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Neural Network-Based Channel Estimation and Detection in
Spatial Modulation VLC Systems

Kapila W. S. Palitharathna, Member, IEEE, Himal A. Suraweera, Senior Member, IEEE, Roshan I. Godaliyadda,
Senior Member, IEEE, Vijitha R. Herath, Senior Member, IEEE, and John S. Thompson, Fellow, IEEE

Abstract—We consider a spatial modulation aided indoor vis-
ible light communication system with user mobility and random
receiver orientation. Two artificial neural networks (ANNs) are
proposed which are able to predict the channel state information
(CSI) with high accuracy and resolution. These architectures
use estimated CSI at pilot instances obtained using least square
or minimum mean square error estimation and predict CSI
at intermediate locations. Moreover in ANN 2, predicted user
position information is used to improve the performance. Nu-
merical results show that the proposed ANNs deliver a better bit
error rate compared to a benchmark spline interpolation-based
method. Further, ANN 2 is shown to perform robustly in a high
mobility scenario.

Index Terms—Visible light communication, spatial modulation,
artificial neural network, user mobility.

I. INTRODUCTION

In the recent developments of wireless systems, visible light
communication (VLC) has become a promising technology to
provide high-speed reliable communication using the existing
indoor lighting infrastructure [1]. Moreover, spatial modulation
(SM), which is a promising technique to enhance the spectral
efficiency, has been studied in the context of VLC [2], [3].
SM is a technique that enables modulation over space, across
different antennas at a transmitter. Specifically, directive light
patterns of light-emitting diodes (LEDs) and LED/photodiode
(PD) positioning can be exploited to obtain distinct channel
gains that are essential for SM.

In the literature several papers have applied SM to VLC
systems [3]–[7]. In [3], the bit error ratio (BER) performance
of a generalized SM scheme that activates multiple LEDs per
channel use has been analyzed. In [5], a precoding scheme for
SM has been presented. Adaptive SM in which an arbitrary
number of transmitters can be used has been studied in [4].
The work in [6] proposed a novel LED array structure to en-
able reliable SM transmission by manipulating the transmitter
geometry. In [7], a SM aided system has been proposed to
cope with receiver orientation errors and device blockages.
In [8], a group-based LED selection method is proposed for
generalized SM under user mobility and receiver orientation.

User mobility is a key aspect in VLC systems since
movement causes time variations of the channel gains. In
addition, random receiver orientations due to human activities
such as sitting and walking also influence the channel gains.
While most of the literature has studied static receivers, some
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papers have considered user mobility and random receiver
orientation [9], [10]. Typically, designing a receiver for robust
communication under such conditions is challenging. More-
over, accurate channel estimation in high mobility is difficult
to achieve and can cause errors at the data detection phase.

In a VLC receiver, channel estimation is performed prior
to the data detection phase. For that purpose, interleaved pilot
symbols in the time and/or frequency domain are sent [11].
Conventional channel estimation techniques such as least
squares (LS) and minimum mean square error (MMSE) es-
timation have been explored in the context of VLC sys-
tems [11]–[14]. To finely estimate the channel with high
mobility, an additional amount of pilot symbols should be in-
serted. In order to predict the channel state information (CSI),
interpolation techniques can be used. Among them, linear,
spline, and piece-wise cubic Hermite polynomial interpolation
are well established techniques [15]. Depending on the pilot
spacing and non-linear channel variation due to mobility,
interpolated channel gains can be mismatched with the actual
channel gains. On the other hand, machine learning based
techniques have gained attention to perform transmitter and
receiver operation in VLC systems [14]. However, fluctuations
of the channel gain matrix due to the mobility and receiver ori-
entation in indoor settings can cause a significant performance
deterioration in the considered SM VLC system. To the best of
authors knowledge, work on suitable artificial neural network
(ANN) architectures for channel estimation and detection of a
SM VLC systems with practical conditions such as user mobil-
ity and random receiver orientation have not been developed.
To this end, we propose novel ANN based solutions with path
prediction incorporated. In this paper, we present ANN based
channel prediction method which can reduce the number of
pilot symbols and result in reduced BER for SM aided indoor
VLC systems. We consider a realistic user mobility model
based on random way-points and a random receiver orientation
model based on measurements. SM detectors are sensitive to
effects such as user mobility and random receiver orientation
errors. The goal of the proposed technique is to recover the
transmitted signals based on accurate CSI estimation. ANN
based CSI estimation can capture random and realistic channel
conditions. Therefore, it is effective in many cases of practical
scenarios. Our contributions are summarized as follows.

• We present two ANNs which can predict CSI with higher
accuracy and resolution with user mobility and random
receiver orientation. ANN 1 uses only estimated channels
at known pilot instances as inputs while ANN 2 uses both
estimated channels and predicted user locations as inputs
to generate results.

• Results reveal that the presented architectures are ca-
pable of achieving significant performance improvement
compared to the benchmark spline interpolation method.
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Fig. 1: Indoor SM aided VLC system. The azimuth and polar
angles of the device are also marked.

Specifically, ANN 2 is well suited for high mobility
conditions since it captures the mobility and requires a
small window size for prediction.

II. SYSTEM MODEL

Fig. 1 shows the indoor SM aided VLC system with Nt
ceiling mounted LEDs and Nr receiver PDs. We assume on-
off keying for the transmission. Each LED is either OFF or
emits light of intensity {I0, I1} ∈ I per channel use, where
I is the set of all possible intensity levels [3]. Hence, the
number of bits transmitted in a given channel use is ηSM =
blog2(Nt)c + log2(MI) where the set of intensity levels MI

for on-off keying is two and b.c is the floor function. Let s[n]
denote the Nt×1 transmit vector for n-th time slot. There are
2ηSM possible activation patterns of s[n] denoted as sis where
is = {1, . . . , 2ηSM }. Therefore, the received real-valued signal
vector at the receiver for n-th time slot can be expressed as

y[n] = rH[n]s[n] + η[n], (1)

where r is the responsivity of the PD, H[n] is the Nr × Nt
optical channel matrix for n-th time slot, η[n] is the noise
vector of dimension Nr×1. The (k, l)-th element of the H[n]
matrix contains the channel gain from l-th LED to the k-th
PD, hk,l[n]. However, we assume that channel doesn’t vary for
a block of kc small number of time slots and, hence, hk,l[n] =
hick,l for n = {(ic − 1)kc + 1, . . . , ickc} where ic is the block
number. Each element of η[n] is distributed as real additive
white Gaussian noise with zero mean and variance σ2

η .
A. Channel Model

We assume that the channel gain from a LED transmitter
to a PD receiver is determined through line-of-sight (LoS)
geometric loss which is deterministic for a fixed LED/PD.
The LoS channel gain can be evaluated with the help of the
well known Lambertian radiation pattern equation as [7]

hick,l =
(m+ 1)A

2π(lick,l)
2

cosm(θick,l) cos(φick,l)Gc(φ
ic
k,l), (2)

where m = − ln(2)/ ln(cos(θ1/2)) is the Lambertian order of
the LED, A is the aperture area of the PD, lick,l is the Euclidean
distance between the l-th LED and the k-th PD, and θ1/2 is
the half power angle of the LED. θick,l is the irradiance angle
of the (l, k)-th LED/PD pair, φick,l is the incident angle of the
(l, k)-th LED/PD pair, G is the gain of the trans-impedance
amplifier (TIA) at the receiver, and c(φick,l) is the concentration
gain expressed as

c(φick,l) =


ρ2

sin2(ΦFoV )
, 0 ≤ φick,l ≤ ΦFoV ,

0, φick,l > ΦFoV ,
(3)

where ρ is the internal refractive index of the concentration
and ΦFoV is the field-of-view (FoV). It is noted that θick,l, φ

ic
k,l

and lick,l in (2) vary with the time due to the user mobility and
random receiver orientation as explained in the sequel.

B. User Mobility and Random Receiver Orientation
The user mobility and the random receiver orientation have

direct relationships with the azimuth angle, αic and the polar
angle, βic of the receiver. In an indoor environment, the
variation of βic is faster than the walking speed. Hence, we
select the value of kc such that the difference between βic and
βic+1 is less than a pre-defined threshold.

1) User Mobility: We consider the random way-point based
model in [7] and [9] to account for user mobility. The key
concept of this model is to consider a set of random points
and fill the intermediate points to obtain a walking path. Such
intermediate points can be accurately modeled using a walking
human trajectory model as presented in [16]. In our work, a set
of random points, pip = (xip , yip), where ip = {1, . . . , Np},
and Np is the number of points which lie on the floor area were
selected. Next, the path for the movement between points pip
and pip+1 was obtained by solving the optimization problem
in [16] that can be expressed as

min
x(.),u(.),Tip+1

∫ Tip+1

Tip

φf (x(t),u(t))dt, (4)

under the constraints:
ẋ(t) = f(t,x(t),u(t)) Dynamic constraint
x(Tip) = xip Initial condition
x(Tip+1) = xip+1 Final condition

where x(t) = (x(t), y(t), α(t), vforw, vorth, ω)T and u(t) =
(u1(t), u2(t), u3(t))T are the state and control variables. In
here, (x(t), y(t)) is the coordinate of the user at time t, α(t)
is the azimuth angle at time t, vforw is the velocity for the
forward direction, vorth is the velocity for the orthogonal
direction, ω is the angular velocity, Tip is the travel time
to the ip-th point, φf (x(t),u(t)) is the objective function,
respectively. φf (x(t),u(t)) is given by [16]

φf (x(t),u(t)) = a0 + a1u
2
1(t) + a2u

2
2(t) + a3u

2
3(t)

+ a4ψ(x(t),x(Tip+1))2 + a5((x(Tip+1)− x(t))2+

(y(Tip+1)− y(t))2) + a6(α(Tip+1)− α(t))2, (5)

where a0 = 1, a1 = 1.2, a2 = 1.7, a3 = 0.7, a4 = 5.2,
a5 = 5, a6 = 8 in our system. The dynamic equation of the lo-
comotion system is ẋ(t) = (ẋ(t), ẏ(t), α̇(t), v̇forw, v̇orth, ω̇)T

where ẋ(t) = cos(α(t))vforw − sin(α(t))vorth, ẏ(t) =

sin(α(t))vforw + cos(α(t))vorth, ˙α(t) = ω, v̇forw = u1,
v̇orth = u2, ω̇ = u3. In this model, (Tip+1 − Tip) is not fixed
due to variable time of movement between two random points.
To obtain Tip+1 for each pip+1 point, an iterative search can
be used. We start by setting

Tip+1 − Tip =

√
(x(Tip+1)−x(Tip ))2+(y(Tip+1)−y(Tip ))2

vn
, (6)

where vn is the nominal speed. Next, we increase (Tip+1−Tip)
until φf (x(t),u(t)) is smaller than a pre-defined threshold.
Using this mobility model, the azimuth angle α(t), and user
coordinates (x(t), y(t)) for time t are recorded. Such signals
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Fig. 2: Time frame of the proposed channel estimation and
prediction protocol.
are sampled at ickcTs where Ts is the time duration between
two time slots to obtain the user coordinates, (xic , yic) and
azimuth angle, αic throughout the movement.

2) Random Receiver Orientation: To model random re-
ceiver orientation several techniques are used in the literature.
In [10], the polar angle is assumed to be distributed in a
uniform distribution. In [9], a measurement based realistic
model has been presented. Based on the measurements the
polar angle of the mobile device is independent of the azimuth
angle and the user position. According to the model, the polar
angle of the receiver for walking, βic follows a Gaussian
distribution and adjacent samples are correlated. A correlated
Gaussian random process (RP) can be used generate samples
of the polar angle. We use a first order linear auto-regressive
(AR) model to generate the ic-th sample of the correlated
Gaussian RP, βic , which is expressed as

βic = c0 + c1β
ic−1 + wic , (7)

where c0 is the bias level, c1 is the constant factor of the AR,
and wic is the white Gaussian noise with variance σ2

w [9]. The
parameters of the AR model can be calculated using

c0 = (1− c1)E[β], c1 = Rβ
(
Tc,β
Ts

) Ts
Tc,β

, (8)

and σ2
w = (1 − c21)σ2

β , where E(.) denotes the mean, Rβ(.)
is the auto-correlation function of βic , Tc,β is the coherence
time, and σ2

β is the variance of βic , respectively.
The position of k-th PD can be obtained with 3D transla-

tions and rotations around the y and x-axes of the receiver’s
local coordinate frame. Hence, the coordinates of the k-th PD
is xickyick

zick

 =

xk,0 cos(αic) cos(βic)− yk,0 sin(αic) + xic

xk,0 sin(αic) cos(βic) + yk,0 cos(αic) + yic

−xk,0 sin(βic)

 ,
where (xk,0, yk,0) is the coordinate of the k-th PD in the
receiver’s local coordinate frame. Next, θick,l, φ

ic
k,l, and lick,l in

(2) can be calculated as

θick,l = tan−1

(
xick − xl
zick − zl

)
, (9)

cos(φick,l) =

(
xl − xick
lick,l

)
sin(αic) cos(βic)+(

yl − yick
lick,l

)
sin(αic) sin(βic) +

(
zl − zick
lick,l

)
cos(αic), (10)

and

lick,l =

√
(xick − xl)2 + (yick − yl)2 + (zick − zl)2, (11)

where (xl, yl, zl) is the coordinates of the l-th LED.

C. Channel Estimation and Detection

In this work, we present a channel estimation and prediction
protocol as shown in Fig. 2. According to the protocol,
pilot symbols are transmitted at an interval of K blocks
or KkcTs seconds. At the receiver, LS or MMSE channel
estimation is used to obtain the CSI at pilot instances. Let

Channel gains from the block
( jc-1)K+2 to the block jcK+1

Nw LS or MMSE estimated channel
gains andr eceiver positions

Fig. 3: Proposed ANN architecture.
Sjcp be the pilot matrix of the dimension Nt × kc which
contains the known pilot symbols for jc-th pilot instance where
jc = b(ic− 1)/K+ 1c, and Yjc

p be the received signal matrix
of Nr × kc. The estimated channel gain matrix using LS
estimation can be expressed as

Ĥjc
LS = Yic

p (Sjcp )′
(
Sjcp (Sjcp )′

)−1

, (12)

where Ĥjc
LS ∈ RNr×Nt is the estimated channel matrix [12],

[13]. Similarly, the channel gain matrix for MMSE is

Ĥjc
MMSE = RH

(
RH + σ2

η

(
Sjcp (Sjcp )′

)−1
)−1

Ĥjc
LS , (13)

where RH is the co-variance matrix of the channel [11], [12].
After LS and MMSE estimation, channel gains for the blocks
from ((jc−1)K+1) to (jcK+1) are predicted using the ANN
architectures presented in Sec. III. Hence, the estimated and
predicted channel gain matrix for the n-th time slot, Ĥj [n] can
be obtained where j ∈ {LS,MMSE} denotes the channel
estimation method.

We use ML detection to decode the received message
stream [3], i.e.,

ŝ[n] = arg min
sip

‖y[n]− rĤj [n]si‖2. (14)

III. ANN BASED CHANNEL ESTIMATION AND
PREDICTION

In this section, we present two ANNs that make use of
CSI and user position information, to obtain higher resolution
channel estimates. Recall that in our system, pilots are sent
at a block interval of K followed by estimating the channels
at these pilot positions using methods such as LS or MMSE.
For this purpose, a window comprising Nw pilot instances
are considered as shown in Fig. 2. The estimated CSI and
predicted device positions from (jc − Nw + 1) to jc pilot
instances are used as inputs to the proposed ANNs. The output
of ANNs are the predicted values of the CSI for blocks from
((jc − 1)K + 2) to (jcK + 1).

A. Proposed ANN Architecture

Fig. 3 shows the ANN Architecture (referred to as ANN
1), which has an input layer, two hidden layers, and an output
layer. The input layer consists of Nw ×Nr ×Nt neurons, the
values of which are taken from Nw estimated channel matrices
of the input window. We adopt two fully connected hidden
layers with N1, and N2 neurons in each layer. The widely used
rectified linear unit (ReLU) function fReLU (x) = max(0, x)
is used as the activation function. We denote the output for
the hidden layers as x̂(2) ∈ RN1 , and x̂(3) ∈ RN2 and can
be written as x̂(2) = fReLU

(
W1x̂

(1) + k1

)
, and x̂(3) =
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fReLU
(
W2x̂

(2) + k2

)
, where W1 ∈ RN1×(Nw×Nr×Nt) and

W2 ∈ RN2×N1 are the weight vectors for the first and second
hidden layers, k1 ∈ RN1 and k2 ∈ RN2 are the bias vectors
for the first and second hidden layers, and x̂(1) is input to the
first layer, respectively. The output layer, which consists of
K×Nr×Nt neurons, is used to obtain the predicted K channel
gains from ((jc−1)K+2) to (jcK+1) blocks. No activation
function is used at the output layer. Hence, the output can be
expressed as ŷ = Wox̂

(3), where Wo ∈ R(K×Nr×Nt)×N2 is
the weight vector.

B. ANN Architecture with User Position Information

In addition to the estimated CSI, prior knowledge of the
receiver position can be used to refine the channel prediction.
This key idea has been incorporated in extension to the ANN
architecture (referred to as ANN 2) as shown in Fig. 3.
Let position and azimuth angle of the device given by c̄ =
(x̄(t), ȳ(t), ᾱ(t))T , are recorded with a sampling interval of
TR at time instances Tm, where (Tm+1 − Tm) = TR > KTs.
c̄ is piece wise continuous on each [Tm, Tm+1] interval. The
traveled trajectory of the device is given by (c̄0, c̄1, . . . , c̄m)T .
Considering c̄m as the initial location and c̄m+1 as the final
location, intermediate device positions are predicted exploiting
the path prediction technique in [17]. Next, it is sampled at
KkcTs to obtain device locations for (jc−Nw+1) to jc pilot
instances. The Nw number of predicted (x, y) coordinates are
used as the additional inputs to the ANN 2. Accurate path
prediction can be realized using techniques such as video
surveillance cameras and wall/floor mounted sensors leading
to a rich statistical analysis of the movement data. Our ANN
architectures are sufficiently flexible, for example the training
phase can easily accommodate all real-world data sets.

In ANN 2, the input layer consists of (Nw×Nr×Nt+2×
Nw) neurons where additional 2 ×Nw neurons than ANN 1
are used to provide predicted (x, y) coordinates of the device
at Nw pilot instances. Two hidden layers consists of N3 and
N4 neurons in each layer. It is noted that a better result can
be obtained, even with N3 < N1 and N4 < N2 due to the
use of device location prediction. The ReLU function is used
as the activation function. Similar to ANN 1, K × Nr × Nt
neurons are used at the output layer.

In the training phase of both ANNs, initial values for the
network weights, θ = {W1, W2, Wo, k1, k2} are set.
Forward propagation is applied to obtain ŷ for a selected input.
In this letter, the mean squared error between ŷ and a vector
containing perfect CSI for K blocks, y0 is used as the loss
function which is expressed as φ(θ) = 1

B

∑B
im=1 ‖ŷ − y0‖2,

where B is the mini batch size of the training. An optical
power measurement technique can be used to measure received
power, and hence, y0 can be calculated. Hardware imperfec-
tions may introduce random effects for channel gains such as
in optical OFDM, while in this work, training data is processed
with the help of (2) under the assumption that the VLC channel
gains are deterministic. θ is updated for training batches using
the stochastic gradient descent algorithm that can be expressed
as θ+ := θ − ε∇φ(θ), where ε is the learning rate. Note that
for training we use the Adam optimizer to minimize the loss

Algorithm 1 Proposed algorithm for ANN 2

Inputs:
Initial conditions, x(0)
Final conditions, x(Tf )
Trained ANN model for channel prediction

Initialize:
x(Tip ) = x(0)

1: repeat
2: Predict x(KkcTs((jc −Nw + 1)K + 1)) to x(KkcTs(jcK + 1))
3: Estimate channel gains at Nw pilot instances using LS or MMSE
4: Predict channel gains from ((jc−1)K+2) to (jcK+1) intermediate

time slots using ANN 2
5: until x[n] = x(Tf )

6: return Estimated channel gains matrices, Ĥj [n]

function. The algorithm that performs channel prediction using
this architecture is shown in Algorithm 1.

ANN 1 and ANN 2 involves a trade-off between complexity
and performance. In terms of complexity, ANN 1 requires
(2NwNrNtN1 + 2N1N2 + 2N2KNrNt) floating point op-
erations (flops) to produce a set of CSI outputs while it is
(2(NwNrNt + 2Nw)N3 + 2N3N4 + 2N4KNrNt) flops for
ANN 2. Moreover, the latter requires the device position
prediction which increase the complexity.
C. Spline Interpolation

In order to benchmark the performance of ANN based
CSI estimation, we compare the results with an existing
interpolation method in which spline interpolation is used to
obtain the intermediate (K − 1) blocks [15]. Accordingly, the
spline interpolation for each (k, l)-th element of the channel
gain matrix Ĥj [n], hk,l[n] is done separately. Depending on
the value of Nw, the order of the spline polynomial can be
selected. The interpolation polynomial of the order Nw is
expressed as

fNw (hij(t)) =

Nw∑
i=0

aihij(t)
i, (15)

where ai, ∀ i ∈ {1, Nw} are constants. The spline polynomial
should pass through Nw points in the window. Hence, an Nw
set of equations can be formed to find ai. Optimal ai values
can be found for example using MATLAB® software. Further,
hij(t) is sampled at Ts to obtain hk,l[n].

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are presented to illustrate
the performance of the ANNs under different system and
channel parameters. A room dimension of 5m × 5m × 3m is
assumed. Unless stated explicitly otherwise in all simulations,
we have set the parameter values as ρ = 1.25, A = 10−3m2,
ΦFoV = 900, θ1/2 = 600,r = 0.5A/W, T = 1, Nt = 4,
Nr = 4, Pt = 1W, Nw = 5, K = 10, Tc = 13ms, N1 = 20,
N2, N3 = 20, N4 = 20, kc = 10, and SNR of 25 dB at pilot
instances, respectively [7], [9]. A set of 107 channel matrices
were generated. A series of simulations were conducted to
obtain suitable percentages for training, validation, and testing
and finally are selected as 40%, 20%, and 40%. The evaluation
is performed by MATLAB and Python running in a Acer
Asphire E5-574G-58WK with a 2.3 GHz Intel Core i5 CPU
and a NVIDIA GeForce 920M GPU. The average execution
times for ANN 1 and ANN 2 are 7.52 µs and 10.34 µs,
respectively.
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Fig. 4 shows the BER performance with ANNs, perfect
CSI, and spline interpolation. These results corresponds to
two mobility and receiver orientation conditions. vn = 1.0
ms−1 and Tc,β = 80 ms corresponds to high mobility while
vn = 0.5 ms−1 and Tc,β = 130 ms is the low mobility case.
Both ANN 1 and ANN 2 are capable of achieving a significant
performance at moderate to high SNR when compared with
the case of perfect CSI. Moreover, using the ANNs, the
irreducible error floor due to imperfect channel estimation
can be considerably reduced. At low mobility, both ANNs
show a near optimal performance while there is a performance
deterioration at high mobility. However, ANN 2 achieves a
lower BER performance than ANN 1 and spline interpolation
in both mobility conditions.

Fig. 5(a) shows the BER versus K, when Nw = 5 and
MMSE is used. A lower K value results in more accurate
channel prediction and, hence a lower BER can be observed. In
the considered setup, a BER better than 10−3 can be observed
when K < 15 using both ANNs. In order to obtain 10−3

BER, the K value needs to be 6, 16, and 21 for in the cases
of spline, ANN 1 and ANN 2, respectively. Fig. 5(b) shows
the BER versus Nw, when K = 10 and MMSE is used. A
higher value of Nw increases the prediction accuracy which in
turn reduces the BER. Presented results are helpful to select a
practical value for Nw. In our setup, a BER below 10−3 can be
achieved when Nw ≥ 5. The gap between ANNs reduces and
settles to a constant value as Nw increases which shows the
ANN 1 is able to mitigate the absence of position information

to some extent. Hence, ANN 2 is well suited for lower Nw
values.

V. CONCLUSION

In this letter, we have considered channel estimation and
performance evaluation of SM aided indoor VLC systems un-
der mobility and receiver orientation. Specifically, two ANNs
which use estimated CSI at pilot instances and user position
information to obtain CSI with higher resolution have been
proposed. Our ANNs are capable of achieving a low BER
with reduced amount of pilot symbols as compared to existing
solutions. For the considered setup, using our ANN solutions
reduces the number of pilots required by 71%. Moreover,
the presented ANN solution with user position information
is robust against a wide range of user mobility cases and
receiver orientations without much performance degradation,
hence suitable for VLC applications.
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