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Efficient Full Implementation via Transfers: Uniqueness and 
Sensitivity in Symmetric Environments†

By Mariann Ollár and Antonio Penta*

The problem of multiplicity is a key con-
cern for the design of  real-world mechanisms 
and institutions. Following the seminal work of 
Maskin (1999), the implementation literature 
has often addressed this concern via the design 
of complicated mechanisms and often relied 
on strong assumptions of common knowledge. 
Both of these features have been the object of 
famous critiques: on the one hand, Jackson 
(1992) called for a greater relevance of full 
implementation theory, initiating an agenda 
based on mechanisms with more economically 
appealing structure and properties; on the other 
hand, the so-called Wilson doctrine stressed the 
importance of weakening the reliance on com-
mon knowledge assumptions “to conduct useful 
analyses of practical problems” (Wilson 1987).

In this short paper, we illustrate how novel 
insights gained from the robustness literature 
may be put to work to address both “critiques” 
at once. We show this in a standard efficient 
implementation problem, with  quasi-linear 
preferences and interdependent values, in 
environments that are symmetric in a twofold 
sense: (i) the total level of preference interde-
pendence is constant across agents (symmetric 
total preference interdependence); (ii) types are 
drawn from distributions with identical means 
( identical-means beliefs).

To address the first of the critiques above, we 
pursue full implementation via the design of 
simple transfer schemes that only elicit agents’ 

payoff-relevant information. To address the 
second, we only assume that agents commonly 
believe that others’ types are drawn from distri-
butions with an identical mean, but the actual 
distribution and its mean are unknown to both 
the agents and the designer.

Despite the weakness of these common knowl-
edge assumptions and the demanding notion of 
implementation under restricted mechanisms, 
we identify surprisingly permissive conditions in 
such symmetric environments. Our main results 
characterize the conditions on agents’ prefer-
ences under which full efficient implementation 
is possible in our sense, and identify a transfer 
scheme—the  equal-externality transfers—that 
achieves full efficient implementation whenever 
possible. We further show that these transfers are 
also optimal in the sense that, among the set of 
all transfers that achieve full implementation, 
they uniquely minimize the sensitivity of the 
mechanism with respect to the possibility of mis-
takes in play.

I. Framework

A. Symmetric Environments and Beliefs

We consider public good environments with 
transferable utility. There is a finite set of agents  
I =  {1,  …, n}  , and we let  x ∈  ℝ +    denote the 
quantity of public good, which can be produced at 
cost  c (x)  = (1/2)  x   2  . The payoff type of agent  
i  is   θ i   ∈  Θ i   ≔  [0, 1]  , and we let   θ −i   ∈  Θ −i    
=  × j≠i    Θ j    and  θ ∈ Θ =  × i∈I    Θ i   . Agent  i ’s 
valuation for the public good is equal to   v i   (x, θ)   
=  ( θ i   +  ∑ j≠i  

 
    γ ij    θ j  ) x . Letting   t i    denote the mon-

etary transfer to agent  i , the overall utility of 
agent  i  is

   u i   (x, θ,  t i  )  =  ( θ i   +  ∑ 
j≠i

  
 

    γ ij    θ j  ) x +  t i  . 

The efficient allocation rule is thus  d  : Θ → X ,  
such that  d (θ)  =  ∑ i∈I  

 
    (1 +  ∑ j≠i  

 

    γ ji  )   θ i   .
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We maintain the following assumptions on 
preferences: first, the allocation rule is increas-
ing in types, i.e.,  1 +  ∑ j≠i  

 
    γ ji   > 0  for each  i 

; second, valuations are symmetric in the sense 
that   ∑ j≠i  

 
    γ ij   = ξ  for each  i .

As for the beliefs, we maintain common 
knowledge that agents believe the types of oth-
ers to be distributed with identical means, but 
they do not necessarily agree on the actual distri-
bution. Hence, the designer regards many beliefs   
B   θ i    

IM  ⊆ Δ ( Θ −i  )   as possible for any given type  
  θ i   , namely all those that are consistent with the 
idea that the opponents’ types come from distri-
butions with identical means. This is formally 
represented by belief restrictions

      IM  =   (  ( B   θ i    
IM )  

 θ i  ∈ Θ i  
  )  

i∈I
  , 

such that for all  i  and   θ i   ,   B   θ i    
IM   is the set that con-

tains all distributions   b  θ i     ∈ Δ ( Θ −i  )   that satisfy   
피    b  θ i      ( θ j  )  =  피    b  θ i      ( θ k  )  for all j, k ≠ i. 1

B. Direct Mechanisms

We consider direct mechanisms in which 
agents report their payoff types, the allocation 
is chosen according to  d , and a transfer scheme  
t =   ( t i  )  i∈I   ,   t i    : M → ℝ  specifies the transfer to 
each agent  i , for all profiles of reports  m ∈ Θ .  
(To distinguish the report from the state, we 
maintain the notation   M i    even though the mes-
sage spaces are   M i   =  Θ i   .) We let   U  i  

t  (m; θ)   
=  v i   (d (m) , θ)  +  t i   (m)   denote the payoff 
function of the game induced by transfer 
scheme    ( t i  )  i∈I   ,  and let   ∂  ij  

2    U  i  
t  ≡  ∂   2   U  i  

t  / ∂  m i  ∂  m j   .
For every   θ i   ∈  Θ i   ,  μ ∈ Δ ( M −i   ×  Θ −i  )   and   

m i   ∈  M i   , we let  E U   θ i    
μ   ( m i  )  =  ∫  M −i  × Θ −i    

 
    U i   ( m i  ,  m −i  ;  

 θ i  ,  θ −i  )  dμ  denote  i ’s expected payoff from mes-
sage   m i   , given his type   θ i    and conjectures  μ , and 
let  B R  θ i     (μ)  ≔ arg  max  m i  ∈ M i     E U   θ i    

μ   ( m i  )  . For con-
jectures that assign probability one to the oppo-
nents reporting truthfully, we let    피    b  θ i      ( U i   ( m i  ,  θ −i  ;  
θ i  ,  θ −i  ) ) ) ≔  ∫    

 
      Θ −i     U   i   (   m i  ,  θ −i  ;  θ i  ,  θ −i   )   db    θ i      .

C. Implementation Concepts

We first introduce two notions of incentive 
compatibility.

1 These belief restrictions are a special case of the general 
notion of moment conditions introduced by Ollár and Penta 
(2017).

DEFINITION 1: A direct mechanism is  ex post 
incentive compatible ( ep-IC) if,   U i   (θ; θ)   
≥  U i   ( θ  i  ′  ,  θ −i  ; θ)   for all  θ  and   θ  i  ′   .

A direct mechanism is      IM  -incentive com-
patible (     IM  -IC) if for all  i ∈ I , for all   
θ i  ,  θ  i  ′   , and for all   b  θ i     ∈  B   θ i    

IM  ,   피    b  θ i      ( U i   (θ; θ) )   
≥  피    b  θ i      ( U i   ( θ  i  ′  ,  θ −i  ; θ) )  .

As it is  well known,  ep-IC characterizes par-
tial implementability when the designer has 
no information about agents’ beliefs, since 
it requires truthful revelation to be a mutual 
 best-reply for all beliefs in  Δ ( Θ −i  )   (Bergemann 
and Morris 2005).      IM  -IC is less demanding 
than  ep-IC, since it only requires truthful rev-
elation to be a mutual  best-reply for all beliefs 
in the set   B   θ i    

IM  , but it is still stronger than interim 
incentive compatibility, in which truthful revela-
tion is required to be a mutual best response only 
for the single beliefs that each type may have in 
a standard Bayesian setting.

Our notion of full implementation requires 
truthful implementation to be the only strat-
egy consistent with players’ common belief in 
rationality and in the      IM   restrictions. Formally, 
for every  i  and   θ i   , the set of conjectures that are 
consistent with common belief in identicality 
is defined as   C   θ i    

IM  ≔  { μ i   ∈ Δ ( M −i   ×  Θ −i  )  :  
mar g  Θ −i      μ i   ∈  B   θ i    

IM } .  Then, given a transfer 
scheme  t , for each  i ∈ I , let   R  i  

IM,0  =  Θ i   ×  
M i    and for each  k = 1, 2,  … , let   R  −i  

IM,k−1  =  
× j≠i    R  j  

IM,k−1  , where   R  i  
IM,k   is the set that con-

tains all pairs   ( θ i  ,  m i  )   such that   m i   ∈ B R  θ i     ( μ i  )   
for some   μ i   ∈  C   θ i    

IM  ∩ Δ ( R  −i  
id,k−1 )  . In the limit,   

R  i  
IM  =   ⋂ 

k≥0
   R  i  

IM,k   . The set of      IM   rationaliz-

able messages for type   θ i    is defined as   R  i  
IM  ( θ i  )   

≔  { m i   :  ( θ i  ,  m i  )  ∈  R  i  
IM }  .2

 Belief-free rationalizability,   R  i  
BF  ( θ i  )  , is 

defined similarly, replacing the set   C   θ i    
IM   with  

 Δ ( M −i   ×  Θ −i  )  .

DEFINITION 2: The transfer scheme  t =   ( t i  )  i∈I   
fully      IM  -implements  d  if   R  i  

IM  ( θ i  )  =  { θ i  }   for all   

θ i    and all  i . Allocation rule  d  is fully      IM  -imple-
mentable if there exist some transfers that fully   
   IM  -implement it. Full  belief-free implementa-
tion obtains if   R  i  

BF  ( θ i  )  =  { θ i  }   for all   θ i    and  i .

2 We note that   R   IM   is a special case of Battigalli and 
Siniscalchi’s (2003) notion of Δ-Rationalizability.
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It is immediate that      IM  -IC and  ep-IC are nec-
essary, respectively, for full      IM  - and  belief-free 
implementation.

II. The  Equal-Externality Transfers

Since  d  is the efficient allocation rule,  ep-IC 
is obtained by the generalized VCG transfers, 
which in this setting are

   t  i  
⁎  (m)  = −   ∂ d _ ∂  θ i  

   
(

  1 _ 
2
    m  i  

2  +  ∑ 
j≠i

  
 

    γ ij    m j    m i  )
 . 

Being  ep-IC, the VCG transfers are obviously 
also      IM  -IC. The following  equal-externality 
transfers, instead, are      IM  -IC but not  ep-IC:

   t  i  
e  (m)  = −   ∂ d _ ∂  θ i  

   (  1 _ 
2
    m  i  

2  + ξ   
 ∑ j≠i  

 
    m j    m i  

 ________ 
n − 1

  )  .

Aside from incentive compatibility, however, 
full implementation depends crucially on the 
properties of the strategic externalities that are 
induced by a mechanism (see Ollár and Penta 
2017, 2021); that is, it depends on how players’ 
best responses are affected by marginal mis-
reports of the other players. Letting   U  i  

⁎   and   U  i  
e   

denote, respectively, the payoff functions induced 
by   t   ⁎   and   t   e  , such strategic externalities are con-
veniently captured by the  second-order deriva-
tives of these functions with respect to   m i    and   m j   .

It is easy to check that   ∂  ij  
2    U  i  

⁎  = −  γ ij   , and 
hence strong preference interdependence (i.e., 
large ((  |  γ ij   |  ) j≠i   ) i∈I   ) immediately translates into 
strong strategic externalities in the VCG mecha-
nism, which may induce multiplicity and hence a 
failure of full implementation.3 This is the reason 
for the negative result in Bergemann and Morris 
(2009), for which  belief-free full implementation 
is possible if and only if the preference interde-
pendence is small enough. But if the designer 
has information about agents’ beliefs, and spe-
cifically in the form of moment conditions, then 
incentive compatible transfers may be designed 
that have weak strategic externalities, and hence 
achieve uniqueness, even with strong preference 
interdependence (cf. Ollár and Penta 2017).

3 The technical condition is the following: the VCG trans-
fers achieve full implementation if and only if the matrix  
 S E   ⁎   in which the  ij -th entry is equal to  |  γ ij   |  if  j ≠ i , and  0  
otherwise, has a spectral radius smaller than one (see Ollár 
and Penta 2021).

In the present setting, however, due to the 
limited set of moment conditions that are avail-
able to the designer, such strategic externalities 
cannot be weakened without violating incentive 
compatibility. Similar to the case studied by 
Ollár and Penta (2021), they can only be redis-
tributed and, as it turns out, the implementation 
problem can be cast as one of optimally redis-
tributing the strategic externalities induced by 
the VCG transfers in order to induce a mecha-
nism with contractive best replies.4

As it is easy to check, for the  equal-externality 
transfers we have that   ∂  ij  

2    U  i  
e  =   1 _ n − 1    ∑ j≠i  

 
    ∂  ij  

2    U  i  
⁎   

for all  i  and  j ≠ i , and   ∂  ii  
2    U  i  

e  =  ∂  ii  
2    U  i  

⁎   for all  i .  
Hence, as required by the      IM  -IC constraints, 
these transfers do preserve the total strategic 
externalities of the VCG mechanism. They 
only differ in that they redistribute them evenly 
across the opponents (hence their name). Such 
a redistribution does expand the possibility of 
achieving full implementation (i.e., there are 
environments in which    ( γ ij  )  

i,j∈I
    are such that   t   e   

achieves full implementation, but   t   ⁎   does not), 
and, in fact, maximally so under the present 
symmetry restrictions on the environment. That 
is, as we show next, in our setting full imple-
mentation is achieved by some transfers if and 
only if it is achieved by the “ equal-externality” 
transfers.

PROPOSITION 1: In symmetric environments, 
the following are equivalent:

 (i) Full      IM   implementation is possible.

 (ii) Full      IM   implementation is achieved by 
transfers    ( t  i  

e )  i∈I   .

 (iii)   | ξ |   is less than  1 .

The improvement that   t   e   marks relative to   t   ⁎  ,  
in terms of possibility of achieving full imple-
mentation, is captured by the latter condition, 
which expresses an upper bound on the total 
level of preference interdependence. This is 
a less stringent requirement than the one that 
applies to the VCG transfers, which depends on 
the individual    ( γ ij  )  i,j∈I    parameters (cf.  footnote 

4 As discussed in Ollár and Penta (2021), this is formally 
equivalent to an optimal network design problem.
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2). Intuitively, while the condition for VCG 
transfers requires each   γ ij    not to be “too large” 
in absolute value, the   t   e   transfers enable one 
to accommodate settings in which some such 
parameters have large positive and large nega-
tive values, that “cancel each other out” in terms 
of the total externalities condition in point (iii) 
above.

III. Implementing Transfers: Multiplicity and 
Sensitivity

A. Other Transfers for Full Implementation

As discussed, in symmetric environments   t   e   
achieve efficient full      IM   implementation when-
ever it is possible, but they are not the only 
transfers that do this. For instance, the loading 
transfers introduced by Ollár and Penta (2021) 
can be shown to also achieve full      IM   implemen-
tation whenever   t   e   does. In the present setting, 
the loading transfers are defined as follows:

   t  i  
l  (m)  = −   ∂ d _ ∂  θ i  

   (  1 _ 
2
    m  i  

2  + ξ  m 1    m i  )  if i ≠ 1 

   t  1  
l   (m)  = −   ∂ d _ ∂  θ 1  

   (  1 _ 
2
    m  1  

2  + ξ  m 2    m 1  ) . 

To appreciate the difference between   t   e   and   
t   l  , it is best to consider the strategic externality 
matrices that they induce:

  S E   e  =  

⎡

 ⎢ 

⎣

  

0

  

  
ξ _ 

n − 1
  

  

 … 

  

 … 

  

  
ξ _ 

n − 1
  

    
  

ξ _ 
n − 1

  
  

0
  

  
ξ _ 

n − 1
  
  

 … 
  

  
ξ _ 

n − 1
  
    ⋮  ⋱  ⋱  ⋱  ⋮    

  
ξ _ 

n − 1
  

  

 … 

  

  
ξ _ 

n − 1
  

  

0

  

  
ξ _ 

n − 1
  

    

  
ξ _ 

n − 1
  

  

 … 

  

 … 

  

  
ξ _ 

n − 1
  

  

0

  

⎤

 ⎥ 

⎦

 , 

and 

  S E   l  =  

⎡

 ⎢ 
⎣

  

0

  

ξ

  

0

  

 … 

  

0

    
ξ
  

0
  

0
  

 … 
  

0
    

⋮
  

⋮
  

⋮
  

⋱
  

⋮
    

ξ

  

0

  

0

  

 … 

  

0

  

⎤

 ⎥ 
⎦

  .

Similar to the  equal-externality transfers, the 
loading transfers preserve the total strategic 
externalities of the VCG mechanism (the  row 
sums of the two  SE matrices are the same, and 
equal to  ξ ). The two mechanisms only differ in 

the way in which the  VCG-strategic externalities 
are redistributed. This is not coincidental: adapt-
ing arguments from Ollár and Penta (2021), it 
can be shown that such redistribution is nec-
essary for      IM  -IC in this setting. Given this, 
designing transfers for full implementation boils 
down to a problem of “optimally” redistribut-
ing the given total, on the entries of a strategic 
externality matrix, with the objective of ensur-
ing “most contractive” best replies. As shown 
in Ollár and Penta (2021), this objective entails 
minimizing the spectral radius of the resulting 
 SE matrix. In the present setting, both   t   l   and   t   e   
achieve this minimum, which is equal to  | ξ | . 
For that reason, if  | ξ | < 1 , they are both “fully 
implementing” transfers, as any other transfer 
whose  SE matrix has the same spectral radius 
would be (there is a continuum of those).

B. Sensitivity to Mistakes in Play

In this section, we explore the sensitivity of 
transfers with respect to the possibility of small 
“mistakes” by the agents. In words, the idea is 
that the designer does not know how many or 
which agents might be potentially faulty, and the 
criterion with which he/she assesses the robust-
ness of the mechanism is the  worst-case sce-
nario across all possible configurations of sets of 
faulty agents. The measure of the fragility of the 
mechanism is therefore provided by the largest 
misreport consistent with   R  i  

 F ε    , across all agents 
and all configurations of the set of faulty agents.

Formally, we consider mistakes in play made 
by a subset of agents  F  of size  f ≠ 0 , whose 
choice in the mechanism is within  ε > 0  from 
optimal. At each step of the iterative process, 
replacing the best reply sets of these agents by 
the set  B R   θ i    

ε   ( μ i  )  =  { m i    :   | m i   −  m  i  ′ |  ≤ ε and  

m  i  ′  ∈ B R  θ i     ( μ i  ) }   defines the set of   F ε   -ratio-

nalizable messages,   R  i  
 F ε    ( θ i  )  . Then, the transfer 

scheme  t  is “ η -sensitive” to mistakes in play 
by  f  agents if for all  F  with  | F | = f  and for all  
  θ i   ,   R  i  

IM, F ε    ( θ i  )  ⊆  [ θ i   ± ηε]  . Setting   η  0  
f   (t)   to be 

the infimum of such  η s, we have a measure of 
sensitivity to mistakes in play by a group of 
agents.

For the next result, we focus on quadratic  
 t s. This simplifies the proof, but the result holds 
with respect to all  t s.

The next result shows that, under the main-
tained assumptions,   t   e   are the most robust 
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transfers among all those that achieve full  
     IM   implementation:

PROPOSITION 2: The  equal-externality trans-
fer scheme   t   e   is least sensitive to mistakes 
in play:   η  0  

f   ( t   e )  ≤  η  0  
f   (t)   for all  t  that fully  

     IM  -implement  d . Moreover, if  ξ ≠ 0 , then for 
all  t ≠  t   e   and for all  f < n ,   η  0  

f   ( t   e )  <  η  0  f   (t)  .

The intuition behind this result is the follow-
ing: as can be gathered from the  S E   l   matrix, 
the loading transfers induce a very hierarchical 
strategic structure in which the contractiveness 
of the mechanism is completely determined by 
the two agents with smallest preference inter-
dependence. But loading all strategic externali-
ties on these agents also makes the mechanism 
especially vulnerable to the possibility of these 
agents being faulty. To avoid this risk, and not 
knowing which set of agents may potentially be 
faulty, the safest solution for the designer is to 
redistribute the strategic externalities uniformly 
across all players, so that no player is especially 
critical for the mechanism. The same logic 
extends to other mechanisms that achieve full 
implementation: as long as they induce uneven 
strategic externalities, the  worst-case scenario 
of a set of faulty agent makes the mecha-
nism less robust than the  equal-externality  
transfers.

IV. Proofs

For the Proof of Proposition 1, extending the 
proof of Lemma 1 in Ollár and Penta (2021), we 
use the following Lemma:

LEMMA 1: If   (d, t)   is      IM  -IC, and if the spec-
tral radius of   (| S E   t  |)   is less than one, then  t  
ensures full      IM   implementation.

PROOF OF PROPOSITION 1: 
Clearly, (2)  ⇒  (1). To see that (1)  ⇒  (3), 

note that      id  ⊂     IM   and hence   R  i  
id,k  ⊂  R  i  

IM,k   
∀ k . Thus, if some  t  achieves full      IM   imple-
mentation, then it also achieves full      id   imple-
mentation, which by Theorem 2 in Ollár and 
Penta (2021) is possible iff  |  ξ 1    ξ 2   | < 1 . In a 
symmetric environment,  |  ξ 1    ξ 2   | =  ξ   2  , and thus  
| ξ | < 1 . To see that (3)  ⇒  (2), note that if  
|ξ | < 1 , Gershgorin circle theorem implies that 

all eigenvalues of  S E   e   are less than  1  in absolute 
value. Full      IM   implementation follows from 
Lemma 1. ∎

For the Proof of Proposition 2, we first prove 
the following Lemma:

LEMMA 2: Fix  ε > 0  and  F ⊆ I . If  t  achieves 
 implementation and is subject to   ∂  ij  

2    U  i  
t   is 

constant in  m  for all  i, j , then the largest set 
of reports in   R  i  

 F ε     is the largest element of the 
 vector    (I − | S E   t  |)    

−1
   ε   F  , where   ε   F  ∈  핉   n   is sub-

ject  to   ε i   = ε  if  i ∈ F  and   ε i   = 0  if  i ∉ F .

PROOF OF LEMMA 2:
Let  ε ∈  ℝ  +  n    be an arbitrary  nonnegative 

vector. The characterization of the best replies 
in the proof of Lemma 1 in Ollár and Penta 
(2021) extends from      id   to      IM  . Given the 
assumptions on  t  and   U   t  , letting  l ≔  θ –

   −  θ ¯    and 
  a 1   ≔ | S E   t  | 1l + ε , it follows  ∀  θ i   :

   R  i  
  ε  ,1  ( θ i  )  =  [ θ i   ±   [ a 1  ]  i  ]  ∩  [ θ ¯  ,  θ –  ]  .

In the second round,  ∀  m i   ∈  R  i  
  ε  ,2  ( θ i  )  ,

   |  θ i   −  m i   |  ≤  ∑ 
j≠i

  
 

     
| ∂  ij  

2    U i  |
 _ 

| ∂  ii  
2    U i  |

   [  ∑ 
m≠j

  
 

     
| ∂  jm  2    U j  |l

 _ 
| ∂  jj  

2    U j  |
   +  ε j  ]  +  ε i  . 

Moreover, applying again the bounds in 
Lemma 1 of Ollár and Penta (2021), letting  
  a 2   ≔  | S E   t  |   2  1l + | S E   t  |ε + ε , for each   θ i   ,

   R  i  
  ε  ,2  ( θ i  )  =  [ θ i   ±   [ a 2  ]  i  ]  ∩  [ θ ¯  ,  θ –

  ]  .

By induction, letting   a k   ≔  | S E   t  |   k  1l +  
| S E   t  |   k−1  ε + … + | S E   t  | ε + ε , we obtain

   R  i  
  ε  ,k  ( θ i  )  =  [ θ i   ±   [ a k  ]  i  ]  ∩  [ θ ¯  ,  θ –

  ]  .

Taking limits as  k → ∞  (while assuming 
that  ρ (| S E   t  |)  < 1 ), we have that for all  i  and   θ i   , 
the rationalizable messages for all   θ i    are

   R  i  
  ε    ( θ i  )  =  [ θ i   ±   [  (I − | S E   t  |)    

−1
  ε]  

i
  ]  ∩  [ θ ¯  ,  θ –

  ] . 

Applying this formula to  ε -faulty agents with   
F ε    completes the proof. ∎

PROOF OF PROPOSITION 2:
Fix  f < n . Lemma 2 implies that, for any  t , the 

sensitivity to mistakes in play is equal to   η  0  
f   (t)  ≔   
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g f   (S E   t )  ≔  max F:|F|=f   max i    [  (I − |S E   t |)    
−1

   ε F  ]  
i
   . 

Minimizing   η  0  
f   (t)   in  t  is equivalent to

   min  
S E   t 

     g f   (S E   t )  

subject to

  ρ (| S E   t  |)  < 1 

   ∑ 
j≠i

  
 

   S E  ij  
t   = ξ and S E  ii  

t   = 0 for all i ∈ I. 

Let  t  be subject to  S E   t  ≠ S E   e  . If  S E   t   is feasi-
ble, then so is  π S E   t  , for every permutation  π  of 
the ordered set of agents   {1, 2,  …, n}  . Moreover,   
g f   (S E   t )  =  g f   (π  S E   t )  . For   F  t  

⁎  ∈  argmax F:|F|=f    

max i     [  (I − | S E   t  |)    
−1

   ε F  ]  
i
   ,

   g f   (S E   t )  >   1 _ 
f
    ε   F  t  

*   
T     (I − | S E   t  |)    

−1
   ε  F  t  

*    

  =   1 _ 
f
    ε   F  t  

*   
T     ∑ 

k=0
  

∞
     | S E   t  |   k   ε  F  t  

*   . 

The inequality is strict because  S E  ij  
t    is not uni-

form across all  i, j  and  f < n  (the latter implies 
that   ε  F  t  

*     has at least one  0 ).
Moreover, for every permutation  π ,

   g f   (π S E   t )  >   1 _ 
f
    ε   F  t  

*   
T     ∑ 

k=0
  

∞
    | π S E   t  |   k   ε  F  t  

*   , 

otherwise the equality of   g f   (π S E   t )  s is contra-
dicted. Now, adding up the previous inequalities 
for all  π , we get that

   g f   (S E   t )  >   1 _ 
n !

    ∑ 
π
  

 

     1 _ 
f
    ε   F  t  

*   
T     ∑ 

k=0
  

∞
    | π S E   t  |   k   ε  F  t  

*   . 

Exchanging the order of summations on the 
RHS, we obtain

   g f   (S E   t )  >   1 _ 
f
    ε   F  t  

*   
T     (I − | S E   e  |)    −1   ε  F  t  

*    

  =  g f   (S E   e ) , 

which completes the proof. ∎
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