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Abstract

This paper describes the motivation and devel-
opment of speech synthesis systems for the pur-
poses of language revitalization. By building
speech synthesis systems for three Indigenous
languages spoken in Canada, Kanien’kéha,
Gitksan & SENĆOŦEN, we re-evaluate the
question of how much data is required to build
low-resource speech synthesis systems featur-
ing state-of-the-art neural models. For ex-
ample, preliminary results with English data
show that a FastSpeech2 model trained with 1
hour of training data can produce speech with
comparable naturalness to a Tacotron2 model
trained with 10 hours of data. Finally, we mo-
tivate future research in evaluation and class-
room integration in the field of speech synthe-
sis for language revitalization.

1 Introduction

There are approximately 70 Indigenous languages
spoken in Canada, from 10 distinct language fam-
ilies (Rice, 2008). As a consequence of the resi-
dential school system and other policies of cultural
suppression, the majority of these languages now
have fewer than 500 fluent speakers remaining,
most of them elderly. Despite this, interest from
students and parents in Indigenous language edu-
cation continues to grow (Statistics Canada, 2016);
we have heard from teachers that they are over-
whelmed with interest from potential students, and
the growing trend towards online education means
many students who have not previously had access
to language classes now do.
Supporting these growing cohorts of students

comes with unique challenges for languages with
few fluent first-language speakers. A particular
concern of teachers is to provide their students
with opportunities to hear the language outside of
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class. Text-to-speech synthesis technology (TTS)
shows potential for supplementing text-based lan-
guage learning tools with audio in the event that the
domain is too large to be recorded directly, or as
an interim solution pending recordings from first-
language speakers.
Development of TTS systems in this context

faces several challenges. Most notable is the usual
assumption that neural speech synthesis models re-
quire at least tens of hours of audio recordings with
corresponding text transcripts to be trained ade-
quately. Such a data requirement is far beyond
what is available for the languages we are con-
cerned with, and is difficult to meet given the lim-
ited time of the relatively small number of speak-
ers of these languages. The limited availability of
Indigenous language speakers also hinders the sub-
jective evaluation methods often used in TTS stud-
ies, where naturalness of synthetic speech samples
is judged by speakers of the language in question.
In this paper, we re-evaluate some of these chal-

lenges for applying TTS in the low-resource con-
text of language revitalization. We build TTS sys-
tems for three Indigenous languages of Canada,
with training data ranging from 25 minutes to 3.5
hours, and confirm that we can produce acceptable
speech as judged by language teachers and learn-
ers. Outputs from these systems could be suitable
for use in some classroom applications, for exam-
ple a speaking verb conjugator.

2 Background

2.1 Language Revitalization

It is no secret that the majority of the world’s lan-
guages are in crisis, and in many cases this cri-
sis is even more urgent than conservation biolo-
gists’ dire predictions for flora and fauna (Suther-
land, 2003). However, the ‘doom and gloom’
rhetoric that often follows endangered languages
over-represents vulnerability and under-represents



the enduring strength of Indigenous communi-
ties who have refused to stop speaking their lan-
guages despite over a century of colonial policies
against their use (Pine and Turin, 2017). Contin-
uing to speak Indigenous languages is often seen
as a political act of anti-colonial resistance. As
such, the goals of any given language revitaliza-
tion effort extend far beyond memorizing verb
paradigms to broader goals of nationhood and
self-determination (Pitawanakwat, 2009;McCarty,
2018). Language revitalization programs can also
have immediate and important impacts on factors
including community health andwellness (Whalen
et al., 2016; Oster et al., 2014).
There is a growing international consensus on

the importance of linguistic diversity, from the
Truth & Reconciliation Commission of Canada
(TRC) report in 2015 which issued nine calls
to action related to language, to 2019 being de-
clared an International Year of Indigenous Lan-
guages by the UN, and 2022-2032 being declared
an International Decade of Indigenous Languages.
From 1996 to 2016, the number of speakers of
Indigenous languages increased by 8% (Statistics
Canada, 2016). These efforts have been success-
ful despite a lack of support from digital technolo-
gies. While opportunities may exist for technol-
ogy to assist and support language revitalization
efforts, these technologies must be developed in a
way that does not further marginalize communities
(Brinklow et al., 2019; Bird, 2020).

2.2 Why TTS for Language Revitalization?
Our interest in speech synthesis for language
revitalization was sparked during user evalua-
tions of Kawennón:nis (lit. ‘it makes words’),
a Kanien’kéha verb conjugator (Kazantseva
et al., 2018) developed in collaboration between
the National Research Council Canada and the
Onkwawenna Kentyohkwa adult immersion pro-
gram in Six Nations of the Grand River in Ontario,
Canada. Kawennón:nis models a pedagogically-
important subset of verb conjugations in XFST
(Beesley and Karttunen, 2003), and currently
produces 247,450 unique conjugations. The
pronominal system is largely responsible for much
of this productivity, since in transitive paradigms,
agent/patient pairs are fused, as illustrated in
Figure 1.
In user evaluations of Kawennón:nis, students

often asked whether it was possible to add audio
to the tool, to model the pronunciation of unfamil-

(1) Senòn:wes
you.to.it-like-habitual
‘You like it.’

(2) Takenòn:wes
you.to.me-like-habitual
‘You likeme.’

Figure 1: An example of fusional morphology of
agent/patient pairs in Kanien’kéha transitive verb
paradigms (from Kazantseva et al., 2018)

iar words. Assuming a rate of 200 forms/hr for 4
hours per day, 5 days per week, this would take a
teacher out of the classroom for approximately a
year. Considering Kawennón:nis is anticipated to
have over 1,000,000 unique forms by the time the
grammar modelling work is finished, recording au-
dio manually becomes infeasible.
The research question that then emerged was

‘what is the smallest amount of data needed in or-
der to generate audio for all verb forms in Kawen-
nón:nis’. Beyond Kawennón:nis, we anticipate
that there are many similar language revitalization
projects that would want to add supplementary au-
dio to other text-based pedagogical tools.

2.3 Speech Synthesis
The last few years have shown an explosion
in research into purely neural network-based ap-
proaches to speech synthesis (Tan et al., 2021).
Similar to their HMM/GMM predecessors, neural
pipelines typically consist of both a network pre-
dicting the acoustic properties of a sequence of
text and a vocoder. The feature prediction net-
work must be trained using parallel speech/text
data where the input is typically a sequence of char-
acters or phones that make up an utterance, and
the output is a sequence of fixed-width frames of
acoustic features. In most cases the predictions
from the TTS model are log Mel-spectral features
and a vocoder is used to generate the waveform
from these acoustic features.
Much of the previous work on low resource

speech synthesis has focused on transfer learning;
that is, ‘pre-training’ a network using data from a
language that has more data, and then ‘fine-tuning’
using data from the low-resource language. One
of the problems with this approach is that the in-
put space often differs between languages. As the



inputs to these systems are sequences of charac-
ters or phones, and as these sequences are typi-
cally one-hot encoded, it can be difficult to devise
a principled method for transferring weights from
the source language network to the target if there
is a difference between the character or phone in-
ventories of the two languages. Various strategies
have emerged for normalizing the input space. For
example, Demirsahin et al. (2018) propose a uni-
fied inventory for regional multilingual training of
South Asian languages, while Tu et al. (2019) com-
pare various methods to create mappings between
source and target input spaces. Another proposal
is to normalize the input space between source and
target languages by replacing one-hot encodings of
text with multi-hot phonological feature encodings
(Gutkin et al., 2018; Wells and Richmond, 2021).

2.4 Speech Synthesis for Indigenous
Languages in Canada

There is extremely little published work on speech
synthesis for Indigenous languages in Canada (and
North America generally). A statistical parametric
speech synthesizer using Simple4All was recently
developed for Plains Cree (Harrigan et al., 2019;
Clark, 2014). Although it was unpublished, two
highschool students1 created a statistical paramet-
ric speech synthesizer for Kanien’kéha by adapting
eSpeak (Duddington and Dunn, 2007). We know
of no other attempts to create speech synthesis sys-
tems for Indigenous languages in Canada. Else-
where in North America, a Tacotron2 system has
been built for Cherokee (Conrad, 2020), and some
early work on concatenative systems for Navajo
was discussed in a technical report (Whitman et al.,
1997), as well as on Rarámuri (Urrea et al., 2009).

3 Indigenous Language Data

Although the term ‘low resource’ is used to de-
scribe a wide swath of languages, most Indigenous
languages in Canada would be considered ‘low-
resource’ in multiple senses of the word, having
both a low amount of available data (annotated
or unannotated), and a relatively low number of
speakers. Most Indigenous languages lack tran-
scribed audio corpora, and fewer still have such
data recorded in a studio context. Due to the lim-
ited number of speakers, creating these resources is

1https://wiki.laptop.org/go/
Instructions_for_implementing_a_new_language_%
22voice%22_for_Speak_on_the_XO

non-trivial: there are limited amounts of text from
which a speaker could read, and there are few peo-
ple available who are sufficiently literate in the lan-
guages to transcribe recorded audio. Re-focusing
speakers’ limited time to these tasks presents a sig-
nificant opportunity cost; they are often already
over-worked and over-burdened in under-funded
and under-resourced language teaching projects.
As mentioned in §2.1, language technology

projects that aim to assist language revitalization
and reclamation efforts must be centered around
the primary goals of those efforts and ensure that
the means of developing the technology do not
distract or work against the broader sociopolitical
goals. A primary stress point for many natural
language processing projects involving Indigenous
communities surrounds issues of data sovereignty.
It is important that communities direct the devel-
opment of these tools, and maintain control, own-
ership, and distribution rights for their data, as well
as for the resulting speech synthesis models (Kee-
gan, 2019; Brinklow, 2021). In keeping with this,
the datasets described in this paper are not being
released publicly at this time.
To test the feasibility of developing speech

synthesis systems for Indigenous languages, we
trained models for three unrelated Indigenous lan-
guages, Kanien’kéha (§3.1), Gitksan (§3.2), and
SENĆOŦEN (§3.3).

3.1 Kanien’kéha
Kanien’kéha2 (a.k.a. Mohawk) is an Iroquoian lan-
guage spoken by roughly 2,350 people in south-
ern Ontario, Quebec, and northern New York state
(Statistics Canada, 2016). In 1979 the first immer-
sion school of any Indigenous language in Canada
was opened for Kanien’kéha, and many other very
successful programs have been started since, in-
cluding the Onkwawenna Kentyohkwa adult im-
mersion program in 1999 (Gomashie, 2019).
In the late 1990s, a team of five Kanien’kéha

translators worked with the Canadian Bible Soci-
ety to translate and record parts of the Bible; one of
the speakers on these recordings, Satewas, is still
living. Translation runs in Satewas’s family, with
his great-grandfather also working on Bible trans-
lations in the 19th century. Later, a team of four
speakers and learners, including this paper’s third
author, aligned the text and audio at the utterance

2As there are different variations of spelling, we use the
spelling used in the communities of Kahnawà:ke and Kahne-
setà:ke throughout this paper

https://wiki.laptop.org/go/Instructions_for_implementing_a_new_language_%22voice%22_for_Speak_on_the_XO
https://wiki.laptop.org/go/Instructions_for_implementing_a_new_language_%22voice%22_for_Speak_on_the_XO
https://wiki.laptop.org/go/Instructions_for_implementing_a_new_language_%22voice%22_for_Speak_on_the_XO


level using Praat (Boersma and van Heuven, 2001)
and ELAN (Brugman and Russel, 2004).
While a total of 24 hours of audio were recorded,

members of the Kanien’kéha-speaking community
told us it would be inappropriate to use the voices
of speakers who had passed away, leaving only
recordings of Satewas’s voice. Using a GMM-
based speaker ID system (Kumar, 2017), we re-
moved utterances by these speakers, then removed
utterances that were outliers in duration (less than
0.4s or greater than 11s) and speaking rate (less
than 4 phones per second or greater than 15),
recordings with an unknown phase effect present,
and utterances containing non-Kanien’kéha char-
acters (e.g. proper names like ‘Euphrades’). Han-
dling utterances with non-Kanien’kéha characters
would have required grapheme-to-phoneme pre-
diction capable of dealing with multilingual text
and code-switching which we did not have avail-
able. The resulting speech corpus comprised 3.46
hours of speech.

3.2 Gitksan

Gitksan3 is one of four languages belonging to
the Tsimshianic language family spoken along
the Skeena river and its surrounding tributaries
in the area colonially known as northern British
Columbia. Traditional Gitksan territory spans
some 33,000 square kilometers and is home to al-
most 10,000 people, with approximately 10% of
the population continuing to speak the language
fluently (First Peoples’ Cultural Council, 2018).
As there were no studio-quality recordings of

the Gitksan language publicly available, and as an
intermediate speaker of the language, the first au-
thor recorded a sample set himself. In total, he
recorded 35.46 minutes of audio reading isolated
sentences from published and unpublished stories
(Forbes et al., 2017).

3.3 SENĆOŦEN

The SENĆOŦEN language is spoken by the
W
¯
SÁNEĆ people on the southern part of the is-

land colonially known as Vancouver Island. It be-
longs to the Coastal branch of the Salish language
family. The W

¯
SÁNEĆ community runs a world-

famous language revitalization program4, and uses
3We use Lonnie Hindle and Bruce Rigsby’s spelling of the

language, which, with the use of ‘k’ and ‘a’ is a blend of up-
river (gigeenix) and downriver (gyets) dialects

4https://wsanecschoolboard.ca/sencoten-
language/

an orthography developed by the late SENĆOŦEN
speaker and W

¯
SÁNEĆ elder Dave Elliott. While

the community of approximately 3,500 has fewer
than 10 fluent speakers, there are hundreds of learn-
ers, many of whom have been enrolled in years
of immersion education in the language (First Peo-
ples’ Cultural Council, 2018).
As there were no studio-quality recordings of

the SENĆOŦEN language publicly available, we
recorded 25.92 minutes of the language with
PENÁĆ David Underwood reading two stories
originally spoken by elder Chris Paul.

4 Research Questions

Given the motivation and context for language
revitalization-based speech synthesis, a number of
research questions follow. Namely, how much
data is required in order to build a system of rea-
sonable pedagogical quality? How do we evalu-
ate such a system? And, how is the resulting sys-
tem best integrated into the classroom? In §4.1,
we discuss the difficulty of evaluating TTS sys-
tems in low-resource settings. We then discuss
preliminary results for English and Indigenous lan-
guage TTS which show that acceptable speech
quality can be achieved with much less training
data than usually considered for neural speech syn-
thesis (§4.2). Finally, we suggest possible direc-
tions for pedagogical integration in section §4.4.

4.1 Low-Resource Evaluation

One of the most significant challenges in research-
ing speech synthesis for languages with few speak-
ers is evaluating the models. For some Indigenous
languages in Canada, the total number of speakers
of the language is less than the number typically re-
quired for statistical significance in a listening test
(Wester et al., 2015). While the number of speak-
ers in these conditions is sub-optimal for statisti-
cal analysis, we have been told by the communi-
ties we work with that the positive assessment of
a few widely respected and community-engaged
language speakers would be practically sufficient
to assess the pedagogical value of speech models
in language revitalization contexts. For the experi-
ments described in this paper, we ran listening tests
for both Kanien’kéha and Gitksan with speakers,
teachers, and learners, but were not able to run any
such tests for SENĆOŦEN due to very few speak-
ers with already busy schedules.
While some objective metrics do exist, such as

https://wsanecschoolboard.ca/sencoten-language/
https://wsanecschoolboard.ca/sencoten-language/


Mel cepstral distortion (MCD, Kubichek, 1993),
we do not believe they should be considered reli-
able proxies for listening tests. Future research on
speech synthesis for languages with few speakers
should prioritize efficient and effective means of
evaluating results.
In many cases, including in the experiment de-

scribed in §4.2, artificial data constraints can be
placed on a language with more data, like En-
glish, to simulate a low-resource scenario. While
this technique can be insightful and it is tempt-
ing to draw universal conclusions, English is lin-
guistically very different from many of the other
languages spoken in the world. Accordingly, we
should be cautious not to assume that results from
these types of experiments will necessarily transfer
or extend to genuinely low-resource languages.

4.2 How much data do you really need?
The first question to answer is whether our Indige-
nous language corpora ranging from 25 minutes to
3.46 hours of speech are sufficient for building neu-
ral speech synthesizers. Due to the prominence of
Tacotron2 (Shen et al., 2018), it seems that many
people have assumed that the data requirements for
training any neural speech synthesizer of similar
quality must be the same as the requirements for
this particularmodel. As a result, some researchers
still choose to implement either concatenative or
HMM/GMM-based statistical parametric speech
synthesis systems in low-resource situations based
on the assumption that a “sufficiently large corpus
[for neural TTS] is unavailable” (James et al., 2020,
p. 298). We argue that attention-basedmodels such
as Tacotron2 should not be used as a benchmark for
data requirements among all neural TTS methods,
as they are notoriously difficult to train and unnec-
essarily inflate training data requirements.

4.2.1 Replacing attention-based weak
duration models

Tacotron2 is an autoregressive model, meaning it
predicts the speech parameters ŷt from both the
input sequence of text x and the previous speech
parameters y1, ..., yt−1. Typically, the model is
trained with ‘teacher-forcing’, where the autore-
gressive frame yt−1 passed as input for predict-
ing ŷt is taken from the ground truth acoustic fea-
tures and not the prediction network’s output from
the previous frame ŷt−1. As discussed by Liu
et al. (2019), such a system might learn to copy
the teacher forcing input or disregard the text en-

tirely, which could still optimize Tacotron2’s root
mean square error function over predicted acoustic
features, but result in an untrained or degenerate
attention network which is unable to properly gen-
eralize to new inputs at inference time when the
teacher forcing input is unavailable. Attention fail-
ures represent a characteristic class of errors for
models such as Tacotron2, for example skipping
or repeating words from the input text (Valentini-
Botinhao and King, 2021).
There have been many proposals to improve

training of the attention network, for example by
guiding the attention or using a CTC loss function
to respect the monotonic alignment between text
inputs and speech outputs (Tachibana et al., 2018;
Liu et al., 2019; Zheng et al., 2019; Gölge, 2020).
As noted by Liu et al. (2019), increasing the so-
called ‘reduction factor’ – which applies dropout
to the autoregressive frames – can also help the
model learn to rely more on the attention network
than the teacher forcing inputs, but possibly at the
risk of compromising synthesis quality.
FastSpeech2 (Ren et al., 2021), and similar sys-

tems like FastPitch (Łańcucki, 2021), present an
alternative to Tacotron2-type attentive, autoregres-
sive systems with similar listening test results and
without the characteristic errors related to atten-
tion. Instead of modelling duration using atten-
tion, they include an explicit duration prediction
module trained on phone duration targets extracted
from the training data. For the original FastSpeech,
target phone durations derived from the attention
weights of a pre-trained Tacotron2 system were
used to provide phone durations (Ren et al., 2019).
In low-resource settings, however, there might not
be sufficient data to train an initial Tacotron2 in
the target language in the first place. For Fast-
Speech2, phone duration targets are instead ex-
tracted using the Montreal Forced Aligner (MFA,
McAuliffe et al., 2017), trained on the same data as
used for TTS model training. We have found MFA
can provide suitable alignments for our target lan-
guages, even with alignment models being trained
on only limited data.
Faster convergence of text-acoustic feature

alignments has been found to speed up overall
encoder-decoder TTS model training, as stable
alignments provide a solid foundation for further
training of the decoder. Badlani et al. (2021) show
this by adding a jointly-learned alignment frame-
work to a Tacotron2 architecture, reducing time
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Figure 2: Visualization of Tacotron2 Attention NetworkWeights extracted after 100k steps trained on the LJ corpus.
The weights of the attention network should be diagonal and monotonic as seen in subfigure (b). Subfigure (a)
shows that the network trained on a 5 hour subset of the LJ corpus results in a degenerate attention network.

to convergence. In contrast, they found that re-
placingMFA duration targets in FastSpeech2 train-
ing offers no benefit – forced alignment targets al-
ready provide enough information for more time-
efficient training compared to an attention-based
Tacotron2 system. Relieving the burden of learn-
ing an internal alignment model also opens the
door to more data-efficient training. For example,
Perez-Gonzalez-de-Martos et al. (2021) submitted
a non-attentive model trained from forced align-
ments to the Blizzard Challenge 2021, where their
system was found to be among the most natural
and intelligible in subjective listening tests despite
only using 5 hours of speech; all other submitted
systems included often significant amounts of ad-
ditional training data (up to 100 hours total).

4.2.2 Experimental Comparison of Data
Requirements for Neural TTS

To investigate the effects of differing amounts of
data on the attention network, and in preparation
for training systems with our limited Indigenous
language data sets, we trained five Tacotron2 mod-
els on incremental partitions of the LJ Speech cor-
pus of American English (Ito and Johnson, 2017).
We used the NVIDIA implementation5 with de-
fault hyperparameters apart from a reduced batch
size of 32 to fit the memory capacity of our GPU
resources. We artificially constrained the training
data such that the first model saw only the first hour
of data from the shuffled corpus, the second model
that same first hour plus another two hours (3 to-
tal) etc., so that the five models were trained on 1,

5https://github.com/NVIDIA/tacotron2

3, 5, 10 and 24 (full corpus) hours of speech. The
models were trained for 100k steps and, as seen
in Figure 2, using up to 5 hours of data the atten-
tion mechanism does not learn properly, resulting
in degenerate outputs.
For comparison, we trained seven FastSpeech2

models with batch size 16 for 200k steps on 15 and
30 minute, 1, 3, 5, 10 and 24 hour incremental par-
titions of LJ Speech. Our model6 is based on an
open-source implementation (Chien, 2021), which
adds learnable speaker embeddings and a decoder
postnet to the original model, as well as predict-
ing pitch and energy values at the phone rather
than frame level. We also added learnable lan-
guage embeddings for supplementary experiments
in cross-lingual fine-tuning; while not reported in
this paper, we refer the interested reader to Pine
(2021) for discussion of these experiments. Moti-
vated by concerns of efficiency in model training
and inference, and the possibility of overfitting a
large model to limited amounts of data, we further
modified the base architecture to match the Light-
Speech model presented in Luo et al. (2021). We
removed the energy adaptor, replaced the convolu-
tional layers in the encoder, decoder and remain-
ing variance predictors with depthwise separable
convolutions (Kaiser et al., 2018) and matched en-
coder and decoder convolutional kernel sizes with
Luo et al. (2021). This reduced the number of
model parameters from 35M7 to 11.6Mwithout no-
ticeable change in voice quality and sped up train-

6https://github.com/roedoejet/FastSpeech2
7In the implementation of Chien (2021); the original Fast-

Speech2 is slightly smaller at 27M parameters.

https://github.com/NVIDIA/tacotron2
https://github.com/roedoejet/FastSpeech2


0

25

50

75

100

Ref

FS2 
15

m

FS2 
30

m

FS2 
1h

r

FS2 
3h

r

FS2 
5h

r

FS2 
10

hr

FS2 
Full

TT2 
10

hr

TT2 
Full

Model ID

M
U

S
H

R
A

 s
co

re

Figure 3: Box plot of survey data from MUSHRA
questions comparing Tacotron2 (TT2) and FastSpeech2
(FS2) models with constrained amounts of training data.
‘Ref’ refers to reference recordings of natural speech.

ing by 33% on GPU or 64% on CPU. For addi-
tional discussion of the accessibility benefits of
these changes with respect to Indigenous language
communities, see Appendix A.

4.2.3 Results
We conducted a short (10-15 minute) listening test
to compare the two Tacotron2 models that trained
properly (10h, full) against the seven FastSpeech2
models. We recruited 30 participants through Pro-
lific, and presented each with fourMUSHRA-style
questions where they were asked to rank the 9
voices along with a hidden natural speech refer-
ence (ITU-R, 2003). MUSHRA-style questions
were used as a practical way to evaluate this large
number of models.
While it only took 30 minutes to recruit 30 par-

ticipants using Prolific, the quality of responses
was quite varied. We rejected two outright as they
seemingly did not listen to the stimuli and left the
same rankings for every voice. Even still, there
was a lot of variation in responses from the remain-
ing participants, as seen in Figure 3. We tested
for significant differences between pairs of voices
using Bonferroni-corrected Wilcoxon signed rank
tests. Pairwise test results are summarized in the
heat map of their p-values in Figure 4.
In the results from the pairwise analysis, we

can see that natural speech is rated as significantly
more natural than all synthetic speech samples.
Naturalness ratings for the FastSpeech2 voices
trained on 15m and 30m of data are significantly
lower than all other voices, and significantly differ-
ent from each other. The results for the remaining
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Figure 4: Pairwise Bonferroni-corrected Wilcoxon
signed rank tests between each pair of voices. Cells
correspond to the significance of the result of the pair-
wise test between the model on the y-axis and the
model on the x-axis. Darker cells show stronger sig-
nificance; grey cells did not show a significant differ-
ence in listening test results. FS2 refers to models
built with FastSpeech2, TT2 refers to models built with
Tacotron2, and ‘Ref’ to reference recordings. Sam-
ples available at https://roedoejet.github.io/
msc_listening_tests_data/

voices, while showing consistent improvements
in naturalness ratings as more data is added (as
shown in Figure 3), are not significantly different
from each other. This is a relevant and impor-
tant finding for low-resource speech synthesis be-
cause it shows that a FastSpeech2 voice built with
3 hours of data can achieve subjective naturalness
ratings which are not significantly different from a
Tacotron2 voice built with 24 hours of data. Simi-
larly, the results of the listening test for our Fast-
Speech2 voice built with 1 hour of data are not
significantly different from our Tacotron2 voice
built with 10 hours of data. Additionally, while
all the FastSpeech2 voices were intelligible, all
Tacotron2 models trained with less than 10 hours
of data produced unintelligible speech.

4.3 Indigenous Language Experiments

Despite the difficulty in evaluation (§4.1), we
built and evaluated a number of TTS systems for
the Indigenous languages described in §3. We
had a baseline concatenative model available for
Kanien’kéha that we had previously built using
Festival and Multisyn (Taylor et al., 1998; Clark
et al., 2007). Additionally, we trained cold-start
FastSpeech2 models for each language, as well as
models fine-tuned for 25k steps from a multilin-

https://roedoejet.github.io/msc_listening_tests_data/
https://roedoejet.github.io/msc_listening_tests_data/


gual, multispeaker FastSpeech2 model pre-trained
on a combination of VCTK (Yamagishi et al.,
2019), Kanien’kéha and Gitksan recordings. A
rule-based mapping from orthography to pronunci-
ation form was developed for each language using
the ‘g2p’ Python library in order to perform align-
ment and synthesis at the phone-level instead of
character-level (Pine et al., Under Review).

4.3.1 Results
We carried out listening test evaluations of Gitk-
san and Kanien’kéha models. Participants were
recruited by contacting teachers, learners and lin-
guists with at least some familiarity with the lan-
guages.
For theKanien’kéha listening test, 6 participants

were asked to answer 20 A/B questions comparing
synthesized utterances from the various models.
We used A/B tests for more targeted comparisons
between different systems, namely cold-start vs.
fine-tuned and neural vs. concatenative. Results
showed that 72.2% of A/B responses from partic-
ipants preferred our FastSpeech2 model over our
baseline concatenative model. In addition, 81.7%
of A/B responses from participants preferred the
cold-start to the model fine-tuned on the multi-
speaker, multi-lingual model, suggesting that the
transfer learning approach discussed in §2.3 might
not be necessary for models with explicit dura-
tions such as FastSpeech2 since they are relieved
of the burden to learn an implicit model of duration
through attention from limited data.
For the Gitksan listening test, we did not build

a concatenative model as with Kanien’kéha and
so we were not comparing different models, but
rather just gathering opinions on the quality of the
cold-start FastSpeech2 model. Accordingly, 10
MOS-style questions were presented to 12 partici-
pants for both natural utterances and samples from
our FastSpeech2 model. The model received a
3.56 ± 0.26 MOS compared with a MOS for the
reference recordings of 4.63 ± 0.19 as shown in
Figure 5. While both Kanien’kéha and Gitksan re-
sults seem to corroborate our belief that these mod-
els should be of reasonable quality despite limited
training data, it is difficult to make any conclusive
statement given the low number of eligible partici-
pants available for evaluation.
As the main goal of our efforts here is to even-

tually integrate our speech synthesis systems into
a pedagogical setting, we also asked the 18 peo-
ple who participated across Kanien’kéha and Gitk-
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Figure 5: Box plot of MOS results for Gitksan listen-
ing test. ‘Ref’ is the reference voice and ‘Phone’ is the
phone-based FastSpeech2 neural model. Variable re-
sults for the reference voice are likely due to the natural
speech recordings coming from a non-native speaker.
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Figure 6: Responses from qualitative survey asking par-
ticipants “Would you be comfortable with any of the
voices you heard being played online, say for a digital
dictionary or verb conjugator if no other recording ex-
isted?”. No participants responded “no”.

san listening tests directly whether they approved
of the synthesis quality. As seen in Figure 6, par-
ticipant responses were generally positive; full re-
sponses are reported in Appendix B.

4.4 Integrating TTS in the Classroom

Satisfying the goal of adding supplementary au-
dio to a reference tool like Kawennón:nis can be
straightforwardly implemented by linking entries
in the verb conjugator to pre-generated audio for
the domain from a static server. This implementa-
tion also limits the potential of out of domain utter-
ances that might be deemed inappropriate, which
is an ethical concern in communities with low num-
bers of speakers where the identity of the ‘model’
speaker is easily determined.
However, the ability to synthesize novel utter-

ances could be pedagogically useful. Students
often come into contact with words or sentences
which do not have audio, and teachers often have
to prepare new thematic word lists or vocabulary
lessons that could benefit from a more general pur-
pose speech synthesis solution. In those cases,



with community and speaker input, we might con-
sider what controls would be necessary for the
users of this technology. One potential solution is
the variance adaptor architecture present in Fast-
Speech2, allowing for phone-level control of dura-
tion, pitch and energy; an engaging demonstration
of a graphical user interface for the corresponding
controls in a FastPitchmodel is also available.8 We
would like to focus further efforts on designing a
user interface for speech synthesis systems that sat-
isfies ethical concerns while prioritizing language
pedagogy as the fundamental use case.
In addition to fine-grained prosodic controls,

we would like to explore the synthesis of hyper-
articulated speech, as often used by language teach-
ers when modelling pronunciation of unfamiliar
words or sounds for students. This style of speech
typically involves adjustment beyond the param-
eters of pitch, duration and energy, and is char-
acterized by more careful enunciation of individ-
ual phones than is found in normal speech. This
problem has parallels to the synthesis of Lombard
speech (Hu et al., 2021), as used to improve intelli-
gibility by speakers who find themselves in noisy
environments.

5 Conclusion

In this paper, we presented the first neural speech
synthesis systems for Indigenous languages spo-
ken in Canada. Subjective listening tests showed
encouraging results for the naturalness and accept-
ability of voices for two languages, Kanien’kéha
and Gitksan, despite limited training data avail-
ability (3.5 hours and 35 minutes, respectively).
More extensive evaluation on English shows that
the FastSpeech2 architecture can produce speech
with similar quality to a Tacotron2 system using
a fraction of the amount of speech usually consid-
ered for neural speech synthesis. Notably, a Fast-
Speech2 voice trained on 1 hour of English speech
achieved subjective naturalness ratings not signif-
icantly different from a Tacotron2 voice using 10
hours of data, while a 3-hour FastSpeech2 system
showed no significant difference from a 24-hour
Tacotron2 voice.
We attribute these results to the fact that Fast-

Speech2 learns input token durations from forced
alignments, rather than jointly learning to align lin-
guistic inputs to acoustic features alongside the
acoustic feature prediction task as in attention-

8https://fastpitch.github.io/

based architectures such as Tacotron2. Given
forced alignments of sufficient quality, which we
found to be achievable even by training a Mon-
treal Forced Aligner model only on our limited
Indigenous language training data, this makes for
more data-efficient training of neural TTS sys-
tems than has generally been explored in previous
work. These findings show great promise for fu-
ture work in low-resource TTS for language revi-
talization, especially as they come from systems
trained from scratch on such limited data, rather
than pre-training on a high-resource language and
subsequent fine-tuning on limited target language
data.
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A Compute, Accessibility, &
Environmental Impact

For reasons of environmental impact and acces-
sibility, reducing the amount of computation re-
quired for both training and inference is important
for any neural speech synthesis system, particu-
larly so for Indigenous languages.

A.1 Accessibility, Training & Inference
Speed

While language revitalization efforts are mostly
encouraging about integrating new technologies
into curriculum, there is a growing awareness of

the potential harms. Beyond assessing the ben-
efits and risks of introducing a new technology
into language revitalization efforts, communities
are concerned with the way the technology is re-
searched and developed, as this process has the
ability to empower or disempower language com-
munities in equal measure (Alia, 2009; Brinklow
et al., 2019). The current model for developing
speech synthesis systems is not very equitable –
models need to be run on GPUs by people with
specialized training. For Indigenous communities
to create speech synthesis tools for their languages,
they should not be required to hand over their lan-
guage data to a large government or corporate or-
ganization. A pre-training, fine-tuning pipeline
could be attractive for this reason; communities
could fine-tune their own models on a laptop if a
multilingual/multi-speakermodel were pre-trained
on GPUs at a larger institution. Reducing the
computational requirements for training and infer-
ence of these models could help ensure language
communities have greater control over the process
of the development of these systems, less depen-
dence on governmental organizations or corpora-
tions, and more sovereignty over their data (Kee-
gan, 2019).

Strubell et al. (2019) present an argument for eq-
uitable access to computational resources for NLP
research; put another way, we might say that sys-
tems which require less compute are more accessi-
ble. Reducing the number of parameters in a neu-
ral TTS model should translate to increased effi-
ciency, and might make the model less prone to
overfitting when training on limited amounts of
data. As discussed in §4.2.2, we modified the
base implementation of FastSpeech2 from Chien
(2021) closely following the lightweight alterna-
tive discovered through neural architecture search
in Luo et al. (2021). These changes reduced the
size of the model from Chien (2021) from 35M to
11.6M parameters, reduced the size of the stored
model from 417 MB to 135 MB and significantly
improved inference and train times as summarized
in Table 1. We saw a 33% improvement in av-
erage batch processing times on the GPU during
training, and 64% on the CPU, which may be even
more relevant for Indigenous language communi-
ties with limited computational resources. During
inference, we saw a 15% speed-up on GPU and
57% on CPU.

Results were timed by running themodel for 300
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FastSpeech2 Adapted System

Training GPU 90.52 ms (σ 3.31) 60.04 ms (σ 1.70)
CPU 7561.50 ms (σ 263.55) 2720.88 ms (σ 92.99)

Inference GPU 12.00 ms (σ 0.30) 10.23 ms (σ 0.78)
CPU 138.73 ms (σ 3.94) 59.50 ms (σ 1.85)

Table 1: Mean and standard deviation of training and inference times for a single forward pass of baseline Fast-
Speech2 and adapted models.

repetitions and taking the mean. The GPU (Tesla
V100-SXM2 16GB) was warmed up for 10 repe-
titions before timing started, and PyTorch’s built-
in GPU synchronization method was used to syn-
chronize timing (which occurs on the CPU) with
the training or inference running on the GPU. CPU
tests were performed on an Intel(R) Xeon(R) CPU
E5-2650 v2 @ 2.60GHz with 4 cores and 16GB
memory reserved. All timings used a batch size of
16.

A.2 CO2 Consumption

Strubell et al. (2019) also argue that NLP re-
searchers should have a responsibility to disclose
the environmental footprint of their research, in or-
der for the community to effectively evaluate any
gains and to allow for a more equitable and repro-
ducible field.
All experiments for this paper requiring a GPU

were run on the Canadian General Purpose Science
Cluster (GPSC) in Dorval, Quebec. Experiments
were all run on single Tesla V100-SXM2 16GB
GPUs. Strubell et al. (2019) provide the following
equation for estimating CO2 production:

pt =
1.58t(pc + pr + (g ∗ pg))

1000
(1)

where t is time, pt is total power for training, pc
is average draw of CPU sockets, pr is average
DRAM memory draw, g is the number of GPUs
used in training and pg is the average draw from
GPUs. In our case, we estimate t to be equal
to 1,541.989 after summing the time for exper-
iments based on their log files, pc is 75 watts,
pr is 6 watts, g is 1, and pg is 250 watts, and
the equation for grams of CO2 consumption is
CO2 = 34.5pt as the average carbon footprint
of electricity distributed in Quebec is estimated at

9Note this estimate is based on the total number of hours
spent running experiments from theM.Sc. dissertation this pa-
per draws its experiments from. There were additional mod-
els trained for experiments that are not discussed in this paper.
As such, this is a generous overestimation of t.

34.5g CO2eq/kWh (Levasseur et al., 2021). This
results in a total equivalent carbon consumption
of 27,821.65 grams, roughly equivalent to driving
a single passenger gas-powered vehicle for 110
kilometres according to the average rate of 404
grams/mile (EPA, 2019).
This is a comparatively low CO2 consump-

tion for over 1500 GPU hours, largely due to the
low CO2/kWh output of Quebec electricity when
compared with the 2019 USA average of 400g
CO2eq/kWh (EPA, 2019). However, CO2 equiva-
lents are just a proxy for environmental impact and
should not be understood to comprehensively ac-
count for social and environmental impact. Hydro-
electric dam projects in Quebec, like the ones pow-
ering the GPSC have a sordid and complex history
in the province. Innu Nation Grand Chief Mary
Ann Nui spoke to this when she commented that
“over the past 50 years, vast areas of our ancestral
lands were destroyed by the Churchill Falls hydro-
electric project, people lost their land, their liveli-
hoods, their travel routes, and their personal be-
longings when the area where the project is located
was flooded. Our ancestral burial sites are under
water, our way of life was disrupted forever. Innu
of Labrador weren’t informed or consulted about
that project” (Innu-Atikamekw-Anishnabeg Coali-
tion, 2020).

B Qualitative Results

Question:
“Would you be comfortable with any of the

voices you heard being played online, say for a
digital dictionary or verb conjugator if no other
recording existed?”

Kanien’kéha responses:

• Yes.

• yes

• Yes



• Out of the two voices I hear, the first was
clearer to understand

• Yes, voices sounds really good!

• yes

Gitksan responses:

• yes

• Yes, but the ones that have the most whistling
or buzzing would be annoying.

• maybe?? I think for a talking dictionary peo-
ple do want to hear original pronunciations,
but it could be a useful interim solution or a
way to do short phrases!

• Yes

• Yes.

• Assuming there is a single control for the last
section of the survey/test, then some of the
synthesised voices actually sound really good
and I would be comfortable hearing those in
an online dictionary where audio didn’t exist
for a particular word or phrase.

• yes

• The ones with higher ratings for sure, some
of the lower ratings were just about the sound
quality because that hampered hearing the
speech quality. So I may have confounded
the results with that, but point remains that
it is always good to try to avoid poor audio
recordings for online dictionaries

• Maybe/yes

• only ones rated fair or above fair

• Absolutely yes

• yes, as long as they were identified as synthe-
sized


