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Fast and robust single-exponential decay recovery
from noisy fluorescence lifetime imaging

Ali Taimori, Duncan Humphries, Gareth Williams, Kevin Dhaliwal, Neil Finlayson, James Hopgood, Member,
IEEE

Abstract—Fluorescence lifetime imaging is a valuable tech-
nique for probing characteristics of wide ranging samples and
sensing of the molecular environment. However, the desire to
measure faster and reduce effects such as photo bleaching
in optical photon-count measurements for lifetime estimation
lead to inevitable effects of convolution with the instrument
response functions and noise, causing a degradation of the
lifetime accuracy and precision. To tackle the problem, this
paper presents a robust and computationally efficient framework
for recovering fluorophore sample decay from the histogram of
photon-count arrivals modelled as a decaying single-exponential
function. In the proposed approach, the temporal histogram data
is first decomposed into multiple bins via an adaptive multi-bin
signal representation. Then, at each level of the multi-resolution
temporal space, decay information including both the amplitude
and the lifetime of a single-exponential function is rapidly
decoded based on a novel statistical estimator. Ultimately, a
game-theoretic model consisting of two players in an “amplitude-
lifetime” game is constructed to be able to robustly recover
optimal fluorescence decay signal from a set of fused multi-bin
estimates. In addition to theoretical demonstrations, the efficiency
of the proposed framework is experimentally shown on both
synthesised and real data in different imaging circumstances. On
a challenging low photon-count regime, our approach achieves
about 28% improvement in bias than the best competing method.
On real images, the proposed method processes data on average
around 63 times faster than the gold standard least squares fit.
Implementation codes are available to researchers.

Index Terms—Adaptive filtering, binning, fluorescence lifetime
imaging microscopy, game theory, lifetime estimation, multi-
resolution representation, rapid lifetime determination, signal
recovery, single-exponential decay.

I. INTRODUCTION

T IME-DOMAIN fluorescence lifetime imaging
microscopy (FLIM) is a powerful signal acquisition

technique to characterise biological and chemical samples such
as cells, viruses and molecules. FLIM has diverse applications
in fields such as biology, chemistry, physics, materials science,
medicine, pharmacology, and cancer research [1–4]. Unlike
in steady state fluorescence imaging which simply measures
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the intensity of fluorescence produced by a sample, lifetime
imaging allows for probing of the molecular environment.
The fluorescence lifetime of a molecule, the time between
photon absorption and fluorescence emission, is often
dependent on the environment in which the fluorophore is
present. Such environmental properties include viscosity, pH,
temperature and quenching interactions with surrounding
molecular species. This can allow for the design of specific
probes to detect and monitor these environmental effects, or
the observation of such changes through autofluorescence.
Furthermore, fluorescence lifetime is relatively insensitive to
concentration effects and other effects on intensity that cause
large fluctuations in steady state imaging. In FLIM, a location
in a specimen is first excited by a pulsed laser. Absorption of
excitation photons can lead to fluorescence, where electrons
moved to an excited state return to the ground state resulting
in photon emission. The average elapsed time from excitation
pulse to the emission of a photon is known as the fluorescence
lifetime. The detection of the emitted photons associated with
the electronic transition from the excited state to the ground
state is recorded as a time-stamped event via a sensitive
sensor relative to the laser pulse. For a predefined exposure
time extending over multiple laser pulses, the measurement
cycle is repeated many times. Photon arrival times in a
number of quantised time intervals are then counted. Finally,
the whole process generates a raw data sequence consisting
of a histogram of photon-count arrivals representing a decay
function for a pixel of the imaged sample. The data sequence
contains noise originating from various sources such as dark
counts and shot noise. On-chip histogramming has been
reported in a single photon avalanche diode line sensor
which permits very high throughput of fluorescence lifetime
signals [5]. Where the complexity of decay depends on
the number of emitting species or environment within the
image pixel, the histogram decay can be modelled by a
single-, double- or generally multi-exponential function. The
model of single-exponential decay is widely used across
FLIM applications due to its simplicity and utilisability for
high-speed imaging. In the literature, different methods have
been proposed for estimating decay parameters including
the fluorescence lifetime [6–15]. The lifetime is a physical
characteristic that describes the decay rate of fluorescence.
As a biomarker or chemomarker, it provides contrast for
distinguishing substances in biology and chemistry sciences.
In this paper, we focus on both speed and robustness issues
for lifetime sensing in a wide range of photon-count regimes.
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A. Review of related work

We categorise state-of-the-art available lifetime estimation
methods into three general families consisting of fitting-based,
non-fitting-based, and fit-free approaches. The fitting-based
family tries to fit a curve to the histogram of photon counts.
Here, the least squares (LS) method is generally employed
to estimate parameters of a fluorescence decay model [6].
Maximum likelihood estimation (MLE) is another approach
in this category that can account for a more realistic Poisson
distribution for the histogram of photon counts, instead of the
Gaussian assumption behind the LS fit [7].

In contrast to the direct fitting formulation and solution,
non-fitting-based algorithms use specific techniques for finding
fluorescence lifetime imaging characteristics. These include
rapid lifetime determination (RLD) [8], RLD with overlapping
windows (RLD-OW) [9], center of mass method (CMM) [10],
and fluorescence lifetime estimation via rotational invariance
techniques (FLERIT) [11] are all paradigms of non-fitting-
based approaches. The methods available in the RLD class
present closed-form solutions for estimating the lifetime pa-
rameter [8, 9, 16]. CMM uses the center of mass of the
single-exponential distribution to derive a simplified lifetime
calculation formula suitable for on-board clinical firmware ap-
plications. FLERIT models the problem of lifetime estimation
into a general class of direction of arrival estimation in array
signal processing based on singular value decomposition [17].

Fit-free mechanisms are the third group of lifetime estima-
tion methods. As two well-known approaches in this family,
the phasor approach represents the fluorescence lifetime in-
formation in a diagram-wise manner [12], and learning-based
methods exploit function approximation capability of shallow
and deep neural networks for lifetime parameter estimation
based on raw decay training samples [13, 14]. In practical
FLIM system, lifetime estimation performance and its com-
putation time are two key components. Each of the lifetime
calculation families have their own benefits and shortcomings
for a compromise between performance and complexity [3].

B. Current challenges

Fitting-based methods are accurate to some extent but
are computationally complex. Non-fitting-based algorithms, as
addressed in this paper, are fast and provide an apt option for
hardware realisation [18]; however, dealing with a range of
uncertainties available in the acquired signal simultaneously
remains a difficult task. Fit-free phasor and learning-based
approaches suffer respectively from a need for intervention
of experts for lifetime analysis, and a requirement for a
large number of training time series instances. Moreover, non-
automatic implementation and the lack of data present two
main challenges for medicine-related researchers.

We can fundamentally summarise that the performance of
a lifetime estimation approach is affected by three influential
dynamics which originate from: 1) the nature of the sample
being imaged; 2) the quality of the imaging instrument; and 3)
the user experience on tuning acquisition parameters. All the
dynamics appear in the captured histogram of photon counts in
different forms, making lifetime determination a challenging

task [19]. To name a few, low, mid, and high photon counting
regimes lead to low-, mid- and high-level signal-to-noise
ratio (SNR) acquisitions to be managed [20, 21]. Due to
limiting the power of light source for preventing damage
to sensitive specimens, low photon-count imaging is often
observed which leads to amplification of noise components.
Blurring effects due to convolving the original decay signal
with the instrument response function (IRF) of the imaging
device deform the head and tail of a decaying function, which
may results in overestimation of the lifetime [15]. Different
fluorophores expose varying lifetimes from short (less than
1ns) to long (more than 10ns) ranges. User tunable parameters
during imaging such as bin width or size of the histogram
of photon arrivals for exposure time control also influence
the decay curve shape and ultimately the system’s accuracy
and precision [11]. These factors demand a robust lifetime
estimation approach coping with the various regimes, and this
is the goal of the method proposed in this paper.

C. Research contributions

To take account of the variability in fluorescence lifetime ac-
quisition, we suggest a perturbation-robust lifetime estimation
framework. We first mathematically model the fluorescence
decay function in both deterministic and stochastic modes.
Afterwards, we propose a fast algorithm to be able to estimate
amplitude and lifetime parameters of a single-exponential de-
cay function in the presence of both inevitable convolution and
noise perturbations. To control the uncertainties existing in a
decay signal, we decompose the temporal histogram data as an
adaptive multi-bin signal representation. The decomposition is
done via a set of adjustable, successive Savitzky-Golay (S-G)
low-pass filtering and binning. At each level, decay parameters
are estimated from the transformed signals. We formulate the
problem of reliable detection of the best representative signal
from a set of candidates determined from multiple temporal
resolutions using a 2-player game model [22]. Game theory
based approaches such as generative adversarial networks [23]
have recently found beneficial applications in diverse areas
including FLIM [24]. Here, our main motivation of using the
game model is to handle intrinsic dynamics of the histogram
of photon counts in different circumstances. Amplitude and
lifetime as players act on estimated parameters based on
their own payoff functions to be able to recover optimal
decay. Our approach falls into the category of non-fitting-based
approaches, where the decaying signal can be rapidly and
robustly recovered for different regimes. Figure 1 illustrates
the suggested method on an exemplar histogram of photon
count arrivals. The robustness of our single-exponential decay
recovery method at high level of noise is also shown in Fig. 2.
Implementation codes are available online to researchers1.

In summary, our main scientific contributions are:
‚ a fast algorithm to decode lifetime information from

the histogram of photon counts modelled by a single-
exponential decaying function;

‚ an adaptive multi-bin representation of histograms of pho-
ton counts to deal with uncertainties of decay variability;

1https://datashare.ed.ac.uk/handle/10283/4399

https://datashare.ed.ac.uk/handle/10283/4399
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Fig. 1: The proposed multi-resolution fluorescence decay recovery method unfolded and visualised for an exemplar histogram
of photon counts. S-G stands for Savitzky-Golay; Lfi denotes window length of the S-G filter at the ith tunable branch; and
the parameters A, τ , and Mi represents amplitude and lifetime of the exponential decay, and the number of time bins after
binning at the ith level, respectively. The functions girns and yirms are output signals of S-G filtering and binning at the
ith level, respectively. The blue star in the game space denotes the point of Nash equilibrium. The plots in the output of the
flow diagram include: the original decay xrns in the blue colour, corrupted measurements of x̃rns with the red stems, and the
recovered decay f˚rns in the green colour.

‚ a game-theoretic model to permit robust recovery of
single-exponential decay from a set of signal selection.

D. Paper organisation

The remainder of the paper is organised as follows. In Sec-
tion II, we present our theoretical analysis behind the lifetime
estimation problem, and provide details of the proposed algo-
rithms for single-exponential decay recovery in Section III. In
Section IV, a set of coherent experiments for demonstrating
the efficiency of our suggested method is described. Section
V provides an analysis of the computational complexity of the
algorithms. Finally, conclusions are presented in Section VI.

II. THEORY

In this section, we model the decay signal of fluorescence
lifetime both deterministically and stochastically. A derivation
of FLIM parameter estimation is presented for each case.

A. Deterministic decay model and estimation

In a FLIM system, the fluorescence decay function is ideally
modelled by a first-order linear differential equation as:

dxptq

dt
“ ´pkr ` knqxptq, (1)

where xptq, kr and kn denote the quantity at time t, the
rate constant of a radiative process, and the cumulative rate
constant of environment-dependent non-radiative processes,
respectively [7, 25]. Using the separation of variables method
on (1) gives the solution xptq “ Ae´ t

τ , where A fi xp0q is the
initial amplitude and τ fi 1

pkr`knq
is the fluorescence lifetime.

In practice, the fluorescence decay is measured at equally-
spaced time intervals rather than a given time. In this case,
a discrete-time representation of the exponentially decay-
ing continuous-time function with unquantised intensities as
xrns P R` follows from:

xrns “ Ae´ ∆¨n
τ ,@n “ 0, 1, . . . , N ´ 1, (2)
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Fig. 2: An illustration of robustness of the proposed single-
exponential decay recovery under severe perturbation. The
total number of photons of the histogram is 460.

where ∆, N and R` represent the measurement time interval
(in order ranging from picosecond to nanosecond for FLIM de-
vices), the number of measurements, and the set of all positive
real numbers, respectively. It is obvious that A “ xr0s. The
function xrns is a strictly monotonically decreasing function
with the descending sort property: xr0s ą xr1s ą ¨ ¨ ¨ ą

xrN ´ 1s. For a detailed discrete-time signal analysis, we
provide standard definitions below to make this paper more
accessible to a wider audience.

Definition 1 (Linear difference operator): The linear differ-
ence operator Dt¨u is defined as:

drns fi Dtxrnsu “ xrns´xrn`1s,@n “ 0, 1, . . . , N´1. (3)

The descending sort property is held for drns, where dr0s ą

dr1s ą ¨ ¨ ¨ ą drN ´ 1s.
Definition 2 (Maximum fall of signal): We define the point

with maximum difference, or maximum fall, of the signal by:

n˚ “ argmax0ďnăN pdrnsq. (4)

It is obvious that always n˚ “ 0 in the ideal perturbation-free
case. In this special case, this means the greatest difference is
between the first sample and the second one.

Theorem 1 (Lifetime decoding): Let xrns “ Ae´ ∆¨n
τ ,@n “

0, 1, . . . , N ´ 1 be a histogram of photon-count arrivals. The
slope tangent to the point with maximum fall of xrns, i.e. n˚

in (4), conveys lifetime information of decay. Geometrically
interpreting, for the point n˚, its initial slope just tangent to the
exponentially decaying curve intercepts the n-axis at a point
near n « τ , where the estimated lifetime is τ̂ “ ∆

lnp
xr0s

xr1s
q
.

Proof: By using a first-order approximation of the Taylor
expansion around the point with maximum difference, the
tangent slope can be captured by an appropriate precision,
which finally decodes the fluorescence lifetime value. The
Taylor expansion of xrns around the point n˚ gives:

x̂rn˚ ` T s “ xrn˚s ` Tx1rn˚s ` ε, (5)

where x1rn˚s “
xrn˚

`T s´xrn˚
s

T represents the first-order dif-
ference. Neglecting the higher order terms by setting ε « 0, the
first-order approximation of xrns is reached. By substituting
x1rn˚s into (5), taking the discrete interval T “ 1 and reducing
to the Maclaurin series for n˚ “ 0 in the ideal model, we have:

x̂r1s “ xr0se´ ∆
τ . (6)

If the approximation x̂r1s is the same as the true value xr1s,
taking the natural logarithm from two sides of (6) will yield:

τ̂ “
∆

lnp
xr0s

xr1s
q
. (7)

For the special case N “ 2, (7) is equal to that of RLD.

B. Stochastic noisy-blurred decay model and estimation

1) Corrupted measurements modelling: In real FLIM sys-
tems, the signal (2) is a discrete stochastic process, where
both A and τ are random variables. Any FLIM device con-
sists of two separate optical and electrical parts. Hence, two
main sources of noise are contributable including: 1) signal-
dependent electronic shot noise arising from photon sensing
equipment; and 2) signal-independent background noise due
to instrument ambient disturbances. Contrary to the former
with an electronic and discrete nature, the latter has mainly
a non-electronic, optical source with continuous nature. The
diverse noise components are assumed to combine to each
other additively making a whole noise of the FLIM device.
Let us model the histogram of photon-count arrivals in the
presence of both blur and noise perturbation in a pixel as the
following quantised measurements (See also Fig. 3.):

x̃rns “ txrns ˚ hrns ` ηrnssurtxrns ˚ hrns ` ηrnsss, (8)

where x̃rns P Z`,@n “ 0, 1, . . . , N ´ 1. Operators t¨s, ur¨s

and ˚ denote the round (quantiser) and step functions, and
convolution, respectively. The step function in (8) acts as a
signal clipper and ensures that the photon-count x̃rns takes
on physical positive counts only. The functions hrns and
ηrns fi ePrns ` eGrns respectively represent the blurring
kernel as the IRF of the system, and the noise term with
errors of ePrns P Z` and eGrns P R. We assign a discrete
Poissonian probability mass function to the signal-dependent
noise and a continuous Gaussian probability density function
to the signal-independent one [26]. The characteristic of shot
noise distribution is defined as ePrns „ Ppλq, where Pp¨q

denotes Poissonian distribution. As a property of Poisson
process, one straightforward way, usually used in the literature,
is to consider the expectation of shot noise as a constant value
across bins. In this case, the standard deviation of shot noise
equals to

?
I and consequently total SNR fi I?

I
“

?
I ,

where I fi
Np

N denotes the average number of arrived photons
[27]. The parameter Np represents the number of photons per
histogram, i.e., Np “

řN´1
n“0 xrns. The average rate of the

shot noise can be written as λ “ I , which means its total
dependency on the histogram signal.

For the signal-independent noise, we assume eGrns „

N pµ, σ2q, namely a Gaussian distribution with the mean
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Fig. 3: The proposed process for generating synthesised histogram of photon counts. Signal of each point has visualised for a
spacial experimental setting. The x-axis of plots denotes the bin index n.

µ “ cσ and variance σ2. The parameter c ě 0 is a real
constant, which, in case of c “ 1, about 68.3% of random
samples from the distribution cast over the zero level. To
emphasise error resources in the system, we rewrite (8) as
x̃rns “ xrns ` erns with the total error of:

erns “ eqrns ` ebrns ` ePrns ` eGrns
looooooomooooooon

fiηrns

`eurns, (9)

where terms eqrns, ebrns and eurns denote errors intro-
duced by quantisation, blurring and other uncategorised noise
sources, respectively. It is notable that the quantisation noise
originates from rounding amplitudes, due to the quantised
nature of light in photon counting process.

2) Modelling of time-resolved shot noise: Effects of noise
would appear more in points with high variations, especially
in bins with low number of photons from low-photon count
regimes. As evidence, taking the logarithm of histogram of
photon counts reveals the locations of noise, where signal
values in bins with low SNR are seen to have higher than
proportional noise components relative to regions with higher
SNR. Consequently, the histogram dependency in shot noise
can be retrospectively assigned to binned photons based on
different point-wise behaviours of SNR. To take this reality
into account, one can change the constant noise valuation and
mathematically customise the signal-dependent noise model
for a special device by using weighting mechanisms. A general
form for the average rate of shot noise can be defined as a
combination of increasing (Õ) and decreasing (Œ) terms as:

λrns fi ζ

»

—

—

—

—

—

—

a
xr0s

xrns
loomoon

Õ

`β
xrns

xr0s
loomoon

Œ

fi

ffi

ffi

ffi

ffi

ffi

ffi

P p0,8q, (10)

in which the symbol r¨s is the ceil function, and, parameters
a, β P R` and ζ P Z` are arbitrary scale factors.

Here, based on our device measurement observations, we
have particularly modelled the variance of noise inversely
proportional to the original signal, where we set β “ 0 and
ζ “ 1 in (10). In this case, the equation λrns increases by
increasing the bin index n. The coefficient a should be a
small positive constant to control the growth of shot noise
fluctuations with a power increase almost linear during falling

photons in the tail of distribution. The simulation in Fig. 2 tries
to mimic the noise behaviour for the tail of the fluorescence
decay. Figure 3 visualises the proposed process for generating
synthesised histogram of photon counts with an example.

3) Estimation under perturbation: For signals with a suf-
ficiently large average of photons, e.g., I ą 10, Poissonian
noise distribution can be approximated well by a Gaussian
noise function [28], where Ppλq « N pλ, λq. Therefore, based
on the central limit theorem [29], the distribution of the error
term in (9) consisting of the superposition of discrete and con-
tinuous noises can be approximated by i.i.d. erns „ N p0, σ2

eq

components [30]. A substitution gives corrupted measurements
as:

x̃rns “ Ae´ ∆¨n
τ ` erns,@n “ 0, 1, ¨ ¨ ¨ , N ´ 1. (11)

A statistical analysis on the model in (11) reveals that an
efficient minimum variance unbiased estimator (MVUE) [31]
does not exist for estimating τ . In this case, based on the
Cramér-Rao lower bound (CRLB) analysis [32], the variance
of the estimator is given by:

varpτ̂q ě
σ2
eτ

4

A2∆2
řN´1

n“0 n
2e´ 2∆¨n

τ

, (12)

where the derivation details are provided in the Appendix. But,
a MVUE does exist for estimating the amplitude given the true
τ , and is given by:

Â “
1 ´ e´ 2∆

τ

1 ´ e´ 2∆¨N
τ

N´1
ÿ

n“0

e´ ∆¨n
τ x̃rns, (13)

with CRLB of:

varpÂq ě

´

1 ´ e´ 2∆
τ

¯

σ2
e

1 ´ e´ 2∆¨N
τ

. (14)

We refer the reader to a similar derivation of this in the
Appendix. Despite the lack of existence of a MVUE for τ ,
the theory still inspires the design of a novel estimator for the
lifetime and the histogram amplitude, as described below.

It is important to note that the point corresponding to
maximum difference does not always occur at zero and its
location may generally be a function of a number of pa-
rameters such as the IRF, the pulse amplitude and duration
of the lighting source, response speed of fluorescence to the
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excitation pulse, the time bin width, photon detector speed, and
any perturbation. Therefore, a little displacement to the right
in the histogram of photon counts may occur. Nevertheless,
the descending sort property still holds to some extent after
a point m˚, and the lifetime estimation problem can be
reformulated by a Taylor expansion around this arbitrary point,
m˚ ě 0. Consider the M -point signal of yrms,@m,M ď N
as a transformed version, including low-pass filtering and
dimensionality reduction, of corrupted measurements x̃rns;
See (21) for a complete definition of the transformation. By
defining the parameters r0 fi yr0s, r1 fi yrm˚ ` 1s, the ratio
r fi r0

r1
, and taking natural logarithms from the first-order

Taylor expansion equation, the lifetime is estimated as:

τ̂ “
∆ ¨ pm˚ ` 1q

lnprq
. (15)

Even in noisy measurements, points in the vicinity of m˚ are
somewhat robust to shot noise, because starting points from
the falling signal have inherently stronger intensities than other
points in the tail of the photon-counts histogram.

However, instead of selecting a specific single point from
yrms for obtaining each of the parameters r0 and r1, then
inspired by the CRLB analysis in the Appendix, we propose
an estimator to suppress these noise effects. To do this, we
employed two left and right weighted average mechanisms of
yrms around the central point m˚, so that:

r0 “

m˚
ÿ

i“1

ωLris yris, (16)

in which ωLris “
fLris

řm˚

i“1 fLris
,@i “ 1, . . . ,m˚ is a weighting

function. To obey the trend of data which at first exhibits rise
and then fall, we utilise the function fLris fi 1

2be
´

pm˚´iq

b ,@i
for the left side of m˚, called the left exponentially growth
weighting function. Similarly, for the right side of m˚, let:

r1 “

T p2m˚
q

ÿ

k“T pm˚`1q

ωRrksyrks, (17)

where ωRrks “
fRrks

řT p2m˚q

k“T pm˚`1q
fRrks

,@k “ T pm˚ `

1q, . . . , T p2m˚q and fRrks fi 1
2be

´
pk´m˚q

b ,@k is called the
right exponentially decaying weighting function. The param-
eter b denotes scale of the exponential functions, which is in
relation to τ . In experiments, we set the optimal b “ 3 by
trial and error. On real FLIM measurements, effects such as
outlier affect the position of m˚ and hence demand a control
mechanism on lower and upper bounds of (17). The operator
T p¨q performs as a signal-length truncation function such that:

T pmq “ minpm,M ´ 1q. (18)

The weights in (16) and (17) are normalized, so that
řm˚

i“1 ωLris “
řT p2m˚

q

k“T pm˚`1q
ωRrks “ 1. Figure 4 illustrates
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Fig. 4: An illustration of left and right weighting functions.

left and right weighting functions. Substituting (16) and (17)
into (15) and simplifying by geometric series yields:

τ̂ “
∆ ¨ pm˚ ` 1q

ln

˜

ř

k e´
pk´m˚q

b
ř

i e
´

pm˚´iq
b yris

ř

i e
´

pm˚´iq
b

ř

k e´
pk´m˚q

b yrks

¸ “
∆ ¨ pm˚ ` 1q

ln

ˆ

cτ
ř

i e
i
b yris

ř

k e
´k
b yrks

˙ ,

(19)

in which the constant cτ fi e´
T pm˚`1q

b ´e´
T p2m˚q`1

b

e
m˚

b ´1
. Also, the

approximate amplitude is equal to Â “ r0, i.e.:

Â “

ř

i e
´

pm˚´iq

b yris
ř

i e
´

pm˚´iq

b

“ cA
ÿ

i

e
i
b yris, (20)

where the constant cA fi 1´e´ 1
b

e
m˚

b ´1
.

III. ALGORITHMS

The proposed FLIM parameter estimator is summarised in
Algorithm 1. Due to applying the difference operator defined
in (3), noise components are naturally amplified. Although de-
cay parameters are usually estimated from the initial samples
of the histogram curve, where the SNR is higher due to higher
intensities in those time bins, pre-smoothing of the signal
x̃rns by means of low-pass filtering mechanisms is required
in practice to be able to alleviate perturbation effects. In
this paper, to robustly recover the original fluorescence decay
signal, two-step smoothing is used including a sequential S-G
filter and temporal binning with an adaptive approach in a
multi-resolution representation. Then, based on a game rule,
the final decay signal is recovered from decisions made in the
multi-resolution temporal space.

A. Multi-bin decay representation

Temporal binning of a histogram as a technique for informa-
tion representation also concurrently performs dimensionality
reduction and intrinsic smoothing tasks [11, 33]. However,
finding an optimum bin size in histogram binning is generally
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Algorithm 1 The proposed FLIM parameters estimator

1: Inputs: The M -point signal y “ ry0, y1, ¨ ¨ ¨, yM´1sT and
the bin width ∆.

2: Apply the difference operator in (3) on yrms to find drms.
3: Obtain the point with maximum fall m˚ from (4).
4: Estimate lifetime from (19).
5: Estimate amplitude from (20).
6: Outputs: Decoded amplitude Â and lifetime τ̂ .

a challenging issue in statistics. Here, the bin size is simply
defined as the number of bins in a histogram. On the one
hand, if the bin size is very small, the appearance of a decay
curve cannot be sketched well and the shape of the function
may be too smooth. On the other hand, if the number of bins
is too large, broken combs occur in the histogram of photo
counts and a noisy representation of data is made. To address
these problems, in this paper a multi-bin representation of the
FLIM signal is proposed to be able to gain both smoothness
and crispness of the signal without any temporal resolution
loss. Naturally, higher-levels of temporal resolution represent
crisper signals and lower ones expose smoother signals. To
control levels of smoothness/crispness of a signal, we apply
a S-G smoothing prior to histogram binning in an adaptive
manner according to the degree of the inherent smoothing
property in the binning mechanism at different resolution
levels of signal.

1) Adaptive Savitzky-Golay filtering: S-G filter is a promi-
nent type I finite impulse response signal smoother which uses
a local LS polynomial approximation [34, 35]. Characteristics
of interest of the S-G filter are functions of shape and
peak preservation. Also, the cut-off frequency of the filter is
proportional to the polynomial order, fc9Of , and inversely
proportional to the window length of the filter, fc9 1

Lf
. In

practice, the polynomial order should be limited to a small
number such as Of “ 2 to prevent ill-conditioned responses;
and, for achieving a filtering process, the window length of
the filter should satisfy the condition Lf ą Of . For adaptive
filtering, at higher levels of temporal resolution, we use larger
Lf to only pass very low frequencies. By moving to lower
levels, we exponentially reduce the filter length to gradually
widen the pass-band, so that mid- and finally high-frequency
components are also passed. At lower levels of resolution,
due to strong smoothing by binning itself, initial S-G pre-
smoothing is not needed; thus, S-G filter will only mimic the
signal and pass all frequencies. The behaviour of the adaptive
filtering process is illustrated in Fig. 1, where the S-G filter
is ineffective in the right branch, and, the same behaviour is
seen for the binning stage in the left branch.

2) Adaptive temporal binning: Consider the functions of
x̃rns,@n as a N -sample histogram of photon counts and
grns,@n as a S-G filtered version of the histogram, where
N “ 2l and l is the number of levels in the multi-bin
representation of the decay signal. The data points at the ith

level of binned space can be determined from the summing

formula of:

yirms “

Bi
ÿ

j“1

grm ¨Bi ` js,@m “ 0, 1, . . . ,Mi ´ 1, (21)

where the function yirms,@i “ 1, ¨ ¨ ¨ , l represents a
smoothed, dimensionality reduced version of the signal grns

and Mi fi 2pl´i`1q ď N is the number of time bins in the
ith reduced dimension from the multi-bin representation. The
parameter Bi fi N

Mi
refers the number of consecutive time

bins that are binned into a new one at the ith level.
3) Decision fusion: For each of the temporal resolutions,

we can estimate amplitude and lifetime parameters based on
Algorithm 1. However, estimated parameters at each level need
to be rescaled to the original signal space. To do this for the
ith level, we can multiply the estimated amplitude and lifetime
values by B´1

i and Bi, respectively. Specifically, rescaling the
amplitude with B´1

i assumes a uniform distribution which is
not in agreement with a decaying trend. Instead, we use the
scale s´1

i for the amplitude, where:

si “

#

1, i “ 1

2i´1´γ , i ą 1
. (22)

The bias γ accounts for an exponentially decaying distribution.
In experiments, we set γ “ 0.25 as an optimised value.

Initial estimates from diverse levels may encompass optimal
parameters, where each level exposes its own properties. For
instance, in large binning, uncertainty in estimating amplitude
increases, due to combining more intensity values. This also
means amplitudes are estimated well at higher levels of
temporal binning. Conversely, lifetime estimation at top levels
of binning will be generally more sensitive to perturbation,
where lower levels of temporal resolutions are preferable. This
brings a conflict of interest for a final decision making. Hence,
a consensus strategy is suggested to synergically decode the
original decay signal based on the game modelled below.

B. Game-theoretic modelling for decay recovery

Suppose the goal is to decide the best parameters for an
optimal decay recovery based on the multi-bin histogram
representation and corresponding initial estimates. Both of
optimal parameters A‹ and τ‹ are influential on the optimum
selection. However, a single objective function is not available
to consider both roles. Therefore, we suggest a game in which
the problem is modelled by the “game” Gpυ,A, dq, where υ,
A, and d denote the number of players, the set of actions,
and payoff function of the game, respectively. We consider
the initial estimation behaviour of each of the amplitude and
lifetime random variables as the players, i.e. there exists υ “ 2
players. The strategy of each player is to choose a set of
known actions to be successful. Actions themselves are drawn
from multiple temporal binning representations of histogram
of photon-count arrivals, where we define the actions set
A “ tα1, α2, ¨¨¨, αku, in which k “ l is the number of actions.
The game space is shown in the decision fusion stage of Fig. 1
as a grid. The action αi corresponds to 2pk´i`1q-dimensional
temporal resolution from the multi-bin decay representation.
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For the action ith, a single-exponential decay can be recovered
from FLIM data of a given pixel, i.e. the pair pÂi, τ̂iq. A
Representation of actions taken by each player in the 2-D
space Ω P Z2 constitutes a matrix called a reward matrix as
R “ rrijs. For one repetition of the game, the matrix’s entries
takes 1 or 0 values, referring to prize or penalty, respectively.

Theorem 2 (Optimal decay recovery): Let the matrix R “

rrijs be a reward matrix for the amplitude-lifetime game
Gpυ,A, dq, where for a repetition of the game, the entry
corresponding to an optimal parameter is 1 and other locations
are 0. A place in the space Ω of the reward matrix exists by
which the underlying optimal decay signal is recoverable.

Proof: Generally, Nash equilibrium proves that an equi-
librium point exists for a game, where all rational players
reach their maximum payoff [36]. To show that for the game
Gpυ,A, dq, consider the equilibrium position as location of
optimal estimates. Then, the optimal decay signal recovery is
possible by players’ payoff function optimisation. Here, opti-
mality is constrained to quality of initial estimates of amplitude
and lifetime parameters in the multi-bin decay representation.
To detect optimal A‹ and τ‹, we first measure distance
between each recovered signal from the pair pÂi, τ̂jq,@i, j in
the game space Ω and received corrupted measurements, and
then, find the minimised one: see the blue star in the game
space shown in Fig. 1 for illustration.

In terms of curve-like shape of an exponentially decaying
function, we define two critical fixation points for the distance
optimisation. The first one is connected to amplitude, which
controls the initial position of the decay signal on the y-axis;
and, another is related to lifetime, in which the steady-state
location of the curve on the x-axis is controlled. It is difficult
to seek a single objective function for finding the optimal
pair pA‹, τ‹q, in a manner that the metric concurrently copes
with the two degrees of freedom well. Instead, we consider a
specific distance measure for each player. Now, the problem
is to search apt metrics for satisfying the two fixation points.

The scale of squared error at transition times of a decay
curve is usually more than settling times. Hence, for fixing
the amplitude, mean squared error (MES) criterion is apt as:

dMSEpx̃, f̂q fi
1

N

N´1
ÿ

i“0

px̃i ´ f̂iq
2, (23)

where f̂ “ rf̂0, f̂1, ¨ ¨ ¨ , f̂N´1s represents a single-exponential
recovered signal in the space Ω. Conversely, for the tail
of the decay curve, the scale is usually higher in terms of
Neyman’s chi-square test (CHI) metric χ2 [37]. Therefore, it
is appropriate for probing optimum lifetime. The distance χ2

for the lifetime player is determined by:

dCHIpx̃, f̂q fi

N´1
ÿ

i“0

px̃i ´ f̂iq
2

x̃i
. (24)

It is worth to noting in case of observing division by zero in
(24), we offset the effect by the trick of adding an extremely
small number (e.g., 10´10) to its denominator [38]. Assume
vectors dMSE and dCHI contain MES and χ2 distances ob-

Algorithm 2 The proposed single-exponential decay recovery

1: Inputs: The N -point histogram of photo-count arrivals x̃
and the bin width ∆.

2: Set Of “ 2, Nl “ log2N , and n “ r0, 1, ¨ ¨ ¨ , N ´ 1sT.
3: Initialise g “ x̃, M “ N , and k “ 1.
4: while M ě 2 do
5: Lf “ N

2k
` 1

6: if Lf ą Of then
7: Smooth g by S-G filter with specs of Of and Lf .
8: end if
9: Bin smoothed g into M bins by (21) to make a y.

10: Estimate Â and τ̂ by passing y to Algorithm 1.
11: Âk “ p 1

sk
qÂ

12: τ̂ k “ p N
M qτ̂

13: Update g “ x̃, M Ð M
2 and k Ð k ` 1.

14: end while
15: Reset counter k “ 1.
16: for i Ð 1, Nl do
17: for j Ð 1, Nl do
18: f̂ “ Âie

´ ∆
τ̂j

n

19: Measure distance dMSE
k between x̃ and f̂ by (23).

20: Measure distance dCHI
k between x̃ and f̂ by (24).

21: k Ð k ` 1
22: end for
23: end for
24: A‹ “ argmin

Â,τ̂

pdMSEq

25: τ‹ “ argmin
Â,τ̂

pdCHIq

26: f‹ “ A‹e´ ∆
τ‹ n

27: Output: The recovered fluorescence decay signal f‹.

tained from the space Ω. Optimal influential parameters are
selected from the minimisation of:

A‹ “ argmin
Ω

pdMSEq, (25)

τ‹ “ argmin
Ω

pdCHIq. (26)

Finally, the optimal decay signal is recovered by:

f‹rns “ A‹e´ ∆¨n
τ‹ , n “ 0, 1, . . . , N ´ 1. (27)

Our robust recovery approach for a pixel is detailed in
Algorithm 2. We term our method “Robust RLD”.

Example 1: Consider the original decay signal in (2)
with A “ 100, τ “ 3ns, ∆ “ 468.8ps, and N “ 32.
The signal was corrupted with the Gaussian blurring kernel
h “ r0.25, 0.5, 0.25sT and noise parameters of a “ 0.05 and
σ2 “ 25. Figure 1 illustrates the whole process for a random
run. For a million random plays of the game, Table I (a) reports
accumulated reward matrix normalised on summation of prizes
for each player. The Nash equilibrium point is bold in the table.
To be able to compare detection performance of our model to
that of ground truth decay, we have also repeated the game
for the ideal case. For each round of the game, the prize entry
in the ground truth reward matrix was determined as the place
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in which the absolute difference between a ground truth value
and corresponding multi-bin estimates is minimum. Outcomes
are listed in Table I (b). Again, Nash equilibrium is bold in the
table. Comparing bold numbers in Tables I (a) and (b) reveals
the congruence of equilibria. Dominant success almost always
occurs in upper triangle part of the reward matrices.

IV. EXPERIMENTS

In this section, using synthesised data with known ground
truth, we evaluated the robustness of our method under dif-
ferent settings and circumstances through Monte Carlo simu-
lation. We compared our proposed method to CMM, standard
LS fit of MATLAB software, Poisson MLE, RLD, RLD-OW
and FLERIT approaches. The effectiveness of the proposed
method is also shown on real FLIM data.

A. Tests on synthesised data

1) Evaluation on different bin sizes: In this experiment, we
changed the bin size of histogram of photon counts from 21 to
210 for various decay signals and determined the performance
of our method. The amplitude of functions was set in a manner
that the number of photon counts per histogram remains
approximately the same as 1,000 photons/histogram before
perturbation, where A “

Np
řN´1

n“0 e´ ∆¨n
τ

in the deterministic

model of (2). We adjusted the bin width to the formula
∆ “ 5τ

N , which guarantees settling a decay curve into total
measurement cycle for a pixel. All signals were first blurred
with a Gaussian kernel of the length 3 and then noise was
added with noise characteristics of a “ 0.1 and N p0, 25q.
Figure 5 plots median lifetime, as a measure of bias or
accuracy, vs bin size for three fluorescence decay functions
with different ground truth lifetimes (ns) of 1, 2.5 and 4 ns.
The median lifetime reported for each point of the plot
was obtained for 100,000 random runs. As seen from the
figure, median lifetimes are inaccurate at initial points for
the bin size of 2, where we have only a line segment for
representing a fluorescence decay but not a desired curve.
However, the estimations sharply improve with increasing bin
size. Estimations reach their corresponding ground truth lines
for bin sizes between 64 and 128. Meanwhile, the proposed
method delivers appropriate estimations for 32 ď N ď 256,
where a sufficiently continuous decay curve apt for lifetime
estimation exists. Due to photon-starved-like behaviours, an
overestimation is seen for the bin size 1,024. Hence, the bound
can be considered as a user guide for clinical settings of
instruments.

2) Effects of blurring and noise: As mentioned before,
fluorescence decay signals are affected by perturbation of
blurring and noise in practice. However, both the shape and
level of signal’s perturbation may differ from instrument to
instrument. This experiment provides two simulation modes
for analysing those effects. In the first simulation, for a fixed
Gaussian blurring kernel with length 5, we evaluated statistics
of estimated lifetimes from a corrupted signal under various
shot and background noises. Parameters of the original signal
were Np « 2,600, A “ 100, τ “ 1.5ns, ∆ “ 58.6ps and
N “ 128. The performance of our method is shown in Fig. 6
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Fig. 5: The performance of our method for a diverse range
of bin sizes from three lifetime-varying decay signals. For all
the test points, the number of photon counts per histogram
before perturbation is approximately the same as 1,000 pho-
tons/histogram.

for 100,000 random runs. The original signal encountered with
a spectrum of perturbation including shot noises with both
variable and constant rates (λ “ 10) plus the background
fluctuations. The curves related to median of lifetime show
a stable behaviour of bias in our estimator even for severe
noise. In this regard, the amount of averaged overestimation
than the ground truth value is at most around 0.5ns in the
worst-case scenario for the case µ “ 0 and λ “ 10. As seen
from Fig. 6, an increase at DC level of fluctuations leads to
increasing level shift of the overestimation (bias). In terms of
standard deviation, as a measure of precision, it remains under
control with a tolerable rise during increasing noise power. The
standard deviation of lifetime averaged over all noise powers
is 0.2ns in the worst case. Results in σ2 “ 0 denote only the
effect of shot noise in the absence of background fluctuations.
Also, results of the single point σ2 “ 0 in the absence of
shot noise (the case µ “ 0, a “ 0) mean perturbation only by
blurring.

In the second simulation, we fixed the parameter of shot
noise on a “ 0.05 and then evaluated mean and standard
deviation of estimated lifetimes from a corrupted signal under
different blurring kernel shapes and background noise powers.
To model the IRF of a FLIM system, different blurring kernels
may be utilised. Here, we employed impulse, box, approximate
Gaussian and Airy smoothing functions with the same length
of 7. The Airy IRF is the profile of a 2-D Airy pattern,
which is approximately determined from the Bessel function
of first kind of order [39]. It is notable that applying an
impulse function means an ideal case without any blurring
effect. Therefore, in that case, only the noise effect is present.
Parameters of the original signal were the same as the first
mode above. Figure 7 plots results for 100,000 random runs.
By increasing noise power, a decreasing trend is seen among
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TABLE I: (a) Predicted and (b) ground truth normalised reward matrices for a million rounds of the game in Example 1

(a) (b)
`````````Player A

Player τ No binning Binning with B “ 2 Binning with B “ 4 Binning with B “ 8 Binning with B “ 16

No binning
XXXXXXXX46.84

0.09 XXXXXXXX46.37
13.96 XXXXXXXX25.59

18.94 XXXXXXXX12.53
64.66 XXXXXXXX29.78

2.35

Binning with B “ 2
XXXXXXXX41.01

5.64 XXXXXXXX14.39
26.07 XXXXXXXX13.05

33.26 XXXXXXXX10.96
34.78 XXXXXXXX15.45

0.25

Binning with B “ 4
PPPPPP8.94

0.03 XXXXXXXX39.18
2.84 XXXXXXXX61.36

20.59 XXXXXXXX76.51
76.51 XXXXXXXX54.33

0.03

Binning with B “ 8
XXXXXXXX3.21

11.43 XXXXXXXX0.06
11.42 PPPPPP0

38.33 PPPPPP0
37.06 PPPPPP0.44

1.76

Binning with B “ 16
HH

HH0
0 PPPPPP0

0.36 PPPPPP0
22.53 PPPPPP0

74.51 PPPPPP0
2.6

`````````Player A
Player τ No binning Binning with B “ 2 Binning with B “ 4 Binning with B “ 8 Binning with B “ 16

No binning
HH

HH0
0 XXXXXXXX15.94

4.16 XXXXXXXX4.94
19.38 XXXXXXXX6.15

75.62 PPPPPP1.97
0.84

Binning with B “ 2
H
HHH0

0 PPPPPP6.37
0.95 XXXXXXXX16.7

37.32 PPPPPP8.4
58.87 XXXXXXXX11.84

2.86

Binning with B “ 4
HHHH0

0 XXXXXXXX77.59
1.43 XXXXXXXX78.29

21.73 XXXXXXXX85.33
74.26 XXXXXXXX86.09

2.58

Binning with B “ 8
HH

HH0
0 PPPPPP0.1

1.38 XXXXXXXX0.07
16.22 PPPPPP0.12

80 PPPPPP0.1
2.4

Binning with B “ 16
HH

HH0
0 HH

HH0
0 HH

HH0
0 HH

HH0
0 HH

HH0
0
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Fig. 6: Evaluation of our method under noise variations. Num-
bers in parenthesis of the legend are average on all σ2. The
number of photon counts before perturbation is approximately
2,600.

estimations for all kernels. Responses show small deviations
from the ground truth reference. In this regard, the lowest and
highest absolute errors between the reference line and mean
of lifetime averaged on different noise powers belong to Airy
and box kernels, respectively. It is notable that throughout the
experiments of this paper, we have not used any IRF cutoff, bin
exclusion or deconvolution, where performing such procedures
can potentially improve the quality of lifetime estimators.

3) Comparison to theoretical Cramér-Rao lower bound:
This section investigates the variance of various estimators
in comparison to the theoretical CRLB derived from Section
II-B3 under the Gaussian noise assumption of N p0, σ2

eq, where
bias analysis is provided in next sections as well. We used
the same settings of experimental parameters applied for
generating synthesised histograms of photon counts in the first
simulation of Section IV-A2. Figures 8 (a) and (b) plot the
variance of estimated lifetime and amplitude vs the variance
of noise σ2

e for different compared approaches, respectively.
The experiment repeated 10, 000 times for each σ2

e . It is
notable that in the implementation of LS fit, we utilised a
nonlinear LS method of MATLAB that employs the “trust
region” algorithm for optimisation [40, 41]. Also, for the
Poisson MLE, we used an exhaustive 2-D search mechanism
on possible amplitude and lifetime values to find those optimal
parameters. It should be pointed out that the CMM method
does not has any formulation for amplitude estimation; thus,
it was ignored in Fig. 8 (b). As shown in the plots, variances of
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Fig. 7: Evaluation of our method for various blurring kernels.
The number of photon counts before perturbation is approxi-
mately 2,600.

both lifetime and amplitude grow with increasing noise power.
In terms of these variances, our proposed approach exposes a
middle precision with under control variances, where the gold
standard LS fit is ranked first; although, based on estimation
bias, we will show in future experiments that the suggested
method outperforms the LS fit on a vast range of variations.

4) Performance comparison under decreasing shot noise:
In this experiment, we particularly evaluate the performance
of a set of lifetime estimators under a decreasing shot noise.
To do this, we set parameters a “ 0, β “ 20 and ζ “ 1 in
(10). Other experimental settings are the same as those we
used in Fig. 6. Table II reports (median, standard deviation)
of different lifetime estimators for various background noises
with the distribution N pσ, σ2q. Based on the ground truth
lifetime of τ “ 1.5ns, our Robust RLD shows the best
accuracy (the bold median) among all. CMM achieves the best
rank in terms of precision (the bold standard deviation); but,
it is biased. At the same time, the proposed approach remains
robust and maintains the precision at an acceptable level. Also,
a pair-wise comparison between the averages of (MED, STD)
for the proposed method here, i.e., (1.66, 0.09) in ns, and those
obtained in Fig. 6 for the increasing shot noise with similar
background noise, i.e., (1.72, 0.11) in ns, reveals the increasing
shot noise is the best worst case scenario of noise modelling
though. The results indicate that the performance of Robust
RLD is not heavily dependent on shot noise models used.
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Fig. 8: Estimation variance vs noise variance of different approaches in comparison to theoretical Cramér-Rao lower bound
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TABLE II: Comparisons of (median, standard deviation) for
different approaches under a decreasing shot noise with the
ground truth lifetime of τ “ 1.5ns

Method
(MED, STD) of lifetime in ns

σ2 “ 1 σ2 “ 9 σ2 “ 25 σ2 “ 49 σ2 “ 81

CMM p1.61, .02q p1.77, .03q p1.9, .04q p2.03, .05q p2.14, .06q

LS fit p1.64, .02q p1.74, .03q p1.86, .05q p1.98, .07q p2.12, .09q

RLD p1.73, .03q p1.99, .06q p2.24, .09q p2.48, .12q p2.72, .16q

RLD-OW p1.61, .02q p1.74, .04q p1.88, .06q p2.01, .08q p2.14, .11q

Robust RLD p1.59, .06q p1.63, .06q p1.67, .08q p1.69, .11q p1.72, .14q

5) Performance comparison under lifetime variations: The
goal of this experiment is to examine the performance of
different approaches in short-, mid- and long-lifetime regimes.
Figure 9 shows lifetime estimation statistics of various meth-
ods on three random signals with short, mid and long lifetimes
of 0.5, 3 and 12 ns, respectively. Common parameters utilised
for the signals were Np “ 1,500, ∆ “ 500ps and N “ 64.
Perturbation characteristics were Gaussian blurring kernel of
length 3 and noise parameters of a “ 0, N p10, 100q. Reported
statistics were obtained for 10,000 random runs. As is shown
in the box plots related to short- and mid-lifetime regimes in
Fig. 9, our method outperforms other benchmark approaches.
Our results are the nearest ones to the ground truth values,
and for the short lifetime, the first quartile is aligned with
the ground truth line. The optimised nonlinear LS fit ranks
second for those regimes. For the long-lifetime regime, the
lifetime value is too long, so that one can not see settling
of a decay curve into the given time measurement window
of 64 ˆ 500ps “ 32ns, which can be interpreted as an
inappropriate experimental setting of the window due to the

small selection of the bin width. Contrary to the short- and
mid-lifetime tests, CMM exposes the lowest bias than others in
the special case of measurement window, where our estimator
yet ranks second among all. It is important to note that all
compared estimators were evaluated in a fair situation without
compensating background components introduced by the bias
due to the mean offset of the background noise, where such a
mechanism can potentially alleviate the bias totally.

The FLERIT approach [11] mainly employs neighbouring
pixels information of a central point in an image to construct
the observation matrix for estimating the average lifetime.
Hence, we separately compare the performance of lifetime
estimation between FLERIT and our method on a synthesised
image. To do this, we generated an image of dimensions
1024 ˆ 1024 including three regions with various lifetimes
as shown in the intensity map of Fig. 10. Ground truth
lifetimes in ns for pixels inside regions of A, B and C are
10, 6 and 2, respectively. Amplitudes were set under a low
photon count regime, so that they were 10

3 , 2 and 2
3 for

regions of A, B and C, respectively. Common characteristics
of ground truth signals are N “ 32 and ∆ “ 0.4ns. The decay
signals were corrupted by Gaussian noise of zero mean and
2.5 ˆ 10´3 variance. In FLERIT, 3 ˆ 3 neighbours and the
number of consecutive merged bins equal to 4 were utilised.
In Fig. 10, the left-side intensity map represents summation
on all arrived photons, which is the same in FLERIT and
our method for a fair comparison. The mid lifetime map
visualises lifetime estimation performance. And, the right-side
plot depicts lifetimes’ histogram. Visual results demonstrate
the superiority of our method over FLERIT. For regions A,
B and C, Table III tabulates mean ˘ standard deviation from
estimated lifetimes of FLERIT and our proposed method. The
best results are bold in the table. Except for the mean of region
C, the evaluation of numerical results demonstrates that the
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Fig. 9: Lifetime estimation statistics of various methods on (a) short-, (b) mid- and (c) long-lifetime regimes. For all plots, the
number of photon counts before perturbation is approximately 1,500.

C
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(a)

C
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Fig. 10: Lifetime estimation performance comparison between
(a) FLERIT and (b) our method on the same synthesised
image. Ground truth lifetimes in ns for regions of A, B and
C are 10, 6 and 2, respectively.

TABLE III: Numerical comparison of the methods in Fig. 10

Method
Estimated lifetime in ns pµ ˘ σq

Region A Region B Region C

FLERIT [11] 9.51 ˘ 1.42 6.86 ˘ 2.42 2.25 ˘ 2.05

Our approach 9.99 ˘ 0.19 5.97 ˘ 0.17 2.52 ˘ 0.58

Ground truth lifetime (ns) 10 6 2

suggested approach brings desired lower bias and variance of
lifetime estimates than those of FLERIT.

6) Comparison in various photon-count regimes: As men-
tioned earlier, SNR is the square root of the average number of
arrived photons, I . This parameter is a function of amplitude.
Hence, we change the amplitude to simulate low, mid and
high photon count regimes, which are interpreted as different
levels of SNR. To this intent, we considered three signals
with amplitudes of 50, 250 and 1,000. We set other common
parameters of signals as τ “ 2ns, ∆ “ 312.5ps and N “ 32.
All signals were first blurred with a Gaussian kernel of

length 3 and then noise was added with characteristics of
a “ 0.1, N p0, 25q. Those settings result in the values of
I approximately equal to 10, 50 and 200 averaged on the
measurement cycle for low, mid and high photon counts,
respectively. For all of the regimes, Fig. 11 represents the mean
and standard deviation of the estimated lifetimes from different
approaches including our proposed methods in Algorithms 1
and 2. Due to the differentiation operator used in Algorithm
1, we have also evaluated the effect of pre-binning as a
simple signal smoother before estimation. To do this, we
reduced the number of bins from 32 to reasonably sized 8.
For a fair comparison, the pre-binning was repeated for the
standard LS fit. Statistics in the bar graph were obtained for
100, 000 times random run. For the challenging low photon-
count situation, comparing results of different approaches to
the ground truth reference reveals the lowest bias for the
proposed Robust RLD with a significant difference from other
competing approaches. In the regime, the percent mean bias
of our approach is 7.55%, whereas, for the best competitor
(RLD-WO), it is 35.13%, which shows 27.58% improvement.
This specifically demonstrates the robustness of our method
under severe perturbation, as seen in the example of Fig. 2.
The accuracy of the estimator in Algorithm 1 is ranked
second but in an uncontrolled variance, which is because of
estimations beyond the measurement window caused by noise
amplification. However, with an accuracy-precision trade-off,
the pre-binning clearly improves the variance of the estimator
in Algorithm 1. As shown in results of LS estimator with
pre-binning, the smoothing also improves slightly the bias
than the LS counterpart with no binning at the expense of
increasing the standard deviation. Thanks to high levels of
SNR for the high photon counts regime, most of the lifetime
estimators expose close performance. Interestingly, the bias
of Algorithm 1 is less than that of Algorithm 2 in this
regime. This fact also highlights that for low noise levels, it
may not be needed to employ more complex approaches for
lifetime estimation. Meanwhile, results of Robust RLD show
its appropriateness for utilising in a wide variety of photon-
count regimes. Specifically, our approach makes better chance
for robust estimation of the lifetime under photon starvation
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Fig. 11: Mean and standard deviation of estimated lifetimes of
different approaches under various photon-count regimes. The
number of photons per histogram is approximately 350, 1,800
and 6,900 for regimes of low, mid and high photon counts,
respectively.

situations.
7) Comparison on decay recovery error: Although the

lifetime is known as the most important parameter in FLIM,
some fields like materials science deal with the amplitude
information, too. However, as mentioned in Section IV-A3,
all benchmark FLIM systems do not have the capability of
amplitude estimation such as CMM. Or, if capable, they may
work weakly under difficult situations like RLD and RLD-OW.
This fact also means they are not effective for recovering a
continuous or discrete version of a decay signal. Therefore,
due to the best rank of LS fit for amplitude estimation, we
have reported a recovery performance comparison between our
method and that of LS fit in Table IV. For this experiment, we
considered three signals with small, mid and large amplitudes
of 20, 100 and 500, respectively. Other parameters of the three
signals were τ “ 5ns, ∆ “ 781.3ps and N “ 32. Signals were
first blurred with a Gaussian kernel of length 3 and then noise
was added with characteristics of a “ 0.05, N p0, 64q. In Table
IV, bold mean and standard deviation values represent the best
performance. For the small amplitude, our method has lower
bias than LS fit; and, in mid and large amplitudes, it follows
the LS fit with little differences. The LS fit is inaccurate for
lifetime estimation in case of the small amplitude, where signal
perturbation is severe, whereas the proposed method is robust
for diverse amplitudes. Regarding recovery error of χ2, our
method outperforms the LS fit for almost all cases.

B. Tests on real data

1) FLIM system: FLIM images were recorded using a con-
focal scanning imaging system based on previously reported
work [42]. The system includes a 20MHz super-continuum
laser filtered to produce excitation at 480nm. The system was
used in conjunction with an optical imaging fibre bundle to

allow for remote imaging. Light was guided down individual
cores in the fibre and fluorescence collected from the same
fibre core and directed onto a spectral, time resolved detector.
The system can record between 2 and 512 spectral channels
and between 2 and 32 temporal channels for each pixel in the
image. For the data presented here, 2 spectral channels were
used with an exposure time of 85µs per pixel and an image
size of 128 ˆ 128 pixels.

2) Experimental design: Neutrophil Activation Probe
(NAP) [43] is an activatable fluorescent probe used for the
detection of Human Neutrophil Elastase (HNE), an enzyme
released by activated, pro-inflammatory neutrophils [44]. Con-
sisting of three internally quenched fluorescein moieties each
conjugated to a cleavable peptide sequence specific to HNE,
NAP (λex “ 488nm and λem “ 525nm) in its activated
form amplifies its fluorescence signal due to the release of
fluorescein. By incubating NAP with HNE, we sought to
characterise its fluorescence lifetime properties and test the
effects of Sivelestat, a specific inhibitor of HNE, as well as
Nafamostat mesylate, an antiviral drug currently undergoing
clinical trials as a potential treatment for coronavirus (COVID-
19) (clinical trial identifier NCT04473053) as a potential
inhibitor of HNE.

Another property of the experiment from the lifetime es-
timation viewpoint, is measuring fluorescence in a homoge-
neous solution as opposed to those of complex biological
objects such as cells. This means that signals from each sample
should be consistent, and we expect a uniform, flat lifetime
map. Therefore, such partial information about samples’ be-
haviour brings the ability to evaluate the performance of the
proposed lifetime estimation method in real-world scenarios.

3) Samples preparation: 400nM HNE (HNE-L, Molecular
Innovations, USA), diluted in HNE buffer (0.05M Na Ac-
etate, pH 5.0 containing 0.1M NaCl), was incubated with
10µM Sivelestat (ONO-5046, Tocris, Bristol, UK) or 10µM
Nafamostat mesylate (N0289, Sigma-Aldrich, UK) prior to the
addition of 5µM NAP (diluted in phosphate buffered saline).
Solutions were incubated for 15 minutes at 37˝C prior to
fluorescence intensity/lifetime imaging. Experimental samples
include 5µM NAP alone, 5µM NAP+400nM HNE, 5µM
NAP+400nM HNE+10µM Sivelestat and 5µM NAP+400nM
HNE+10µM Nafamostat mesylate, labelled respectively A, B,
C and D for simplicity.

4) Sensing and outcomes: For each sample, microen-
doscopy was done using green and red spectral bands with
wavelength ranges of p498nm „ 570nmq and p594nm „

764nmq, called bands 1 and 2, respectively. Each sample
contains video sequences with Nf frames. Signal parameters
are N “ 16, ∆ “ 800ps and the frames dimension of
128 ˆ 128. Table V summarises statistics of samples for
comparison of both our proposed and LS fit approaches side
by side. Mean and standard deviation values were calculated
on pixels inside the probe circle accumulated over all video
frames of f “ 0, 1, . . . , Nf ´ 1; and, as a pattern of the plain
specimens, Figs. 12 (a) and (b) show intensity and lifetime
maps as well lifetimes’ histogram from bands 1 and 2, 10th

frame, sample C, respectively. The zigzag-wise patterns on
intensity maps are mainly due to fibre-bundle artefacts.
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TABLE IV: Decay recovery error of the proposed method than the best competitor among our compared methods

Method
Amplitude estimation pµ ˘ σq Lifetime estimation pµ ˘ σq Decay recovery error of χ2 pµ ˘ σq

A “ 20 A “ 100 A “ 500 A “ 20 A “ 100 A “ 500 A “ 20 A “ 100 A “ 500

Least squares fit 15.14 ˘ 4.66 86.97 ˘ 5.08 439.29 ˘ 5.05 15.35 ˘ 6.67 6.24 ˘ 0.54 5.77 ˘ 0.1 682.8 ˘ 625.9 44.52 ˘ 36.69 62.17 ˘ 15.34

Our approach 15.41 ˘ 5.23 86.55 ˘ 5.59 433.29 ˘ 7.3 5.59 ˘ 3.48 5.21 ˘ 0.62 5.31 ˘ 0.21 59.49 ˘ 114.43 21.36 ˘ 19.49 42.27 ˘ 15.98

C

(a)

C

(b)

Fig. 12: Results from left to right are intensity and lifetime
maps, and lifetimes’ histogram from (a) band 1 and (b) band
2, 10th frame, sample C in Table V, respectively.

Our obtained results are statistically significant for all sam-
ples. HNE activated NAP via the cleavage of peptide sequence
to release fluorescein, resulting in increased fluorescence in-
tensity and lifetime. 10µM Sivelestat reduced the fluorescence
intensity; however, it had no effect on fluorescence lifetime due
to the partial inhibition of HNE. This potentially highlights the
limitation of single exponential fitting and the small number of
time bins used as there was likely both cleaved and uncleaved
probe in the signal, with the cleaved probe dominating in terms
of amplitude as the uncleaved probe is quenched. The fitted
lifetime is therefore dominated by the longer lifetime signal.
No reduction in fluorescence intensity or lifetime was observed
with 10µM Nafamostat mesylate, indicating that it is not an
inhibitor of HNE. Due to the fluorescence emission spectrum
properties of NAP, fluorescence was primarily detected in band
1. Thus, standard deviations of band 2 are greater than band 1
counterparts because of noise amplification, where the band 2
red spectrum has lower photon energy than green one and falls
largely outside of the NAP emission band. There is, however,
some evidence in band two to support the partial cleaving
inhibition in sample B with an intermediate lifetime observed.
The increased fluorescence lifetime signature of NAP makes
it suitable for FLIM. In terms of LS fit results, the lifetime
of different specimens exposes lower variance; however, they
are affected again by the important issue of bias due to the
underestimates.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

Except the performance of a lifetime estimator, another
important issue in FLIM is computational complexity/run-time
of the estimator. In this regard, estimators with low complexity
enable on-chip lifetime estimation capabilities, which lead to
benefits from reducing data transfer rate between a sensor
head and a distant computer to portability of a medical device.
This section provides approximate computational complexity
order of our algorithms in terms of the input size of bins
number N , yielding an upper bound on their time complexity.
We have done that task for methods presented in Section
IV. Additionally, we have calculated run-time for different
approaches as a complementary analysis, where all influential
factors on the complexity are considered in a real scenario.

As shown in Fig. 1, the proposed Robust RLD algorithm
consists of three processing stages at each level of the multi-
temporal resolution space and a decision unit at the end. The
processing steps include S-G filter, binning, and estimator. The
input bin size is variable for each level; and, the complexity
of the decider is negligible in comparison to the processing
stages. Therefore, the computational complexity is practically
bounded to processing applied at the level with the highest
resolution. At this level, no binning exists and all photon time-
stamps are individually recorded. The proposed estimator in
Algorithm 1 has a liner complexity of the order OpNq. There-
fore, the dominant term is the complexity of S-G filter [45], i.e.
the order of 1-D convolution as OpN log2Nq. The compared
algorithms expose two types of complexity, regardless of their
implementation details. On the one hand, the complexity of an-
alytic closed-form approaches of CMM, RLD, and RLD-OW
grows linearly with increasing N , which is the same as the
proposed estimator in Algorithm 1. On the other hand, LS fit,
Poisson MLE, and FLERIT have all matrix decomposition-
based solutions. Hence, they shows cubic order of complexity.
Table VI summarises the complexity for different categories.
Our proposed Algorithm 2 is ranked second among them with
a linearithmic complexity between the fair order OpNq and
the worst one OpN3q. Figure 13 reports the average run-time
vs bin size for synthesised histograms having τ “ 2.5ns in
experiments of Section IV-A1. For each bin size, we repeated
the random experiment 1,000 times. In the exhaustive search-
based Poisson MLE, which can be considered as the most
complex optimiser, we set expected lower and upper bounds of
1 and 1,100 for the amplitude, respectively, with the resolution
step of 4. Also, lower and upper bounds for the lifetime were
respectively 1 and 10, with the step size of 0.2. All simulations
were performed in MATLAB R2021b environment and run
on an Intel Core i7 2.2GHz machine. The ranking of run-
times justifies congruency of the two complexity analyses. On
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TABLE V: Results of both our proposed and the least squares fit approaches side by side on real samples

Sample Label Nf

Spectral band 1 pµ ˘ σq Spectral band 2 pµ ˘ σq

Intensity (a.u.)
Lifetime (ns)

Intensity (a.u.)
Lifetime (ns)

LS fit Our method LS fit Our method

5µM NAP alone A 19 13679 ˘ 2537 3.17˘0.03 3.23 ˘ 0.06 1083 ˘ 163 3.61˘0.22 5 ˘ 0.71

5µM NAP+400nM HNE B 23 44922 ˘ 8475 3.39˘0.03 3.57 ˘ 0.09 2844 ˘ 547 3.65˘0.19 4.19 ˘ 0.27

5µM NAP+400nM HNE+10µM Sivelestat C 31 27060 ˘ 5005 3.35˘0.02 3.57 ˘ 0.05 1753 ˘ 298 3.75˘0.16 4.39 ˘ 0.46

5µM NAP+400nM HNE+10µM Nafamostat mesylate D 28 43389 ˘ 8822 3.36˘0.03 3.53 ˘ 0.07 2658 ˘ 566 3.64˘0.12 4.19 ˘ 0.3

TABLE VI: Computational complexity of different algorithms

Algorithm(s) Time complexity

CMM, RLD, RLD-OW, and our estimator in Algorithm 1 OpNq

LS fit, Poisson MLE, and FLERIT [11] OpN3q

Our Robust RLD in Algorithm 2 OpN log2 Nq
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Our estimator in Algorithm 1 with pre-binning (0.00023)
Our Robust RLD in Algorithm 2 (0.0026)

Fig. 13: Average run-time vs bin size for various methods.
Numbers in parenthesis of the legend show averaging on all
bin sizes.

real images in specimens of Section IV-B, our robust method
processed data on average about 63 times faster than the gold
standard LS fit. To sum up, the analyses demonstrate that
both of our algorithms are suitable options for hardware-level
implementations.

VI. CONCLUSION

This paper presented a robust and computationally efficient
fluorescence decay signal recovery algorithm in the presence
of inevitable blurring and noise occurring during time-resolved
single photon sensing. The proposed framework first provides
a multi-bin decay representation from the histogram of photon
count arrivals using an adaptive signal smoothing approach.
Subsequently, each representation is fed to our lifetime de-
coding algorithm. Finally, estimated parameters from different
temporal resolutions are fused to each other based on game-
theoretic modelling. We theoretically proved that our method

is capable of recovering optimal fluorescence decay robustly
under a wide variety of imaging situations.

In addition to being robust, due to the non-fitting-based
nature of our method, it can be considered as a rapid approach
for hardware-level realisation. This capability is of great
importance in real-time fluorescence lifetime sensing systems
such as in vivo, in situ microendoscopy.

APPENDIX
DERIVATION OF CRAMÉR-RAO LOWER BOUND AND

MINIMUM VARIANCE UNBIASED ESTIMATOR

Starting from the corrupted observations model represented
in (11), likelihood function for the given τ is:

fX̃px̃|τq “

N´1
ź

n“0

1
a

2πσ2
e

e
´ 1

2σ2
e

„

x̃rns´Ae´ ∆¨n
τ

ȷ2

. (28)

The first-order partial derivative of the log-likelihood gives:

B ln fX̃px̃|τq

Bτ
“

A∆

τ2σ2
e

N´1
ÿ

n“0

”

ne´ ∆¨n
τ x̃rns ´Ane´ 2∆¨n

τ

ı

.

(29)
Repeating the differentiation yields:

B2 ln fX̃px̃|τq

Bτ2
“
A∆2

σ2
eτ

4

N´1
ÿ

n“0

”

n2e´ ∆¨n
τ x̃rns ´ 2An2e´ 2∆¨n

τ

ı

.

(30)
The estimation variance satisfies varpτ̂q ě CRLB, where:

CRLB fi
1

´E
”

B2 ln fX̃px̃|τq

Bτ2

ı “
σ2
eτ

4

A2∆2
řN´1

n“0 n
2e´ 2∆¨n

τ

.

(31)
Now, the condition of existence of a MVUE is to check
ψpτqpτ̂ ´ τq “

B ln fX̃px̃|τq

Bτ for a function like ψpτq as:

ψpτqpτ̂´τq “
A2∆

σ2
eτ

3

N´1
ÿ

N“0

ne´ 2∆¨n
τ

#

τ
řN´1

n“0 ne
´ ∆¨n

τ x̃rns

A
řN´1

n“0 ne
´ 2∆¨n

τ

´ τ

+

,

(32)

which τ̂ fi
τ

řN´1
n“0 ne´ ∆¨n

τ x̃rns

A
řN´1

n“0 ne´ 2∆¨n
τ

shows the MVUE does not exist

due to being a function of the true parameter τ . ■
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