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Evolutionary theory predicts that organismal plasticity should evolve in
environments that fluctuate regularly. However, in environments that fluctuate
less predictably, plasticity may be constrained because environmental cues
become less reliable for expressing the optimumphenotype. Here, we examine
how the predictability of +5°C temperature fluctuations impacts the phenotype
of themarine diatom Thalassiosira pseudonana. Thermal regimes were informed
by temperatures experienced bymicrobes in an ocean simulation and featured
regular or irregular temporal sequences of fluctuations that induced mild
physiological stress. Physiological traits (growth, cell size, complexity and pig-
mentation) were quantified at the individual cell level using flow cytometry.
Changes in cellular complexity emerged as the first impact of predictability
after only 8–11 days, followed by deleterious impacts on growth on days
13–16. Specifically, cells with a history of irregular fluctuation exposure
exhibited a 50% reduction in growth compared with the stable reference
environment, while growth was 3–18 times higher when fluctuations were
regular. We observed no evidence of heat hardening (increasingly positive
growth) with recurrent fluctuations. This study demonstrates that unpredict-
able temperature fluctuations impact this cosmopolitan diatom under
ecologically relevant time frames, suggesting shifts in environmental stochas-
ticity under a changing climate could have widespread consequences among
ocean primary producers.
1. Introduction
Climate change is characterized by an array of alterations in Earth’s physical
and chemical properties and is shifting the way organisms experience the natu-
ral world. Notably, atmospheric warming is associated with an increase in the
frequency, intensity and/or variability of extreme weather events, such as heat-
waves, heavy precipitation, cyclones, droughts, wildfires and floods [1]. An
organism’s response to environmental variation depends on the shape of its
reaction norm—the relationship between phenotypic trait change and environ-
mental change. Reaction norms are commonly used to understand and model
both species distributions and organismal responses to environmental change.
Importantly, the pattern and extent of environmental variability that popu-
lations experience over time influences the shape of reaction norms [2]. While
there is a developed body of theory about how past environmental experience
affects plasticity [3], empirical studies of key organisms and relevant environ-
mental changes [4–6] are crucial for validating the theory and predicting how
climate change will shape the future biosphere.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2021.2581&domain=pdf&date_stamp=2022-04-27
mailto:raissa.gill@uts.edu.au
https://doi.org/10.6084/m9.figshare.c.5958267
https://doi.org/10.6084/m9.figshare.c.5958267
http://orcid.org/
http://orcid.org/0000-0001-7955-7271
http://orcid.org/0000-0003-3856-4285
https://orcid.org/0000-0002-7933-7241
https://orcid.org/0000-0003-4310-4582
https://orcid.org/0000-0002-2045-1656
https://orcid.org/0000-0001-8750-3433
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20212581

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 M

ay
 2

02
2 
Environmental variation can be characterized by the ampli-
tude and frequency of changes in environmental properties [7],
but a key aspect driving plasticity and evolution of populations
is environmental predictability [8]. Colwell et al. [9] defined this
as the regularity of a phenomenon that occurs periodically
through time [9], where the reliability of an environmental
cue can be instrumental to expressing the optimum phenotype
or behaviour in response to a current and/or future driver [10].
Highly reliable environmental cues are characterized by tem-
porally predictable sequences of environmental change, such
as regularly occurring seasonal temperature variations which
signal migration in birds [11]. Contrastingly, cues that occur
as unpredictable sequences can impair an organism’s ability
to assess or forecast changes in their environment, where irre-
gular cues can lead to a mismatch with the organisms
phenotype and less effective or even maladaptive behaviours
[12]. As environmental variables are expected to become
increasingly unpredictablewith ongoing greenhouse gas emis-
sions [1], empirical support for and model validation of the
relationship between predictability of environmental change
and organismal responses [2,8,13] are vital. Studies to date
have shown that less predictable environments lead to lower
plasticity in organisms such as Dunaliella salina (a unicellular,
halotolerantmicroalga), where increasingly unpredictable fluc-
tuations in salinity caused decreased growth, more extinctions
and/or reduced morphological plasticity [14,15]. However,
studies of this nature are relatively scarce compared with
those altering the amplitude and/or frequency of environ-
mental changes. Thus, environmental predictability was
selected as the component of variation for manipulation in
this study.

The physiology underlying organismal responses to
environmental variability can vary considerably depending
on the nature of the fluctuations [16]. For instance, if the ampli-
tude exceeds the acute or cumulative stress threshold of an
organism, a cellular stress response is initiated, which may
involve increased production of reactive oxygen species
(ROS), diversion of energy towards cellular repair and/or the
upregulation of stress response genes [17,18]. Any subsequent
exposure requires additional energy allocation to repair cellular
damage and to sustain tolerance [19], which can become lethal
if exposure occurs at high frequencieswith inadequate intervals
for recovery between events [20]. Repeated exposure to a
stressor can have bidirectional effects on an organism’s
survivability: either it contributes additively to stress and has
a negative impact on subsequent recovery, or it may prime
the organism to be more resilient in the face of subsequent
stressors, referred to as cross-protection, cross-tolerance, stress
imprint, stress memory or hardening [21–25]. Additionally,
these effects can occur concurrently with stress accumu-
lation—for instance, Samuels et al. [26] demonstrated both
heat hardening and accumulated stress inActinocyclus actinochi-
lus populations (Southern Ocean diatoms) acclimated to
sub-lethal temperatures prior to heatwave exposure [26]. In
fast-growing unicellular organisms such as marine microbes,
reproduction by binary fission and subsequent transgenera-
tional plasticity may also provide a mechanism whereby a
population is hardened to warming through previous ancestral
exposures [27], analogous to the hardening of individual
organisms such as plants with longer generation times.

Marine phytoplankton are a diverse group of microbes
that inhabit the upper ocean, where they harness light
energy for photosynthesis that is then distributed to the
ocean food web as organic carbon [28]. These organisms
experience enhanced variation in environmental conditions
compared to benthic organisms because they drift in ocean
currents [29]. Exposure to environmental variation, short gen-
eration times and amenability to experimentation make
marine phytoplankton excellent candidates for investigating
the implications of environmental variability.

Here, we examine the effect of environmental predictabil-
ity and history on growth and other functional traits in the
cosmopolitan marine diatom Thalassiosira pseudonana using
fluctuating temperature regimes. Temperature was selected
as the fluctuating environmental value for this study as it
varies on multiple temporal scales in the ocean and influ-
ences the global distribution of marine phytoplankton
[30,31]. We hypothesized that irregular sequences of tempera-
ture change would negatively impact T. pseudonana growth
with associated changes in the phenotype, largely due to lim-
ited opportunity to anticipate warming under temporally
variable timescales. We also examined whether there was evi-
dence of hardening as T. pseudonana experienced cumulative
fluctuations.
2. Methods
(a) Experimental design
To design experimental thermal regimes that represented envir-
onmentally relevant patterns of predictability in temperature
fluctuations from the perspective of planktonic marine microbes,
we used data collected as part of the oceanographic citizen
science project ‘Adrift’ (adrift-project.com). Adrift uses a Lagran-
gian ocean analysis framework [32] to track passive particle
movement through the uppermost surface layer of a dynamic
three-dimensional numerical ocean model. An upwards fluctu-
ation of +5°C was selected from a baseline of 18°C, informed
by the greatest seasonal variation in temperature experienced
by virtual microbes drifting in the core flow of the Eastern
Australian Current in austral Autumn of 2017. The 18°C baseline
represents the lowest temperature experienced during austral
Autumn and is well below the estimated thermal optimum
(Topt) for T. pseudonana. Boyd et al. [33] observed Topt of 25°C
with instances of mortality at greater than or equal to 30°C
among six strains of T. pseudonana tested across temperatures
spanning 10 to 32.5°C [33]. For nutrients, the maximum concen-
tration of nitrate experienced among virtual microbes in Autumn
(3.74 µmol l−1) was selected for daily dosing in experiments,
representing the best-case scenario for the availability of this lim-
iting nutrient in this ocean region. More details on the Adrift
model, simulation procedure and data processing are provided
in the supporting information (see electronic supplementary
material, adrift methods section and figure S1).

Thermal regimes had two phases. In the first phase (test of
environmental predictability), four upwards temperature fluctu-
ations were simulated with the same magnitude, frequency
and period of thermal exposure, but differing in the sequence of
intervals between them (1 and/or 2 days). Interval sequences
were spaced regularly or irregularly through time to simu-
late temporally predictable and unpredictable environmental
conditions, respectively. In the second phase (test of environmental
history), there was a fifth and final fluctuation that was out of
sequence with the preceding fluctuations, occurring after a 4-day
interval. The purpose of this second phase was to test how the pre-
dictability of temperature fluctuations in T. pseudonana’s recent
history impacts its response to an additional, unanticipated fluctu-
ation. A control regime maintained at 18°C was included to
allow relative comparisons to stable temperature as well as the
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standardization of responses among regimes. The thermal regimes
are listed below (see also electronic supplementary material, figure
S2) where for regime labels, ‘R’ denotes regular fluctuations in
temperature, ‘I’ denotes irregular fluctuations, and the proceeding
numbers represent the intervals (in days) between each fluctuation:

(1) Control; no fluctuations, maintained at base temperature of
18°C.

(2) R-1114; regular fluctuations of +5°C (18 to 23°C) with equal
1-day intervals between fluctuations 1–4, followed by a
4-day interval preceding fluctuation 5

(3) R-2224; regular fluctuations with equal 2-day intervals
between fluctuations 1–4, followed by a 4-day interval
preceding fluctuation 5

(4) I-1124; irregular fluctuations withmixed 1- and 2-day intervals
between fluctuations 1–4 (2-day interval last in sequence),
followed by a 4-day interval preceding fluctuation 5

(5) I-2114; irregular fluctuations withmixed 1- and 2-day intervals
between fluctuations 1–4 (2-day interval first in sequence),
followed by a 4-day interval preceding fluctuation 5

To isolate the effect of environmental predictability from recov-
ery capacity, the regimes were designed so that R-1114 and
R-2224 featured the lowest and highest cumulative windows of
time at 18°C between successive fluctuations. Thus, if recovery
capacity was the major driver negatively impacting T. pseudonana
responses, R-1114 would be impacted the greatest (total of 7 days
at 18°C between fluctuations 1–5), followed by I-1124 and I-2114
(8 days) and finally R-2224 (10 days). However, if the irregular
regimes were most impacted, it would provide evidence for
environmental predictability being the driving factor. Our obser-
vation was that I-2114 and I-1124 were most negatively impacted,
indicating the major driver was predictability, not recovery.

(b) Thalassiosira pseudonana culturing and
experimental set-up

A strain of T. pseudonana (CCMP 3367) was obtained in August
2018 from the Provasoli-Guillard National Center of Marine Phy-
toplankton (NCMA, formerly known as the CCMP; https://
ncma.bigelow.org/) and grown in artificial seawater (ASW, sal-
inity 35 ppt) [34] with f/2 nutrients [35]. Stock culture was
maintained in exponential growth at 23–26°C (monitored using
iButton devices (DS1921G), Thermochron, Australia) under a
12 : 12 light/dark cycle, with approximately 60 µmol photons
m−2 s−1 cool white fluorescent light (monitored using a light
meter (LI-250A) and quantum sensor (LI-190R), LI-COR Bio-
sciences, NE, USA) in 500 ml wide-mouth Erlenmeyer flasks.
Flasks were agitated daily to prevent settling.

One hour prior to initiating experiments, an aliquot of the
T. pseudonana stock culture was centrifuged (1475 RCF, 5 min)
to separate cells from the medium, and cells were resuspended
in fresh ASW with f/2 nutrients excluding nitrate (NaNO3)
(henceforth f/2-N medium) by gentle agitation. Pilot studies
demonstrated no visual deterioration in cell number or quality
for up to 24 h post-centrifugation. Cells were then inoculated
into sterile 12-multi-well plates (Falcon, Corning, NY, USA) to a
final concentration of 5000 cells ml−1 in f/2-N medium. Plates
were covered with a sealing membrane (Breathe-Easy, Diversified
Biotech, MA, USA) to minimize evaporation. A small slit was
made in the membrane covering each well to allow daily
NaNO3 dosing to a final concentration of 3.74 µmol l−1 (2.2 µl
of 3740 µmol l−1 NaNO3 stock solution). A pilot study demon-
strated there were no between-plate effects under a similar
experimental set-up comparing four plates with wells treated
as individual replicates (ANOVA: F3,44 = 1.50, p = 0.23; n = 12,
data not shown). Therefore, each of the regimes was allocated
to a single plate and wells were treated independently, yielding
12 replicates per regime.
(c) Experimental execution and sampling
Following inoculation, populations were exposed to 18°C for
60 h before the onset of fluctuations. Regimes were simulated
by moving plates manually between two identical growth incu-
bators (520 L Climatron, Thermoline Scientific, Australia) at
10.00 and 20.00 (10 h shift) during the light period, with controls
also being relocated within the same incubator. Plates were
distributed randomly across their appropriate incubator shelf
at each sampling point to incorporate any light variation effects.
This was achieved by assigning them using a random number
generator to one of six quadrats drawn across the incubator
shelves. Incubators had in-situ temperatures of 17.85 ± 1.60°C
and 23.62 ± 1.76°C (mean ± s.d.), respectively, and were illumina-
ted with 200 ± 20 µmol photons m−2 s−1 cool white fluorescent
light under a 12 : 12 square-wave light/dark cycle (lights on at
09.00, off at 21.00). Plates were incubated under static water
conditions (i.e. no shaking).

At 10.00 ± 00.15 and 20.00 ± 00.15 (preceding and succeeding
thermal fluctuations), wells were gently mixed and subsampled
by aliquoting 20 µl of culture into a 96-multi-well plate (Falcon,
Corning, NY, USA), and cells were preserved with paraformalde-
hyde (PFA, 1% v/v final concentration) (Electron Microscopy
Sciences, Ft. Washington, PA, USA). Samples taken at 10.00 were
stored in a 4°C refrigerator for up to 12 h. Cell abundance and
traits were quantified with a flow cytometer (CytoFLEX LX,
Beckman Coulter, CA, USA) each evening.

To ensure cells did not reach stationary phase prematurely,
wells were diluted each evening at 22.30, where the removed
sample volume (total of 40 µl per well per day) was replaced
with fresh f/2-N medium (approx. 18% daily dilution). If the
mean cell abundance of the plate exceeded 5 × 104 cells ml−1 at
the evening’s flow cytometric cell count, a 50% dilution was
applied instead. This process ensured populations remained in
exponential growth phase throughout the entire experiment.
Wells received their daily dose of NaNO3 at 23.30 following
dilutions. Replacement media was pre-warmed to approximately
20°C prior to dilutions.
(d) Flow cytometry-based trait determination
Thalassiosira pseudonana populations were enumerated flow cyto-
metrically (minimum cell count of 100) and gated by their red
fluorescence and side scatter (SSC) signals with a threshold of
4000 on forward scatter (FSC). The photosynthetic pigment chlor-
ophyll-a (Chl-A) was estimated per cell using the fluorescence
emission (690/50 nm detection) induced by blue excitation
(488 nm), normalized to the median fluorescence of standard
yellow-green fluorescent beads (1 µm FluroSpheres, Life Technol-
ogies, CA, USA) which were added to cell-free culture medium
and analysed immediately before samples. Cell size and complex-
ity (i.e. external granularity and/or internal vacuoles) was inferred
from FSC and SSC, respectively, normalized to the median values
of calibration beads (1 µm Flow Cytometry Size Calibration Kit,
Thermofisher, MA, USA). Standard quality control beads (CYTO-
FLEX LX Daily QC Fluorospheres, Beckman Coulter, CA, USA)
were run prior to each session to ensure measurements across
the experimental time frame were comparable.
(e) Reactive oxygen species production
To determine whether the increase in temperature from 18 to
23°C induced a physiological stress response, we assessed
T. pseudonana’s production of ROS, an indicator of oxidative
damage and photosynthetic inhibition [36–38]. Details on this
experiment and the protocol used are provided in the
electronic supplementary material, ROS production methods sec-
tion. Normalized ROS-induced fluorescence per cell was greater
at 20.5 and 23°C relative to 18°C (ANOVA: F2,33 = 19.23,

https://ncma.bigelow.org/
https://ncma.bigelow.org/
https://ncma.bigelow.org/
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p < 0.0001 with Tukey HSD: padj < 0.0001 in both cases), indicat-
ing that the fluctuations caused mild physiological stress
(electronic supplementary material, figure S3).
lsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20212581
( f ) Statistical and visual analysis of data
To examine how T. pseudonana responded to each temperature
fluctuation within regimes, growth rate (cell divisions per
hour) and proportional changes in median cell size (estimated
by FSC), complexity (SSC) and chlorophyll-a (Chl-A) per cell
were calculated from trait values preceding and succeeding
each fluctuation. Growth rates were calculated using equation
(2.1) below, where N0 and N denote the cell abundance at 10.00
and 20.00, respectively, and t0 and t denote time in hours (t0 = 0
and t = 10 h, respectively). Functional traits were calculated using
equation (2.2) below, where Trait0 and Trait denote the popu-
lation trait values at 10.00 and 20.00, respectively. Similar to
growth rate, functional traits reflect a rate of change over the fluc-
tuation period to assess how traits shift irrespective of their
preceding values.

Growth rate (h�1) ¼ ln (N)� ln (N0)
t� t0

ð2:1Þ

and

Functional trait (proportional change) ¼ Trait� Trait0
Trait0

ð2:2Þ

To standardize responses, all traits were normalized by
subtracting the mean stable temperature control (Control) value
of each day from individual observed values for each fluctuating
regime (R-1114, R-2224, I-1124, I-2114); a positive/negative
relative trait value indicates that the trait is higher/lower
compared to the mean Control condition.

To determine whether growth rates of the fluctuating regimes
had deviated significantly from their respective Control value,
independentWilcoxon rank sum tests were performed to compare
the fourth and fifth fluctuations of each regime to its respective
Control. This same approach was also used to determine whether
growth rates on days without fluctuations (i.e. intervals between
fluctuations where temperature returns to 18°C) differed from
the Control. These tests were used in place of parametric
tests due to the data not meeting assumptions of normality and
homogeneity of variance.

To assess T. pseudonana’s response during the first phase of
regimes, relative trait values during the fourth fluctuation were
tested for divergence using the Kruskal–Wallis H test. Pairwise
regime comparisons for significant results were performed
using independent Wilcoxon rank sum tests with a Bonferroni
correction. To assess T. pseudonana’s response during phase
two, relative trait values during the fifth fluctuation were
assessed using this same approach.

To determine if the ‘integrated phenotype’ (combined effect
of all traits) had diverged between the regular and irregular
regimes, changes in the phenotype were visualized through
time using the ordination ‘principal components analysis’
(PCA), which was performed separately for each fluctuation on
a standardized correlation matrix (mean = 0, s.d. = 1). As the
PCA highlighted distinct separation between the regular and
irregular regimes, differences between these two groups were
verified using tests of homogeneity of dispersions (PERMDISP)
and permutational analysis of variance (PERMANOVA), respect-
ively. These analyses test for differences in the geometric spread
(PERMDISP) and centre location (PERMANOVA) of these
groups, and were performed using a resemblance matrix calcu-
lated by Euclidean distance on normalized relative trait data
(mean = 0, s.d. = 1) with 999 permutations.

To assess whether T. pseudonana hardened in response to
recurrent temperature fluctuations, linear regression was used
to describe the relative growth trajectories of regimes up to the
fourth and fifth fluctuations. Relative trait trajectories were also
assessed using this approach.

All data analyses and plotting were performed using R
v. 4.0.4 [39] and the following packages: ‘car’ [40], ‘broom’ [41],
‘dplyr’ [42], ‘factoextra’ [43], ‘ggplot2’ [44], ‘ggpubr’ [45],
‘ggtext’ [46], ‘tidyr’ [47], ‘vegan’ [48] and ‘xlsx’ [49]. The datasets
associated with this research article are available from the Dryad
Digital Repository [50].
3. Results
(a) Growth under fluctuating temperature regimes
Growth of T. pseudonana varied in all regimes, even under
stable temperature conditions (Control) (figure 1). In the
first phase of the experiment (fluctuation 4), growth in the
fluctuating regimes was always significantly higher than
the Control (figure 1b–e). In the second phase (fluctuation
5), growth in the regular regimes was at least twice as high
as the Control (figure 1b,c), while irregular regimes displayed
growth that was similar to or lower than the Control
(figure 1d,e). Growth on days without fluctuations (when
cells returned to 18°C) was generally higher than the Control
in all four regimes (independent Wilcoxon rank sum tests:
p < 0.003 in all cases) (figure 1a–e).

(b) Effect of environmental predictability
During the first phase, the growth of T. pseudonana popu-
lations among the four fluctuating regimes was similar
(0.078 ± 0.031 h−1) (mean ± s.d.) (Kruskal–Wallis: x3

2 ¼ 7:09,
p = 0.07) (figure 2a). This indicates that there was little effect
of environmental predictability on instantaneous population
growth rates after 8–11 days of regular and irregular
sequences of fluctuations. Despite this, there were substantial
differences in functional traits (Kruskal–Wallis: p < 0.001 in all
cases) (figure 2b–d).

While cell complexity changed in all regimes by 3–10%, the
regularity of fluctuations had a distinct impact. Populations in
R-1114 and R-2224 experienced a slight increase in complexity
relative to the stable temperature Control (of 2 ± 7 and 4 ± 3%,
respectively), whereas those in I-1124 and I-2114 underwent a
relative decrease (−7 ± 8 and −12 ± 8%, respectively)
(figure 2c). Notably, this is the only trait of the four measured
that specifically showed an effect of predictability, rather than
simply an effect of environmental fluctuation that was
observed for cell size and pigmentation (figure 2b,d).

(c) Effect of environmental history
During the second phase of the experiment, T. pseudonana
populations diverged significantly in all traits (Kruskal–
Wallis: p < 0.01 in all cases), indicating a strong effect of
prior thermal history. The trend observed in cellular complex-
ity during the first phase of the experiment (figure 2c)
continued into the second phase, where the regular and irre-
gular regimes were distinct (figure 3c). During this final
fluctuation, the complexity of all cells increased by 4–10%;
however, cells in I-1124 and I-2114 exhibited little change rela-
tive to the Control (a difference of 1 ± 8 and −2 ± 5%,
respectively), whereas cells in R-1114 and R-2224 became
much more complex (21 ± 4 and 18 ± 9%, respectively).

Notably, we also observed this impact of predictability
on growth (figure 3a). During this final fluctuation, growth
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rates ranged between aminimumof−0.036 h−1 (mortality) and
maximum of 0.099 h−1. However, R-1114 and R-2224 grew
approximately 3–18 times faster than the Control, with
relative rates of 0.031 ± 0.021 and 0.055 ± 0.031 h−1 respectively,
and cells in I-1124 and I-2114 grew approximately 0.5
times slower than the Control (−0.018 ± 0.032 and −0.024 ±
0.036 h−1, respectively). The other traits behaved similarly
to phase one, where relative changes in the size and pig-
mentation of cells differed indiscriminately across regimes
(figure 3b,d).
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(d) The integrated phenotype
Considering all the traits together, there was significant plasti-
city in T. pseudonana phenotypes across regimes. The once
homogeneous population (figure 4a) became increasingly parti-
tioned, with phenotypes separating into regular and irregular
regimes by fluctuation 4 (figure 4d). This effect became more
pronounced at the fifth fluctuation (figure 4e). Dispersion
varied in some of the earlier fluctuations indicating phenotypes
were more heterogeneous (figure 4a,c); however, by fluctuation
4 therewas a clear distinction between phenotypes of the regular
and irregular regimes (figure 4d), and by fluctuation 5, the clus-
tering between regimes was most pronounced (figure 4e).
Overall, the distribution of each phenotype in PCA space
remained fairly consistent from fluctuations 1–5, where 81.08 ±
4.12% of variation in phenotypes was accounted for in the first
two principal components. This indicates that while the regimes
invoke sorting of traits between regular and irregular treatments,
the absolute trait variation remained relatively constant.

The relationships among T. pseudonana traits shifted as
fluctuations ensued. Changes to the size and pigmentation
of cells were strongly associated with one another throughout
the first four fluctuations (figure 4a–d) until they became
decoupled during fluctuation 5 (figure 4e). Similar trends
were observed in the relationships between cell size and com-
plexity, and pigmentation and complexity, though with
decoupling during fluctuation 3 (figure 4a–e). By contrast,
population growth and cellular complexity displayed little
association with one another at the first fluctuation
(figure 4a); however, by the third, they had become strongly
correlated (figure 4c), a trend that persisted until the final
fluctuation (figure 4e). The relationships between growth
and changes in cell size and pigmentation were generally
weak throughout the experiment (figure 4a–e).

(e) Hardening and trait changes under recurrent
fluctuations

There was no evidence that populations hardened, i.e. had
increasingly positive growth during successive fluctuations.
Relative growth rates showed no positive change with recur-
rent fluctuations (figure 5a–d1), despite ROS indicating that
the +5°C fluctuation was perceived as mildly stressful (elec-
tronic supplementary material, figure S3) but with no
immediate mortality (figure 1).
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There was, however, some evidence of cumulative change
with successive fluctuations. Cells in irregular regimes
showed a consistent decline in complexity at both phases of
the experiment (figure 5c–d3) and a decline in growth at
phase two (figure 5c–d1). Cells in all regimes except R-1114
phase one increased in size (figure 5a–d2). However, with
the exception of cell size in I-2114, trait values did not
show monotonic linear changes.
4. Discussion
Our empirical data reveal two main outcomes of temperature
fluctuations: (i) the predictability of temperature fluctuations
had a distinct impact on phytoplankton growth and traits,
and (ii) phenotypic changes and negative growth impacts
induced by thermal fluctuations occurred after 13–16 days,
corresponding to approximately 23–29 generations (based
on a mean generation time of approximately 1.8 d−1 in the
stable reference environment). This time frame is ecologically
relevant given that many marine systems experience mono-
specific diatom blooms or growing seasons over similar
periods [51,52]. Such alteration in growth rate or trait
values could influence pertinent oceanic processes such as
rates of photosynthetic carbon fixation, seasonal species suc-
cessions, trophic energy transfer and/or downwards particle
transport [28]. Therefore, the outcomes of this study have sig-
nificant implications for global ocean productivity and
atmospheric carbon sequestration, particularly under a
warming and increasingly unpredictable climate [1].

Temperature fluctuations generally increased growth rates
relative to stable reference environments, even during periods
when temperature was not elevated. This was expected given
that higher growth rates are observed during fluctuations
over accelerating portions of the thermal performance curve
[53], with 23°C approaching the 25°C Topt for this species
[33]. In T. pseudonana, thermal fluctuations of this nature may
accelerate adaptation to ocean warming under climate
change, given that higher growth rates increase the probability
of producing mutations beneficial for surviving in warmer
environments [54]. However, for taxa with lower Topt where
temperature increases would expose them to supra-optimal
conditions, thermal fluctuations could strongly impact popu-
lation growth and increase the risk of extinctions. Further
research using organisms with different thermal niches,
where the impact of fluctuations may be less favourable, is
required. Two strategies that diatoms may adopt in response
to warming include becoming a warm-adapted specialist,
or a thermal generalist [55]. Thus, while the capacity of
T. pseudonana to adapt to ocean warming by increasing its
growth is promising, we also observed a significant interaction
with predictability/history. Populations exposed to irregular
fluctuations grew at a similar rate or slower than those in
stable reference environments during the final fluctuation.
By contrast, cells exposed to regular fluctuations showed
increased growth. This indicates that predicting responses to
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future warming is complex and warrants further research to
understand the interaction between environmental predictabil-
ity/history and mean temperature. In particular, experiments
large enough to include a gradient of predictabilities that can
separate the organismal response to the magnitude of environ-
mental variation from its regularity (as in [15]) are needed to
produce generalizable results. This will help facilitate an
understanding of how growth rate scales with environmental
predictability over the full range of current and anticipated
variation in the ocean.

The first sign of divergence in the phenotypes of regular
versus irregular regimes was detected within 8–11 days. This
shift was linked to adjustments in complexity that may relate
to structural or morphological changes of T. pseudonana cells,
impacting on cellular optical properties. This can be indicative
of altered/loss of structures required for protection (via silic-
eous cell wall ornamentation, shape, outline, thickness, gaps
and striation pattern), buoyancy regulation and nutrient sto-
rage (via presence and size of internal vacuoles) [56,57].
Thus, a loss of complexity has the potential to impact growth
and survival of planktonic diatoms in various ways, including
(i) decreased ability to use or avoid patchy nutrient, light and
temperature conditions, (ii) diminished intracellular nutrient
stores and subsequent ability to reproducewhen external nutri-
ents are depleted and (iii) increased susceptibility to predation
by lack of physical protection [58]. On the other hand, it is
plausible that this decrease in complexity facilitates survival
under sub-optimal conditions by limiting cellular activity to
only that necessary for immediate survival, thus producing
energetically more affordable cells. One way in which phyto-
plankton may achieve an energy reduction is by entering
physiological dormancy through resting stages [59]. Given
the uncertainty in what functional changes are linked to
adjustments in SSC, both in T. pseudonana and phytoplankton
more broadly, future work should include additional trait
measurements such as cell wall, internal cell and resting
stage morphology (e.g. scanning electron/phase contrast/
inverted microscopy, lipid and fatty acid quantification [60]
etc.), all of which could affect T. pseudonana’s ecological and
biogeochemical functioning.

When populations are periodically exposed to a stressful
environment, two types of responses commonly occur: hard-
ening or stress accumulation. In the timescale assessed in this
study (approx. 2 weeks), predictable environmental change
had the potential to promote anticipation and greater plas-
ticity in T. pseudonana populations as fluctuations proceeded
[61,62]. Given that cells in the stable reference environment
had a generation time of approximately 1.8 d−1, cell division
occurred during and/or between fluctuations, indicating that
transgenerational effects were at least partially responsible for
the differences we observed in the final fluctuation. Under
highly predictable scenarios, such plasticity in the parent gen-
eration may offer protection to offspring [10]. However,
greater unpredictability can lead to transfer/inheritance of
maladaptive traits and/or decreased fitness [61], as was
observed in this study. While the fluctuations yielded distinct
differences in T. pseudonana’s phenotype, we found little evi-
dence of heat hardening. Rather, we observed evidence of
persistence under regular fluctuations and lagged stress
effects under irregular fluctuations. Lagged stress responses
clearly indicate carry-over effects which are not immediately
detectable following the stress event(s) [25], similar to the
delayed response of trees to drought where mortality is
often observed some years later [63,64]. Lagged responses
to environmental stimuli have also been observed in phyto-
plankton, such as bloom formation after nutrient input
days prior [65]. This lagged stress effect could become an
important component of the microbial response to environ-
mental stress in the future, particularly under a more
unpredictable climate, with implications for monitoring and
predictions of future marine productivity.

Our current understanding of how organisms respond to
changes in environmental predictability is based on a small
but growing number of empirical studies. There is still, how-
ever, a lack of experiments with many key organisms and
relevant ranges of patterns and magnitudes of environmental
fluctuation for those organisms, particularly in the context of
how varying the timing of perturbations influences popu-
lation demography. While other studies have varied the
magnitude, frequency and/or number of fluctuations in
environmental variables [5,15,66], to the best of our knowl-
edge, this is one of few to alter temporal regularity. In
addition, our experimental design was informed by a
global ocean simulation and used an organism for which
the patterns and magnitude of temperature fluctuation were
relevant. Our study shows that for this marine organism,
the impacts of differences in thermal predictability occur as
soon as 8 days or approximately 15 generations. Not only
do microbial populations in the ocean experience divergent
thermal histories over a similar time frame, they have
also been demonstrated to have significantly different physio-
logical performance [62]. Putting these observations together,
this suggests that planktonic organisms experience tempera-
ture variation in-situ with measurable impacts to population
size and phenotype, both of which could influence their
evolution [54].

In this study, we found that the predictability of transient
warming events affected both cell division rates and other
traits in a model diatom. In generalizing from this study,
several aspects of the model organism and specific envi-
ronmental change used need to be taken into account.
T. pseudonana is a thermal generalist, but many phytoplankton
species do not have this breadth of thermal performance [33],
such that T. pseudonana may be particularly well adapted to
growth in fluctuating environments relative to diatom species
found primarily in narrower temperature niches. Given that
we were able to detect a significant consequence of unpredict-
ability in this thermally robust organism, this raises concern for
how other less tolerant species may respond to an ocean that is
becoming increasingly unpredictable [1]. The general qualitat-
ive response found in our empirical data is still informative, but
the magnitude of effects may vary substantially between dia-
toms, both at the species and intra-species level [33,67]. In
particular, thermal specialists will experience more stress for
a given increase in temperature, which raises the possibility
that lagged stress responses could be both more extreme and
more common than indicated in this study.

We use a magnitude of temperature fluctuation that is con-
sistent with global analyses that showed warming of greater
than 4°C per day that can be sustained over a 5-day period for
plankton arriving in the North Atlantic [29]. Thus, it is not
unreasonable to assume that five +5°C fluctuations within a
two-week time frame is within the range of variation experi-
enced along global planktonic trajectories. We recommend
that future work include both generalists and specialists to
understand the mechanisms behind the relationship between
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changes to environmental predictability and trait values in
marine phytoplankton. These experiments should monitor
beyond the final fluctuation to assess recovery and determine
whether traits converge back to their original states, thereby
providing additional insight into the resilience of these organ-
isms under an increasingly unpredictable climate.
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