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Abstract. Laser Powder Bed Fusion (LPBF) is a promising addi-
tive manufacturing technique used for realizing complex and bespoke
designed metal parts. Despite its good performance, its quality assurance
is still hampered by the absence of in-process optimization and control. In
this sense, real-time thermal analysis can facilitate fault predictions and
rectifications. High-fidelity three-dimensional thermal modelling with the
Finite Element Method (FEM) is generally time-consuming since the
heat transfer equation is nonlinear and high-dimensional. The challenge
is thus to compute fast, reliable and accurate thermal predictions that
capture the nonlinearity triggered by the phase changes of the part dur-
ing printing. Gaussian Process (GP) with Isomap dimension reduction is
investigated to find and predict the low-dimensional representations of
the high-dimensional thermal profiles in FEM without intricate process-
ing. Based on these representations, the high-dimensional predictions
are then approximated using localized radial basis functions. To vali-
date the performance of this reduced GP heat emulator, a heat simu-
lation during fabricating an Aluminum object is performed to compare
FEM-based temperature calculations against reduced GP emulations.
Retaining 0.06% of the original model dimension the execution time per
temperature profile is 0.70s on average achieving a 95.07% reduction,
while maintaining at least 85% accuracy (with respect to the FEM sim-
ulation) for 96.80% of the thermal profile queries and at least 80% for
89.38% of the thermal history queries. With this encouraging perfor-
mance, the reduced GP heat emulator can be a step forward in online
defect prediction, process optimization and closed-loop control in LPBF.

Keywords: Finite element method · Gaussian process · Laser powder
bed fusion · Nonlinear dimension reduction · Transient thermal model

1 Introduction

Additive manufacturing (AM) has driven a revolution of the manufacturing
industries. Though it has promising future, the quality of printed parts is not
assured and online process dynamic analysis is imperative. Real-time thermal
history simulation is an essential part of process dynamics analysis for a thermal-
driven AM like LPBF, since it describes the transient temperature gradient in
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localised melting and cooling [1] and is used in the predictions of residual stress,
microstructure, defect and mechanical property [2,3].

There are an extensive amount of literatures on thermal models of AM vali-
dated by experiments. A nonlinear temperature simulation of Selective Laser
Melting (SLM) utilizing FEM was validated in [1] by an experiment with
AlSi10Mg powder and in [4] by the AM benchmark experimental set AMB2018-
02 with anisotropic thermal conductivity. Though FEM produces high-fidelity
thermal profiles, the nonlinearity, fine spatial and temporal resolution entail a
high time cost constraining in-situ operations. To reduce the degrees of freedom,
adaptive meshing [5] and decomposed domain [6] were applied, both of which
only slightly reduce the time cost. Alternatively, a statistical Surrogate Model
(SM) is considered as a reasonable trade-off between accuracy and time cost.
Trained by data generated from a high-fidelity physics-based model, it makes
fast predictions for given design points [7]. Lening et al. designed a Gaussian-
process-constrained general path model in [8] describing heterogeneous discrep-
ancies between low-fidelity and high-fidelity thermal modelling in AM. Mriganka
et al. [9] predicted thermal histories almost in real-time using deep learning with
different part sizes and same printing parameters based on a unique design of
heat influence zone.

In this paper, the reduced-dimensional GP with Isomap scheme is developed
to emulate the thermal modelling of LPBF with Al materials. With a given
pair of laser power and scan speed, the high-dimensional thermal profiles are
constructed by their low-dimensional representations predicted by GP emula-
tors. One prediction takes around 0.7026 s reduced from 14.2617 s on average
regardless of the degrees of freedom. 95.07% of execution time is saved while
maintaining acceptable accuracy (around 96.8% of predictions having relative
error less than 15%). This SM provides real-time thermal histories needed for
in-situ optimizations and controls.

2 Thermal Simulator and Emulator

2.1 Numerical Solver with FEM

The temperature u := u(x, t) within a computational domain Ω ⊂ R3 is governed
by the time-dependent, nonlinear heat transfer equation

ρc
∂u

∂t
+ ρL

∂fp
∂t

− ∇ · κ̄∇u = 0, in Ω × [0, tf ], (1)

where ρ, c and κ̄ are respectively the temperature dependent density, heat capac-
ity and conductivity of the materials, L is the latent heat of the materials, while
x := (x1, x2, x3) and t are the spatial and temporal coordinates. The thermal
conductivity is modelled as a symmetric, positive definite tensor field, and thus
the elliptic term in (1) has the form ∇ · κ̄(x)∇u :=

∑3
i,j=1

∂
∂xi

[
κij(x)

]
∂u
∂xj

. The
material-dependent phase change function is fp(u) = 1

1+exp
(
−β(u−um)

) with the
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melting temperature um and β > 0 controlling the smoothness. The boundary
of Ω is split into three disjoint regions as Γ = Γt ∪ Γs ∪ Γb spanning the top,
side and bottom surfaces respectively, while n̂ denotes the outward unit normal
on Γ . We apply a time-varying sintering heat source q(x; t) moving on a fixed
trajectory embedded on Γt. In effect, the imparted heat flux is expressed by the
Neumann boundary condition [1]

κ̄∇u·n̂ = q(x; t) where q(x; t) .=
2aP
πr2q

exp
(
−
2
∑3

i=1

(
xi − xq

i (t)
)2

r2q

)
x on Γt,

(2)
where a is the laser energy absorptivity, P is laser power, xq(t) is the position of
beam center, and rq is the effective laser beam radius. The bottom surface of the
powder bed is on a temperature controlled platform hence a Dirichlet condition

u(x, ·) = ub, x on Γb, (3)

where ub is the temperature of the building platform. On the top and side sur-
faces, the heat loss due to convection qc and radiation qr leads to

−κ̄∇u·n̂ = qc+qr, qc(x, t) = h(u−ua), qr(x, t) = σsε(u4−u4
a), x on Γs∪Γt,

(4)
where h > 0 is the coefficient of heat convection, σs is the Stefan-Boltzmann
constant, ε is the emissivity and ua is the ambient temperature [11,12]. The
dynamical equations (1)–(4) together with the initial condition u(·, 0) = u0 and
the parameter values in Table 1 admit a unique solution u(x, t) ∈ Ω × [0, tf ].

Table 1. Model parameters used in the FEM simulation as in [1].

Symbol Definition Value Unit

a Absorptivity 0.09 –

ε Emissivity 0.04 –

rq Laser spot radius 35 µm

ua Ambient temperature 20 ◦C

ub Building platform temperature 200 ◦C

h Heat convection coefficient 10 W/(m2K)

σs Stefan-Boltzmann constant 5.67× 10−8 W/(m2K4)

- Powder layer dimension 1.54× 0.7× 0.1 mm

Following a Galerkin approach the continuous temperature field is projected
on a finite dimensional space of piecewise linear functions in space and time [4].
On a discretised domain with d nodes, we arrive at the nonlinear system for the
FEM coefficients ut ∈ Rd of the temperature at time steps t as

A(ut)ut+1 = b(ut), for t = 0, 1, . . . , tf , (5)
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where A ∈ Rd×d and b ∈ Rd both depend non-linearly on the temperature. The
nonlinear matrix equation for ut+1 can be solved iteratively via Picard iterations
until the residual ‖r(u)‖ = ‖A(u)u − b(u)‖ below a very small constant [13].

2.2 Reduced Gaussian Processes

Gaussian Process Emulators (GPEs) with isomap dimension reduction are pro-
posed to make almost instantaneously temperature predictions irrespectively of
the dimension of FEM. Before outlining our method we fix our notation. For a
matrix X, Xi denotes the i-th column, XT

i the corresponding row and Xij the
(i, j)-th element. For a vector y, yi denotes the i-th element.

In our case the triplet of beam speed v, power P , and time t are input
parameters controlling the printing process. We thus consider an input matrix X
whose i-th column is (vi, Pi, ti)T . Repeating the FEM simulation in (5) for n ( 3
sampling points yields matrixX ∈ R3×n and a respective FEM snapshots matrix
F ∈ Rd×n whose i-th column is u(Xi). We then center the elements of the rows
of F to a zero mean output matrix Y ∈ Rd×n by Y T

i = FT
i − 1

nF
T
i 1. We assume

that the elements in the vector Y T
i ∈ Rn satisfy a discrete Gaussian process

with zero mean and positive definite covariance matrix Σ = C + σ2I ∈ Rn×n as

Y T
i ≈ GP(X), Ĉij ≈ k(Xi,Xj ; θ)

.= θ0 exp(−‖Xi − Xj‖2/2θ1). (6)

where k(x, x′; θ) is the squared exponential function (kernel) and hyper-
parameters θ = [θ0, θ1,σ2]T are strictly positive obtained via maximum like-
lihood estimation, we can then predict ŷi for a test input x̃ ∈ R3 with variance
Var(ŷi)

ŷi = kTx Σ−1(Y T
i )T , Var(ŷi) = θ0 − kTx Σ−1kx, for i = 1, . . . , d, (7)

where kx :=
[
k(X1, x̃; θ̂), . . . , k(Xn, x̃; θ̂)

]T [14].
It is easy to see that applied to a high-dimensional discrete model, evaluating

(7) d times becomes cumbersome. To alleviate this computational burden, we
seek to construct a low-dimensional representation Z ∈ Rr×n with r * d of
the data matrix Y ∈ Rd×n with Isomap approach so that in predicting u(x̃)
requires r instead of d GPE evaluations. Isomap dimension reduction captures
the nonlinear dependence of the data in Y on the parameters in X based on
the symmetric dissimilarity matrix D ∈ Rn×n. Dij is the shortest path distance
between Yi and Yj points computed via the Floyd–Warshall algorithm [15] in
a graph where edges are built between neighbour points with weights equal to
Euclidean distance. The points are assumed to belong in the same neighbourhood
if ‖Yi −Yj‖ is less than or equal to a chosen constant. Forming the n×n matrix

Q = −1
2
H(D ◦ D)H, where H = I − 1

n
111111T (8)

and ◦ denotes the Hadamard product. From the eigendecomposition Q = EΛET

we can compute a r-rank approximation basis with columns Zi = Λ
1
2
iiEi for

i = 1, . . . , r. Effectively, for a test input x̃, we solve
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ẑi = kTx Σ−1(ZT
i )

T , for i = 1, . . . , r, (9)

where kx and Σ are trained by the reduced data {(Xi, Zi)}ni=1. To extrapolate
for the high-dimensional temperature solution we compute the weights w =
[w1, . . . , wn]T via localized radial basis functions

wi ∝ exp
(
−‖ẑ − Zi‖2

ξ2

)
, such that

n∑

i=1

wi = 1, (10)

for a constant parameter ξ > 0, and thereafter the prediction ŷ(x̃) = Y w.

3 Results

To demonstrate the performance of our method we consider a small scale numer-
ical study on the thermal modelling involving a cuboid Aluminium structure
consisted of four adaptive layers. Three straight laser trajectories are simulated
on the top surface as shown in Fig. 1. The computational times for each layer
are provided in Table 2 running Matlab R2020b on an Intel Core i7 CPU at
2.6GHz, 16 GB RAM computer.

The high-fidelity FEM-based heat simulation with fine spatio-temporal
discretisation has been utilised to generate training data for the reduced-
dimensional GP emulation. The accuracy of this surrogate model depends on
finding representative training data so as to guarantee an accurate response sur-
face. In the absence of the information on the printing parameter distribution, we
applied a uniform grid search in the admissible range of laser power: 200–400 W,
scan speed: 200–400 mm/s and time: 0–6 ms to obtain 1844 pairs of uniformly
sampled X(i)

j = [P (i)
j , v(i)j , t(i)j ]T and the corresponding FEM temperature snap-

shots Y (i)
j forming the training dataset {X(i)

j , Y (i)
j }1844j=1 in i-layer domain for

i = 1, · · · , 4.

Fig. 1. The laser scanning pattern on
the i-th layer surface, indicating the
location of the reference points si1, si2,
and si3.

Fig. 2. The relative reduction error εQ
for different reduced dimensions r.
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In order to trace the lower-dimensional representation by Isomap method, we
require the neighbourhood size and the reduced dimension r. While the neigh-
bourhood size is chosen to ensure the connectivity of the constructed graph, the
reduced dimension r is heuristically chosen to keep low relative reduction error
εQ = ‖Q−ZTZ‖

‖Q‖ . The decreased trends of εQ with r for all four domains are shown
in Fig. 2 making r = 8 a reasonable choice for our setup.

A set of predictions are computed for 219 testing inputs, aimed to assess
the prediction speed and accuracy. Collectively, these results suggest that about
96.80%, 87.44%, 61.87% and 19.18% of predictions have respective relative errors
that are no bigger than 15%, 10%, 5% and 1%. A representative subset of these
result at P =255W and v=215mm/s are illustrated in Fig. 3. It compares FEM

Fig. 3. The thermal histories from FEM and SM with P =255W and v=215mm/s



A Reduced Gaussian Process Heat Emulator for LPBF 291

simulation and SM prediction at the 12 reference points {si1, si2, si3} for i =
1, · · · , 4 as in Fig. 1 throughout the entire printing, where each layer takes about
6 ms to print.

Besides these 12 reference positions, thermal history predictions at 744 other
locations were tested indicating that 47.45%, 77.82% and 89.38% of those have
relative errors bounded below 10%, 15% and 20% respectively. The computa-
tional times in our SM are listed in Table 2. Note that only the prediction is
required online. The prediction time alone costs, on average, 95% less than the
more accurate FEM simulation.

Table 2. The time cost of SM and the reduction of execution time.

Number of
Layers

Degrees of
Freedom

Data Gen-
eration(hr)

Training(min) Average Execution Time

FEM(s) Prediction(s)

1 14219 3.0857 34.5171 6.0242 0.7206

2 25201 7.2799 30.7677 14.2124 0.6868

3 26633 9.3825 28.7027 18.3472 0.7093

4 26841 9.3135 38.1348 18.4629 0.6936

The proposed approach couples data-driven machine learning and nonlinear
model order reduction to expedite thermal simulation in LPBF. In principle,
the proposed reduced GPEs and the FEM simulator are also applicable to other
types of thermal-driven AM, since we can modify the heat source and its tra-
jectory or indeed consider materials with different thermal properties that also
undergo phase transitions without changing the main structure of our compu-
tational models and algorithms. Our numerical tests showed that 96.8% of tem-
perature profile predictions at a given time have relative error less than 15% and
89.38% of thermal history predictions at the control points have relative errors
less than 20%. Predictions at arbitrary times after the start of the printing pro-
cess are computed fast at around 0.7 s. Further, as the domain is augmented
layer by layer the complexity of our computations is controlled since the Isomap
scheme compresses the amount of Gaussian processes required to a fairly small
number (r = 8). Also, the process of pre-processing is fixed for different object
geometries. With different scanning patterns, a related representative training
dataset is required but no additional trajectory-based design is needed. Less
cumbersome design and computation means more swift applications in thermal
analysis, planning and decision making.

4 Conclusions

A time-efficient SM based on the reduced GP with Isomap method is developed
to predict the thermal history of LPBF from laser power and scan speed, the
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pre-processing process of which is less geometry-dependent in dealing the redun-
dancy and cyclic heating and cooling. The showcase of fabricating a cuboid with
Al material is made to assess the performance. The SM shows encouraging per-
formance in predicting temperature profiles by reducing 95.07% of time cost
(from 14.3 s to 0.7 s) with high prediction accuracy (>85% for 96.80% of test-
ings). Thermal history predictions for 89.38% of tested positions have relative
error less than 20%. Since a 3D printer can alter laser power and scan speed
during the printing process, the SM takes one step further in quality assurance
by possible in-situ optimizations and controls. While this GP surrogate model
allows us to bypass FEM’s long time-marching process to compute the temper-
ature, the accuracy of SM highly depends on finding a representative training
dataset, and only test inputs within the window of interest can be predicted.

References

1. Li, Y., Gu, D.: Parametric analysis of thermal behavior during selective laser melt-
ing additive manufacturing of aluminum alloy powder. Mater. Des. 63, 856–867
(2014)

2. Tong, Z., et al.: Laser additive manufacturing of FeCrCoMnNi high-entropy alloy:
Effect of heat treatment on microstructure, residual stress and mechanical property.
J. Alloy. Compd. 785, 1144–1159 (2019)

3. Moran, T., Warner, D., Phan, N.: Scan-by-scan part-scale thermal modelling for
defect prediction in metal additive manufacturing. Add. Manuf. 37, 101667 (2020)

4. Kollmannsberger, S., Carraturo, M., Reali, A., Auricchio, F.: Accurate prediction
of melt pool shapes in laser powder bed fusion by the non-linear temperature
equation including phase changes. Integrating Mater. Manuf. Innovation 8(2), 167–
177 (2019). https://doi.org/10.1007/s40192-019-00132-9

5. Patil, N., Pal, D., Stucker, B., et al.: A new finite element solver using numerical
eigen modes for fast simulation of additive manufacturing processes. In: Proceed-
ings of the Solid Freeform Fabrication Symposium, pp. 12–14 (2013)

6. Moran, T., et al.: Utility of superposition-based finite element approach for part-
scale thermal simulation in additive manufacturing. Add. Manuf. 21, 215–219
(2018)

7. N. V. Queipo et al. “Surrogate-based analysis and optimization”. In: Progress in
aerospace sciences 41.1 (2005), pp. 1–28

8. Wang, L., et al.: Meta-modeling of high-fidelity FEA simulation for efficient prod-
uct and process design in additive manufacturing. Add. Manuf. 35, 101211 (2020)

9. Roy, M., Wodo, O.: Data-driven modeling of thermal history in additive manufac-
turing. Add. Manuf. 32, 101017 (2020)

10. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

11. Sheikhi, M., Ghaini, F.M., Assadi, H.: Prediction of solidification cracking in pulsed
laser welding of 2024 aluminum alloy. Acta Mater. 82, 491–502 (2015)

12. Ramanathan, K., Yen, S.: High-temperature emissivities of copper, aluminum, and
silver. JOSA 67(1), 32–38 (1977)

13. Larson, M.G., Bengzon, F.: The finite element method: theory, implementation,
and practice. Texts Comput. Sci. Eng. 10, 23–24 (2010)

https://doi.org/10.1007/s40192-019-00132-9


A Reduced Gaussian Process Heat Emulator for LPBF 293

14. Xing, W., Shah, A.A., Nair, P.B.: Reduced dimensional Gaussian process emulators
of parametrized partial differential equations based on Isomap. In: Proceedings of
the Royal Society A: Mathematical, Physicaland Engineering Sciences, vol. 471 no.
2174, p. 20140697 (2015)

15. Wu, Y., Chan, K.L.: An extended Isomap algorithm for learning multi-class man-
ifold. In: Proceedings of 2004 International Conference on Machine Learning and
Cybernetics (IEEE Cat. No. 04EX826), vol. 6, pp. 3429–3433. IEEE (2004)


