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Research on upper-limb prostheses is typically
laboratory-based. Evidence indicates that research
has not yet led to prostheses that meet user needs.
Inefficient communication loops between users,
clinicians and manufacturers limit the amount of
quantitative and qualitative data that researchers
can use in refining their innovations. This paper
offers a first demonstration of an alternative
paradigm by which remote, beyond-the-laboratory
prosthesis research according to user needs is feasible.
Specifically, the proposed Internet of Things setting
allows remote data collection, real-time visualization
and prosthesis reprogramming through Wi-Fi and a
commercial cloud portal. Via a dashboard, the user
can adjust the configuration of the device and append
contextual information to the prosthetic data. We
evaluated this demonstrator in real-time experiments
with three able-bodied participants. Results promise
the potential of contextual data collection and system
update through the internet, which may provide
real-life data for algorithm training and reduce the
complexity of send-home trials.

This article is part of the theme issue ‘Advanced
Neurotechnologies: translating innovation for health
and well-being’.

1. Introduction
The loss of the upper limb affects three million people all
over the world [1,2]. People with upper-limb difference
will face severe challenges in performing activities of
daily living [3]. For centuries, prostheses have been used
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to restore the functions of the missing limb, e.g. cooking, feeding and dressing. Fully restoring
the appearance and the function is challenging due to the large number of degrees of freedom
involved [4]. Today, the design of multi-functional prostheses and natural prosthetic control
algorithms still attract lots of interest and effort in laboratories.

Most prosthetic techniques are developed and tested within a controlled laboratory
environment [5,6]. Upon device calibration, data collection and user training, most participants
can control the prosthesis or the virtual test space reasonably well. However, previous studies
indicate that myoelectric prosthesis control in a laboratory environment is not representative
of real-life scenarios beyond the laboratory [7–11]. The variability in muscle activity and limb
position, between many other factors, affects the generalization of control. As such, we need a
new experimental paradigm by which the performance of the laboratory innovation can be tested
beyond the laboratory.

In addition, in current clinical practice, once a user returns home after receiving a prosthesis,
it is difficult, if not impossible, for the clinicians to monitor the prosthesis use remotely
or to reconfigure the device if needed. This lack of oversight or maintenance degrades the
comfort and functionality of the device over time, which increases the rate of prosthesis
abandonment [12].

To bridge the gap between laboratory research, clinical practice, prosthesis use in home
environment studies are designed to investigate prosthetic behaviours in real life. The
experimenter sets up the prosthesis and sends it to the user’s home [13–15]. Results can be
recorded through surveys [13,16–18] and standard clinical trials [13,16,18]. Further data, such
as wear time and number of grips, may be recorded with embedded electronics [5,13,16,17].
Equipped with large hard disks, recent systems also allow the recording of raw myoelectric
signals and video clips during home trials [15,19], which may provide more quantitative and
qualitative information for further analysis. Similar to the clinical practice, current home trials
may still rely on regular visits to the laboratories or clinics for user training and device
maintenance. The user normally sends their feedback through email or by telephone call, which
has limited bandwidth and the hysteresis effect [20]. Also, the user cannot accurately add
contextual information to their prosthesis use data. Additionally, the experimenter may find it
difficult, if not impossible, to provide technical support to the user remotely.

An Internet of Things (IoT) setting provides new possibilities in data exchange and information
integration [21]. It facilitates the collection and transfer of data over a wireless network without
human intervention. In recent years, IoT has been applied to the healthcare systems for remote
health monitoring, such as heart rate, body temperature and blood pressure [22–24]. In terms
of assistive technology, it has been used for remote data collection and security checks [25–27].
The success stories around IoT indicate a potential solution for home-use prosthetic studies to
bridge the gap between the experimenter and the user. For example, Williams et al. [28] designed
Ubi-Sleeve that enabled people wearing lower-limb prostheses and other stakeholders to record
various signals, e.g. temperature, humidity and prosthesis slippage behaviour, from inside the
socket regularly. Also, Fukuda et al. [29] showed the feasibility of transmitting myoelectric signals
and sensor data up to a cloud server for determining a grasp pattern and receiving the motor
command to actuate a robotic gripper. As such, parts of the prosthetics industry have embraced
the change and introduced to the market connected solutions, e.g. LinxTM by Blatchford.

Here, we demonstrate the feasibility of an IoT-enabled system for beyond-laboratory
prosthetics research with the vision that the proposed conceptual framework can underpin the
future of remote prosthetics care. The device is connected to a cloud server, which receives and
synchronizes the data with the user feedback. We developed a dashboard and a control panel on
the server for each prosthetic device, so that users can have visual feedback on their myoelectric
signals and adjust the system, if required. The platform enables an experimenter to analyse the
data and refine the control algorithm in a personalized way. We show the feasibility of remote
collection of contextualized data as well as system reconfiguration.
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Figure 1. Schematic diagram of the Internet of Prostheses. (Online version in colour.)

2. Methods
The system developed in this study includes the upper limb prosthesis in an IoT architecture, as
shown in figure 1. The prosthesis controller and the smart devices (PC and mobile) are with the
user to control the upper-limb prosthesis and collect control signals and contextual information.
They can work independently without internet connection, but connecting the device to the
cloud server allows the device to upload the collected data and receive system updates through
Wi-Fi communication. The cloud server is developed on the Thinger.io platform to allow remote
data collection, storage and visualization as well as the control and update of devices. Users and
clinicians can access to the server anywhere by logging into its web portal, so the experiments are
no longer limited in the laboratory because of the hardware constraints. More details about each
module in the schematic diagram are introduced in the following sections.

(a) System description
(i) Hardware

The prosthesis controller was implemented on an Arduino MKR WIFI 1010 (Arduino LLC,
USA) because of its low-cost and accessibility [24]. This system enables two-channel myoelectric
recording with a 500 Hz sampling rate, signal pre-processing with bandpass filters and notch
filter, abstract decoding for real-time prosthesis control. For this work, we used the smoothed
envelop of the EMG signal, which is of the order of a few Hz. As such, a lower sampling
rate, violating the Nyquist frequency, does not contaminate the data by aliasing [30]. Besides,
a wireless communication module was developed based on the Protoson (PSON) protocol
[31], which enabled the bi-directional binary data transmission between the server and the
device. Furthermore, a micro-SD shield (Arduino MKR SD Proto Shield) and a real-time clock
module (HW-084) were connected to the system for data storage and synchronization. While
the prosthesis was used, control data were logged to the micro-SD card with timestamps, so
users could save the data onboard if Wi-Fi communication was not available. A prototype of
the internet-enabled prosthesis controller is shown in figure 2a.

We three-dimensionally printed a by-pass socket (figure 2b). It included a cuff and a two-
part quick wrist disconnect (QWD) housing. The cuff was printed flat and thermoformed to
encapsulate the lower forearm using a heat gun. The print orientation of the cuff gave it slight
intentional flexibility to allow the brace to fit all participants easily. Three adjustable straps were
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Figure 2. Overview of the internet-enabled prosthesis. (a) The prosthesis controller developed on the Arduino; (b) three-
dimensionally printed by-pass socket; (c) portable upper-limb prosthesis for able-bodied participants; and (d) the myoelectric
interface that maps the muscle activity to four grasps on the prosthesis. (Online version in colour.)

added to the top of the cuff. The cuff also features an attachment site for the QWD housing to hold
the Robo-limb (Ossur, Iceland). The two housing parts were printed separately and affixed to the
cuff with bolts. Batteries and the prosthesis controller were placed behind the QWD housing to
reduce the length of the cables. An overview of the hardware is shown in figure 2c.

(ii) Prosthesis control algorithm

We could use any prosthesis control method to demonstrate this IoT-based setting. In this proof
of principle study, for the first time, we implemented the abstract control method [32,33] for
the control of a prosthesis in a real-time experiment. With the support of a computer-based
myoelectric interface, users can learn novel ways to map their muscle activity to commands to
actuate a prosthesis. We previously described the interface in [10] and [33]. For completeness,
we briefly describe the controller here. Figure 2d shows a circular cursor on a two-dimensional
task space. The position of the cursor is determined by the mean-absolute value (MAV) of
the myoelectric signals from two muscles. Participants can move the cursor from the lower
basket (rest state) to a target and hold the cursor within the target for a fixed dwell period
to activate a preset grasp on the prosthesis. We assigned power, tripod/pinch and point
grasps, and hand open to targets one to four, respectively. We set the state machine such
that the prosthesis can accept a new grasp command only when the hand is in the open
state and the cursor is in the rest basket. This way we removed the possibility of inadvertent
grasps.
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(iii) IoT cloud portal and server

The cloud server was developed using the Software as a Service (SaaS) model [34]. It was
deployed on the Thinger.io platform [31] that handled data collection, data visualization and
device reconfiguration. All registered stakeholders can access the server through a web browser.
No local software installation was required. To satisfy the requirements of different stakeholders,
the platform offers the possibility of stakeholder-specific dashboards at various granularity.
Specifically, two web-based dashboards, one for a user and the other for an experimenter, were
developed using the representational state transfer (REST) application programming interface
and were saved as templates. We could include new members in the experiment by simply
applying the template to their accounts or by personalizing it according to user preferences.
The data were securely stored on an Amazon DynamoDB database and separated into virtual
storage spaces called Data Buckets. For privacy and security reasons, data buckets were created
and managed for each user individually. When a prosthesis controller was connected to the server,
its control data were synchronized to the user’s data buckets automatically. Users could log into
their own accounts to monitor and reset their prostheses, while the clinician could read, modify
and download data from users they were responsible for.

(b) Participants and preparation
Three able-bodied participants took part in this proof-of-principle study. They were free from any
known neurological or motor disorders. They all had extensive experience of computer-based
abstract myoelectric control. This study was their first experience of wearing a prosthesis by-pass
socket and controlling a commercial myoelectric prosthesis.

Myoelectric sensors were placed on the skin, targeting the flexor carpi radialis (FCR) and
extensor carpi radialis (ECR) muscles. Normalized mean-absolute values of the myoelectric
signals were calculated and used as control signals following the method described in [33]. Before
the experiment and as a familiarization block, participants wore the socket and the prosthesis and
practised with the cursor control on the computer interface. The power supply of the prosthesis
was off during this block. This way we ensured that the familiarization block is representative of
the main study, in terms of the load on the arm.

The familiarization block comprised two stages. The first stage included a practice run and
then 40 trials. First, participants practised the movement of the myoelectric cursor in the abstract
decoding task space (figure 2d) for 2 min. After that, in each trial, a target was selected and
highlighted on the interface, and participants moved the cursor from the basket to hit the selected
target within 1.5 s. Participants were instructed to achieve as many trials as they could. They
needed to achieve more than 70% trials for each target in order to clear the stage. Throughout this
stage, they could see the cursor on the computer screen. At the end of the stage, participants had
a 2 min or longer break to avoid fatigue. They were instructed to place their forearm on their legs
or the handle of the experimental chair to rest their muscles. The second stage closely followed
the first but with the difference that the cursor was no longer visible. The second stage mimicked
the prosthesis control in a practical scenario.

(c) Functional assessment
A real-time control pick and place experiment was carried out to investigate the functionality and
robustness of the proposed system. The prosthesis controller was connected to the server and data
were recorded. This study comprised 16 blocks, comprising two groups of eight. In each block,
participants were required to grasp, lift and relocate a series of objects. They were also required
to press the touchpad of the experimental laptop with a point grip to indicate the start and stop
of the block. Only in one block, a participant did not click the touchpad properly. This block was
removed from the analysis.
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In the first eight blocks, the objects were a compact disc and a drink can. As such, the grasp
order was point, tripod, power and point. The order in which they picked the disc and the can was
decided by the participant. In the second eight blocks, the objects were a ball and the same drink
can. The grasp order in the second eight block was point, pinch, power and point. Similarly, the
order in which they picked the ball and the can was decided by the subjects. Note that the change
from tripod to pinch grip on the prosthesis was carried out on the server remotely, during the
experiment, demonstrating the flexibility of the proposed system. If participants lifted an object
with a grasp that was not associated with the object, they had to submit user feedback to the
server using the dashboard to report the grasp they intended to use. To avoid fatigue, due to
bearing the weight of the hand, a 1 min break was included between each block, during which
participants could put down their arms to rest the muscles. Participants could ask for a longer
rest if they still required more rest.

(d) Data analysis and system update based on real-life data
The data buckets were exported to the analysis laptop. For each participant, the myoelectric
control signals were synchronized with the motor commands and the user feedback based on the
timestamps. Motor commands without unexpected grasp labels were considered as the correct
commands. Also, we evaluated the feasibility of updating the control algorithm based on real-
life data. The correct motor commands in the pick and place experiment were used as the
training data. Their angle v from cursor positions was extracted to train three 2-class Naive Bayes
classifiers. The optimized decision boundaries between each two adjacent targets located at the
position where the angle v has equal probability density between two targets. The new decision
boundaries were verified by the unexpected motor commands.

3. Results

(a) Online dashboards for device control and data visualization
The user interface, user feedback dashboard and clinician interface were developed for this study.
Each prosthesis controller has an independent user interface and a user feedback dashboard for
data visualization, device control and contextual data reporting.

A user interface (figure 3a) includes a prosthesis monitor and an MCI, which shows the current
status of the upper-limb prosthesis and the corresponding control signals in real time. It provides
the visual feedback of the muscle contraction when the user is trying to control the prosthesis,
so it may be used for in-home myoelectric training and the evaluation of the prosthesis settings,
such as the calibration levels. The recalibration switch on the screen allows the user to recalibrate
the corresponding device following our standard calibration protocol [10]. Regarding the ethical
considerations, such as privacy, the user can stop sharing the data with the server by turning off
the Data streaming and MAV streaming switches, which stops the device from recording control
data and EMG signals but maintain its functions in prosthesis control.

A user feedback dashboard (figure 3b) allows the user to upload the contextual information
when they are using the prosthesis. The user presses the four buttons on the top of the dashboard
to report which grip they intend to select through the previous muscle contraction, and our
system will label the selected grip to the corresponding MAV data. In this way, the user can
provide labels for the practical muscle contractions during daily activities and we are able to
collect the information remotely for user behaviour analysis and algorithm training. There is a
questionnaire on the dashboard for the user to provide contextual information, such as where
they are using the prosthesis. As the pick and place experiment was carried out in the laboratory,
we did not require the participants to use this function during the tests.

The clinician interface (figure 3c) can be used to monitor and manage all prosthetic devices.
It has time-series charts to show the motor commands, user feedback and corresponding
timestamps from the data buckets for each device, so when the prostheses have been used and
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Figure 3. Overview of the interfaces. (a) User interface for real-time prosthesis monitoring and recalibration. (b) User
feedback dashboard for contextual information collection. (c) Clinician interface for time-series data visualization and system
reconfiguration. (Online version in colour.)

what activities they have been used for can be monitored remotely. The scale of the time-series
charts is adjustable, so it can be used to analyse grasp selection for a specific task or to monitor the
time of device usage in a longer term. The control panel next to the time-series charts can change
the device settings for the selected participant, so the device reconfiguration can be carried out
without physical access to the device.

(b) Contextual data collection and synchronization
Data stored in the data bucket can be both visualized on the dashboards and downloaded for
offline analysis in CSV, ARFF or JSON formats. Figure 4 shows an example of a pick and place
trial operated by one of the participants. After clicking the keyboard with the point grip, the
participant picked up the can and relocated it to the target label using the power grip. When
picking up the disc, the prosthetic hand grasped with the point grip, which was not expected
by the participant. They therefore submitted feedback to the server with their smartphone in the
left hand, and then finished the rest of the trial following the instructions. With the timestamps,
MAV signals, motor commands and user feedback can be synchronized, as in figure 4a. The
user feedback was automatically labelled to its previous motor command as the grip that the
participant intended to make. The corresponding cursor trace and the cursor position where the
decision has been made (figure 4b) were saved as a new dataset so that prosthetic control data
during practical activities can be labelled and collected remotely. Representatives for successful
trials and also trials in which the participants provided feedback can be found in the electronic
supplementary material, video.

(c) Offline data analysis and system customization
Based on the experimental data, we trained the system to fit the participants’ short-term
adaptation to the abstract myoelectric controller. The decision-making points for grasp commands
(figure 4c) were decoded to its phase angle in the MCI (figure 4d). With the naive Bayes
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Figure 4. Example data for a pick and place trial. (a) The MAV signals and motor commands during a pick and place trial.
(b) Labelling a motor command by the user feedback. An example of a grip decision and its corresponding cursor trajectory.
(c) Scatter plot of the motor commands of one participant during the pick and place tests. The scatters show the contraction
levels of two muscles when the participant hits the targets. Shape and colour of the scatters indicate the expected motor
commands and if the hand movement meets the expectation, respectively. (d) One-dimensional angular map of the scatters
used to train the naive Bayes decoders. (e) Customized decision boundaries for the participant. (Online version in colour.)

Table 1. Customized decision boundaries based on the contextual data for each participant (P).

boundary 1–2 boundary 2–3 boundary 3–4

default 22.5° 45° 67.5°
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P1 19.1° 43.2° 64.9°
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P2 16° 45.4° 85.3°
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P3 20.7° 45.8° 69.5°
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

classifier, new decision boundaries were calculated for adjacent targets in the MCI. For the
selected participant, four out of eight unexpected grasps were in the correct targets if we
applied the customized decision boundaries (figure 4e). Participants may develop different
strategies for abstract myoelectric control through adaptation or learning, so the customized
decision boundaries for the three participants (table 1) may be different. The customized
decision boundaries can be updated to the prosthesis controller through the clinician interface
(figure 2d) remotely through the researcher interface. Table 2 shows the number of unexpected
grip feedback that locate the correct target if customized Bayes decision boundaries are applied.

4. Concluding remarks
Because of the need for unsupervised real-life data [35,36], the number of beyond-laboratory
upper-limb prosthetic studies beyond the laboratory has been gradually increasing over the
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Table 2. The number of user feedback and the number of corrections after adjustment of the decision boundaries.

participant 1 participant 2 participant 3

no. of feedback 14 8 18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no. of corrections 5 4 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

past 25 years [37]. These studies collected questionnaires, wear-time, grip count or video clips
to investigate prosthetic interventions, device performances and user perspectives in home
environments [13,38,39]. However, to fully understand and improve an advanced control
algorithm for daily practice, more detailed control data and contextual information are necessary.

In this paper, we demonstrated a proof-of-principle study of applying IoT for prosthetic
research beyond the laboratory. We demonstrated the system by a laboratory-based study, but
the data collection, device monitoring and system updates were all carried out through Wi-Fi
communication. Therefore, it is feasible to repeat the experiments in community settings without
any system modification, as we proposed. The developed system saves the prosthetic control
data to an online server and visualizes the data in real time through a web-based dashboard.
User feedback forms and control panels on the dashboards allow the collection of contextual
information and system reconfiguration over the air. Three able-bodied participants participated
in the experiments. The experimenter could monitor the data in real time and reconfigure the
device remotely.

The current version of this system saves timestamped myoelectric control signals, grasp
commands and user intents, which will be sufficient for understanding how often and how
well the controller is used in real-life settings. Future development may include expansion of
the storage capacity to enable storing raw myoelectric and other sensor signals such as force
and accelerometry. Transmitting raw signals in real time may require larger bandwidth and
its necessity remains to be established. The raw myoelectric signals allow the experimenter to
playback the muscle activity during at-home use and develop comprehensive datasets for further
analysis, e.g. for machine learning-based decoding [40,41]. Meanwhile, transmitting the raw data
will increase the resource consumption, in terms of bandwidth and storage space, but a large
portion of them may not be used in scientific research due to the lack of contextual information
[42]. Moreover, raw data transmission increases the power consumption, and it will significantly
reduce the battery life of the device [43]. Considering these factors, further discussion may be
required to determine whether it is worthwhile to transmit raw data or to convert myoelectric
signals into features before transmission especially for high-density EMG settings [44–46]. If raw
EMG signals are indispensable, they can be saved on the on-board SD card and uploaded to the
server periodically. The proposed hardware is capable of the latter.

We respected data security and user privacy in our system design. Following the
recommendations of [47], we adopted the default Thinger.io data security system design. First,
each prosthesis controller had its ID and device credentials and needed to authenticate itself
to the server before collecting or sending data. Besides, data were transmitted securely using
the Transport Layer Security protocol. We further implemented user-level security such that
the participants can see only their data and experimenters can only access projects for which
they were responsible. In the send-home prosthetics research, in addition to cyber security, one
should address users’ privacy concerns. As the perception of data sharing over the internet is
different between people [48], we only collected the minimum data that were relevant to the study.
Participants should have options to stop any kind of data sharing at any time, such as using the
data-streaming buttons on the dashboards, so they can choose to share data over a specific period
or allow us to for continuous monitoring [49]. The proposed hardware is capable of addressing
all of these requirements.

With the support of IoT, the system can collect labelled real-life data during the pick and place
experiment. These data include the style of the participant when doing specific muscle activities
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[50], so learning from them may yield a model that better fits the participant. We used the naive
Bayes classifier as an example to demonstrate the optimization of the control model over the
air. This is an example of how a simple machine-learning algorithm can promote data-driven
clinical decision making, in the field of prosthetics. This approach helps in addressing ethical
issues when using artificial intelligence in the healthcare domain [51]. Besides, it may increase the
participants’ trust in the system, which can further enhance their experience and satisfaction with
the intervention [52].

It is readily possible to adapt the proposed IoT system to incorporate alternative upper-
limb prostheses and controllers. It is also possible to deploy the server on different platforms.
Deploying a server on commercial IoT platforms simplifies the development processes by
using the built-in functions for designing servers and the ready to use cloud infrastructure for
connecting devices. They are feasible for pilot studies, but not all custom features are available in
their libraries. As such, we were not able to introduce new modules to the server. For instance,
we could not allow participants to add text comments to the motor commands because of the
constraints on the widgets. A different approach from the demonstration is to self-host an open-
source solution for data recording and user interfacing, e.g. [53]. The server has to be developed
from sketch, but it is more flexible in the short run. However, the self-hosted server is a lot more
challenging to scale up for long-term clinical trials.

Future works will focus on adapting the system on sent-home unsupervised studies, where
participants with limb difference use our devices in their daily activities. The experimental design
and the user interface will be co-created with a broad range of stakeholders so that users’ needs
and ethical considerations within user home environments can be better taken into account, as
recommended by [54]. Besides, the real-time system configuration function will be deployed in
the studies for not only the decision boundaries but also the gain and window length for each
myoelectric channel. We envisage that this platform can be used to expedite the involvement of
the clinicians in the research on prosthetics, especially when it comes to tuning the parameters of
a prosthesis controller on the fly and with the involvement of users.

Ethics. Ethical approval was granted by the local ethics committee at The University of Edinburgh (Ref: 89177).
The study was conducted in accordance with the Declaration of Helsinki. The subjects gave their informed
consents for inclusion before they participated in the study.
Data accessibility. The data are provided in electronic supplementary material [55]. The data that support the
findings of this study are openly available in Edinburgh DataShare at https://doi.org/10.7488/ds/3260.
Authors’ contributions. H.W.: conceptualization, data curation, formal analysis, investigation, methodology,
software, validation, writing—original draft, writing—review and editing; M.D.: methodology, validation,
writing—review and editing; K.N.: conceptualization, funding acquisition, methodology, project administr-
ation, supervision, writing—original draft, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Competing interests. We declare we have no competing interests.
Funding. This work was funded in parts by EPSRC, UK (grant no. EP/R004242/2) and data-driven Innovation,
Scotland.
Acknowledgements. The authors thank Jennifer Olsen of Newcastle University for making the by-pass socket.

References
1. Melero M, Hou A, Cheng E, Tayade A, Lee SC, Unberath M, Navab N. 2019 Upbeat:

augmented reality-guided dancing for prosthetic rehabilitation of upper limb amputees. J.
Healthcare Eng. 2019, 2163705. (doi:10.1155/2019/2163705)

2. Phillips B, Zingalis G, Ritter S, Mehta K. 2015 A review of current upper-limb prostheses for
resource constrained settings. In 2015 IEEE Global Humanitarian Technology Conference (GHTC),
Santa Clara, CA, pp. 52–58. IEEE.

3. Engdahl SM, Christie BP, Kelly B, Davis A, Chestek CA, Gates DH. 2015 Surveying the interest
of individuals with upper limb loss in novel prosthetic control techniques. J. Neuroeng. Rehabil.
12, 1–11. (doi:10.1186/s12984-015-0044-2)

https://doi.org/10.7488/ds/3260
http://dx.doi.org/10.1155/2019/2163705
http://dx.doi.org/10.1186/s12984-015-0044-2


11

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210005

...............................................................

4. Piazza C, Rossi M, Catalano MG, Bicchi A, Hargrove LJ. 2020 Evaluation of a simultaneous
myoelectric control strategy for a multi-DoF transradial prosthesis. IEEE Trans. Neural Syst.
Rehabil. Eng. 28, 2286–2295. (doi:10.1109/TNSRE.2020.3016909)

5. Chadwell A, Kenney L, Granat M, Thies S, Head J, Galpin A, Baker R, Kulkarni
J. 2018 Upper limb activity in myoelectric prosthesis users is biased towards the
intact limb and appears unrelated to goal-directed task performance. Sci. Rep. 8, 1–12.
(doi:10.1038/s41598-018-29503-6)

6. Igual C, Pardo LA, Hahne JM, Igual J. 2019 Myoelectric control for upper limb prostheses.
Electronics 8, 1244. (doi:10.3390/electronics8111244)

7. Nazarpour K. 2020 Control of prosthetic hands: challenges and emerging avenues. London,
UK: Institution of Engineering and Technology.

8. Krasoulis A, Vijayakumar S, Nazarpour K. 2019 Multi-grip classification-based prosthesis
control with two EMG-IMU sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 508–518.
(doi:10.1109/TNSRE.2019.2959243)

9. Geng Y, Samuel OW, Wei Y, Li G. 2017 Improving the robustness of real-time myoelectric
pattern recognition against arm position changes in transradial amputees. BioMed Res. Int.
2017, 5090454. (doi:10.1155/2017/5090454)

10. Wu H, Dyson M, Nazarpour K. 2021 Arduino-based myoelectric control: towards longitudinal
study of prosthesis use. Sensors 21, 763. (doi:10.3390/s21030763)

11. Jones H et al. 2021 Co-creation and user perspectives for upper limb prosthetics. Front.
Neurorobot. 15, 689717. (doi:10.3389/fnbot.2021.689717)

12. Østlie K, Lesjø IM, Franklin RJ, Garfelt B, Skjeldal OH, Magnus P. 2012 Prosthesis rejection
in acquired major upper-limb amputees: a population-based survey. Disabil. Rehabil.: Assist.
Technol. 7, 294–303. (doi:10.3109/17483107.2011.635405)

13. Graczyk EL, Resnik L, Schiefer MA, Schmitt MS, Tyler DJ. 2018 Home use of a neural-
connected sensory prosthesis provides the functional and psychosocial experience of having
a hand again. Sci. Rep. 8, 1–17. (doi:10.1038/s41598-018-26952-x)

14. Simon AM, Turner KL, Miller LA, Hargrove LJ, Kuiken TA. 2019 Pattern recognition and
direct control home use of a multi-articulating hand prosthesis. In 2019 IEEE 16th Int. Conf. on
Rehabilitation Robotics (ICORR), Toronto, Canada, pp. 386–391. IEEE.

15. Brinton MR, Barcikowski E, Davis T, Paskett M, George JA, Clark GA. 2020 Portable take-
home system enables proportional control and high-resolution data logging with a multi-
degree-of-freedom bionic arm. Front. Rob. AI 7, 559034. (doi:10.3389/frobt.2020.559034)

16. Cuberovic I, Gill A, Resnik LJ, Tyler DJ, Graczyk EL. 2019 Learning of artificial sensation
through long-term home use of a sensory-enabled prosthesis. Front. Neurosci. 13, 853.
(doi:10.3389/fnins.2019.00853)

17. Hahne JM, Wilke MA, Koppe M, Farina D, Schilling AF. 2020 Longitudinal case
study of regression-based hand prosthesis control in daily life. Front. Neurosci. 14, 600.
(doi:10.3389/fnins.2020.00600)

18. Schofield JS, Shell CE, Beckler DT, Thumser ZC, Marasco PD. 2020 Long-term home-
use of sensory-motor-integrated bidirectional bionic prosthetic arms promotes functional,
perceptual, and cognitive changes. Front. Neurosci. 14, 120. (doi:10.3389/fnins.2020.00120)

19. Spiers AJ, Cochran J, Resnik L, Dollar AM. 2021 Quantifying prosthetic and intact limb use in
upper limb amputees via egocentric video: an unsupervised, at-home study. IEEE Trans. Med.
Robot. Bionics 3, 463–484. (doi:10.1109/TMRB.2021.3072253)

20. Franzke AW, Kristoffersen MB, Bongers RM, Murgia A, Pobatschnig B, Unglaube F, van
der Sluis CK. 2019 Users’ and therapists’ perceptions of myoelectric multi-function upper
limb prostheses with conventional and pattern recognition control. PLoS ONE 14, e0220899.
(doi:10.1371/journal.pone.0220899)

21. Gradim LCC, José MA, de Deus Lopes R. 2020 IoT services and applications in rehabilitation:
an interdisciplinary and meta-analysis review. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 2043–
2052. (doi:10.1109/TNSRE.2020.3005616)

22. Bakar AA, Rahim SSA, Razali AR, Noorsal E, Radzali R, Abd Rahim AF. 2020 Wearable heart
rate and body temperature monitoring device for healthcare. J. Phys.: Conf. Ser. 1535, 012002.
IOP Publishing. (doi:10.1088/1742-6596/1535/1/012002)

23. Al-Naggar NQ, Al-Hammadi HM, Al-Fusail AM, Al-Shaebi ZA. 2019 Design of a remote
real-time monitoring system for multiple physiological parameters based on smartphone. J.
Healthc. Eng. 2019, 5674673. (doi:10.1155/2019/5674673)

http://dx.doi.org/10.1109/TNSRE.2020.3016909
http://dx.doi.org/10.1038/s41598-018-29503-6
http://dx.doi.org/10.3390/electronics8111244
http://dx.doi.org/10.1109/TNSRE.2019.2959243
http://dx.doi.org/10.1155/2017/5090454
http://dx.doi.org/10.3390/s21030763
http://dx.doi.org/10.3389/fnbot.2021.689717
http://dx.doi.org/10.3109/17483107.2011.635405
http://dx.doi.org/10.1038/s41598-018-26952-x
http://dx.doi.org/10.3389/frobt.2020.559034
http://dx.doi.org/10.3389/fnins.2019.00853
http://dx.doi.org/10.3389/fnins.2020.00600
http://dx.doi.org/10.3389/fnins.2020.00120
http://dx.doi.org/10.1109/TMRB.2021.3072253
http://dx.doi.org/10.1371/journal.pone.0220899
http://dx.doi.org/10.1109/TNSRE.2020.3005616
http://dx.doi.org/10.1088/1742-6596/1535/1/012002
http://dx.doi.org/10.1155/2019/5674673


12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210005

...............................................................

24. Coulby G, Clear A, Jones O, Young F, Stuart S, Godfrey A. 2020 Towards remote healthcare
monitoring using accessible IoT technology: state-of-the-art, insights and experimental
design. Biomed. Eng. Online 19, 1–24. (doi:10.1186/s12938-020-00825-9)

25. Yudhana A, Rahmawan J, Negara CUP. 2018 Flex sensors and MPU6050 sensors responses
on smart glove for sign language translation. IOP Conf. Ser.: Mater. Sci. Eng. 403, 012032. IOP
Publishing. (doi:10.1088/1757-899X/403/1/012032)

26. Kim Y, Lee WS, Raghunathan V, Jha NK, Raghunathan A. 2015 Vibration-based secure side
channel for medical devices. In 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), San Francisco, CA, pp. 1–6. IEEE.

27. Dobkin BH. 2017 A rehabilitation-internet-of-things in the home to augment motor skills and
exercise training. Neurorehabil. Neural Repair 31, 217–227. (doi:10.1177/1545968316680490)

28. Williams R, Holloway C, Miodownik M. 2016 The ultimate wearable: connecting prosthetic
limbs to the IoPH. In Proc. of the 2016 Association for Computing Machinery Int. Joint Conf. on
Pervasive and Ubiquitous Computing, New York, NY, pp. 1079–1083.

29. Fukuda O, Takahashi Y, Bu N, Okumura H, Arai K. 2021 Development of an IoT-based
prosthetic control system. J. Rob. Mechatron. 29, 1049–1056. (doi:10.20965/jrm.2017.p1049)

30. Ives JC, Wigglesworth JK. 2003 Sampling rate effects on surface EMG timing and amplitude
measures. Clin. Biomech. 18, 543–552. (doi:10.1016/S0268-0033(03)00089-5)

31. Luis Bustamante A, Patricio MA, Molina JM. 2019 Thinger.io: an open source
platform for deploying data fusion applications in IoT environments. Sensors 19, 1044.
(doi:10.3390/s19051044)

32. Dyson M, Barnes J, Nazarpour K. 2018 Myoelectric control with abstract decoders. J. Neural
Eng. 15, 056003. (doi:10.1088/1741-2552/aacbfe)

33. Dyson M, Dupan S, Jones H, Nazarpour K. 2020 Learning, generalization, and scalability
of abstract myoelectric Control. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 1539–1547.
(doi:10.1109/TNSRE.2020.3000310)

34. Liao H. 2009 Design of SaaS-based software architecture. In 2009 Int. Conf. on New Trends in
Information and Service Science, Beijing, China, pp. 277–281. IEEE.

35. Ortiz-Catalan M, Rouhani F, Brånemark R, Håkansson B. 2015 Offline accuracy: a potentially
misleading metric in myoelectric pattern recognition for prosthetic control. In 2015 37th
Annual Int. Conf. of the IEEE Eng. in Medicine and Biology Society (EMBC), Milan, Italy,
pp. 1140–1143. IEEE.

36. Gigli A, Gijsberts A, Castellini C. 2020 The merits of dynamic data acquisition for realistic
myocontrol. Front. Bioeng. Biotechnol. 8, 361. (doi:10.3389/fbioe.2020.00361)

37. Chadwell A et al. 2020 Technology for monitoring everyday prosthesis use: a systematic
review. J. Neuroeng. Rehabil. 17, 1–26. (doi:10.1186/s12984-020-00711-4)

38. Belter JT, Reynolds BC, Dollar AM. 2014 Grasp and force based taxonomy of split-hook
prosthetic terminal devices. In 2014 36th Annual Int. Conf. of the IEEE Engineering in Medicine
and Biology Society, Chicago, IL, pp. 6613–6618. IEEE.

39. Chadwell A, Kenney L, Thies S, Galpin A, Head J. 2016 The reality of myoelectric prostheses:
understanding what makes these devices difficult for some users to control. Front. Neurorobot.
10, 7. (doi:10.3389/fnbot.2016.00007)

40. Yue Y, Li S, Legg P, Li F. 2021 Deep learning-based security behaviour analysis in IOT
environments: a survey. Secur. Commun. Netw. 2021, 8873195.

41. Jabbari M, Khushaba R, Nazarpour K. 2021 Spatio-temporal warping for myoelectric control:
an offline, feasibility study. J. Neural Eng. 18, 066028. See http://iopscience.iop.org/article/
10.1088/1741-2552/ac387f. (doi:10.1088/1741-2552/ac387f)

42. Krishnamurthi R, Kumar A, Gopinathan D, Nayyar A, Qureshi B. 2020 An overview
of IoT sensor data processing, fusion, and analysis techniques. Sensors 20, 6076.
(doi:10.3390/s20216076)

43. Yüksel ME. 2020 Power consumption analysis of a Wi-Fi-based IoT device. Electrica 20, 62–71.
(doi:10.5152/electrica.2020.19081)

44. Sheth A. 2014 Transforming big data into smart data: deriving value via harnessing volume,
variety, and velocity using semantic techniques and technologies. In 2014 IEEE 30th Int. Conf.
on Data Engineering (ICDE), Chicago, IL, p. 2. IEEE Computer Society.

http://dx.doi.org/10.1186/s12938-020-00825-9
http://dx.doi.org/10.1088/1757-899X/403/1/012032
http://dx.doi.org/10.1177/1545968316680490
http://dx.doi.org/10.20965/jrm.2017.p1049
http://dx.doi.org/10.1016/S0268-0033(03)00089-5
http://dx.doi.org/10.3390/s19051044
http://dx.doi.org/10.1088/1741-2552/aacbfe
http://dx.doi.org/10.1109/TNSRE.2020.3000310
http://dx.doi.org/10.3389/fbioe.2020.00361
http://dx.doi.org/10.1186/s12984-020-00711-4
http://dx.doi.org/10.3389/fnbot.2016.00007
http://iopscience.iop.org/article/10.1088/1741-2552/ac387f
http://iopscience.iop.org/article/10.1088/1741-2552/ac387f
http://dx.doi.org/10.1088/1741-2552/ac387f
http://dx.doi.org/10.3390/s20216076
http://dx.doi.org/10.5152/electrica.2020.19081


13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210005

...............................................................

45. Mahdavinejad MS, Rezvan M, Barekatain M, Adibi P, Barnaghi P, Sheth AP. 2018 Machine
learning for internet of things data analysis: a survey. Digit. Commun. Netw. 4, 161–175.
(doi:10.1016/j.dcan.2017.10.002)

46. Khushaba RN, Nazarpour K. 2021 Decoding HD-EMG signals for myoelectric control—
how small can the analysis window size be? IEEE Robot. Autom. Lett. 6, 8569–8574.
(doi:10.1109/LRA.2021.3111850)

47. Mahmoud R, Yousuf T, Aloul F, Zualkernan I. 2015 Internet of things (IoT) security: current
status, challenges and prospective measures. In 2015 10th Int. Conf. for Internet Technology and
Secured Transactions (ICITST), London, UK, pp. 336–341. IEEE.

48. Psychoula I, Singh D, Chen L, Chen F, Holzinger A, Ning H. 2018 Users’ privacy concerns in
IoT based applications. In 2018 IEEE smartworld, ubiquitous intelligence & computing, advanced
& trusted computing, scalable computing & communications, cloud & big data computing, internet
of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI),
Guangzhou, China, pp. 1887–1894. IEEE.

49. Lee H, Kobsa A. 2016 Understanding user privacy in Internet of Things environments. In 2016
IEEE 3rd world forum on internet of things (WF-IoT), Reston, VA, pp. 407–412. IEEE.

50. Park SW, Dijkstra T, Sternad D. 2013 Learning to never forget—time scales and
specificity of long-term memory of a motor skill. Front. Comput. Neurosci. 7, 111.
(doi:10.3389/fncom.2013.00111)

51. Pawar U, O’Shea D, Rea S, O’Reilly R. 2020 Explainable ai in healthcare. In 2020 Int. Conf. on
Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), pp. 1–2. IEEE.

52. Shin D. 2021 The effects of explainability and causability on perception, trust, and
acceptance: implications for explainable AI. Int. J. Hum. Comput. Stud. 146, 102551.
(doi:10.1016/j.ijhcs.2020.102551)

53. Dyson M, Olsen J, Dupan S. 2021 A network-enabled myoelectric platform for prototyping
research outside of the lab. In 43rd Annual Int. Conf. of the IEEE Engineering in Medicine and
Biology Society, pp. 7422–7425. IEEE.

54. Jones H et al. 2021 Co-creation facilitates translational research on upper limb prosthetics.
Prosthesis 3, 110–118. (doi:10.3390/prosthesis3020012)

55. Wu H, Dyson M, Nazarpour K. 2022 Internet of Things for beyond-the-laboratory prosthetics
research. Figshare.

http://dx.doi.org/10.1016/j.dcan.2017.10.002
http://dx.doi.org/10.1109/LRA.2021.3111850
http://dx.doi.org/10.3389/fncom.2013.00111
http://dx.doi.org/10.1016/j.ijhcs.2020.102551
http://dx.doi.org/10.3390/prosthesis3020012

	Introduction
	Methods
	System description
	Participants and preparation
	Functional assessment
	Data analysis and system update based on real-life data

	Results
	Online dashboards for device control and data visualization
	Contextual data collection and synchronization
	Offline data analysis and system customization

	Concluding remarks
	References

