the 
optimal designs. Right: prior and estimated posterior for data acquired at the optimal design. The data 
was simulated with the ground-truth parameters indicated with a red cross. See Kleinegesse and Gut-
mann (2021) for details
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recovered people in a population and the design problem is to determine the times at 
which to measure these populations in order to best learn the parameters (see Klei-
negesse and Gutmann (2021) for a detailed description of the setup). The top-left 
plot in Fig. 4 shows the maximisation of the lower bound in (54) and the bottom-left 
plot shows the corresponding trajectories of the optimal designs. The sub-figure on 
the right shows the prior and estimated posterior for data acquired at the optimal 
design, i.e. the optimal measurement points.

If the simulator-based models are implemented such that automatic differentia-
tion is supported, gradient-based optimisation is possible, which enables experimen-
tal design with higher-dimensional design vectors � . Furthermore, rather than opti-
mising with respect to � directly, it is also possible to learn a policy which outputs 
the designs � , which enables adaptive sequential design for simulator-based models 
(Ivanova et al. 2021).

5  Conclusions

The likelihood function is a main workhorse for statistical inference and experimen-
tal design. However, it is computationally intractable for several important classes 
of statistical models, including energy-based models and simulator-based models. 
This makes standard likelihood-based learning and experimental design impossible 
for those models. Contrastive learning offers an intuitive and computationally fea-
sible alternative to likelihood-based learning. We have seen that contrastive learn-
ing is closely related to classification, logistic regression, and ratio estimation. By 
exploiting properties of the logistic loss, we have shown how contrastive learning 
can be used to solve a range of difficult statistical problems, namely (1) parame-
ter estimation for energy-based models, (2) Bayesian inference for simulator-based 
models, and (3) Bayesian experimental design for simulator-based models. Whilst 
we focused on the logistic loss, we have pointed out that other loss functions can be 
used as well. The relative benefits and possible optimality properties of the different 
loss functions, as well as the reference data that are needed for contrastive learning, 
remain important open research questions.
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