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Design as a Marked Point Process
Although artificial intelligence (AI) systems which support composition using predictive text
are well established, there are no analogous technologies for mechanical design. Motivated
by the vision of a predictive system that learns from previous designs and can interactively
provide a list of established feature alternatives to the designer as design progresses, this
paper describes the theory, implementation, and assessment of an intelligent system that
learns from a family of previous designs and generates inferences using a form of spatial
statistics. The formalism presented models 3D design activity as a “marked point
process” that enables the probability of specific features being added at particular locations
to be calculated. Because the resulting probabilities are updated every time a new feature is
added, the predictions will become more accurate as a design develops. This approach
allows the cursor position on a CAD model to implicitly define a spatial focus for every
query made to the statistical model. The authors describe the mathematics underlying a sta-
tistical model that amalgamates the frequency of occurrence of the features in the existing
designs of a product family. Having established the theoretical foundations of the work, a
generic six-step implementation process is described. This process is then illustrated for cir-
cular hole features using a statistical model generated from a dataset of hydraulic valves.
The paper describes how the positions of each design’s extracted hole features can be
homogenized through rotation and scaling. Results suggest that within generic part families
(i.e., designs with common structure), a marked point process can be effective at predicting
incremental steps in the development of new designs. [DOI: 10.1115/1.4052844]

Keywords: feature-based design, predictive design, marked point process

1 Introduction
It has been argued that only 20% of design information is reused

despite 90% of all design activities being based on the variants of
existing designs [1], and on average only 28% of design informa-
tion is reused within manufacturing applications [2]. Design can
be considered as a sequential decision-making process, where the
current state of a design evolves through a series of design
choices. A system is required where design features may be sug-
gested to the designer for effective reuse, and these design reuse
procedures can be learned from historical data [3,4].
This paper introduces the underpinning mathematics required for

implementation of a new generation of user interfaces that automat-
ically identifies appropriate characteristics of previous designs for
reuse based on a designer’s real-time activity. As a design
evolves, the system generates predictions of the features which
might be incorporated and are informed by both previous work
and the new, ongoing design. In order to identify the most relevant
features and avoid presenting the user with an overwhelming
number of suggestions, the work reported exploits the location of
information (i.e., features and mouse pointer) on a 3D computer-
aided design (CAD) model so that predictions can be appropriate
to specific positions on an engineering component. The system
described assumes a single engineer developing a design by

carrying out a series of operations on a CAD system. The system
does not dictate any order of operations and allows the engineer’s
focus to move around the component.
Designs seldom start with a blank sheet of paper but are informed

by past experiences with reports of asmuch as 75%of design activity
comprising the reuse of existing knowledge [5]. In the context of
designing industrial parts, such activities comprise re-using, config-
uring, and assembling existing components. Several metrics have
been developed to quantify the levels of commonality and reuse
among families of similar products [6–8]. A key contributing
factor to companies not performing projects on time and budget is the
lack of knowledge reuse, which leads to frequent “reinventing the
wheel” rather than finding and using already known solutions [9].
Motivated by these observations, this paper proposes a different

form of design representation that can combine many design varia-
tions into a single probabilistic model that facilitates the reuse of
previously used features during an interactive process that leads
to the instantiation of a new design. By leveraging the available
information, a probabilistic CAD system would prompt the engi-
neers with fragments (i.e., features) of previously designed compo-
nents to extend the current CAD design. Although reuse of common
features in the design of many industrial products is desirable, there
could be cases where such a practice inhibits innovation. Aware of
this, the authors’ aim is not to automate but support with sugges-
tions that the engineer is free to ignore. For this, we propose mod-
eling the design process as a marked point process (MPP) to create a
formal framework that can assess the association between designs.
Similar approaches have been used successfully in neuroanatomy to
analyze brain scan images through voxel-based morphometry [10],
as well a feature recognition in image analysis.
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For our application, points are the coordinate location corre-
sponding to where a design feature has been placed and marks
refer to the feature chosen. MPP is a form of spatial statistics,
metrics based on statistical tools that are used to characterize the
distribution of events across space [11], and are widely used
across a number of application areas for example the distribution
of trees in forests to stars in the sky. Through this lens, we view
the behavior of engineers as a stochastic process, updating through-
out the design process on decisions made to place features in speci-
fic locations and thereby supporting probabilistic measures for
subsequent choices. The statistical inference can be supported
through historical data, viewing past designs as realizations from
such a stochastic process. Specifically, we develop a decision
support system through a Bayesian methodology, where we start
with a prior distribution to assign a probabilistic measure on the fea-
tures and location to be chosen by the engineer. Following each
choice, the prior distribution is updated to a posterior distribution
based on this new data and thereby making full use of all the infor-
mation available. So, as more design choices are made, the model
will be able to discriminate more effectively between historical
designs based on similarity.
Given the above context and motivation, the authors defined the

following goals for the work:

1.1 Aim. To define a computational framework that can
support an interactive design process with suggestions of features
based on three inputs: a knowledge of existing designs, the state
of an emerging design, and a location on the surface of the emerging
design.

1.2 Objectives

(1) Establish a method of homogenizing the orientation and
dimensions of a collection of designs belonging to a
product family.

(2) Develop a statistical function that represents the probability
of a particular feature occurring at a particular location on
the surface of a design for a member of the product family.

(3) Create a prototype implementation that can support an inter-
active design cycle which updates the inferred probability of
specific features occurring at given location as the design of a
part is modified.

(4) Assess the accuracy of the feature predictions.
(5) Identify any inherent limitations or weakness in the

approach.

The rest of this paper is structured as follows: in Sec. 2, we
provide a brief review of both predictive design systems and rele-
vant MPP literature to position the contribution of this work. In
Sec. 3, we present a generic overview of our process to support
design development and in Sec. 4, we outline the details of the
mathematical model that underpins the process. We explore key
characteristics of design activities and data to inform our modeling
choices, and we provide a generic modeling and decision support
framework. In Sec. 5, we evaluate the proposed modeling frame-
work through a case study. Finally, in Sec. 6, we reflect on the
future direction of research in this area.

2 Literature Review
Systems for predictive design have to combine assessment of his-

torical data with statistical methods so that human users can easily
choose, or ignore, suggestions that enhances the creative process.
SMS text messaging software, used by mobile phones, illustrate
both the potential and challenges of engineering useful predictive
systems. However, while text prediction seek to identify patterns
in a linear series of symbols with a simple (i.e., keypad) interface,
anticipating the intention of product designer requires analysis of
3D information that has no canonical ordering (i.e., unlike a

sentence of text that reads from left to right, a designer can essen-
tially edit shapes in any sequence). Despite these inherent difficul-
ties, research into computational technologies that could enable
predictive design systems has been reported for more than a decade.
An early example is Ref. [12] where Chaudhuri and Koltun

developed the “InspireMe” interface which allowed a user to
“place” and “glue” one of the ten suggestions, proposed in response
to a query shape, and then request new suggestions for the resulting
composite shape. The placed shape can be translated, rotated, and
scaled to match the query shape. The suggestions that are not
useful can be removed and replaced with new suggestions. Chaud-
huri and Koltun [12] used a multidimensional histogram-based sig-
nature to encode shape’s global spatial structure and its local detail
to identify suggestions for a given shape query.
Later work recognized that there was potential to improve the

accuracy of suggestions by combining the frequency of occurrence
with shape parameter values. For example, Chaudhuri et al. [13]
demonstrated an interface for an assembly based modeling tool.
The interface presents the user with semantical labeled tabs that
can be expanded hierarchically to show component sub-categories.
The user can select a component and drag it onto the current model.
A probabilistic Bayesian network is then used to dynamically
update both the proposed component categories and the compo-
nents based on their semantic and stylistic compatibility with the
current modeling state. The interface estimates whether the new
component should have a symmetric counterpart and computes
the symmetry plane. Based on the modeling requirements, the
selected model can be moved to a position, rotated, scaled, dupli-
cated, and glued.
While Chaudhuri and Koltun [12] focused on the design of

assemblies of predefined component parts, Kalogerakis et al. [14]
reported a predictive system for component shape synthesis. Their
approach provided an interactive platform for the user to constrain
shape synthesis based on high-level specifications (i.e., specific
components, components from particular categories, and compo-
nents from learned latent styles) and an input shape database.
Within the proposed interactive shape synthesis interface, a user
can select constraints by selecting required shape styles, component
categories, and styles. The algorithm then proposes a list of synthe-
sized objects based on the given inputs. The discrete features help
ensure that components selected for a synthesized shape have com-
patible numbers of adjacent components of each type, and their
edges have been identified and stored with the category label of
components (so they can be attached for placing where a component
can be attached to another component with symmetry relation-
ships). Like Chaudhuri and Koltun [12], Kalogerakis et al. [14]
also used a probabilistic approach to identify and synthesize exist-
ing shapes from complex domains to generate new combinations of
components.
There is a tension in all reported work between accuracy and the

number of predictions made. This can be observed in Ref. [15] that
describes a user interface that guides a designer’s selection with a
list of 50 “best” suggested components during an assembly based
modeling process. The interface aims to enable easy browsing
and propose components that are most compatible with the
current state of the assembly design (represented as a 3D model).
The interface allows users to manually drag, move, scale, orient,
and combine selected components. The placed components can
also be incorporated in the design using Boolean operations
(union, difference, and intersection) to obtain composite model.
The suggestion list automatically updates every time a component
is added to the assembly. The suggestions are ranked by size
(larger components are given preference) at the start of the model-
ing process. The marginal probability distribution is computed from
a factor graph by Jaiswal et al. [15], which incorporates adjacency
and multiplicity factors of segmented components, to score and rank
predicted components.
A different type of assembly design is considered by Lam et al.

[16] who proposed an algorithm that takes a partially completed
3D scene as input and propose relevant models in a user-specified
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region of interest by leveraging text data. Suggestions are generated
using three different approaches: graph kernel, N-gram, and
merged. A query is generated by converting the given 3D scene
into text that represents the five closest models to a focal point nom-
inated by the user. The algorithm uses co-occurrence, 5-gram statis-
tics from Google Web N-grams dataset, and point-wise mutual
information (MI) between the labels of nearby models in the
scene and the labels of models in the database to create suggestions.
For a very similar application [17] presented, a method for gen-

erating novel arrangements of diverse 3D objects is synthesized
from few given examples. The method creates a probabilistic
model for scenes based on Bayesian networks and Gaussian mix-
tures that can be trained by a small number of input examples of
relevant scenes retrieved from database. Users were able to vary
the degrees of similarity and diversity in the generated scenes by
controlling the weighting (through blending parameters) given to
the influence of the existing database of prior designs.
The “AttribIt” interface was developed in Ref. [18] which facil-

itates the targeted exploration of different combinations of visual
components using commands based on the relative semantic attri-
bute. A user initializes a design with a coherent combination of
components from a database, then they select a subset of these com-
ponents and interactively increase or decrease the strength of an
attribute using sliders. In doing this, they can observe changes to
the whole design in real time as new database components corre-
sponding to the updated attribute strengths are swapped. The com-
ponents are assembled automatically into a coherent design
(provision for manual adjustments such as translation, rotation,
and scaling controls is available to refine the results). The interface
shows regions of high geometric variation under the current attri-
bute (highlighted in red color in Fig. 1).
When the overall form of a design (whether assembly or com-

ponent) is constrained by function or the need to fit into a pro-
duct family, a template can be used to facilitate reuse. For
example, Schulz et al. [19] developed templates that can be used
in an interactive design system to create new 3D models in a
design-by-example manner. The interface allows a user to choose
template parts from the database, change their parameters, and
combine them to create new models. The information in the tem-
plate has been used to automatically position, align, and connect
parts by adjusting parameters, adding constraints, and assigning
connectors. The assembly based modeling system provides pick
and drag substructures from different designs and add them to a
working model. The elements on the selected node are represented
in full color, while others become semi-transparent during manipu-
lation, and constrained degrees-of-freedom are hidden.
To support the generation of interior designs, Liu et al. [20]

developed a probabilistic hierarchical grammar to enable functional
(rather than spatial) representation of an office environment. The

aim was to support consistent segmentations, category labels, and
functional groupings of 3D scenes that characterizes geometric
properties, cardinalities, and spatial relationship in a hierarchical
manner. A probabilistic grammar is used to automatically create
consistent annotated scene graphs. Figure 2 illustrates an input
scene mapped with labels and then converted into the hierarchical
form using probabilistic grammar. A seven-dimensional descriptor
(i.e., support and vertical relationships, horizontal separation, and
overlap between objects) is used to describe the relationship
between two objects. The dynamic programming for belief propa-
gation was developed for scene parsing with optimal hierarchy.
The technique creates candidate nodes based on spatial proximity,
grammar binaries, and finds the optimal binary hierarchy which is
converted to a logical hierarchy of the original grammar.
More recently, Sung et al. [21] reported the “ComplementMe”

user interface that aims to seamlessly integrate suggested CAD
models into the design process. A combination of embedding and
retrieval neural network architectures are proposed for suggesting
complementary functional and stylistic components and their place-
ments within an incomplete 3D part assembly. The embedding
network was used to map parts to a low-dimensional feature
space, and the retrieval network was used to retrieve partial assem-
blies to appropriate components. The interface shows the possible
candidates generated by sampling from the conditional probability
distribution predicted by the retrieval network. The user could
select a desired complementary component, and the algorithm pre-
dicts the location for it via the placement network. The new shape
will be synthesized for the user, and the next component is proposed
based on the modified assembly.
In conclusion, the literature on predictive design systems is

largely focused on the creation of assemblies of 3D component
models where frequently the positioning of suggested components
is a manual task for the user. In contrast, the authors’ work is
focused on the identification of shape features (i.e., fragments of
an entire model that are patterns of geometry such as holes) that
are appropriate to a location defined by the position of a user’s
mouse pointer on the surface of a 3D object.

2.1 Marked Point Processes. MPPs are widely applied within
image analysis, where it was first introduced by Baddeley and
Lieshout [22]. The methodology is used extensively and success-
fully for the extraction of multiple objects from images. Applica-
tions include biological imagery on cells [23], disks in a plane
[24], building outlines [25], and person detection from camera
images [26]. It is a flexible methodology that has been extended
for object extraction from images to arbitrarily shaped objects
[27]. More recently, Kim et al. [28] have developed the approach
for microscope images, Zhao et al. [29] have usedMPPs to automat-
ically detect the locations of road segments, and Mbarki and Naouai
[30] have used it for visual perceptions. A survey of MPPs applied
to image analysis can be found in Ref. [31].
The literature to date has developed methods to extract images

and characterize them in the form of a MPP which are then stored
in a database. Our focus complements this work, as we develop
decision support tools that also utilizes information about the loca-
tion of extracted features in an MPP data structure.

Fig. 1 User interface for assembly based modeling using rela-
tive attributes. Used with kind permission of Kalogerakis [18].

Fig. 2 Input scene mapped with labels and converted into the
hierarchical form using probabilistic grammar. Used with kind
permission of Liu et al. [20].
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3 Process for Constructing Marked Point Process
Decision Support
We propose a six-step approach adapted from the CISSE process,

see Ref. [32], for constructing empirical prior distributions to
support Bayesian analysis, which considers the following five
steps: characterize, identify, sentence, select, and estimate. As
described in the following for the third step, we have placed partic-
ular focus on homogenizing the data rather than sentencing the data
and we have decomposed the fifth step to consider prediction and
updating.

Step 1: Characterize the population of designs. We begin by
identifying those factors characterizing the design. This is
an important step because it defines the criteria by which
data sets (i.e., historical designs) are subsequently selected
for inclusion in the comparator pool used to construct the
prior distribution. Examples of such characteristics may be
with respect to types of layouts of and/or features used
within designs.

Step 2: Identify candidate sample designs matching population.
The factors characterizing the population of designs can be
switched on/off for candidate designs effectively providing
a means of making a relative assessment of relevance
against a set of criteria. We are simply trying to find the
best available datasets to make reasonable and timely infer-
ence. We are assuming that the current design for which
we are providing the decision support will be similar to
one of these historical designs. We can accommodate a
unique a priori assessment on the likelihood of the current
design being realized to be like each possible candidate his-
torical design, although our default may be a uniform distri-
bution prior.

Step 3: Homogenizing the comparator data. Generally, the
higher the degree of homogeneity within the comparator
pool, the more accurate the predictive inference [33]. This
requires a measure for similarity between designs, such as
the Kullback–Leibler (KL) divergence measure as proposed
in Ref. [34] against which the data can be transformed for
homogeneity. Two key approaches to address this are
scaling and rotation. First, all designs can be re-scaled into
the unit cube. Second, the data describing the locations of
features can be rotated for alignment. This work should be
performed prior to the start of the design. This stage may
be omitted if it is considered that information would be
lost in transforming the data, and the resulting prior would
not be as effective at discriminating between design types.

Step 4: Select a probability model for the population of designs.
The nature of design patterns is such that a parametric prob-
ability distribution is unlikely to exist that adequately repre-
sent the variability of location and features within designs.
As such, a non-parametric approach should be considered,
for which we recommend kernel density estimation (KDE).
Under such an approach, choices will need to be made con-
cerning the bandwidth parameter, which is essentially decid-
ing on allowable variation of location of features within
similar designs. The resulting model is known as the
feature location probability function (FLPF), for which we
would fit one to each historic design to obtain a model for
each design type.

Step 5: Predictive model. The predictive distribution is simply a
weighted average of the FLPF for each design type in the
comparator set, where the weights reflect the likelihood
that the current design will ultimately be realized as being
similar to the candidate design in the set.

Step 6: Update prior on design type and predictive distribution.
During the design process, steps 5 and 6 are repeated in a
cycle of feature addition and updating of the predictive dis-
tribution, which we call the predictive feature location func-
tion (PFLF), to reflect how each change impacts on the

probable location of other features. This process, driven by
the actions and selections of the human designer, continues
until the component part is complete (i.e., the design is
finished).

Figure 3 provides a schematic for the predictive system. The data
homogenization and FLPF can be performed in advance using the
existing designs and features selected from the database in steps 1
and 2. As a new design evolves, the PFLF is generated from the
FLPF and the design type prior. The PFLF can be updated in
response to events to provide feature suggestions at interactive
speeds.

Fig. 3 System schematic for feature prediction through Baye-
sian updating. All figures are best viewed on screen.
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4 Model Development
In this section, a model is mathematically developed for steps 3–6

from the process in Sec. 3. This will allow for both predictions on
feature type together with its spatial position.

4.1 Overview. Wemodel the process of a designer choosing to
place features in specific locations as a MPP. As such, we can view
historical designs as a realization from this process. Consider a
design denoted by di, which comprises ni features (not necessarily
unique) and for each feature, which we denote with m, we have
an associated location described by its (x, y) coordinates. We
express the design as an unordered set of coordinates and features
with di = (x1, y1, m1), . . . , (xni , yni , mni )

{ }
. We restrict our designs

to two dimensions expressed as (x, y) coordinates for simplicity
but the method is easily generalizable to higher dimensions.
At the core of a MPP is the intensity function, which describes the

probability of a feature being placed in a particular location.
Let λ(x, y, m| c

∼
) denote the intensity function of the process at loca-

tion specified by the (x, y) coordinates, for feature m given the
designer has already made choices of places various features at
locations captured in the matrix c

∼
. A characteristic of this function

is that if we integrate the intensity over the whole (x, y) plane, then
we obtain the expected number of features m in the design. More-
over, we can express this as a probability density function, i.e.,
f (x, y, m, | c

∼
) given in Eq. (1), to describe the next choice made

by the designer by normalizing it so that it integrates to 1. This func-
tion can then be used to rank features based on their likelihood of
being placed at specific locations to provide appropriate decision
support to the designer.

f (x, y, m, |c
∼
) =

λ(x, y, m|c
∼
)��

∀x,y
λ(x, y, m| c

∼
) dxdy

(1)

Engineering designs possess dependency structures unlike other
fields of MPP study, so “off the shelf” models for intensity func-
tions are not available. Dependency refers to the association of
choices, such that placing one feature in a location increases or
decreases the likelihood of other features in various locations.
Poor choices of dependency models can result in uninformative
inference at best and misleading inference at worst. In typical
spatial or temporal point process applications, self-exciting
models are used to capture local dependency where the realization
of one point increases the likelihood of nearby points being discov-
ered. In design, choosing a feature for a location can have ramifica-
tions for distant locations due to a need for symmetry for example.
We develop a methodology for characterizing such dependency.
Many designs may be a collection of few choices, so while there

may exist a large database of historical designs, there are small
sample sizes on which to infer the dependency structure. Inference
is made more challenging with an extensive set of features from
which to choose.
We propose a non-parametric approach to estimating the inten-

sity functions that will provide a foundation on which to develop
decision support, estimated from the data on historical designs.
KDEs consist of modeling the intensity function of a point
process through assigning a kernel, e.g., the normal distribution,
centered at each location where a point has been realized, often
resulting in a multi-modal probability model to describe the likeli-
hood of discovering points. Typically, the kernel density requires
the analyst to choose a value for the smoothing parameter (e.g.,
in the case of the normal kernel density, this would correspond to
the standard deviation for each density used).
In Sec. 4.2, we will develop the non-parametric model for the

density function based on KDE from historical designs. In Secs.
4.3 and 4.4, we will outline a Bayesian updating mechanism that
will show how the density function changes as the designer

makes further choices and as such so too will the decision
support. In Sec. 4.5, we will derive metrics to characterize the
dependency structure implied by these modeling assumptions.
Finally in Sec. 4.6, we will consider transformation that we can
make on historical design data to improve predictions, specifically,
rescaling and rotating the data.

4.2 Model Description. We assume that a new design will be
similar in some sense to historical designs but not necessarily iden-
tical. As such, prior to commencing, an assessment should be made
of the historical data that will be used to assess its suitability.
Assuming we have a catalog of n historical designs that are appro-
priate for the decision support, then we consider that there are n
types of design and the current design under construction will
belong to one of these types. We will estimate the density function
for each type with the data available from each design. Following
this, we will apply a prior probability on the type of design being
constructed based on the choices made.
Consider an historical design i for which there have been ni,m

choices of feature m. Using a KDE approach to estimate the prob-
ability density function for design of type i with respect to feature
m, we have the density given in Eq. (2)

f (x, y|m, i)

=

1
cxy

, ni,m = 0

∑ni,m
i=1

ϕj(x, y; μx,j = xi,m,j, μy,j = yi,m,j, σ)

ni,m
, ni,m ≥ 1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(2)

where ϕj(·) is a bivariate normal density function, μx,j is the mean of
the x variable in ϕj(·), μy,j is the mean of the y variable in ϕj(·), xi,m,j
is the location on the x coordinate in design i of the jth occurrence of
feature m, yi,m,j is the location on the y coordinate in design i of the
jth occurrence of featurem, σ is the standard deviation for both x and
y, although one could assume a more elaborate covariance structure
if appropriate, and cxy is a normalizing constant to ensure the density
integrates to 1. It is worth noting that one could substitute other
kernel density functions in if more appropriate, we only require it
to possess all the characteristics of a bivariate probability density
function.
We have assigned a uniform distribution over the plane for situa-

tions where that feature has not appeared in design i. It may be desir-
able to remove this, if one did not want to permit certain features for
particular design types.
Essentially, the resulting density is a collection of normal densi-

ties centered about observed locations and the standard deviation
parameter controls for the allowable variation from the historical
design to be considered similar.
Let I be the random variable describing the design type that the

designer is developing and M to be the random variable describing
the next feature to be chosen. To express the unconditional proba-
bility density function, we first define three indicator functions to
denote design type, feature, and presence in Eq. (3).

δi =
1, I = i,
0, I ≠ i,

{
δm =

1, M = m,
0, M ≠ m,

{
δnim =

1, nim ≥ 1
0, nim = 0

{
(3)

We denote the probability of a feature m appearing in design type
i with pi,m and the probability of the design being of type i with π(i).
Combining these, the full probability density function describing
the likelihood of a feature m being located at (x, y) and the design
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being of type i is given in Eq. (4).

f (x, y, M = m, I = i) =
∑imax

i=1

∑mmax

m=1

δiπ(i)δmpi,m

δnim

∑ni,m
j=1

ϕj(x, y; μx,j = xi,m,j, μy,j = yi,m,j, σ)

ni,m
+ (1 − δnim )

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠ (4)

The design type is a latent variable used to capture the depen-
dency between the features and locations. By summing the
density function across all possible values of I, we obtain the distri-
bution for location and feature only, given in Eq. (5).

f (x, y, M = m) =
∑imax

i=1

∑mmax

m=1

π(i)δmpi,m

δnim

∑ni,m
j=1

ϕj(x, y; μx,j = xi,m,j, μy,j = yi,m,j, σ)

ni,m
+ (1 − δnim )

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠ (5)

Similarly, we express each marginal distribution in Eqs. (6)–(9).

f (x) =
∑imax

i=1

∑mmax

m=1

π(i)pi,m

δnim

∑ni,m
j=1

gj(x; μx,j = xi,m,j, σ)

ni,m
+ (1 − δnim )

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠ (6)

f (y) =
∑imax

i=1

∑mmax

m=1

π(i)pi,m

δnim

∑ni,m
j=1

gj(y; μy,j = yi,m,j, σ)

ni,m
+ (1 − δnim )

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠ (7)

f (M = m) =
∑imax

i=1

π(i)pi,m (8)

f (I = i) = π(i) (9)

where gj(·) is a univariate normal density function.

4.3 Probability of a Feature Being Selected for a Design.
Given the total number of incidences within a design, we assume
the number of incidences of each possible feature for a design is
a realization from a multinomial distribution. Moreover, we
assume that the underlying probabilities associated with each
feature vary across design types. Under such a modeling assump-
tion, a natural estimator of the probability of a feature being selected
for a design of a particular type would be the observed frequency on
similar designs from the class. However, given that we have at most
one design for each type, we are likely to produce poor inference
due to small samples. Moreover, we are likely to be faced with a
large number of features with zero events data resulting in an esti-
mated probability of 0. This creates a particular issue for the deci-
sion support being developed, as all historical designs that did not

possess all the features chosen for a current design would be
ruled out as candidate design types through Bayesian updating.
As such, allowing for non-zero probability estimates would
permit the inclusion of candidate design types even if they do not
include all the features chosen at some point in the design
process. For a discussion on alternative estimation methods for
zero event data, see Ref. [35].
We propose using an uninformative prior distribution, where a

uniform prior distribution is assumed on each probability and sub-
sequently updated on the data. As the probabilities must sum to 1,
the uniform assumption implies a Dirichlet prior distribution. This
is a common pairing with the multinomial distribution as it provides
a flexible distribution that is convenient to use computationally.
This results in the following estimate for the probability, given in
Eq. (10).

pi,z = w
βz
β
+ (1 − w)

ki,z
ki

(10)

where w= β/(β+ ki), ki,z gives the number of features in design i of
type z, ki =

∑
∀z ki,z, βz =

∑
∀i ki,z, and β =

∑
∀z βz.

We see that pi,z is a weighted average of the observed frequency
ki,z/ki and the prior mean. The weight applied to the frequency
increases as the number of features chosen for design i increases,
i.e., ki.

4.4 Bayesian Updating. Every choice made by the designer
provides information concerning the type of design being con-
structed, i.e., to which historical design is it similar. We will
model this learning through Bayesian updating. As described in
Sec. 4.2, we have a probability distribution, i.e., π(i), which
describes the uncertainty concerning the design type. In this
section, we present a Bayesian updating of this distribution based
on design choices. Assume that the designer has made nk choices,
then the posterior distribution for the design type is updated as in
Eq. (11).

π(i| c
∼
) =

∏nk
k=1

f (xk, yk , M = mk , I = i)

∑imax

i=1

∏nk
k=1

f (xk , yk , M = mk , I = i)

(11)

This posterior is then used in the predictive distribution, given in
Eq. (12).

f (x, y, M = m| c
∼
) =
∑imax

i=1

∑mmax

m=1

π(i| c
∼
)δmpi,m

δnim

∑ni,m
j=1

ϕj(x, y; μx,j = xi,m,j, μy,j = yi,m,j, σ)

ni,m
+ (1 − δnim )

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠
(12)

This function can be used to provide inference on the relative
likelihood of features being located on specified positions through
comparing ratios.

4.5 Dependency Structure. The moments of the model are
easily obtained through conditional expectation arguments resulting
in the expectations given in Appendix A. Through setting δnim = 1
for all designs, we would obtain the moments anticipated in the his-
torical designs, however, for our model we have accommodated the
possibility of features appearing in design types which are not
present in the associated historical design.
The moments can then be used to construct measures such as cor-

relation between the (x, y) coordinates. However, commonly used
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such measures are limited within our context as they focus on the
linear relationship between only two variables. We may wish to
consider more general settings such as non-linear relationships as
well as 3D designs or even the dependency between features and
locations. For this, we use the MI measure, which we denote by
ω, to assess dependency. The concept of MI is linked to the
entropy of a random variable, which quantifies the expected
amount of information held in a random variable. The MI
measure is considering the information gain from modeling the
joint distribution rather than assuming each variable is independent.

ω = E ln
f (X, Y , M)

f (X)f (Y)f (M)

( )[ ]
(13)

This can be re-expressed as in Eq. (14), which is simply the
entropy of the joint distribution minus the sum of the entropy for
all the marginals.

ω = E
[
ln
(
f (X, Y , M)

)]
− E
[
ln
(
f (X)

)]
− E
[
ln
(
f (Y)

)]
− E
[
ln
(
f (M)

)]
(14)

Clearly, ω= 0 if f (x, y, m)= f (x)f (y)f (m), i.e., if the variables are
independent. Moreover, it can be shown that as dependency
increases so too does the measure. This measure can be useful for
comparing dependency between various subsets of designs,
noting that the stronger the dependency, the better the predictions
will be. Some analysts prefer to transform this measure to bound
it within (0, 1) and as such use the transform ω̇ =

����������
1 − e−2ω

√
[36].

The joint and marginal distributions required to calculate the MI
are provided in Appendix B.

4.6 Re-scaling and Rotating. Generally, the higher the degree
of homogeneity in the comparator pool of data, then the greater the
accuracy in the prediction [33] and as such pre-processing the rele-
vant historical data to achieve greater homogeneity may be desir-
able. We consider re-scaling and rotating the data for each as a
means to achieve this. However, such transformations may not
always be beneficial as key information may be lost that helps iden-
tify the most similar historical designs. The advantage of such trans-
formations is through identifying regions where specific features are
highly likely to be located for a large number of design types. The
disadvantage can be blurring distinctive characteristics between
design types and as such it will take longer for the process to
learn precisely to which design type it belongs.
Re-scaling can be achieved through stretching or compressing a

design to the unit cube, so that the length of each dimension is
re-scaled such that 0 is the minimum and 1 is the maximum in
that dimension for that design. If such a transformation is per-
formed, care must be taken in interpreting distance between two
points as the scales would not be the same between dimensions.
Rotations can be the result of a non-standardized axis used with
designs. As such, through rotation data we are constructing a
common axis, which may reveal more similarity across the
designs. Rotation data are achieved through matrix multiplication
of the data set. For example, in a two-dimensional design, every
rotation around the origin in a counter clockwise direction can be
represented with the matrix R shown in Eq. (15).

R =
cos (θ) −sin (θ)
sin (θ) cos (θ)

[ ]
(15)

When the data are multiplied by R, we obtain the new coordinates
as in Eq. (16).

xj(θ) = cos (θ)xj − sin (θ)yj
yj(θ) = sin (θ)xj + cos (θ)yj

(16)

An analyst could decide upon rotation and rescaling based on
visual inspection. However, for a more rigorous approach, we

would need to measure the distance between designs and seek to
minimize it. Following the approach proposed by Vasantha et al.
[34], we use the KL divergence measure to assess the difference
between designs. Using the superimposition of all designs as an
average design, we can measure the difference of each design to
the average and seek to minimize it.
The KL divergence measure of design type v to u, denoted by

DKL(Du‖Dv), is given in Eq. (17).

DKL(Du‖Dv) =

∑mmax

m=1

∫∞
−∞

∫∞
−∞

Pu,m

∑nu,m
j=1

ϕj(x, y; μu,x,j = xu,m,j, μu,y,j = yu,m,j, σ)

nu,m

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

ln

Pu,m

∑nu,m
j=1

ϕj(x, y; μu,x,j = xu,m,j, μu,y,j = yu,m,j, σ)/nu,m

( )

Pv,m

∑nv,m
j=1

ϕj(x, y; μv,x,j = xv,m,j, μv,y,j = yv,m,j, σ)/nv,m

( )
⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠dxdy

(17)

This is re-expressed in Eq. (18).

DKL(Du‖Dv)=

E ln pu,m

∑nu,m
j=1

ϕj(x, y; μu,m,j = xu,m,j, μu,y,j = yu,m,j, σ)

nu,m

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

− E ln pv,m

∑nv,m
j=1

ϕj(x, y; μv,m,j = xv,m,j, μv,y,j = yv,m,j, σ)

nv,m

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

(18)

where the expectation is taken with respect to the distribution
with u. Expressing this as an expectation provides a computational
advantage; as a closed form analytical solution is not available, we
can conduct Monte Carlo simulations with the distribution of u and
evaluate the average of the expression. In sum, we can transform
each design through rotation and re-scaling to minimize the KL
divergence of the mean design to the design in question.

4.7 Summary. Section 4 has outlined the underlying model
and process to support the prediction of features given location.
This can be used with an interactive CAD system, where the
cursor sits in a location described by its coordinates and the recom-
mended feature is suggested. In Sec. 5, we apply this to a dataset.

5 Case Study
To allow an intuitive, visual understanding of the proposed

process, we have chosen to use a set of 513 mechanical valve
designs. The structure of the valve bodies has obvious regularities
with circles around the valve’s flanges together with other func-
tional holes. An unordered set of hole diameters and associated
(x, y, z) coordinates were extracted for each valve body from the
B-rep of the CAD design using the twig match algorithm [37].
Further details are provided in Ref. [34]. An example valve
design is shown in Fig. 4(a) with the extracted hole features,
scaled to [0, 1], shown in Fig. 4(b).
In this analysis, the aim is to predict the sequential addition of

hole features and their position given the state of the current
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design, with the focus on features occurring on the same surface
plane, i.e., predicting a hole diameter on the flange surface.

5.1 Scaling. To facilitate prediction, the feature coordinates of
each design were scaled to the unit cube—each dimension was
scaled to [0, 1]—and additional re-scaling was required on each
cube surface so that the features retained their geometric shape.
Models were then estimated using the features and feature positions
which were positioned on the surface of the cube, one surface at a
time. For example, after scaling, the data were subset to analyze the
features on the x= 0 face. Figure 5 shows the superimposition of the
scaled feature coordinates from all designs on the x= 0, y= 0, and
z = 0 faces (some jitter of the points has been added to the figure
to aid feature discrimination).

5.2 Kernel Density Estimation. The KDE were estimated
across each face of the cube. This was done by dividing the face
into N by N regular grid positions and then estimating the kernel
density at each grid position for each feature in all designs. A
normal kernel with user-specified standard deviation was applied,
in this analysis chosen to be 0.05, and the density on each dimen-
sion is calculated independently. If a design did not have a specific
feature that was present in the database pool of features, then a
uniform probability across the grid of positions was assumed.
This allows for predictions to be generated on a new design
which is using a combination of hole features that have not been
previously observed. The KDE outputs a density estimation at
each position in the N by N grid for every feature in the database.

5.3 Evaluation. Both the correctness of the FLPF and the pre-
dictive accuracy of the PFLF were assessed using tenfold cross-
validation. The kernel density across the features was estimated
using the training data and then evaluated on the designs in the
test set. Each test design, which contain hole feature labels and
their coordinates, was evaluated one at a time. Three measures of
predictive performance were used; the distance from the observed
feature coordinate to the nearest predicted mode was calculated
using two approaches, and reciprocal rank was used to evaluate
how accurately a feature was predicted at its observed position.
Further details are provided in the Supplemental Material S1.3

available in the Supplemental Materials on the ASME Digital
Collection.
An illustration of the Bayesian updating and predictions on one

test design is provided in the Supplemental Material S1 available
in the Supplemental Materials on the ASME Digital Collection.

5.4 Results. Figure 6 illustrates the aggregated results from the
cross-validation. The x-axis indicates how many holes have been
added to a new design (e.g., if a test design has four features,
then the predictive densities, distances to mode, and ranks are cal-
culated after sequentially adding 0, 1, 2, or 3 holes to the new
design). The y-axis gives the mean distance to the mode, either
on the raw scale or in grid steps or the mean reciprocal rank. The
red triangle gives the mean across the ten folds. The performance
of the predicted rank of suggestions is shown in the third figure;
the range of values is from zero—poor suggestions—to one—
perfect suggestions.
As expected, an initial improvement is observed in the distances

to the nearest predictive mode as additional features were added to
each new test design, however, there is a clear pattern of extreme
values within all figures which results in a decrease in performance
as additional holes are added to a design. This can be explained, as
within each test fold there are a few designs which are unlike any-
thing in the training set and thus the KDE does not provide reason-
able predictions.
Some examples follow. All the designs in which a specific feature

occurs in the training dataset may have a different number of feature
instances than observed in the test design. In one example, within a
training dataset instance, designs with the hole diameter “33.0”
have between 3 and 13 instances on the flange plane, however it
occurs 16 times within a test design. This results in all the predictive
modes being slightly offset, as seen in the Supplemental Material
S4.1 available in the Supplemental Materials on the ASME
Digital Collection. This modeling framework cannot infer the coor-
dinates for features even though they are still placed within the same
circular orientation. Another example is that all of the designs with a
specific feature in the training dataset are positioned differently than
those in the test design. For an example shown in the Supplemental
Material S4.2 available in the Supplemental Materials on the ASME
Digital Collection, the hole diameter “35.0” was used as a central
bore hole in the training data designs, however, it was used as the
bolt connector within the new test design. Therefore, as additional
holes are added to the new design, the updated predictive density
provides little information. Clearly, the order in which the features
are added to a new design will affect the predictive density, partic-
ularly when there are multiple types (hole dimensions) of feature,
and this can impact the quality of predictive guidance. For an
example shown in the Supplemental Material S4.3 available in
the Supplemental Materials on the ASME Digital Collection,
there are 30 designs within a training dataset instance that contain
the “22.0” diameter, but only one of these also has the additional
“17.29” diameter. The early selection of the “17.29” feature adds

Fig. 5 Superimposition of scaled hole feature coordinates for all
the data on the specified face of the cube

Fig. 6 Cross-validation predictive performance. The x-axis indi-
cates how many holes have been added to a new design and the
y-axis records the average distance or rank. The black points
give the within fold average measure and the red triangle the
average performance across the folds.

Fig. 4 Example of a valve body from CAD design database.
(a) An image of a valve design and (b) the scaled positions of
the extracted hole features. The different shapes are used to
identify different diameters of the holes.
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more probability weight onto the single design in the training set,
and it takes several further additions for the predictions to improve.
The predictive performance of the method was re-evaluated omit-

ting the 24 unusual designs from the test datasets and the results are
shown in Fig. 7. This is done to examine the predictive performance
of the model for a designer who remains within the catalog of pre-
vious designs. It can be seen that the predictive performance
improves as more features are added to a new design. This again
indicates that the utility of the method is dependent on the
designs forming a homogeneous set. The folds with larger values
can be explained by the ordering of the features entering in to the
design, as illustrated by the example given in the Supplemental
Material S4.3 available in the Supplemental Materials on the
ASME Digital Collection. While the distance to the nearest predic-
tive mode may be small, there remain extreme values in the rank
predictions. This indicates that while a feature is expected at a posi-
tion, our model has been unable to predict the specific feature, and
so suggests that the feature added at this position is unusual given
those observed at in the training data.
The prediction results for the features on the y= 0 and z= 0 cube

face are provided in the Supplemental Material S5 available in the
Supplemental Materials on the ASME Digital Collection. Perfor-
mance is similar to the x= 0 face with predictions improving as
additional features are added to the design. Within the features on
these faces, there are two designs that are unlike any of the other
designs; the effect of this is more apparent on the y= 0 face.
Again removal of the outlier design resulted in improved statistics
(results not provided).

5.5 Association Measure. The utility of the method is sup-
ported by the homogeneity of the design database. Section 4.5
described how the MI could be used to provide some measure of the
expected dependence in a database, however, there is no analytic solu-
tion to Eq. (14) for our non-parametric model. We therefore estimate
this measure through a simulation exercise. We denote imax as the
number of designs in the database, mmax as the number of unique
marks (features), and ni,m as the number of marks of type m in
design i. The probability of randomly choosing design i is given by
qi= 1/imax and the probability of selecting mark m given that design
i was selected is defined by pi,m = ni,m/

∑
∀m ni,m.

For a given design database, a representative random sample of
feature instances is generated, using the following steps:

(1) Uniformly sample a design i from the set of designs in the
database with probability qi.

(2) Randomly sample a feature type m from design i with prob-
ability pi,m.

(3) Sample a single instance of feature type m, as there may be
multiple instances of feature m within design i.

(4) Take a random sample from the normal kernel with mean at
the (x, y) coordinates.

(5) Repeat many times.

An estimate of the MI can then be calculated using the expres-
sions given in Appendix B where the KDE of the designs in the
database are evaluated at the sampled coordinates.
The dependence structure within our sample database was esti-

mated using this method across the ten training cross-validation
datasets, and the resulting MI scores had mean 1.43 and standard
deviation 0.03. This equates to a scaled ω̇ = 0.97 indicating that
there is strong dependence within the data and thus we would
expect predictions to be good. For comparison, a null distribution
was estimated for the statistic on the same training data, permuting
the feature instance and generating the coordinates randomly from
the uniform [0, 1] distribution, so that features were no longer
aligned with specific designs or coordinates. This gave a MI of
0.62 (0.03), and scaled value of 0.84. A second smaller simulation
of randomly generated designs and feature coordinates revealed that
smaller samples produced higher MI. As sample size increased,
then the MI decreased to zero, the theoretical value for indepen-
dence. It would therefore be useful for practitioners to evaluate
the MI on randomly permuted data to support interpretation of
the MI score on the design database.

5.6 Rotation. The more similar the designs in the database, the
stronger the signal for making predictions. However, different
designs may have been created with a different orientation.
Section 4.6 described how the KL measure could be used to
rotate one design to minimize the probabilistic differences
between them. There is not an analytic solution to Eq. (18) for
our non-parametric model but we can minimize the KL divergence
between two designs u and v, DKL(Du‖Dv), by finding the angles of
rotation that maximize the second term by a simulation design
embedded in an optimization routine. As the KDE may be a
noisy function, a global optimization routine should be used,
although a brute force search is feasible in 2D.
The rotation can be implemented as follows. The design database

contains feature instances that are assumed to be representative of
the underlying orientation of the designs and we consider this as
a single average design. Each design would then be orientated in
turn to this average design, excluding the design getting rotated
from the pool. First multiple random draws are simulated from
the normal kernel, with means equal to the feature positions of
the design to be rotated. Then the KL measure is calculated
between the samples and the average design. The new design is
then rotated and re-sampled until the KL measure is minimized.
An illustration of the 2D rotation of a part is given in the Supple-
mental Material S3 available in the Supplemental Materials on
the ASME Digital Collection.

5.7 Choice of Standard Deviation. The choice of standard
deviation (bandwidth) of the normal kernel determines how
spread out the predicted density is around the training data observa-
tions. Figure 8 shows the predicted density for the same training
data under different kernel standard deviations. There are two
main approaches one could take in determining a suitable value
for this parameter. It may be that prediction is the only desirable

Fig. 7 Cross-validation predictive performance after omitting
unusual designs from the test set. The x-axis indicates how
many holes have been added to a new design and the y-axis
records the average distance or rank. The black points give the
within fold averagemeasure and the red triangle the average per-
formance across the folds.

Fig. 8 Predictive density calculated under a normal kernel using
different standard deviations. The color bar legend describes
how the image color maps to the data, with dark red indicating
regions of higher predictive density.
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performance measure, and then through cross-validation exercises,
an optimal value can be identified. Alternatively, with more empha-
sis on the prospective nature of this decision support, to facilitate the
determination of designs that are similar to historical designs, this
parameter can be used as a controlling lever, whereby small
values will result in predictions that are very close to previous
designs.

5.8 Discussion of Results. We have described how to imple-
ment the proposed process for predicting the type and location of
the features that might be added during an engineering design
process. We evaluated the method on a dataset of real designs
through a cross-validation process. In 90% of the evaluation runs,
the feature’s actual location and the prediction (once at least one
feature had been selected) were very close (i.e., within 0.5 grid
space on average—1% of the normalized range of the part).
When more features were added to the design, the accuracy of the
predictions improved. This observation can be clearly seen in the
ranking of the predicted features (i.e., an ordered list of the most
to least likely features to occur at a given location). If four features
had been selected (i.e., added to the design), the subsequent features
selected were, on average, ranked in the first 25% of the list of sug-
gestions. This increased to the top 10% once eight features had been
selected.
This behavior reflects the nature of the commercial product fam-

ilies which formed the dataset. These have frequently repeated sets
of features at standardized positions within a design, and so after
one choice has been made then subsequent choices can be predicted
with a high probability. In other words, portfolios of mechanical
designs have strong dependence in data that results in strong predic-
tive performance.
Figure 9 shows two components with a feature prediction “heat

map” manually superimposed onto their faces. These hotspots indi-
cate where features (regardless of their type and size) are frequently
located in the training data. For each figure, the left-hand side plot
presents the complete part, the central plot presents the predictive
density from the training pool when no features have been added
to the part, and the right-hand side plot the updated density given
that the new features have been added to the design.

Figure 9(b) presents an example of how the predictive density
changes once a feature has been added to the design. Before a
choice has been made, the greatest predictive density is placed on
the four corners of the feasible box, the normalized range of the
scaled prediction region, indicating that this orientation is most
common in the training dataset. Once a feature of specific size
and position has been added, the predictive density changes to
favor a pattern of six holes away from the corners. Red and blue
circles are used in Fig. 9(b) to highlight how the predictive
density in these regions changes given some feature addition.
Although such heat maps give an intuitive overview, the prediction
results can be presented to a user in several different ways.
For example, given a location (e.g., the user’s curser), a list of
feature suggestions (ranked in order of their likelihood) could be
generated.
The heat maps also illustrate the need for further research into

user interfaces that allow the designer to control the choice of train-
ing data (used to generate the predictions) and the scaling/mapping
of the results onto new designs. In the case study, the feature coor-
dinates were normalized to boundaries determined by the extent of
feature locations within the training dataset. For example, in
Fig. 9(a), predictions were generated across the unit cube and so
there is non-zero density in the corners, highlighted by black
circle in central panel of Fig. 9(a), whereas if a unit circle had
been used to normalize the feature locations, the result would be
more appropriate to the shape by omitting the truncated predicted
region corners. An obvious artifact of the current approach to nor-
malization is that there will be regions on a face (colored green in
Fig. 9) that are beyond the geometric extent of the features used
to train the prediction system. Due to the restrictions that we have
imposed through this mapping, predictions were not generated
outside the range of the normalized region. However, depending
on the choice of kernel, one could extrapolate beyond these bound-
aries for a new design, but as with any extrapolation, these require
stronger assumptions.
This could be mitigated by filtering suggestions that are physical

or functionally feasible before presenting them as options to the
designer. The development of effective filters would also enable
the geometric limits on feature prediction to be determined in a
manner most appropriate to the application (e.g., a part bounding
box or specific planes). However, work is required on generic
scaling functions to support this, for example, the top flange of
the design-part provided in Fig. 9(b) is rectangular and so the pre-
dictive density requires to be mapped back to the original part
dimension from the unit cube used to generate predictions.

6 Summary and Conclusions
The aim of this research was to “define a computational frame-

work that can support an interactive design process with sugges-
tions of features based on three inputs: a knowledge of existing
designs; the state of an emerging design; and a location on the
surface of the emerging design.” The authors believe that system
described meets this goal and has established how the feature
content of mechanical designs can be amalgamated and transformed
into a likelihood function that defines the probability of particular
design features occurring at specific locations on a model.
The work has not only demonstrated that the architecture of the

proposed system is viable but also established that the computations
can be done quickly enough to support a dynamic design process.
For example, the prototype system can respond to a given mouse
location at interactive speeds (i.e., ms) and consequently could
support user interface functionality such as pop-up menus (custom-
ized to reflect likely feature types and parameter values) or even
ghosting images of possible features onto the cursor location as it
moves to particular locations. In this way, the engineer is free to
ignore these selections in the same way a user of a predictive text
system is able to adopt or dismiss suggestions when composing
SMS texts.

Fig. 9 The feature predictions were mapped onto two incom-
plete designs. Regions of higher predictive density are illus-
trated by dark red. From left to right, the plots show the
complete part, the predictive distribution when no features
have been added, and so is completely informed by the training
data, and lastly the predictive distribution after the addition of a
central bore hole and one bolt hole feature. The updated distribu-
tion displays the increased level of belief in the positions of sub-
sequent features, with areas of higher density and lower
variance. The black circle in (a) is used to indicate the prediction
region which has been truncated and the red and blue circles in
(b) are used to highlight the changes in the predictive density
once a choice has been made. The green sections represent
areas outside the normalized prediction region.
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The case study illustrated the method using hole features,
however, the feature set could be extended to include those with
a more complicated geometry. Provided that a feature can be
defined geometrically and hence extracted from the CAD design,
the prediction method can be applied by considering such features
as another type of mark. This would allow for modeling the depen-
dence both between and across feature types.

6.1 Limitations. Like other predictive systems, there are inev-
itable limitations. Currently, the system can only predict the likeli-
hood of features occurring within the volume defined by the
maximum extent of the features extracted from the training
dataset. Understanding how these results can be generalized to
support predictions across variable volumes, as well as optimal
scaling of the normalized prediction region, is an area of further
research. Additionally, while the method of data homogenization
appears to be viable for product families with very regular structures
(e.g., industrial valves or manifold blocks), its behavior with
product families with more variable forms is not clear.
However, one of the features of all interactive predictive systems

(that makes them viable) is that the user is always free to ignore sug-
gestions that are wrong or out of context. In other words, predictive
systems do not have to provide perfect predictions all the time to be
useful.

6.2 Future Work. Having established the fundamentals of the
theory, the authors intend to broaden the application to other data-
sets of mechanical component designs. This will allow the investi-
gation of the methodology’s ability to support multiple feature types
and more geometrically varied product families, i.e., the scaling of
the normalized prediction region. The merits and implications of
estimating the normalized prediction region using different
kernels which can account for boundary effects will be studied.
Considering MPP’s beyond simple Euclidean geometry provide
opportunities. The current focus of the project has been on provid-
ing decision support to a single engineer, and how such a system
will support concurrent designs carried out simultaneously by dis-
tributed teams is a topic that requires further investigation.
Although this work has established the theoretical and computa-

tional foundations for a predictive system, its utility will ultimately
depend on how its user interface behaves. Although beyond the
scope of this work follow-on projects will seek to incorporate the
predictive functionality described in a commercial CAD system
(via their Application Programming Interface (API)) and so allow
a systematic assessment of the impact of predictive CAD on
design productivity to be undertaken.

Acknowledgment
This work was supported by the Engineering and Physical

Sciences Research Council, UK [grant number EP/R004226/1].
The dataset of hole features extracted from the valve models is
available.2 We are grateful for the suggestions from two anonymous
referees which improved the paper.

Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The data and information that support the findings of this article

are freely available.3 The authors attest that all data for this study are
included in the paper.

Appendix A: Moments From KDE
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Appendix B: Mutual Information Distributions
The MI measure for the model is defined by ω as follows:

ω=E ln f X,Y ,M( )( )[ ]
−E ln f X( )( )[ ]

−E ln f Y( )( )[ ]
−E ln f M( )( )[ ]

Therefore, we require the entropy measures for the joint and mar-
ginal distributions. As we are investigating dependency within the
historic data, we use the following joint and marginal probability
density function where δnim has been set to 1.
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3See Note 2.
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Deriving the MI statistic will require either numerical integration
of Monte Carlo simulation methods. We propose the latter. Assume
we generate s′ random simulations of (x, y) locations and feature m
from f (x, y, m). As we increase the number of simulations, we can
obtain a more accurate estimate of the expectation.

E ln f X,Y ,M( )( )[ ]
= lim

s′�∞

∑s′
s=1

ln f xs,ys,ms

( )( )
s′

Similar arguments hold for the marginal on location (x, y). For
features, direct calculation of the entropy is straightforward.

E ln f M( )( )[ ]
=
∑imax

i=1

∑mmax

m=1

π i( )pi,m ln
∑imax

i=1
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