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Abstract

The Bouncy Particle Sampler is a Markov chain Monte Carlo method based on a non-
reversible piecewise deterministic Markov process. In this scheme, a particle explores the state
space of interest by evolving according to a linear dynamics which is altered by bouncing on the
hyperplane perpendicular to the gradient of the negative log-target density at the arrival times of
an inhomogeneous Poisson Process (PP) and by randomly perturbing its velocity at the arrival
times of a homogeneous PP. Under regularity conditions, we show here that the process corre-
sponding to the first component of the particle and its corresponding velocity converges weakly
towards a Randomized Hamiltonian Monte Carlo (RHMC) process as the dimension of the am-
bient space goes to infinity. RHMC is another piecewise deterministic non-reversible Markov
process where a Hamiltonian dynamics is altered at the arrival times of a homogeneous PP by
randomly perturbing the momentum component. We then establish dimension-free convergence
rates for RHMC for strongly log-concave targets with bounded Hessians using coupling ideas and
hypocoercivity techniques. We use our understanding of the mixing properties of the limiting
RHMC process to choose the refreshment rate parameter of BPS. This results in significantly
better performance in our simulation study than previously suggested guidelines.

Keywords: Bouncy particle sampler; Coupling; Randomized Hamiltonian Monte Carlo; Weak
Convergence; Hypocoercivity.

1 Introduction
Assume one is interested in sampling from a target probability density on Rd which can be evaluated
pointwise up to an intractable normalizing constant. In this context one can use Markov chain
Monte Carlo (MCMC) algorithms to sample from, and compute expectations with respect to the
target measure. Despite their great success, standard MCMC methods, such as the ubiquitous
Metropolis–Hastings algorithm, tend to perform poorly on high-dimensional targets. To address
this issue, several new methods have been proposed over the past few decades. Popular alternatives
include the Metropolis-adjusted Langevin algorithm (MALA) [68, 66], Hamiltonian, or Hybrid,
Monte Carlo (HMC) [29] and slice sampling [55].

Recently, a novel class of non-reversible, continuous-time MCMC algorithms based on piecewise-
deterministic Markov processes (PDMP) has appeared in applied probability [54, 9], automatic
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control [50], physics [62, 52, 57] statistics and machine learning [18, 12, 16, 71, 10, 60, 75]. Most
of the current literature revolves around two piecewise-deterministic MCMC (PDMCMC) schemes:
the Bouncy Particle Sampler (BPS) [62, 18] and the Zig-Zag sampler [12]. A practical advantage
of the BPS and Zig-Zag algorithms is that in many models it is possible to simulate their piecewise
linear paths without time-discretization [18]. In contrast, methods based on either diffusions or
Hamiltonian paths require time discretization and moreover their performance is known to collapse
if the discretization is too coarse. Despite the increasing interest in these piecewise linear PDM-
CMC algorithms, our theoretical understanding of their properties remains limited, although a fair
amount of progress has been achieved recently in establishing geometric ergodicity, see [27, 32]
for BPS and [37, 13] for Zig-Zag. However, all of these results tend to provide convergence rates
that deteriorate with the dimension and thus fail to capture the empirical performance of these
PDMCMC algorithms on high-dimensional targets.

Scaling limits have become a very popular tool for analysing and comparing MCMC algorithms
in high-dimensional scenarios since their introduction in the seminal paper [67]; see, e.g., [64,
7]. They have been used to establish the computational complexity of the most popular MCMC
algorithms, which is Opd2q for Random Walk Metropolis (RWM), Opd4{3q for MALA and Opd5{4q
for HMC; here computational complexity is defined in terms of the expected squared jump distance.
In this direction, the recent work of Bierkens et al. [11] has established scaling limits for both Zig-
Zag and global BPS for high-dimensional standard Gaussian targets. They obtain the scaling limits
of several finite dimensional statistics, namely the angular velocity, the log-density and the first
coordinate. In this context, it is shown that Zig-Zag has algorithmic complexity Opdq for all three
types of statistics, whereas global BPS has complexity Opdq for angular momentum and Opd2q for
the other two types of statistics. Benefits of Zig-Zag over global BPS are to be expected in this
scenario. Indeed, when applied to a product target, the Zig-Zag sampler factorises into independent
components and is closely related to Local-BPS (LBPS); see [62, 18]. The standard (global) BPS
studied herein and in Bierkens et al. [11], just like RWM, MALA and HMC, is an algorithm whose
dynamics do not distinguish between product and non-product targets.

In the present paper, we also study scaling limits for BPS on a very general class of targets
that greatly extends the i.i.d. scenario, and its variants, often considered in the literature, see e.g.
[67, 64, 7, 11]. We concentrate on the first coordinate and its corresponding velocity in a regime
which differs from the one considered in [11] in the following three ways: (a) [11] considers BPS
with the location evolving at unit speed, whereas in our scenario the velocity is Gaussian, therefore
with speed scaling like

?
d in the dimension; (b) [11] considers scaling limits for the first coordinate

of the location process only, whereas we look at both location and velocity; and finally (c)[11]
rescales time with a factor d, whereas we obtain our limiting process on the natural time scale.
As a result we obtain a different scaling limit which suggests that BPS has algorithmic complexity
Opd3{2q if one is interested on low-dimensional projections, at least on weakly dependent targets.
This is in agreement with the empirical results reported in [18]. Given the different regimes and
different objects studied in [11] and the present paper, it is not surprising that the two scaling limits
differ significantly, with our bound being tighter and seemingly better at capturing the empirical
behaviour of the process. In [11] the first location coordinate converges to a Langevin diffusion,
whereas in the present paper the process tracking the first location and velocity components con-
verges to a piecewise deterministic Markov process known as Randomized Hamiltonian Monte Carlo
(RHMC). Although the corresponding Fokker-Planck equation was studied in Dolbeault et al. [28],
using a related approach to ours, RHMC was first studied in a Monte Carlo context in [16].

To the best of our knowledge, our result is the first in the literature establishing a direct link
between BPS and Hamiltonian dynamics. It is our understanding that the Langevin diffusion
obtained in [11] can be obtained from RHMC by a further limiting procedure similar to the over-
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damped regime of the Langevin equation. In addition, the assumptions under which our scaling
limit is obtained allow much more complex dependence structures than those considered in the
literature, see e.g. [5, 6, 76, 20, 67, 64, 7], where the target is assumed to factorise or to possess a
hierarchical structure. In addition, in the scenario we consider all dimensions have an impact, in
contrast with the Hilbert-space setting, see e.g. [49], where only a fixed, finite number of dimensions
is significant.

The second part of the paper is concerned with the convergence properties of RHMC. This
process was studied in [16] where it was established that it is geometrically ergodic. However,
it is not clear whether such an approach can provide dimension independent convergence rates.
The earlier work of [28] studies the corresponding Fokker-Planck equation, tracking the evolution
of densities rather than conditional expectations. In recent years, there has been great success
in obtaining dimension-free convergence rates of MCMC schemes for strongly log-concave targets
with bounded Hessians; see for example [24, 30, 48, 17, 33]. In particular, in relation to HMC,
the papers [48, 17] use coupling techniques to obtain convergence rates in terms of Wasserstein or
total variation distances, but these usually leverage independent momentum refreshment to obtain
a Markov process in the location components only. We establish here these convergence rates in
weighted Wasserstein distance using coupling ideas, and also in L2 using hypocoercivity; see, e.g.,
[73, 61]. The rates we provide may generally not be the optimal ones for specific scenarios. However,
the optimal rates for a specific scenario can be obtained by solving a multivariate optimisation
problem. Dolbeault et al. [28] also uses hypocoercivity, albeit with a much different flavour, and
does not seem to provide explicit rates. After the first version of the present paper appeared online,
the approach of [28] was extended in Andrieu et al. [1] to cover several PDMPs, including BPS,
Zig-Zag and RHMC. Even more recently, the paper [47] appeared online, proving L2 rates for three
PDMPs (BPS, Zig-Zag and RHMC).

The approach in [28] and [1] is quite distinct to ours. In particular [1] also obtain dimension-free
bounds for RHMC under similar assumptions; their explicit rates have a complex dependency on
various parameters of the problem and therefore a detailed comparison with the explicit rates in
our Theorem 5 was not performed in [1]. In Remark 11 we perform a comparison, and find that
in the strongly convex and smooth setting, neither of these two approaches outperforms the other
in all cases, sometimes the bound of [1] is sharper, while in other scenarios our bound is sharper.
Their approach is quite general but much less direct for RHMC than ours, as they rely on generic
results by Dolbeault, Mouhot, and Schmeiser. The approach in [47] is entirely different from [1]
and ours, using sophisticated PDE methods to analyse the Fokker-Planck equations of the PDMP
directly. In Remark 11, we include a detailed comparison with our results. In general, we find
that the bounds in [47] for RHMC are sharper than ours in the condition number M{m, but the
constant of proportionality is not explicitly stated, and might be non-trivial to obtain reasonably
small constants.

In addition the bounds of [1] and [47] for BPS suggest that its computational cost scales like
Opd2q. This seems to capture the worst case scenario and agrees for example with results [11] for the
log-density of the target, which recommends scaling the refreshment rate with the dimension. Our
results suggest that when one is interested in low-dimensional projections, then it is computationally
more efficient to not scale the refreshment rate with the dimension, achieving computational cost
of order Opd3{2q. Empirical results in Section 2.5 seem to suggest that this may also be the case
for certain classes of functions depending on all the coordinates, such as the sum of all coordinates.
A common scenario where this type of scaling limit is extremely relevant is for example that of
Bayesian inference where typically one may only be interested in estimating the posterior means,
variances and covariances of the high-dimensional state components (this is a set of one and two
dimensional marginals). Finally, it is intuitively clear that the log-density will not mix well in a
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high-dimensional target for the global BPS, see [11] for a detailed study. We conjecture that the
functions that exhibit this type of behaviour form a low-dimensional sub-space of L2pπq. Recently
[8] has obtained very detailed results on the whole spectrum of the one-dimensional Zig-Zag process,
it would be interesting if similar results could be obtained for BPS in high dimensional scenarios.

Apart from the intrinsic interest of the RHMC process, our motivation for studying its con-
vergence rates is as follows. In the scaling literature for MCMC the limiting processes are usually
Langevin diffusions. These have very well understood convergence rates which, at least under ad-
ditional assumptions, are dimension-free. Therefore, in high-dimensions the cost of running the
(time-rescaled) algorithm serves as a proxy for its computational complexity. In our case, the al-
gorithm ran on its natural time scale converges to RHMC, which as we establish here, also enjoys
dimension-free convergence rates under appropriate assumptions. Therefore the cost of running
BPS for a unit of process time serves as a proxy for its algorithmic complexity.

The next section contains the statements of the main results of the paper along with necessary
notation and definitions. The remaining sections contain the proofs of the main results.

2 Main results

2.1 Notation

For x P R, let x` “ maxtx, 0u. Let k ě 1. For vectors u, v P Rk we write |v| and pu, vq for the
Euclidean norm and inner product respectively. For matrices A,B P Rkˆk we write A ĺ B if B´A
is positive-definite. For a function f : Rk ÞÑ R we write ∇f,∇2f for its (weak) gradient and Hessian
respectively. When considering functions f “ fpa, bq, where a, b P Rk, that is f : R2k ÞÑ R, we will
write ∇af , ∇bf to denote the gradient with respect to the variables a P Rk and b P Rk respectively.
Allowing a slight abuse of notation, for vector valued functions f : Rd Ñ Rk, we will also write ∇f
for the Jacobian matrix of derivatives.

For Z “ Rk, with k P N, let C0pZq denote the space of continuous functions f : Z ÞÑ R that
vanish at infinity. Recall that C0pZq is a Banach space with respect to the } ¨ }8 norm, which is
defined as usual through }f}8 “ sup |f |. Also let C8c pZq be the space of infinitely differentiable
functions f : Z ÞÑ R with compact support.

For a measure π on Z, we will write L2pπq for the usual, real Hilbert space, and x¨, ¨y, } ¨ } to
denote the inner product and norm in L2pπq respectively, whereas L2

0pπq will denote the orthogonal
complement of the constant functions, i.e., functions with mean zero under the distribution π.
Finally for f : Z Ñ Rd and g : Z Ñ Rd, with d ě 1, we also write

xf, gy “

ż

πpdzqpfpzq, gpzqq.

It will be clear from the context whether x¨, ¨y is applied to R´ or Rd-valued functions. We also
define

H1 :“ H1pπq :“
 

h P L2
0pπq : ∇xh,∇vh P L

2pπq
(

,

the Sobolev space of centred functions in L2pπq with weak derivatives in L2pπq and for f, g P H1pπq
we will denote the inner product and norm on H1pπq with xx¨, ¨yyH1pπq and } ¨ }H1pπq respectively,
where

xxf, gyyH1pπq “ x∇xf,∇xgy ` x∇vf,∇vgy.
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2.2 The Bouncy Particle Sampler

Let Z :“ R ˆ R and for n ě 1, define the Borel probability measure πnpdzq on Zn with density
w.r.t. Lebesgue measure given by

πnpzq “ πnpx,vq9 exp
 

´Unpxq ´ |v|
2{2

(

, px,vq P Zn,

where Un : Rn ÞÑ R` is a potential.
For px,vq P Zn, define

(2.1) Rnpxqv :“ v ´ 2p∇Unpxq,vq
|∇Unpxq|2

∇Unpxq.

The vector Rnpxqv can be interpreted as a Newtonian collision on the hyperplane orthogonal to
the gradient of the potential Un, hence the interpretation of x as a position, and v, as a velocity.

The Bouncy Particle Sampler (BPS), first introduced in [62] and in a statistical context in [18],
defines a πn-invariant, non-reversible, piecewise deterministic Markov process (PDMP) tZnptq : t ě
0u “ tpXptq,V ptqq : t ě 0u taking values in Zn whose generator An, for smooth enough functions
f : Zn ÞÑ R, is given by

Anfpx,vq “ p∇fpx,vq,vq `maxt0, p∇Unpxq,vqu rRnf px,vq ´ f px,vqs

` λref rQα,nf px,vq ´ f px,vqs ,

where

Rnf px,vq :“ f px, Rnpxqvq , Qα,nf px,vq :“ 1
p2πqn{2

ż

Rn
e´|ξ|2{2f

´

x, αv `
a

1´ α2ξ
¯

dξ,

for 0 ď α ă 1 and a positive refreshment rate λref ą 0. We also write Znptq “
´

Z
p1q
n ptq, . . . , Z

pnq
n ptq

¯

where Zpkqn ptq “ pX
pkq
n ptq, V

pkq
n ptqq P Z is the k-th component. The original formulation of the BPS

algorithm corresponds to α “ 0, that is refreshment occurs independently. The generalization
α ą 0 [71] consists in refreshments that are performed according to an auto-regressive process.

2.3 Randomized Hamiltonian Monte Carlo

We define here RHMC as this is the process we will obtain as the weak limit of Zp1qn ptq “

pX
p1q
n ptq, V

p1q
n ptqq P Z as nÑ8. Define the Hamiltonian

(2.2) Hpx, vq “W pxq ` |v|2{2,

for px, vq P Z and the corresponding probability density on Z

(2.3) πpx, vq “ π̄pxq ¨ ψpvq9 expt´W pxq ´ |v|2{2u.

The Hamiltonian dynamics associated to (2.2) is an ordinary differential equation in Z of drift
p∇vH,´∇xHq “ pv,´∇W q. The RHMC process, denoted tZt : t ě 0u, can then be defined
following Davis [26, Section 24], as a PDMP with deterministic dynamics given by Hamiltonian
dynamics with respect to H, fixed jump rate λref ą 0 and jump kernel

(2.4) Qαfpx, vq :“ 1
p2πqn{2

ż

e´|ξ|2{2f
´

x, αv `
a

1´ α2ξ
¯

dξ,
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for some 0 ď α ă 1. We will write tP t : t ě 0u for the semi-group corresponding to tZt : t ě 0u,
that is

P tfpzq “ E rfpZtq|Z0 “ zs .

It has been shown, [16], that RHMC admits π as an invariant distribution.
It can also be shown that for f P C8c pZq, the generator of the semigroup tP t : t ě 0u is given

by

(2.5) Afpx, vq “ p∇xf, vq ´ p∇vf,∇W q ` λref rQαfpx, vq ´ fpx, vqs .

The refreshment is done in an auto-regressive manner. From now on, we will restrict ourselves
for BPS and RHMC to 0 ă α ă 1. The reason for using α ą 0 is that it allows us to establish
the Feller property which greatly simplifies the rest of the proofs. Since the autoregressive process
mixes exponentially fast there is no loss in terms of mixing potentially at the cost of more frequent
refreshments, something which has also been observed empirically.

Remark 1. As one of the referees kindly suggested, one may attempt to couple the process with α “
0 with the process at αn “ op1q in order to extend the result to the case α “ 0. Unfortunately, the
obvious line of attack requires one to couple the full n-dimensional velocity vector at refreshments,
so the maximal coupling deteriorates with the growing dimension; this approach would require a
quantitative version of Theorem 1. It is possible that a different coupling can be used, but we did
not pursue this issue further.

2.4 Main results

2.4.1 RHMC as Scaling Limit of BPS

Before stating our weak convergence result, we will make some assumptions. We consider a sequence
of targets πn on RnˆRn where πnpx,vq “ π̄npxqψnpvq, with ψn a standard n-dimensional Gaussian
and π̄npxq “ exp r´Unpxqs for a sequence of potentials Un : Rn Ñ r0,8q satisfying the following
assumptions.

Assumption 1. The potential Un P C2pRnq is m-strongly convex with M -Lipschitz gradient

(2.6) mI ĺ ∇2Unpxq ĺ MI, x P Rn, with 0 ă m ďM ă 8,

and Un achieves its minimum at 0, that is Unp0q “ 0 and ∇Unp0q “ 0.

Assumption 2. The marginal density of the first component of π̄n is fixed and is given by

fpxq :“
ż

π̄npx,x2:nqdx2:n.

We assume that fpxq “ expr´W pxqs for a potential W P C8pR; r0,8qq such that lim|x|Ñ8W pxq “
8 and

ż

e´W pxq
`

|W 2pxq| ` |W 1pxq|2
˘

dx ă 8.

Let tZt : t ě 0u be the RHMC process with potential W and write A for its generator given in
(2.5). The following theorem is our first main result.

Theorem 1. Suppose Assumptions 1 and 2 hold, 0 ă α ă 1, λref ą 0 and that the BPS process
tZnptq : t ě 0u is initialized at stationarity, i.e., Znp0q „ πn. Then the process tZp1qn ptq : t ě 0u
corresponding to the first location and velocity components of the BPS process converges weakly to
the RHMC process tZt : t ě 0u as nÑ8.
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We would like to stress that there is no time-rescaling in the above result, and that the sequence
of targets is not assumed to factorise into independent components, or to converge towards an
infinite dimensional measure as the dimension nÑ8.

Remark 2. Notice that Assumption 1 allows for the standard scenario where the target factorises
in n i.i.d. copies which corresponds to Unpxq “

řn
i“1 Upxiq, for an m-strongly convex potential

U P C2pRq with U2 ď M . Indeed in this case the Hessian matrix is diagonal and given by
`

∇2Unpxq
˘

i,j
“ U2pxiqδi,j ě 0. This was the scenario considered in an earlier version of the present

paper. In fact in this i.i.d. scenario the convexity assumption can be removed and the upper bound
on U2 can be replaced by an upper bound on U pkq for any k, at the expense of additional technical
complexity.

Remark 3. From the proof (in particular, the bounds (3.14), (3.15), (3.16), (3.17), (3.18)) it is
clear that the result remains true when m,M in Assumption 1 are allowed to depend on n, if in
addition we assume that

(2.7) mnnÑ8,
Mn

mn
“ opn1{4q,

M3
n

m
3{2
n

“ opn1{2q,
M3
n

m2
n

“ opn1{2q,
M2
n

mn
“ o

˜

n1{2

plogpnqq1{2

¸

.

Remark 4. Scaling limits for non i.i.d. targets have appeared in the past. Bédard [5] studied
targets that factorise into independent, but not identically distributed components; results on
hierarchical targets can be found in [6, 76] and references therein. The case of Gibbs measures
with finite range interactions was studied in [20]. Mattingly et al. [49] proved that a sequence of
algorithms targeting finite dimensional projections of a measure admitting a density with respect
to a reference Gaussian measure on a Hilbert space, converge to a Hilbert space-valued stochastic
differential equation.

Remark 5. To illustrate Theorem 1 in Figure 2.1 we have plotted the paths of the BPS process
and the equi-energy contours of the Hamiltonian corresponding to the deterministic dynamics of
RHMC. The target distribution has potential Upxq “

řn
i“1 |xi|

b{2 and we have tested two values of
b, b “ 2 (Gaussian) and b “ 4. These figures show the first coordinate of the position and velocity
vectors. As we can see, as the dimension increases, the paths of BPS indeed appear more and more
similar to the contours of the Hamiltonian.

Remark 6. Theorem 1 can be straightforwardly extended to any fixed, finite number of coordinates
d ą 1. In this case the limiting process will be RHMC in Rd ˆ Rd with respect to the potential
W : Rd Ñ R given by

W pxq “ ´ log
ż

π̄npx,xd`1:nqdxd`1:n, x P Rd,

with W satisfying a d-dimensional version of Assumption 2.

Sketch of Proof. The full proof of this result is quite lengthy and will be given in Section 3.
However, we now give the key idea without going into technical details, for the simpler i.i.d. scenario
where Unpxq “

řn
i“1 Upxiq, for U : R ÞÑ r0,8q. In this case the limiting process has potential

W ” U . Under the assumptions of Theorem 1 let Zn “ pXn,Vnq „ πn and let f : Rˆ R Ñ R be
smooth. We now consider the generator An of BPS targeting πn and the generator A of RHMC
targeting π, the marginal of the first location momentum pair under πn, applied to the function f .
By inspecting Anpfq, Apfq we find that the terms corresponding to the deterministic flow of BPS

7
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Figure 2.1: Convergence of the BPS process to RHMC in high dimensions for Upxq “ |x|b{2.
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and the refreshment events coincide exactly with corresponding terms in Apfq. We therefore only
have to consider the term corresponding to the “bounce events”, that is

max t0, p∇UnpXq,V qu
„

f

ˆ

X1, V1 ´ 2p∇UnpXq,V q
|∇Un pXq|2

U 1pX1q

˙

´ fpX1, V1q



,

and show that on average it is close to ´p∇vf,∇Uq “ ´U 1pX1qBvfpX1, V1q.
To see why this is true, after a Taylor expansion we can see that the bounce part of the BPS

generator is close to

´2 max
"

0, p∇UnpXq,V q
|∇Un pXq|

*

p∇UnpXq,V q
|∇Un pXq|

BvfpX1, V1qU
1pX1q.

Looking closer one can see that

p∇UnpXq,V q
|∇Un pXq|

“

řn
i“1 U

1pXiqVi
a

řn
i“1 U

1pXiq
2 ,

and since the pViqi are i.i.d. standard Gaussians it is easily seen that
řn
i“1 U

1pXiqVi
a

řn
i“1 U

1pXiq
2

ˇ

ˇ

ˇ

ˇ

ˇ

pXiq
n
i“1 „ N p0, 1q.

It now seems plausible that, letting ξ „ N p0, 1q, we have

E

"

max t0, p∇UnpXq,V qu
„

f

ˆ

X1, V1 ´ 2p∇UnpXq,V q
|∇Un pXq|2

U 1pX1q

˙

´ fpX1, V1q

ˇ

ˇ

ˇ

ˇ

X1, V1

*

« ´2E rmax t0, ξu ξs BvfpX1, V1qU
1pX1q “ ´BvfpX1, V1qU

1pX1q “ ´p∇vf,∇Uq.

2.4.2 Dimension-free Convergence Rates for RHMC

We consider the RHMC process on the target

πpx,vq “ π̄pxq ¨ ψpvq9 expt´Upxq ´ |v|2{2u,

defined on Z :“ RdˆRd for π̄p¨q a strongly log-concave target distribution on Rd having a potential
with bounded Hessian. This is a standard assumption adopted in [17, 48, 24, 33, 30].

Assumption 3. Assume that U P C2pRdq and that for some 0 ă m ăM , and all x,v P Rd

(2.8) mpv,vq ď pv,∇2Upxqvq ďMpv,vq.

The following proposition, whose proof is given in Appendix A, shows that the expected number
of bounces per unit time for BPS in stationary distribution is Op

?
dq.

Proposition 2. Suppose that π̄pxq9 expp´Upxqq is a probability density on Rd. Then the BPS
process on Z targeting π̄ b ψ and initialized at stationarity, has the following expected number of
bounces per unit time:

Λb :“ EX„π,V„Np0,Idq rp∇UpXq,V q`s ,

for any choice of refreshment rate λref and auto-regressive parameter α. Moreover, if π̄ satisfies
Assumption 3, then we have

(2.9)
a

mpd´ 1{2q
?

2π
ď Λb ď

?
Md
?

2π
.

9



Wasserstein distance. For t ě 0, let Zp1qptq “ pXp1qptq, V p1qptqq denote a path of the RHMC
process. We couple this with another path Zp1qptq “ pXp2qptq, V p2qptqq such that their refreshments
happen simultaneously and the same multivariate normal random variables are used for updating
their velocities. Therefore the difference between the paths Zp1qp¨q and Zp2qp¨q stems only from the
different initialisations. Then the coupled process

`

Zp1qptq, Zp2qptq
˘

is Markov and we write L1,2 for
the corresponding generator. Notice that the 2ˆ 2 real valued matrix

(2.10) A :“
ˆ

a b
b c

˙

,

is positive definite, denoted A ľ 0, if and only if a ą 0, c ą 0 and b2 ă ac. For such a matrix, let

d2
ApZ1ptq, Z2ptqq :“

a}Xp2qptq ´Xp1qptq}2 ` 2b
A

Xp2qptq ´Xp1qptq, V p2qptq ´ V p1qptq
E

` c}V p2qptq ´ V p1qptq}2

denote a distance function called weighted distance. It is equivalent up to constant multiplicative
factors to the standard Euclidean distance on R2d and the standard Euclidean distance corresponds
to the special case a “ 1, b “ 0, c “ 1. However, due to the effect of the generator L1,2 on
d2
ApZ1ptq, Z2ptqq, it will never be a contraction when b “ 0, and thus weighting this distance is

essential for obtaining convergence rates. Note that for every p ě 1, the Wp-Wasserstein distance
of two distributions ν1, ν2 on R2d is defined asWppν1, ν2q “ pinfX1„ν1,X2„ν2 Ep|X1´X2|

pqq1{p, where
the infimum is taken over all couplings with marginals ν1 and ν2.

Our main result in this section is the following.

Theorem 3. Suppose that 0 ď α ă 1, Assumption 3 holds and let

λref “
1

1´ α2

ˆ

2
?
M `m´

p1´ αqm
?
M `m

˙

, µ “
p1` αqm
?
M `m

´
αm3{2

2pM `mq
.

Then there exist constants a, b and c depending on m, M and α, stated explicitly in (4.8), such
that the corresponding matrix A is positive definite, and for any t ě 0 we have

(2.11) L1,2 d
2
ApZ1ptq, Z2ptqq ď ´µ ¨ d

2
ApZ1ptq, Z2ptqq.

This directly implies that for any initial distribution ν on R2n, for all t ě 0, we have the following
bounds on the 2-Wasserstein distance to the stationary distribution,

(2.12) W2pP
tν, πq2 ď C2e

´µtW2pν, πq
2,

for C2 “
a`c`

?
pa`cq2´4pac´b2q

a`c´
?
pa`cq2´4pac´b2q

. Moreover, for every f P L2
0pπq, for all t ě 0

(2.13) }P tf}2 ď minpCe´µt, 1q}f}2,

where C “ ac`b2`2
?
acb2

ac´b2 .

Remark 7. Due to the non-reversibility of RHMC, the convergence rates in Wasserstein distance
do not directly imply bounds on the asymptotic variance for every function in L2pπq, but only for
Lipschitz functions. The argument for extending this contraction rate to all of L2pπq, can be found
in the second half of the proof of Theorem 5. This is based on the fact that Lipschitz functions are
dense in L2pπq.
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Remark 8. These results seem to suggest that choosing α close to 1 increases the convergence rate
µ approximately by a factor of 2, at the expense of a higher refreshment rate. Hence in practice some
tradeoff needs to be made between additional computational cost and the increased convergence
rate. By Proposition 2, we know that the rate of bounces according to the stationary distribution
is at least

?
mpd´1{2q
?

2π , which will be significantly higher than the rate 1
1´α2

´

2
?
M `m´ p1´αqm

?
M`m

¯

in high dimensions, provided that
b

M`m
m ¨ 1

d´1{2 ¨
1

1´α2 ! 1. The choice α “ 0.9 is reasonable in
most scenarios.

Remark 9. We have been able to verify using Mathematica that if M{m ě 5, and we choose
λref ď

1
2 ¨

1
1´α2

´

2
?
M `m´ p1´αqm

?
M`m

¯

(half the value recommended in Theorem 3), then the
contraction (2.11) cannot hold for any choice of a, b and c. In general, if we choose λref “
r

1´α2

´

2
?
M `m´ p1´αqm

?
M`m

¯

for some r ą 1 (that is, r times the refreshment rate recommended in

Theorem 3), then it seems based on extensive experiments that the rate µ “ 1
r

´

p1`αqm
?
M`m

´ αm3{2

2pM`mq

¯

is attained (i.e. µ drops by a factor r); no values of a, b and c result in double the same rate.
Obtaining a formula that describes sharp rates µ for a general choice of λref seems difficult with
our method of proof, as the inequalities that need to be checked in this case depend on many
variables, and the calculations become intractable. We include in the electronic supplementary
material Mathematica code that checks, for given values of m,M,α, λref, µ, whether there exist a,
b and c such that (2.13) holds, and returns a possible choice of these parameters if they exist.

As we shall see in the next proposition, it is possible to obtain faster convergence rates, that is
larger µ, for Gaussian target distributions. For this result, we consider a weighted distance of the
form

(2.14) d2
DpZ1ptq, Z2ptqq :“ xZ2ptq ´ Z1ptq, DpZ2ptq ´ Z1ptqqy ,

where D is a real valued 2dˆ 2d positive definite matrix.

Proposition 4. Suppose that π̄ is Gaussian and its inverse covariance matrix H satisfies mI ĺ

H ĺ MI. Let
λref “

2
?
m

1´ α, µ “

?
m

3 .

Then there exists a 2dˆ 2d real valued matrix D such that for any t ě 0 we have

(2.15) L1,2 d
2
DpZ1ptq, Z2ptqq ď ´µ ¨ d

2
DpZ1ptq, Z2ptqq.

Moreover, for every f P L2
0pπq, we have

(2.16) }P tf}2 ď minpCe´µt, 1q}f}2,

where C “ ac`b2`2
?
acb2

ac´b2 .

Hypocoercivity. Our next convergence result is based on the hypocoercivity approach; see, e.g.,
[53, 41, 73, 28, 69]. Our result will be stated in terms of the modified Sobolev norm xxh, hyy1{2,
where

(2.17) xxh, hyy :“ a}∇vh}
2 ´ 2b x∇xh,∇vhy ` c}∇xh}

2,

11



which again for a, c ą 0 and b2 ă ac defines a norm equivalent to the H1 norm. In particular
following the calculations in [73], by Young’s inequality we get

ˆ

1` |b|
?
ac

˙

“

a}∇vh}
2 ` c}∇xh}

2‰ ě xxh, hyy ě

ˆ

1´ |b|
?
ac

˙

“

a}∇vh}
2 ` c}∇xh}

2‰ .

By the Efron-Stein-Steele inequality ([70]) and the fact that πpx, vq “ πpxqψpvq is the product of
two independent distributions, we have

}h}2 “ Varπphq ď VarψpEπphqq `VarπpEψphqq,

for any h P L2
0pπq. Now by using the Poincaré inequality ([19]) and the strong log-concavity of the

distributions π and ψ, it is not difficult to show that

a}∇vh}
2 ` c}∇xh}

2 ě a ¨ 1 ¨VarψpEπphqq ` c ¨m ¨VarπpEψphqq ě minpa, cmq}h}2.

Therefore convergence in the xx¨, ¨yy norm implies convergence in L2
0pπq.

Theorem 5. Suppose that Assumption 3 holds and let α P r0, 1q and

λref “
1

1´ α2

ˆ

2
?
M `m´

p1´ αqm
?
M `m

˙

, µ “
p1` αqm
?
M `m

´
αm3{2

2pM `mq
.

Then there exist constants a, b, c depending on m, M and α such that a ą 0, c ą 0, b2 ă ac, and for
every f P DpBq Ă H1pπq Ă L2

0pπq, with B, DpBq as defined in (5.1),

(2.18) d
dtxxP

tf, P tfyy ď ´µxxP tf, P tfyy.

Moreover, for every f P L2
0pπq and t ě 0, we have

(2.19) }P tf}2 ď minpCe´µt, 1q}f}2,

where C “ ac`b2`2
?
acb2

ac´b2 .

Remark 10. Although (5.7) only implies variance bounds for functions inH1, we are able to extend
this to functions in L2pπq in the second half of the proof of Theorem 5, given in Section 5.2.1.
As our rates are the same as in Theorem 3, the optimal choice of α can be done as discussed in
Remark 8.

Since the first-coordinate process of BPS converges to RHMC, whose mixing we established
above, in the natural time-scale the computational cost of running BPS for one time unit serves
as a proxy for its algorithmic complexity. This cost is proportional to the number of total events
per time unit, including bounces and refreshments. Proposition 2 shows that the expected number
of bounces per unit time under Assumption 3 is at least

?
mpd´1{2q

2
?
π

, which is much larger than
the expected number of refreshments (λref) if the refreshment rate is chosen as recommended by
Theorems 3 and 5 (as long as M{m ! d and α is not too close to 1). Therefore in these cases it is
justified to choose λref in order to maximize the contraction rate µ of the limiting RHMC process.

Since each bounce has a computational cost of order Op1q in terms of gradient evaluations, our
results suggests that BPS scales like Opd1{2q in gradient evaluations under our assumptions. This
is the scaling observed in the simulations presented in the next section.
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Remark 11. We state here the rates for RHMC obtained by [1] and [47] under the same set of
assumptions on the potential, i.e. mId ĺ ∇2Upxq ĺ MId. Both papers show L2 bounds of the
form

}P tf} ď Ce´µt}f} for every f P L2
0pπq.

The convergence rate µ in [1] in this setting is shown to satisfy the inequality αpε0q ď µ ď 3αpε0q.
After some calculations with Mathematica, we were able to show that

m2

30 ď αpε0q ď
m2

5 for 0 ă m ă 1, and 0.03 ď αpε0q ď 0.11 for m ą 1,

when the optimal choice of refreshment rate is chosen as

λopt
ref “

8´ 2
?

2` 4
?

3
?

2
« 8.5583.

Assuming α “ 0 (no autoregressive part in the velocity refreshments), our results yield

µ “
m

?
M `m

for the choice λref “ 2
?
M `m´

m
?
M `m

,

We can see that for large values of M{m, the convergence rate of [1] is sharper, while for smaller
values, our rates are sharper. We note that the conditions in [1] are quite general, and only require
a Poincaré inequality, hence they are applicable even without strong convexity. [47] shows that
for RHMC, the convergence rate is µ “ Θp mλref

p
?
pmq`λrefq2

q, which is maximized when λref “ Θp
?
mq,

yielding µ “ Θp
?
mq. The dependence of these results on the parameters m,M improves upon [1]

and our paper, but the constant of proportionality is not known.
In the case of BPS, both [1] and [47] shows rates of the form µ “ Θp

?
dq. The dependence on

the parameters m and M is sharper in [47] compared to [1], but the constant of proportionality is
unknown. In contrast with these results, our high dimensional limit argument (Theorem 1) shows
that for functions that only depend on a single coordinate (or on a fixed number of coordinates),
in high dimensions, the convergence occurs according to a dimension independent rate µ as long
as we choose the refreshment rate appropriately, at λref “ Θp1q. This is useful in particular for
situations where we are interested in estimating the posterior mean.

2.5 Empirical results for different functions

In this section, we show some simulation results about the computational cost of the BPS for a d
dimensional standard normal target, and seven different test functions defined as follows,

f1pxq “ x1 pfirst coordinateq,

f2pxq “
d
ÿ

i“1
xi psum of all coordinatesq,

f3pxq “
d´1
ÿ

i“1
sinpxi ` xi`1q pa sum of sines depending on two component eachq,

f4pxq “ |x| pradiusq,

f5pxq “
|x|2

2 “

d
ÿ

i“1

x2
i

2 plog-densityq,
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f6pxq “ x2
1 psquare of first coordinateq,

f7pxq “ x1x2 pproduct of first and second coordinatesq.
In order to estimate the effective sample sizes, we have run 100 parallel BPS simulations with 106

events per simulation, starting from the Gaussian target distribution. The autoregressive parameter
α was set as α “ 0. Figure 2.2 shows the number of events required for one effective sample for
dimensions d “ 10, 100, 1000 and 10000 for these 7 functions, with refreshment parameter choices
λref “ 1 (as suggested by Theorems 3 and 5) and λref “

?
d (as suggested by [11] and Table 1 of

[1]). The number of events is a correct proxy for the computational cost as each event requires one
gradient evaluation (see Section 2.3 of [18] for the description of the implementation of BPS for
Gaussian targets). As we can see, if the refreshment rate is chosen as λref “ 1, these simulation
results show Op

?
dq scaling in the number of events required for an effective sample for all of the

functions except the radius and the log-density (f4 and f5). In contrast, the choice λref “
?
d seems

to require significantly more events per effective sample, with Opdq scaling observed empirically. In
the cases of the radius and the log-density, the choice λref “

?
d still seems to require Opdq events

per effective sample, while λref “ 1 is doing worse, approximately Opd4{3q events per effective
sample is required. The scaling limits for this function were studied in [11], who has recommended
choosing λref “ Op

?
dq to obtain the best mixing for the log-density, consistently with our empirical

results.
To sum up, we can see that if the goal of the simulation is to estimate the posterior mean or

posterior covariance matrix, or other quantities only depending a small subset of the coordinates,
then choosing λref as recommended by Theorems 3 and 5 yield good empirical performance (Op

?
dq

scaling in the number of events required for an effective sample). For functions depending on all of
the coordinates the situation is more complicated, and the best choice of λref is strongly function
dependent in this case.

3 Proof of Weak Convergence Result - Theorem 1
The proof will be based on a sequence of auxiliary results. First we will show that the RHMC
semigroup tP t : t ě 0u, acting on the Banach space C0pZq with the sup-norm is Feller, and that
the space C8c pZq is a core for its generator given in (2.5), in the sense that C8c is dense in DpAq
with respect to the norm ~ ¨ ~ :“ }f}8 ` }Af}8. This, and a sequence of auxiliary results, will
allow us to apply [36, Corollary 8.6] to prove Theorem 1.

3.1 Feller property

Recall that in the context of Theorem 1, we have d “ 1 and Z “ R2. A Markov process taking
values in Z, with transition semigroup tP t : t ě 0u, is called a Feller process and tP t : t ě 0u a
Feller semigroup, if it satisfies the following two properties
Feller property: for all t ě 0 and f P C0pZq we have P tf P C0pZq, and

Strong continuity: }P tf ´ f}8 Ñ 0 as tÑ 0 for f P C0pZq.
Proposition 6. Suppose that W : R ÞÑ r0,8q is continuously differentiable and lim|x|Ñ8W pxq “
8. Then the RHMC process tZtutě0 with generator A given by (2.5) with Hamiltonian Hpx, vq “
W pxq ` |v|2{2, α P p0, 1q and λref ą 0 is a Feller process. If in addition W P C8pRq, then C8c pRq
is a core for its generator.

Note that a more technical approach proposed recently in Holderrieth [42] requires weaker
assumptions.
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Figure 2.2: Number of BPS events per effective sample for 7 different functions for standard
Gaussian target as a function of the dimension, with two different scalings of the refreshment rate
λref in terms of the dimension
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3.1.1 Proof of Proposition 6

Before we proceed let us first define the resolvent operator for λ ą 0

Rλfpzq :“
ż 8

0
e´λsP sfpzqds “

ż 8

0
e´λsEz rfpZsqsds.

The proof will proceed as follows. First we will first show that Rλ : C0pZq Ñ C0pZq, and then
use [14, Corollary 1.23] to establish that tP t : t ě 0u has the Feller property, that is for all t ě 0
P t : C0pZq Ñ C0pZq. Once the Feller property is established by [14, Lemma 1.4] to prove strong
continuity, it suffices to prove the weaker statement P tfpzq Ñ fpzq, for all f P C0pZq and z P Z.
We now establish this property. Let T1, T2, . . . be the arrival times of the jumps. Then we have for
h ą 0

P hfpzq ´ fpzq “ Ez rfpZhqs ´ fpzq

“ E
z rfpZhq1tT1 ě hus ´ fpzq ` Ez rfpZhq1tT1 ă hus

“ f pΞph, zqq e´λrefh ´ fpzq ` E ,

where we write Ξpz, tq for the solution of the Hamiltonian dynamics at time t initialized at z0 “ z.
It is well-known that if H : R ˆ R Ñ R is continuously differentiable everywhere then Ξpz, sq is
well defined for all s ą 0 (see for example [22, Theorem 1.186]), H

`

Ξpz, sq
˘

“ Hpzq for all s ą 0
and Ξpz, hq Ñ z as hÑ 0. Since f is bounded it easily follows that as hÑ 0

|E | ď }f}8p1´ e´λrefhq Ñ 0.

Since Ξpz, hq Ñ z as hÑ 0, the result follows.

Proof of the Feller property. From [23, Equation 2.6] we know that we can express the
resolvent kernel as follows for a measurable set A

(3.1) Rλpz,Aq “
8
ÿ

j“0
J jλKλpz,Aq,

where

Kλpz,Aq :“
ż 8

0
e´λs´λrefs1A pΞpz, sqq ds,(3.2)

Jλpz,Aq :“
ż 8

0
λref e´λs´λrefsQα pΞpz, sq, Aq ds,(3.3)

with Ξpz, sq “ Ξ
`

px, vq, s
˘

as defined above.
We will now show that Rλf P C0pZq for any f P C0pZq. This follows from the next result.

Lemma 1. W P C1pR; r0,8qq, W pxq Ñ 8 as |x| Ñ 8 and let f P C0pZq. Then, for any λ ą 0,
we have Jλf,Kλf P C0pZq and }Jλf}8 ď λref{pλ` λrefq}f}8. In particular

Rλf “
8
ÿ

j“0
J jλKλf P C0pZq.
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Proof of Lemma 1. Let λ ą 0 and let us first look at Kλ. Suppose now that f P C0pZq and that
zn Ñ z. Then

|Kλfpzq ´Kλfpznq| ď

ż 8

0
λref e´λs´λrefs|f pΞpz, sqq ´ f pΞpzn, sqq |dsÑ 0,

by the bounded convergence theorem, since f is bounded and the functions s ÞÑ |f pΞpz, sqq ´
f pΞpzn, sqq | vanish pointwise by the continuity of f and the continuous dependence of the solution
tΞpz, sq : s ě 0u on the initial condition; see, e.g., [22, Theorem 1.3]. This establishes that Kλf is
continuous.

Next we prove that Kλf vanishes at infinity. Let ε ą 0 be arbitrary. Since W pxq Ñ 8 as
|x| Ñ 8, the level sets HL :“ tz : Hpzq ď Lu are compact and Z “ YLą0tz : Hpzq ď Lu.
Therefore we can find L “ Lpεq such that |fpzq| ă εpλ ` λrefq for z R HL. For all such z, since
HpΞpz, sqq “ Hpzq for all s ą 0, we have that

|Kλfpzq| ď

ż 8

0
e´λs´λrefs |f pΞpz, sqq|ds

ă εpλ` λrefq

ż 8

0
e´λs´λrefsds “ ε.

Thus we conclude that for all λ ą 0 we have Kλ : C0pZq Ñ C0pZq.
Now we move on to Jλ. First notice that for any f P C0pZq we have Qαf is also continuous.

To see why let zn “ pxn, vnq Ñ z “ px, vq and notice that as d “ 1

|Qαf pznq ´Qαf pzq |

ď
1
?

2π

ż 8

´8

ˇ

ˇ

ˇ
f
´

xn, αvn `
a

1´ α2ξ
¯

´ f
´

x, αv `
a

1´ α2ξ
¯ˇ

ˇ

ˇ
e´ξ2{2dξ Ñ 0,

by the bounded convergence theorem, since f is continuous and bounded, and therefore Qαf is
continuous. Next, for any δ ą 0 we can choose a compact set Kδ such that |fpzq| ă δ for z R Kδ.
In particular, since Kδ is compact, for any δ ą 0 we can also find Mδ ą 0 such that

Kδ Ă tpx, vq : |x|, |v| ďMδu.

Fix ε P p0, 1{2q and choose zε such that Φpzεq “ 1 ´ ε{2, where Φ is the cumulative distribution
function of the standard normal distribution. Then

|Qαf pzq | ď ε}f}8 `
1
?

2π

ż zε

ξ“´zε

ˇ

ˇ

ˇ
f
´

x, αv `
a

1´ α2ξ
¯ˇ

ˇ

ˇ
e´ξ2{2dξ.

Then for all z “ px, vq and ξ such that |x| ąMε, |v| ą pMε ` zεq{α and |ξ| ă zε we have
ˇ

ˇ

ˇ
αv `

a

1´ α2ξ
ˇ

ˇ

ˇ
ě α|v| ´

a

1´ α2|ξ| ě α|v| ´ |ξ| ěMε ` zε ´ zε ąMε.

Therefore for such z we have that

|Qαf pzq | ď ε}f}8 `
1
?

2π

ż zε

ξ“´zε

ˇ

ˇ

ˇ
f
´

x, αv `
a

1´ α2ξ
¯ˇ

ˇ

ˇ
e´ξ2{2dξ

ă ε}f}8 `
ε
?

2π

ż zε

ξ“´zε

e´ξ2{2dξ,
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and since ε ą 0 is arbitrary it follows that Qαf P C0pZq.
Observe that Jλfpzq “ λrefKλQαfpzq. Therefore if f P C0pZq, since we have already shown

that Qα : C0pZq Ñ C0pZq and Kλ : C0pZq Ñ C0pZq, it follows that Jλf P C0pZq.
Finally, since clearly }Qαf pΞpz, sqq }8 ď }f}8

}Jλf}8 “ sup
z

ˇ

ˇ

ˇ

ż 8

0
λref e´λs´λrefsQαf pΞpz, sqq ds

ˇ

ˇ

ˇ

ď

ż 8

0
λref e´λs´λrefs}Qαf pΞpz, sqq }8ds

ď

ż 8

0
λref e´λs´λrefs}f}8ds “ λref

λ` λref
}f}8,

and since λ ą 0 we can see that this is a strict contraction. From this, it follows that the sequence
n
ÿ

j“0
J jλKλf,

is Cauchy in the Banach space pC0pZq, } ¨ }8q, whence the conclusion follows.

C8c is a core. Define the semigroup tQt : t ě 0u, where for each t ě 0 Qt : C0pZq ÞÑ C0pZq is
defined through Qtfpzq “ f pΞpz, tqq, with Ξpz, tq denoting as before the solution of the Hamiltonian
dynamics started from z at time t. It can be easily shown that the generator of Qt is given for
f P C8c pZq by

Bfpx, vq “ p∇xf, vq ´ p∇vf,∇Upxqq,

that is the first two terms of the generator A of RHMC.
Let f be supported on a compact set K. By our assumptions on the Hamiltonian H, there

exists L ą 0 such that K Ď HL :“ tpx, vq : Hpx, vq ď Lu. Letting z R HL, for all t ě 0, we have by
definition HpΞpz, tqq “ Hpzq and thus Ξpz, tq R HL. Therefore Qtf will have compact support.

Notice next, since W P C8pRq, that for any t ě 0 the mapping z ÞÑ Ξpz, tq is infinitely
differentiable, see e.g. [22, Exercise 1.185]. From this and the above discussion we conclude that
for any f P C8c pZq and t ě 0 we have Qtf P C8c . Therefore from Davies [25, Theorem 1.9], and
since C8c pZq Ă C0pZq is dense, we conclude that C8c is a core for B, and in particular that for any
f P DpBq, there exists a sequence tfn : n ě 0u Ă C8c pZq such that

}fn ´ f}8 ` }Bfn ´Bf}8 Ñ 0.

Since the operator λrefrQα´Is is clearly bounded on C0pZq for any α, it follows that DpAq “ DpBq,
and that for the sequence tfnu above we also have

}fn ´ f}8 ` }Afn ´Af}8 Ñ 0,

proving that C8c pZq is a core for A.

3.2 Proof of Theorem 1

Recall that we write tZnpsq : s ě 0u for BPS initialized from πn, the generator of which we denote
with An, and write tZp1qn psq : s ě 0u for its first component. In addition let

Fn
t :“ σtZnpsq : s ď tu, and Gnt :“ σ

!

Zp1qn psq : s ď t
)

.

18



Let εn Ñ 0 be monotone and to be specified later on. All expectations will be with respect
to the path measure of BPS started from πn. We proceed with the usual construction. For some
function f : Z Ñ R, that is f is a function only of Zp1qn , such that f P C8c , smooth with compact
support, we define

ξnptq :“ ε´1
n

ż εn

0
E

”

f
`

Zp1qn pt` sq
˘ˇ

ˇGnt
ı

ds,(3.4)

φnptq :“ ε´1
n E

”

f
´

Zp1qn pt` εnq
¯

´ f
´

Zp1qn ptq
¯ˇ

ˇ

ˇ
Gnt

ı

.(3.5)

Abusing notation, we will also write f for the mapping Zn ÞÑ R given by fpz1, . . . , znq “ fpz1q. We
have already established that pA, C8c q generates the strongly continuous semigroup

 

P t : t ě 0
(

corresponding to RHMC. To apply [36, Corollary 8.6 of Chapter 4] we need to check the following:

• Strongly Separating algebra: the closure of the linear span of C8c contains an algebra
that strongly separates points, see [36, Section 3.4] for the definition. This is obvious since
C8c pZq strongly separates points and is dense in the algebra C0pZq, since any function in
C0pZq can be approximated arbitrarily well by functions in CcpZq by multiplying with, and
then convolving with appropriate mollifiers.

• Generator convergence: for each f P C8c pZq and T ą 0, for ξn, φn as defined in (3.4),(3.5)

sup
n

sup
tďT

Er|ξnptq|s ă 8(3.6)

sup
n

sup
tďT

Er|φnptq|s ă 8(3.7)

lim
nÑ8

E

”ˇ

ˇ

ˇ
ξnptq ´ f

´

Zp1qn ptq
¯ˇ

ˇ

ˇ

ı

“ 0,(3.8)

lim
nÑ8

E

”
ˇ

ˇ

ˇ
φnptq ´Af

´

Zp1qn ptq
¯
ˇ

ˇ

ˇ

ı

“ 0,(3.9)

and in addition

(3.10) lim
nÑ8

E

#

sup
tPQXr0,T s

|ξnptq ´ fpZ
p1q
n ptqq|

+

“ 0,

and for some p ą 1

(3.11) sup
nÑ8

E

«

ˆ
ż T

0
|φnpsq|

pds
˙1{pff

ă 8.

3.2.1 Proof of Equations (3.10) and (3.8).

Since condition (3.8) is implied by (3.10), we will establish (3.10).
First recall that for each n, BPS is non-explosive. To see why, for each x,v, let L ą |v| ą 0

and consider
τn,L :“ inftt ě 0 : Znptq R Bpx, L2q ˆBp0, Lqu.

Letting

σxn,L2 :“ inftt ě 0 : Xnptq R Bpx, L
2qu, σvn,L :“ inftt ě 0 : Vnptq R Bp0, Lqu,
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we have

τn,L “ σxn,L21tσxn,L2 ă σvn,Lu ` σ
v
n,L1tσ

x
n,L2 ě σvn,Lu

ě L1tσxn,L2 ă σvn,Lu ` σ
v
n,L1tσ

x
n,L2 ě σvn,Lu ě L_ σvn,L,

where the first inequality follows, since on the event tσxL2 ě σvLu the maximum speed up to σxL2 is
less than L. Since |Vnptq| only changes at the arrivals of a homogeneous Poisson process with rate
λref ą 0, it is clear that as LÑ8, σvn,L Ñ8 and therefore τn,L Ñ8.

Fix T ą 0. Since BPS is non-explosive for every n and δ ą 0 we can find a Kn,δ ą 0 such that

P

„

sup
tďT`1

|Znptq| ě Kn,δ



ď δ.

For δn Ñ 0 and by a diagonal argument, we can find a sequence Kn,δn such that

P

„

sup
tďT`1

|Znptq| ě Kn,δn



ď δn Ñ 0.

We will write Gn for the event

Gn :“
"

sup
tďT`1

|Znptq| ď Kn,δn

*

.

Then we have for εn Ñ 0, to be specified later on,

E

«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ
ξnptq ´ f

´

Zp1qn ptq
¯ˇ

ˇ

ˇ

ff

“ E

«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

f
´

Zp1qn pt` rq
¯

´ f
´

Zp1qn ptq
¯ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

“ E

«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!

f
´

Zp1qn pt` rq
¯

´ f
´

Zp1qn ptq
¯ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

ď E

«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!´

f
´

Zp1qn pt` rq
¯

´ f
´

Zp1qn ptq
¯¯

1Gn

ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

` E

«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!´

f
´

Zp1qn pt` rq
¯

´ f
´

Zp1qn ptq
¯¯

1Gc
n

ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

:“ J1 ` J2.

For the term J2 we have for p ą 1

J2 ď 2}f}8E
«

sup
tPr0,T sXQ

E
“

1Gc
n

ˇ

ˇGnt
‰

ff

ď 2}f}8E
«˜

sup
tPr0,T sXQ

E
“

1Gc
n

ˇ

ˇGnt
‰

¸pff1{p

ď 2}f}8
p

p´ 1E
“

E
“

1Gc
n

ˇ

ˇGnT
‰p‰1{p

ď 2}f}8
p

p´ 1E
”

1
p
Gc
n

ı1{p
“ 2}f}8

p

p´ 1δ
1{p
n ,(3.12)

where we used Jensen’s inequality, the fact that for each n,
 

Er1Gc
n
| Gnt s : t ě 0

(

is a Gnt -martingale
and Doob’s martingale inequality.
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We proceed with the term J1 as follows

J1 ď E

«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!”

f
´

Zp1qn pt` rq
¯

´ f
´

Zp1qn ptq
¯ı

1Gn1tτ
ref
1 ptq ą εnu

ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

` E

«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!”

f
´

Zp1qn pt` rq
¯

´ f
´

Zp1qn ptq
¯ı

1Gn1tτ
ref
1 ptq ď εnu

ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

“: J1,1 ` J1,2,

where we denote by τ ref
1 ptq the first refreshment time after time t. Since refreshment happens

independently we can bound J1,2

J1,2 ď 2}f}8E
«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
p1´ e´λrefεnqdr

ˇ

ˇ

ˇ

ˇ

ff

ď 2}f}8λref εn Ñ 0.

We control the term J1,1 in two steps. To keep notation short we introduce the notation
G1nptq :“ tτ ref

1 ptq ą εnu. Then

J1,1 ď E

«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!”

f
´

Xp1qn pt` rq, V p1qn pt` rq
¯

´ f
´

Xp1qn ptq, V p1qn pt` rq
¯ ı

1Gn1G1nptq

ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

` E

«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!”

f
´

Xp1qn ptq, V p1qn pt` rq
¯

´ f
´

Xp1qn ptq, V p1qn ptq
¯ ı

1Gn1G1nptq

ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

“: J1,1,1 ` J1,1,2.

For the first term, since only the location component changes we have

J1,1,1 ď }Bxf}8E

«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!
ˇ

ˇ

ˇ
Xp1qn pt` rq ´Xp1qn ptq

ˇ

ˇ

ˇ
ˆ 1Gn1G1nptq

ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

ď }Bxf}8E

«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

εn

ˇ

ˇ

ˇ
V p1qn ptq

ˇ

ˇ

ˇ
ˆ 1Gn1G1nptq

ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

,

where the second inequality follows from the linear dynamics of BPS, since on the event G1nptq
there is no refreshment event and therefore the norm of the velocity component does not change.
Finally, recalling the definition of the event Gn we obtain

J1,1,1 ď }Bxf}8εnKn,δn .

Next we have to control the term J1,1,2 for which we point out that, since there is no refreshment
event, the velocity will remain constant on the interval rt, t` εns unless there is a bounce. Writing
σ1ptq for the arrival time of the first bounce after time t we thus have

J1,1,2

“ E

«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!”

f
´

Xp1qn ptq, V p1qn pt` rq
¯

21



´ f
´

Xp1qn ptq, V p1qn ptq
¯ ı

1tσ1ptq ă εnu1Gn1G1nptq

ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

ď 2}f}8E
«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!

1tσ1ptq ă εnu1Gn1G1nptq

ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

ď 2}f}8E
«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!

1tσ1ptq ă εnu
ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

ď 2}f}8E
«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!”

1´ exp
´

´

ż εn

0
p∇UnpXnpt` sqq,Vnpt` sqq`ds

¯ı
ˇ

ˇ

ˇ
Fn
t

)
ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

,

where we dropped the indicators in order to be able to compute the probability of no bounce. We
again decompose according to the event Gn in order to proceed

J1,1,2

ď 2}f}8E
«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!”

1´ exp
´

´

ż εn

0
p∇UnpXnpt` sqq,Vnpt` sqq`ds

¯ı

1Gn

ˇ

ˇ

ˇ
Fn
t

)
ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

` 2}f}8E
«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!”

1´ exp
´

´

ż εn

0
p∇UnpXnpt` sqq,Vnpt` sqq`ds

¯ı

1Gc
n

ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

.

Since the integrand is bounded above by 1, a calculation similar to the one for the term J2 in
(3.12) shows that the second term above vanishes as n Ñ 8, and therefore using the inequality
1´ expp´xq ď x for x ą 0 we have for p ą 1

J1,1,2

ď Cδ1{p
n ` 2}f}8E

«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

E

!

ż εn

0
|∇UnpXnpt` sqq||Vnpt` sq|ds1Gn

ˇ

ˇ

ˇ
Fn
t

)
ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

ď Cδ1{p
n `

` 2}f}8E
«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

„

E

"
ż εn

0

ˆ

1
2 |∇UnpXnpt` sqq|

2 `
1
2 |Vnpt` sq|

2
˙

dsˆ 1Gn
ˇ

ˇ

ˇ

ˇ

Fn
t

*ˇ

ˇ

ˇ

ˇ

Gnt


dr
ˇ

ˇ

ˇ

ˇ

ff

ď Cδ1{p
n `

2C}f}8E
«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

„

E

"
ż εn

0

`

M |Xnpt` sq|
2 ` |Vnpt` sq|

2˘ dsˆ 1Gn
ˇ

ˇ

ˇ

ˇ

Fn
t

*ˇ

ˇ

ˇ

ˇ

Gnt


dr
ˇ

ˇ

ˇ

ˇ

ff

since |∇Unpx| “ |∇Unpx´∇Unp0q| ďM |x| by Assumption 1

ď Cδ1{p
n `

2CM}f}8E
«

sup
tPr0,T sXQ

ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

”

Cεn|Znpt` sq|
2
1Gn

ˇ

ˇ

ˇ
Fn
t

)ˇ

ˇ

ˇ
Gnt

ı

dr
ˇ

ˇ

ˇ

ˇ

ff

ď Cδ1{p
n ` 2C}f}8εnK2

n,δn .

We choose εn such that εnK2
n,δn

Ñ 0.
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3.2.2 Proof of (3.9).

Next we prove (3.9). First, by stationarity notice that we can equivalently check

E

”
ˇ

ˇ

ˇ
φnp0q ´Af

´

Zp1qn p0q
¯
ˇ

ˇ

ˇ

ı

Ñ 0.

Notice first that f P D
`

rAn

˘

, the domain of the extended generator, since f is smooth and bounded
(see [26, Theorem 26.14])

φnp0q “ ε´1
n E

”

f
´

Zp1qn pεnq
¯

´ f
´

Zp1qn p0q
¯ˇ

ˇ

ˇ
Gn0

ı

“ ε´1
n E

„
ż εn

0
rAnf pZnpsqq ds`Rnpsq

ˇ

ˇ

ˇ

ˇ

Gn0


“ ε´1
n E

„
ż εn

0
rAnf pZnpsqq ds

ˇ

ˇ

ˇ

ˇ

Gn0


,

where we used the facts that Rnptq is an Fn
t -martingale and Fn

t Ď Gnt , whence

E rRnpsq|Gn0 s “ E tE rRnpsq|Fn
0 s|Gn0 u “ 0.

We also notice that gn :“ rAnf P Dom
`

rAn

˘

the domain of the extended generator. Therefore

φnp0q “ ε´1
n

ż εn

0
E rgn pZnpsqq|Gn0 sds

“ ε´1
n

ż εn

0
E

„

rAnf pZnp0qq `
ż s

0
rAngn pZnprqq `R1

npsqdr
ˇ

ˇ

ˇ

ˇ

Gn0


ds

“ ε´1
n

ż εn

0
E

„

rAnf pZnp0qq `
ż s

0
rAngn pZnprqq dr

ˇ

ˇ

ˇ

ˇ

Gn0


ds,

where, from [26, Theorem 26.12], it follows that the local martingale tR1
npsq : s ě 0u is actually a

proper martingale, and therefore using the same arguments as before, for s ą 0,

E
“

R1
npsq

ˇ

ˇGn0
‰

“ 0.

Then we have

E

”ˇ

ˇ

ˇ
φnp0q ´Af

´

Zp1qn p0q
¯ˇ

ˇ

ˇ

ı

ď E

”ˇ

ˇ

ˇ
E

”

rAnf pZnp0qq
ˇ

ˇ

ˇ
Gn0

ı

´Af
´

Zp1qn p0q
¯ˇ

ˇ

ˇ

ı

` E

"
ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

„
ż s

0
rAngn pZnprqq dr

ˇ

ˇ

ˇ

ˇ

Gn0


ds
ˇ

ˇ

ˇ

ˇ

*

ď E

”ˇ

ˇ

ˇ
E

”

rAnf pZnp0qq
ˇ

ˇ

ˇ
Gn0

ı

´Af
´

Zp1qn p0q
¯ˇ

ˇ

ˇ

ı

` ε´1
n

ż εn

0

ż s

0
E

!

E

”

ˇ

ˇ rAngn pZnprqq
ˇ

ˇ

ˇ

ˇ

ˇ
Gn0

ı)

drds

:“ E

”ˇ

ˇ

ˇ
E

”

rAnf pZnp0qq
ˇ

ˇ

ˇ
Gn0

ı

´Af
´

Zp1qn p0q
¯ˇ

ˇ

ˇ

ı

`Rn,(3.13)

applying Jensen’s inequality conditionally. Finally by the tower law and by stationarity of tZnptq :
t ě 0u when initialized from πn

Rn “ ε´1
n

ż εn

0

ż s

0
E

!

E

”

ˇ

ˇ rAngn pZnprqq
ˇ

ˇ

ˇ

ˇ

ˇ
Gn0

ı)

drds

“ ε´1
n

ż εn

0

ż s

0
E

!

ˇ

ˇ rAngn pZnprqq
ˇ

ˇ

)

drds “ εn
2 E

!

ˇ

ˇ rAngn pZnp0qq
ˇ

ˇ

)

.
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Error term. We will now control this error term. Recall first that for f P C8c pZq Ă DpAnq we
have

Anfpx,vq “ p∇fpxq,vqq `maxt0, p∇Unpxq,vqu rRnf px,vq ´ f px,vqs ` λref rQf px,vq ´ f px,vqs ,

Rnf px,vq :“ f

ˆ

x,v ´ 2p∇Unpxq,vqq
|∇Unpxq|2

∇Unpxq
˙

,

Qα,nf px,vq :“ 1
p2πqn{2

ż

Rn
e´|ξ|2{2f

´

x, αv `
a

1´ α2ξ
¯

dξ.

Potentially abusing notation, for n ě 1 and x P Rn we define a mapping Rnpxq : Rn ÞÑ Rn through

Rnpxqv :“ v ´ 2p∇Unpxq,vq
|∇Unpxq|2

∇Unpxq,

with the convention that Rnpxqv “ 0, when ∇Unpxq “ 0.
We decompose the generator An into three parts

An “ Ap1qn `Ap2qn `Ap3qn ,

where

Ap1qn fpx,vq “
d
dtf px` tv,vq

ˇ

ˇ

ˇ

ˇ

t“0
,

Ap2qn fpx,vq “ maxt0, p∇Unpxq,vqu rRnf px,vq ´ f px,vqs ,

Ap3qn fpx,vq “ λref rQf px,vq ´ f px,vqs .

Remark 12. Notice that when f is differentiable we have

Ap1qn fpx,vq “ x∇fpxq,vy,

however for Ap1qn fpx, vq to be well defined we only need that t ÞÑ fpx`tv,vq is absolutely continuous,
see Davis [26, Chapter 2.22].

Therefore when considering Angn “ AnAnfn we will need to consider all possible combinations
Apiqn Apjqn since the operators do not necessarily commute.

Case i “ 1. Using the fact that fpx,vq “ fpx1, v1q, where we write px1, v1q for the first location
and velocity components of px,vq, the first term reduces to

Ap1qn Ap1qn fpx,vq “
d
dtp∇fpxq,vq

ˇ

ˇ

ˇ

ˇ

t“0
“

d
dt
B

Bx
fpx1 ` tv1, v1qv1

ˇ

ˇ

ˇ

ˇ

t“0

“
B2f

Bx2 px1, v1qv
2
1.

Since f P C8c pR ˆ Rq, it follows that B2
xfpx, vq is also continuous and compactly supported and

therefore bounded. Thus

E

ˇ

ˇ

ˇ

ˇ

B2f

Bx2 pX
p1q, V p1qq

´

V p1q
¯2
ˇ

ˇ

ˇ

ˇ

ď

›

›

›

›

B2f

Bx2

›

›

›

›

8

E

„

´

V p1q
¯2


ď

›

›

›

›

B2f

Bx2

›

›

›

›

8

“ Op1q,

since under πn, V p1q is centered Gaussian with unit variance.
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The second term, see Remark 12, takes the form

Ap1qn Ap2qn fpx,vq “
d
dtA

p2q
n fpx` tv,vq

ˇ

ˇ

ˇ

ˇ

t“0

“
d
dt maxt0, p∇Unpx` tvq,vqqu

ˇ

ˇ

ˇ

ˇ

t“0
rRf px,vq ´ f px,vqs

`
d
dt rRf px` tv,vq ´ f px` tv,vqs

ˇ

ˇ

ˇ

ˇ

t“0
maxt0, p∇Unpxq,vqqu

“: J1 ` J2.

For J1, since by Assumption 1 ∇Un is M -Lipschitz

|max t0, p∇Unpx` hvq,vqu ´max t0, p∇Unpxq,vqu|
ď |p∇Unpx` hvq,vq ´ p∇Unpxq,vqq| ďMh|v|2.

Therefore we have that, for h P p0, 1q

h´1 |maxt0, p∇Unpx` hvq,vqu ´maxt0, p∇Unpxq,vqu| ďM |v|2 P L1pπq,

since the Vi are standard normal random variables. In addition since f is bounded it follows that
Rf px,vq ď }f}8. Therefore by the dominated convergence theorem, we can exchange the h Ñ 0
limit and expectation to obtain

π rJ1s ď 2}f}8E
„ˇ

ˇ

ˇ

ˇ

d
dt maxt0, p∇UnpX ` tV q,V qqu

ˇ

ˇ

ˇ

t“0

ˇ

ˇ

ˇ

ˇ



ď 2}f}8E
„

lim
hÑ0

h´1 |p∇UnpX ` hV q,V qq ´ p∇UnpXq,V qq|


ď 2}f}8ME

”

|V |2
ı

“ OpMnq.

For J2 a lengthy but straightforward calculation shows that

d
dtRf px` tv,vq

ˇ

ˇ

ˇ

ˇ

t“0

“
d
dtf

ˆ

x1 ` tv1, v1 ´ 2p∇Unpx` tvq,vqq
|∇Unpx` tvq|2

B1Unpx` tvq

˙ˇ

ˇ

ˇ

ˇ

t“0

“ Bxf

ˆ

x1, v1 ´ 2p∇Unpxq,vq
|∇Unpxq|2

B1Unpxq

˙

v1

´ 2Bvf
ˆ

x1, v1 ´ 2p∇Unpxq,vq
|∇Unpxq|2

B1Unpxq

˙

d
dt

ˆ

p∇Unpx` tvq,vq
|∇Unpx` tvq|2

B1Unpx` tvq

˙
ˇ

ˇ

ˇ

ˇ

t“0
“ pRBxfqpx,vqv1 ´ pRBvfqpx,vq ˆ Upx,vq,

where

Upx,vq :“ d
dt

ˆ

2p∇Unpx` tvq,vq
|∇Unpx` tvq|2

B1Unpx` tvq

˙ˇ

ˇ

ˇ

ˇ

t“0

“
2

|∇Unpxq|2

#

`

v,∇U2
npxqv

˘

B1Unpxq ` p∇Unpxq,vq
n
ÿ

j“1
B2
j,1Unpxqvj

+
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´
1

|∇Unpxq|4
 

2B1Unpxq
`

∇Unpxq,∇2Unpxqv
˘

p∇Unpxq,vq
(

,

and thus by Assumption 1

|Upx,vq| ď
2

|∇Unpxq|2
 

M |∇Unpxq||v|2 `M |v|2|∇Unpxq|
(

`
1

|∇Unpxq|4
 

2M |∇Unpxq|3|v|2
(

,

whence

|Upx,vqmaxt0, p∇Unpxq,vqqu| ď
C|v|

|∇Unpxq|
 

M |∇Unpxq||v|2 `M |v|2|∇Unpxq|
(

`
C|v|

|∇Unpxq|3
 

M |∇Unpxq|3|v|2
(

ď CM |v|3.

Thus overall,
ˇ

ˇ

ˇ

ˇ

d
dtRf px` tv,vq

ˇ

ˇ

ˇ

t“0
maxt0, p∇Unpxq,vqqu

ˇ

ˇ

ˇ

ˇ

ď }Bxf}8|v|
2|∇Unpxq| ` CM}Bvf}8|v|3.

On the other hand
ˇ

ˇ

ˇ

ˇ

d
dtf px` tv,vq

ˇ

ˇ

ˇ

ˇ

t“0
maxt0, p∇Unpxq,vqqu

ˇ

ˇ

ˇ

ˇ

ď }Bxf}8|∇Upxq||v|2.

Thus overall we have that, using the fact that pV1, . . . , Vnq are i.i.d. standard Gaussians and
Lemma A.3 in the Appendix

πr|J2|s ď CE r|∇UnpXq|sE
“

|V 2|
‰

` CME
“

|V |3
‰

ď CM1{2n3{2 ` CMn3{2 “ OpMn3{2q

and thus we have that π
”ˇ

ˇ

ˇ
Ap1qn Ap2qn f

ˇ

ˇ

ˇ

ı

“ OpMn3{2q.
For the final term, since Qfpx,vq “ Qfpx1, v1q we have

Ap1qn Ap3qn fpx,vq “
d
dtA

p3q
n fpx` tv,vq

ˇ

ˇ

ˇ

ˇ

t“0

“ λref
d
dt rQfpx1 ` tv1, v1q ´ fpx1 ` tv1, v1qs

ˇ

ˇ

ˇ

ˇ

t“0
“ λref rQpBxfqpx1 ` tv1, v1q ´ Bxfpx1, v1qs v1,

by an application of dominated convergence. We can easily see from the above that π
“

Ap1qn Ap3qn f
‰

“

Op1q as nÑ8.

Case i “ 2. For the first term Ap2qn Ap1qn f , notice first that since fpx,vq “ fpx1, v1q we have

Ap1qn fpx,vq “ Bxfpx1, v1qv1 “: hpx1, v1q.

Therefore

Rnhpx,vq “ Bxf

ˆ

x1, v1 ´ 2p∇Unpxq,vq
|∇Unpxq|2

B1Unpxq

˙ˆ

v1 ´ 2p∇Unpxq,vq
|∇Unpxq|2

B1Unpxq

˙

,

26



whence

Rnhpx,vq ´ hpx,vq “ v1 rRnBxfpx,vq ´ Bxfpx,vqs ´ 2RnBxfpx,vq
p∇Unpxq,vq
|∇Unpxq|2

B1Unpxq,

and thus

E

ˇ

ˇ

ˇ
Ap2qn Ap1qn fpX,V q

ˇ

ˇ

ˇ
ď E r|p∇UnpXq,V q| ˆ |V1| ˆ |RnBxfpX,V q ´ BxfpX,V q|s

` 2E
„

|p∇UnpXq,V q| ˆ
ˇ

ˇ

ˇ

ˇ

RnBxfpX,V q
p∇UnpXq,V q
|∇UnpXq|2

B1Unpxq

ˇ

ˇ

ˇ

ˇ



ď p}RnBxf}8 ` }Bxf}8qE r|V | ˆ |V1|sE r|∇UnpXq|s

` 2}RnBxf}8E

„

p∇UnpXq,V q2

|∇UnpXq|2
|B1Unpxq|



ď p}RnBxf}8 ` }Bxf}8qE r|V | ˆ |V1|sE r|∇UnpXq|s
` 2}RnBxf}8E r|B1UnpXq|s ,

where for the second term we used the tower law and the fact that conditionally onX, p∇UnpXq,V q
is Gaussian with mean 0 and variance |∇UnpXq|2. Using the Cauchy-Schwarz inequality and
Lemma A.3 from the Appendix we have

E

ˇ

ˇ

ˇ
Ap2qn Ap1qn fpX,V q

ˇ

ˇ

ˇ
ď p}RnBxf}8 ` }Bxf}8qCM

?
nE

“

|V1|
2‰1{2

Er|V |2s1{2

` 2}RnBxf}8E r|∇UnpXq|s “ OpMnq.

For the next term Ap2qn Ap2qn f first we write

Ap2qn Ap2qn fpx,vq “ max t0, p∇Unpxq,vqu
”

RnAp2qn fpx,vq ´Ap2qn fpx,vq
ı

.

Then notice that

RnAp2qn fpx,vq “ max
"

0,
ˆ

∇Unpxq,v ´ 2p∇Unpxq,vq
|∇Unpxq|2

∇Unpxq
˙*

ˆ

„

Rnf

ˆ

x1, v1 ´ 2p∇Unpxq,vq
|∇Unpxq|2

B1UnpXq

˙

´ f

ˆ

x1, v1 ´ 2p∇Unpxq,vq
|∇Unpxq|2

B1UnpXq

˙

“ max t0, p∇Unpxq,´vqu

ˆ

„

Rnf

ˆ

x1, v1 ´ 2p∇Unpxq,vq
|∇Unpxq|2

B1UnpXq

˙

´ f

ˆ

x1, v1 ´ 2p∇Unpxq,vq
|∇Unpxq|2

B1UnpXq

˙

,

and therefore that
ˇ

ˇ

ˇ
RnAp2qn fpx,vq ´Ap2qn fpx,vq

ˇ

ˇ

ˇ
ď 2}f}8 |p∇Unpxq,vq|

ˇ

ˇ

ˇ
Ap2qn Ap2qn fpx,vq

ˇ

ˇ

ˇ
ď 2}f}8 p∇Unpxq,vq2 .

Thus

E

ˇ

ˇ

ˇ
Ap2qn Ap2qn fpX,V q

ˇ

ˇ

ˇ
ď C}f}8E

”

p∇UnpXq,V q2
ı

ď C}f}8E
!

E

”

p∇UnpXq,V q2
ˇ

ˇ

ˇ
X
ı)
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using the fact that conditionally on X, p∇UnpXq,V q is Gaussian

“ C}f}8E
 

|∇UnpXq|2
(

“ OpMnq

from Lemma A.3 in the Appendix.
Next we consider the term Ap2qn Ap3qn f . Since f is bounded, it easily follows that Ap3qn f is also

bounded and therefore that
ˇ

ˇ

ˇ
Ap2qn Ap3qn fpx,vq

ˇ

ˇ

ˇ
“ max t0, p∇Unpxq,vqu

ˇ

ˇ

ˇ
RnAp3qn fpx,vq ´Ap3qn fpx,vq

ˇ

ˇ

ˇ

ď 2λref}f}8max t0, p∇Unpxq,vqu .

Therefore

E

ˇ

ˇ

ˇ
Ap2qn Ap3qn fpX,V q

ˇ

ˇ

ˇ
ď CE |p∇UnpXq,V q| ď CE

“

p∇UnpXq,V q2
‰1{2

“ OpM1{2n1{2q,

from Lemma A.3 and calculations similar to the previous term.

Case i “ 3. The first term to consider is

Ap3qn Ap1qn fpx,vq “ λref

”

QAp1qn fpx,vq ´Ap1qn fpx,vq
ı

“ λref

ż

”

Ap1qn fpx1, αv1 `
a

1´ α2ξq ´Ap1qn fpx,vq
ı

φpξqdξ

“ λref

ż

”

Bxfpx1, αv1 `
a

1´ α2ξq
´

αv1 `
a

1´ α2ξ
¯

´ Bxfpx1, v1qv1

ı

φpξqdξ,

where φ denotes the standard normal density. Since }Bxf}8 ă 8 we have

E

ˇ

ˇ

ˇ
Ap3qn Ap1qn fpX,V q

ˇ

ˇ

ˇ
ď λref}Bxf}8E

”
ˇ

ˇ

ˇ
αV1 `

a

1´ α2ξ
ˇ

ˇ

ˇ
` |V1|

ı

“ Op1q,

as nÑ8.
For the second term we have, using Jensen’s inequality on the Markov kernel Q,

E

ˇ

ˇ

ˇ
Ap3qn Ap2qn fpX,V q

ˇ

ˇ

ˇ
ď λrefE

”ˇ

ˇ

ˇ
QAp2qn fpX,V q

ˇ

ˇ

ˇ

ı

` λrefE
”ˇ

ˇ

ˇ
Ap2qn fpX,V q

ˇ

ˇ

ˇ

ı

ď λrefE
”

Q
´

ˇ

ˇAp2qn f
ˇ

ˇ

¯

pX,V q
ı

` λrefE
”
ˇ

ˇ

ˇ
Ap2qn fpX,V q

ˇ

ˇ

ˇ

ı

.

At this point notice that Q is πn-invariant and therefore

E

”

Q
´

ˇ

ˇAp2qn f
ˇ

ˇ

¯

pX,V q
ı

“ E

”

ˇ

ˇAp2qn fpX,V q
ˇ

ˇ

ı

,

whence we conclude that

E

ˇ

ˇ

ˇ
Ap3qn Ap2qn fpX,V q

ˇ

ˇ

ˇ
ď 2λrefE

”ˇ

ˇ

ˇ
Ap2qn fpX,V q

ˇ

ˇ

ˇ

ı

ď 4λref}f}8E r|p∇UnpXq,V q|s

“ 4
c

2
π
λref}f}8E r|∇UnpXq|s “ OpM1{2n1{2q,

using Lemma A.3 and the fact that conditionally on X, p∇UnpXq,V q is a mean zero Gaussian
with variance |∇UnpXq|2.
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Finally, by similar arguments as above the last term is given by

E

ˇ

ˇ

ˇ
Ap3qn Ap3qn fpX,V q

ˇ

ˇ

ˇ
ď 2λrefE

”
ˇ

ˇ

ˇ
Ap3qn fpX,V q

ˇ

ˇ

ˇ

ı

ď 4λ2
ref}f}8 “ Op1q.

Overall we have shown that the error term defined in (3.13) satisfies

(3.14) Rn “
εn
2 E r|AnAnf pZnp0qq|s “ OpMn3{2εnq “ op1q,

since we have chosen εn such that εnn2 Ñ 0, as nÑ8.

Main term. Having controlled the error term, we now focus on the main term given by

E

”ˇ

ˇ

ˇ
E

”

rAnf pZnp0qq
ˇ

ˇ

ˇ
Gn0

ı

´Af
´

Zp1qn p0q
¯ˇ

ˇ

ˇ

ı

,

where we recall that rAn is the extended generator. Notice that for fpx,vq “ fpx1, v1q,

Anf px,vq “ Bxfpx1, v1qv1 `max t0, p∇Unpxq,vqu rRnfpx,vq ´ fpx,vqs ` λref rQfpx1, v1q ´ fpx1, v1qs

Af px1, v1q “ Bxfpx1, v1qv1 ´ Bvfpx1, v1qW
1px1q ` λref rQfpx1, v1q ´ fpx1, v1qs ,

and thus the first and third terms are in fact identical and will cancel out. We thus only have to
consider the difference of the second terms. We apply a first order Taylor expansion

E rmax t0, p∇UnpXq,V qu rRnfpX,V q ´ fpX,V qs|Gn0 s

“ E

«

max t0, p∇UnpXq,V qu

ˆ

„

f

ˆ

X1, V1 ´ 2p∇UnpXq,V q
|∇UnpXq|2

B1UnpXq

˙

´ fpX1, V1q



ˇ

ˇ

ˇ

ˇ

ˇ

Gn0

ff

“ E

«

max t0, p∇UnpXq,V qu

ˆ BvfpX1, V1q

"

´2p∇UnpXq,V q
|∇UnpXq|2

B1UnpXq

*

ˇ

ˇ

ˇ

ˇ

ˇ

Gn0

ff

` E1,

where E1 is the remainder. At this point notice that, by the tower law and the fact that p∇UnpXq,V q
is Gaussian conditionally on X,

E|E1| ď }Bvf}8E

«

|p∇UnpXq,V q|3 |B1UnpX|q

|∇UnpXq|4

ff

“ }Bvf}8E

"

|B1UnpXq|

|∇UnpXq|4
E

”

|p∇UnpXq,V q|3
ˇ

ˇ

ˇ
X
ı

*

ď C}Bvf}8E

#

|B1UnpXq||∇UnpXq|3{2

|∇UnpXq|4

+

ď C}Bvf}8E

#

|∇UnpXq|5{2

|∇UnpXq|4

+

“ C}Bvf}8E

"

1
|∇UnpXq|3{2

*
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ď C}Bvf}8

»

–

1
pnmq3{2

`

˜?
M

m

¸3{2

exp
ˆ

´
nm2

4M2

˙

`
m3{2

2nM3{4n

fi

fl(3.15)

by Lemma A.5 in the Appendix, which tends to 0 as nÑ8.
Finally, having controlled the error terms, to complete the proof of (3.9), it remains to show

that the following term vanishes

Eπ

„

|BvfpX1, V1q |ˆ

ˇ

ˇ

ˇ

ˇ

E

„

max
"

0, p∇UnpXq,V q
*ˆ

´2p∇UnpXq,V q
|∇UnpXq|2

˙

B1UnpXq

ˇ

ˇ

ˇ

ˇ

X1, V1



´W 1pX1q

ˇ

ˇ

ˇ

ˇ



.

First notice that, since V2, . . . , Vn are independent of V1 and X, we can write

IpX1, V1q :“ E

„

max
"

0, p∇UnpXq,V q
*ˆ

p∇UnpXq,V q
|∇UnpXq|2

˙

B1UnpXq

ˇ

ˇ

ˇ

ˇ

X1, V1



“ E

"

B1UnpXq

|∇UnpXq|2
E

”

max t0, p∇UnpXq,V qu2
ˇ

ˇ

ˇ
X, V1

ı

ˇ

ˇ

ˇ

ˇ

X1, V1

*

“ E

$

&

%

B1UnpXq

|∇UnpXq|2
E

»

–max

$

&

%

0, B1UnpXqV1 `

g

f

f

e

n
ÿ

j“2
rBjUnpXqs2 ˆ ξ

,

.

-

2ˇ
ˇ

ˇ

ˇ

ˇ

ˇ

X, V1

fi

fl

ˇ

ˇ

ˇ

ˇ

X1, V1

,

.

-

“ E

$

&

%

B1UnpXq

|∇UnpXq|2
max

$

&

%

0, B1UnpXqV1 `

g

f

f

e

n
ÿ

j“2
rBjUnpXqs2 ˆ ξ

,

.

-

2
ˇ

ˇ

ˇ

ˇ

X1, V1

,

.

-

,

where ξ is a standard Gaussian random variable, independent from X and V1. Continuing we have

IpX1, V1q “ E

$

&

%

B1UnpXq

|∇UnpXq|2
max

$

&

%

0,

g

f

f

e

n
ÿ

j“2
rBjUnpXqs2 ˆ ξ

,

.

-

2
ˇ

ˇ

ˇ

ˇ

X1, V1

,

.

-

` E2pX1, V1q

where

E2pX1, V1q ď CE

"

|B1UnpXq|
3

|∇UnpXq|2

ˇ

ˇ

ˇ

ˇ

X1, V1

*

` CE

"

|B1UnpXq|
2

|∇UnpXq|

ˇ

ˇ

ˇ

ˇ

X1, V1

*

“: E2,1pX1, V1q ` E2,2pX1, V1q.

We control the first term using the Cauchy-Schwarz inequality as follows

ErE2,1pX1, V1qs ď CE

"

|B1UnpXq|
4

|∇UnpXq|4

*1{2
E
 

|B1UnpXq|
2(1{2

and since |B1Unpxq|
2{|∇Unpxq|2 ď 1

ď CE

"

|B1UnpXq|

|∇UnpXq|

*1{2
E
 

|B1UnpXq|
2(1{2

ď CM1{2

«

M2

m2?n
`
M2E|X1|

m3{2n1{2 `
M

m

c

logn
n

`
1
n

ff1{2

(3.16)
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by Lemmas A.4, A.3 in the Appendix, where we used the fact that by Assumption 1 we have
that E|X1| ă 8 (this follows for example by the L1 Poincaré inequality applied on the function
fpXq “ X1, see Corollary 1.9 of [2]).

For the second error term we have, again using the Cauchy-Schwarz inequality

E rE2,2pX1, V1qs “ CE

"

|B1UnpXq|
2

|∇UnpXq|

*

ď E

"

|B1UnpXq|
2

|∇UnpXq|2

*1{2
E
 

|B1UnpXq|
2(1{2

ď CE

"

|B1UnpXq|

|∇UnpXq|

*1{2
E
 

|B1UnpXq|
2(1{2

ď CM1{2

«

M2

m2?n
`
M2E|X1|

m3{2n1{2 `
M

m

c

logn
n

`
1
n

ff1{2

(3.17)

as before.
Finally notice that

E

„

max
"

0,
n
ÿ

j“2
BjUnpXqVj

*

˜

´2
řn
j“2 BjUnpXqVj

|∇UnpXq|2

¸

B1UnpXq

ˇ

ˇ

ˇ

ˇ

X1, V1



“ ´2E
"

E

«

maxt0,
řn
j“2 BjUnpXqVju

2

|∇UnpXq|2
B1UnpXq

ˇ

ˇ

ˇ

ˇ

ˇ

X

ff

ˇ

ˇ

ˇ

ˇ

X1, V1

*

“ ´2E

$

&

%

E

»

–1tξ ą 0u

´

řn
j“2rBjUnpXqs

2
¯

ξ2

|∇UnpXq|2
B1UnpXq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X1, V1

,

.

-

where ξ is an independent standard Gaussian

“ ´E

$

&

%

B1UnpXq

´

řn
j“2rBjUnpXqs

2
¯

|∇UnpXq|2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X1, V1

,

.

-

“ ´E

"

B1UnpXq

ˇ

ˇ

ˇ

ˇ

X1, V1

*

` E3pX1, V1q,

where

Er|E3pX1, V1q|s ď E

„

|B1UnpXq|
3

|∇UnpXq|2



ď CM1{2

«

M2

m2?n
`
M2E|X1|

m3{2n1{2 `
M

m

c

logn
n

`
1
n

ff1{2

,(3.18)

by calculations similar to those for the error term E2,1. Finally

´E

"

B1UnpXq

ˇ

ˇ

ˇ

ˇ

X1, V1

*

“ ´

ş

B
Bx1

Unpx1;x2:nqe´Unpx1;x2:nqdx2:n
ş

e´Unpx1;x2:nqdx2:n

“ ´

B
Bx1

ş

Unpx1;x2:nqe´Unpx1;x2:nqdx2:n
ş

e´Unpx1;x2:nqdx2:n
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“ ´

B
Bx1

ş

e´Unpx1;x2:nqdx2:n
ş

e´Unpx1;x2:nqdx2:n
“ ´

B

Bx1
log

ż

e´Unpx1;x2:nqdx2:n

“ ´
B

Bx1
log e´W px1q “W 1px1q.

Overall we have shown that

E

„

max
"

0, p∇UnpXq,V q
*ˆ

´2p∇UnpXq,V q
|∇UnpXq|2

˙

B1UnpXq

ˇ

ˇ

ˇ

ˇ

X1, V1



“W 1pX1q ` E2 ` E3,

where Er|E2|s,Er|E3|s Ñ 0 as nÑ8. Therefore we have

Eπ

„

|BvfpX1, V1q |ˆ

ˇ

ˇ

ˇ

ˇ

E

„

max
"

0, p∇UnpXq,V q
*ˆ

´2p∇UnpXq,V q
|∇UnpXq|2

˙

B1UnpXq

ˇ

ˇ

ˇ

ˇ

X1, V1



´W 1pX1q

ˇ

ˇ

ˇ

ˇ



Ñ 0

as nÑ8.

3.2.3 Proof of (3.11).

Next we need to verify (3.11) for some p ą 1 for which we proceed as follows

E

«

ˆ
ż T

0
|φnptq|

pdt
˙1{pffp

ď E

„
ż T

0
|φnptq|

pdt


“

ż T

0
E r|φnptq|

psdt

“

ż T

0
E

”
ˇ

ˇ

ˇ
ε´1
n E

!

f
´

Zp1qn pt` εnq
¯

´ f
´

Zp1qn ptq
¯ˇ

ˇ

ˇ
Gnt

)ˇ

ˇ

ˇ

pı

dt

“

ż T

0
E

„ˇ

ˇ

ˇ

ˇ

ε´1
n E

"
ż εn

0

´

rAnf
´

Zp1qn pt` sq
¯

`Rt`s

¯

ds
ˇ

ˇ

ˇ

ˇ

Gnt
*ˇ

ˇ

ˇ

ˇ

p

dt

and using the fact that ErRt`s | Gnt s “ ErErRt`s | Fn
t s | Gnt s “ 0

“

ż T

0
E

„ˇ

ˇ

ˇ

ˇ

ε´1
n

ż εn

0
E

!

rAnf
´

Zp1qn pt` sq
¯ˇ

ˇ

ˇ
Gnt

)

ds
ˇ

ˇ

ˇ

ˇ

p

dt

and by Jensen’s inequality

ď

ż T

0
E

„

ε´1
n

ż εn

0
E

!ˇ

ˇ

ˇ

rAnf
´

Zp1qn pt` sq
¯ˇ

ˇ

ˇ

pˇ
ˇ

ˇ
Gnt

)

ds


dt

“

ż T

0
ε´1
n

ż εn

0
E

”

E

!
ˇ

ˇ

ˇ

rAnf
´

Zp1qn pt` sq
¯
ˇ

ˇ

ˇ

pˇ
ˇ

ˇ
Gnt

)ı

dsdt

“

ż T

0
ε´1
n

ż εn

0
E

”ˇ

ˇ

ˇ

rAnf
´

Zp1qn pt` sq
¯ˇ

ˇ

ˇ

pı

dsdt

“ TE
”ˇ

ˇ

ˇ

rAnf
´

Zp1qn p0q
¯ˇ

ˇ

ˇ

pı

,

by stationarity. Next recalling the decomposition of ĂAn into Apiqn , i “ 1, 2, 3 notice that

sup
x,v

ˇ

ˇ

ˇ
Ap1qn fpx, vq

ˇ

ˇ

ˇ
“ sup

x,v
|Bxfpx, vqv| ă 8,
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since px, vq ÞÑ Bxfpx, vqv is continuous and has compact support, since f has compact support.
Similarly it follows easily that }Ap3qn f}8 ă 8 and therefore the only term we have to control
corresponds to Ap2qn . For this term notice that

E

”ˇ

ˇ

ˇ
Ap2qn f

´

Zp1qn p0q
¯ˇ

ˇ

ˇ

pı

“ E

„
ˇ

ˇ

ˇ

ˇ

max t0, p∇UnpX,V qu

„

f

ˆ

X1, V1 ´ 2p∇UnpX,V q

|∇UnpXq|2
B1UnpXq

˙

´ fpX1, V1q


ˇ

ˇ

ˇ

ˇ

p

ď 2p}Bvf}8E
«

|p∇UnpX,V q|2p |B1UnpXq|
p

|∇UnpXq|2p

ff

ď 2p}Bvf}8E
#

E

«

|p∇UnpX,V q|2p |B1UnpXq|
p

|∇UnpXq|2p

ˇ

ˇ

ˇ

ˇ

ˇ

X

ff+

ď 2p}Bvf}8E
"

E

„

|∇UnpXq|p |B1UnpXq|
p

|∇UnpXq|2p

ˇ

ˇ

ˇ

ˇ

X

*

ď 2p}Bvf}8 “ Op1q.

3.2.4 Proof of (3.6) and (3.7)

Notice that (3.6) follows immediately since }f}8 ă 8, whereas (3.7) follows from calculations
similar to the ones used to prove (3.11).

4 Proofs of Wasserstein rates

4.1 Proof of Theorem 3

Let rXptq :“ Xp2qptq ´Xp1qptq and rV ptq :“ V p2qptq ´ V p1qptq denote the differences between the two
paths in position and momentum. Ignoring for the moment the refreshment events, p rXptq, rV ptqq
will evolve according to the Hamiltonian dynamics, that is

(4.1)

rX 1ptq “ rV ptq,

rV 1ptq “ ´p∇UpXp2qptqq ´∇UpXp1qptqqq “ ´Hptq rXptq, where

Hptq :“
ż 1

s“0
∇2UpsXp1qptq ` p1´ sqXp2qptqqds.

By convexity, we can see that Hptq satisfies that mI ĺ Hptq ĺ MI where I denotes the identity
matrix, where we write A ĺ B to denote that B´A is positive definite. The effect of the generator
L1,2 on | rXptq|2, x rXptq, rV ptqy and |rV ptq|2 is given by

(4.2)

L1,2| rXptq|
2 “ 2

A

rXptq, rV ptq
E

,

L1,2 rXptq
T
rV ptq “ |rV ptq|2 ´ rXptq

T
Hptq rXptq ´ λrefp1´ αq rXptq

T
rV ptq,

L1,2|rV ptq|
2 “ ´2rV ptqTHptq rXptq ´ λrefp1´ α2q|rV ptq|2.

The claim of Theorem 3 is equivalent to showing that´µ¨d2
ApZ1ptq, Z2ptqq´L1,2d

2
ApZ1ptq, Z2ptqq ě 0.

This can be expressed as

´ µ ¨ d2
ApZ1ptq, Z2ptqq ´ L1,2d

2
ApZ1ptq, Z2ptqq
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“ ´µa| rXptq|2 ` 2r´µb` λrefp1´ αqb´ as rXptq
T
rV ptq ` r´cµ` λrefp1´ α2qc´ 2bs|rV ptq|2

` 2b rXptqTHptq rXptq ` 2crV ptqTHptq rXptq.

Let

X :“
˜

| rXptq|2 rXptq
T
rV ptq

rXptq
T
rV ptq |rV ptq|2

¸

, P :“
˜

rXptq
T

Hptq rXptq rV ptq
T

Hptq rXptq
rV ptq

T
Hptq rXptq rV ptq

T
HptqrV ptq

¸

,

V :“
ˆ

´µa ´a` bλrefp1´ αq ´ µb
´a` bλrefp1´ αq ´ µb ´cµ` cλrefp1´ α2q ´ 2b

˙

, W :“
ˆ

2b c
c 0

˙

.

We have
´µ ¨ d2

ApZ1ptq, Z2ptqq ´ L1,2d
2
ApZ1ptq, Z2ptqq “ TrpV X `WP q,

so our goal is to show that TrpV X ` WP q ě 0 for all the possible X,P . Using the fact that
mI ĺ Hptq ĺ MI, we have 0 ĺ mX ĺ P ĺ MX. Let Y :“ P ´mX, and Z :“ MX ´ P , then
Y ľ 0, Z ľ 0, and for M ą m, we have

X “
Y ` Z

M ´m
, P “

MY `mZ

M ´m
,

and hence

TrpV X `WP q “
1

M ´m
pTrppV `MW qY ` pV `mW qZqq .

When M “ m, we have Hptq “MI and P “MX, hence

TrpV X `WP q “ TrppV `MW qXq.

Note that in both cases, TrpV X `WP q ě 0 if both V `MW ľ 0 and V `mW ľ 0. This can be
equivalently written as the following set of inequalities,

´µa` 2Mb ě 0,(4.3)
´µa` 2mb ě 0,(4.4)

´cµ` cλrefp1´ α2q ´ 2b ě 0,(4.5)
p´a` bλrefp1´ αq ´ µb`Mcq2 ď p´µa` 2Mbqp´cµ` cλrefp1´ α2q ´ 2bq,(4.6)
p´a` bλrefp1´ αq ´ µb`mcq2 ď p´µa` 2mbqp´cµ` cλrefp1´ α2q ´ 2bq.(4.7)

These inequalities correspond to the diagonal elements and the determinants of V ` mW and
V ` MW being non-negative. As we have stated, let λref “

1
1´α2

´

2
?
M `m´ p1´αqm

?
M`m

¯

, µ “
p1`αqm
?
M`m

´ αm3{2

2pM`mq . Moreover, let

a :“ 1,

b :“
1` α´ α

´

m
M`m

¯3{4
` 3

4
αm
M`m

2
?
M `m

,

c :“
1` α´ α

2

´

m
M`m

¯1{2

M `m
.

(4.8)
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Notice that by the change of variables mÑ 1, M ÑM{m, and updating a, b, c and µ and λ with
these new values, inequalities (4.3)-(4.7) are kept invariant (they have this homogeneity property).
Hence, without loss of generality, we can assume that m “ 1. For the choice of a, b, c as in (4.8),
the five inequalities can be shown to hold for every possible 0 ď α ă 1 and M using for example
Mathematica. Hence the bound (2.11) follows.

Now we are going to show the Wasserstein bounds. Note that the matrix A satisfies that
λminpAq “

a`c´
?
pa`cq2´4pac´b2q

2 and λmaxpAq “
a`c`

?
pa`cq2´4pac´b2q

2 , hence by defining

W2,dApν1, ν2q “

ˆ

inf
X1„ν1,X2„ν2

dApX1, X2q
2
˙1{2

,

then using the assumption b2 ă ac, we haveW2pνP
t, πq2 ď 1

λminpAq
W2,dApνP

t, πq2. Let Z1p0q, Z2p0q
be coupled according to the optimal coupling of ν and π according to W2 distance satisfying that
Ep|Z1p0q ´ Z2p0q|2q “ W2pν, πq

2 (existence is shown by Theorem 4.1 of [72]). Using (2.11) along
with Grönwall’s lemma, and the definition of the Wasserstein distance, it follows that

W2pνP
t, πq2 ď

1
λminpAq

W2,dApνP
t, πq2 ď

1
λminpAq

Epd2
ApZ1ptq, Z2ptqqq

ď
e´µt

λminpAq
Epd2

ApZ1p0q, Z2p0qq ď
λmaxpAq

λminpAq
e´µtW2pν, πq

2,

hence (2.12) follows.
To show our L2 bounds, we are also going to study the adjoint process pP tq˚. Using the exact

same coupling as before, the dynamics (4.1) ran backwards in time becomes

(4.9)
rX 1ptq “ ´rV ptq,

rV 1ptq “ Hptq rXptq,

with Hptq defined as in (4.1). For the velocity updates, forward in time we had v1 “ αv`
?

1´ α2Z
where Z „ Np0, Idq. Since in stationary we have v, v1 „ Np0, Idq and Epvpv1qT q “ ρId, one can see
that the updates backward in time are still the same. Hence the effect of the adjoint becomes

(4.10)

L˚1,2| rXptq|
2 “ ´2 rXptq

T
rV ptq,

L˚1,2 rXptq
T
rV ptq “ |rV ptq|2 ´ rXptq

T
Hptq rXptq ` λrefp1´ αq rXptq

T
rV ptq,

L˚1,2|rV ptq|
2 “ 2rV ptqTHptq rXptq ´ λrefp1´ α2q|rV ptq|2.

Notice that this is very similar to the forward case (4.2), except that we need to replace rV ptq by

´rV ptq. Based on this, by repeating the previous argument for A1 :“
ˆ

a ´b
´b c

˙

, we have

(4.11) L˚1,2 d
2
A1pZ1ptq, Z2ptqq ď ´µ ¨ d

2
A1pZ1ptq, Z2ptqq,

where a, b and c are defined as in (4.8).
Hence we have shown that the adjoint process is also a contraction with the same rate µ, but

with respect to a different metric dA1 instead of dA used for the forward process. Now we are going
to show that d2

A and d2
A1 are equivalent up to a constant factor C :“ ac`b2`2

?
acb2

ac´b2 . Notice that for
any z1, z2 P R

2d,

(4.12) d2
Apz1, z2q{C ď d2

A1pz1, z2q ď d2
Apz1, z2q ¨ C,
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as long as A ĺ CA1 and A1 ĺ CA, and by rearrangement, this is equivalent to
ˆ

apC ´ 1q ´bp1` Cq
´bp1` Cq cpC ´ 1q

˙

ľ 0 and
ˆ

apC ´ 1q bpC ` 1q
bpC ` 1q cpC ´ 1q

˙

ľ 0,

which holds for C defined as above.
For f : R2d Ñ R, let

}f}Lip,dA :“ sup
z1,z2PR2d,z1‰z2

|fpz1q ´ fpz2q|

dApz1, z2q
,

be its Lipschitz coefficient with respect to the dA distance. Then based on (2.11),(4.11), and (4.12),
for any t ě 0, f : R2d Ñ R, have

}pP tq˚P tf}Lip,dA ď
?
C}pP tq˚P tf}Lip,dA1 ď

?
C exp

ˆ

´
µt

2

˙

}P tf}Lip,dA1

ď C exp
ˆ

´
µt

2

˙

}P tf}Lip,dA ď C exp p´µtq }f}Lip,dA .

Based on Propositions 29 and 30 of [58] with κ “ 1´C exp p´µtq, it follows that for any t ą logpCq
µ ,

the reversible kernel pP tq˚P t has as spectral radius of at most C exp p´µtq. Thus for every f P
L2

0pπq, we have

(4.13) }P tf}2 “
@

f, pP tq˚P tf
D

ď }f}}pP tq˚P tf} ď Ce´µt}f}2,

and the claim of the Theorem follows by noticing that }P tf}2 ď }f}2 for every t ě 0.

Remark 13. We note that for any given λref ą 0, µ ą 0, the contraction rate of d2
ApZ1ptq, Z2ptqq

is at least µ as long as there are constants a, b, c such that a ą 0, c ą 0, b2 ă ac and inequalities
(4.3)-(4.7) hold. Unfortunately due to the non-linearity of these inequalities we did not manage to
find an analytical expression for the largest possible µ for a given λref (and then the largest possible
µ for any λref). The reader can possibly slightly improve these rates by numerical optimization for
a given α, m and M . Note however that in our numerical experiments, it seems that the choices of
λref as stated leads to µ that is close to optimal in most of the domain 0 ď α ă 1, and 0 ă m ďM
(i.e. if we increase µ by a few percent, typically there is no longer a λref ą 0 and parameters a, b, c
satisfying all of the inequalities).

4.2 Proof of Proposition 4

Assume without loss of generality that m “ 1 (the general case can be obtained from this by

rescaling). Let D :“
ˆ

aH bI
bI cI

˙

be a block matrix. Then

d2
DpZ1ptq, Z2ptqq “ a rXptq

T
H rXptq ` 2b rXptqT rV ptq ` c|rV ptq|2,

and the effect of the generator on these terms equal

L1,2 rXptq
T
H rXptq “ 2 rXptq

T
H rV ptq,(4.14)

L1,2 rXptq
T
rV ptq “ |rV ptq|2 ´ rXptq

T
H rXptq ´ λrefp1´ αq rXptq

T
rV ptq,(4.15)

L1,2|rV ptq|
2 “ ´2rV ptqTH rXptq ´ λrefp1´ α2q|rV ptq|2.(4.16)
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We have

´ µ ¨ d2
DpZ1ptq, Z2ptqq ´ L1,2d

2
DpZ1ptq, Z2ptqq

“ 2r´µb` λrefp1´ αqbs rXptq
T
rV ptq ` r´cµ` λrefp1´ α2qc´ 2bs|rV ptq|2

` p2b´ µaq rXptqTH rXptq ` 2pc´ aqrV ptqTH rXptq.

Let X and P defined as in the proof of Theorem 3, and let

V :“
ˆ

0 bλrefp1´ αq ´ µb
bλrefp1´ αq ´ µb ´cµ` cλrefp1´ α2q ´ 2b

˙

, W :“
ˆ

2b´ µa c´ a
c´ a 0

˙

.

Then we have ´µ ¨ d2
DpZ1ptq, Z2ptqq ´ L1,2d

2
DpZ1ptq, Z2ptqq “ TrpV X `WP q, and using the same

argument as in the proof of Theorem 3, it follows that TrpV X`WP q ě 0 if both V `MW ľ 0 and
V `mW ľ 0. This can be verified (for example by Mathematica) for the choices λref “ 2

?
m{p1´αq,

µ “
?
m
3 , a “ 1, b “ 1

4 , c “ 1. The proof of (2.16) is analogous to the proof of (2.13). First we

show that for D1 :“
ˆ

aH ´bI
´bI cI

˙

,

(4.17) L˚1,2 d
2
D1pZ1ptq, Z2ptqq ď ´µ ¨ d

2
D1pZ1ptq, Z2ptqq,

then use the same argument as previously.

5 Proof of Theorem 5
The generator of the RHMC process will be denoted by A and it is given for smooth enough
functions by

Afpx, vq “ x∇xf, vy ´ x∇U,∇vfy ` λref rQαfpx, vq ´ fpx, vqs ,

where recall that α P p0, 1q and

Qαfpx, vq :“ 1
?

2πd
ż

e´ξ1ξ{2f
´

x, αv `
a

1´ α2ξ
¯

dξ.

Hypo-coercivity, Exponential Convergence and Asymptotic Variance. In the context of
MCMC one is interested in optimising the computational resources needed to produce an estimate
of a certain precision. For this reason we are also interested in understanding the asymptotic
variance. Geometric ergodicity is enough to show that a large class of functions, determined by the
Lyapunov function, have finite asymptotic variance. However, since the convergence rates are not
explicit in the parameters of the process, geometric ergodicity often does not allow one to optimise
the asymptotic variance.

Usually controlling the asymptotic variance for a large enough class of functions is closely related
to establishing a spectral gap, that is showing that the L2pπq spectrum of the generator L lies in
tz P C : <z ď ´µu, for some µ ą 0. In the reversible case, it is well known that geometric
ergodicity is equivalent to having a spectral gap, but in the non-reversible case this is no longer
true, see [44] and references therein (although it may be equivalent to a spectral gap on a different
Banach space). For reversible processes, an L2-spectral gap is also equivalent to coercivity of the
associated Dirichlet form, that is x´Lf, fy ě µ}f}2, for all f P L2

0pπq. Moreover, coercivity is
equivalent to }P tf} ď e´µt}f}, for all f P L2

0pπq, for all Markov processes, whether reversible or
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not. For this reason, and perhaps abusively, coercivity is sometimes in the literature referred to
as a spectral gap, or a spectral gap inequality. Another reason is that, an inequality of the form
x´Lf, fy ě µ}f}2 is often easy to prove, e.g. for diffusions, by rewriting the Dirichlet form in a
form involving the Sobolev norm and then applying a Poincaré inequality.

Interestingly enough however, for non-reversible processes it is possible that coercivity fails to
hold, although we still have }P tf} ď Ce´µt}f}, for all f P L2

0pπq, for some C ą 1. This is not
possible for reversible processes, since one can use spectral calculus to show that }P tf} ď Ce´µt}f},
for all f P L2

0pπq also implies the same inequality with C ” 1. This fact is actually observed for
piecewise deterministic Markov processes such as the BPS and Zig-Zag samplers, see [62, 18, 12].
This class of processes also includes RHMC. Although geometric ergodicity has been established
for BPS ([27, 32]), Zig-Zag (see [13, 37]) and RHMC ([16]), an easy calculation shows that, writing
L for the generator of any of the above processes, we have xLf, fy “ 0 for any function f P L2pπq
such that fpx, vq “ fpxq, that is functions of the location only. The reason for this is that the
Dirichlet form Epf, fq :“ xLf, fy only captures the symmetric part of the generator L, which in
these processes only affects the velocity component, whereas the location component is only affected
by the anti-symmetric part of the generator. This means that although BPS, Zig-Zag and RHMC
are geometrically ergodic, we certainly cannot have an inequality of the form x´Lf, fy ě µ}f}2

for all f P L2
0pπq. However, it may still be true that these processes admit a spectral gap in the

classical sense, and in fact this has been shown for one-dimensional Zig-Zag in Bierkens and Lunel
[8]. Notice however, that in the non-reversible case, a classical spectral gap requires additional work,
and potentially assumptions, to guarantee exponential decay of the semigroup, see [8, Section 4.2].

In fact this situation arises very often in so called kinetic equations which include for example
the underdamped Langevin processes. For such processes a range of methods have been developed
recently that are widely termed as hypocoercivity, see [41, 73, 28] and references therein. In fact such
methods have already been applied to piecewise deterministic Markov processes, see [53]. Although
this approach is often quite deep and involved, the underlying principle is that of adjusting the
norm, or metric, in which the convergence is studied. This principle has been extremely successful
recently, for example in the convergence of HMC when log-concavity fails locally in [17]. In the case
of hypocoercive estimates, the principle is to move from the L2 norm to a stronger norm, usually
some form of Sobolev norm.

5.1 Strong continuity in H1pπq.

We will establish that the abstract Cauchy problem

Bupt, zq

Bt
“ Au,

up0, zq “ f,

where the class of initial conditions f will be specified in the sequel, admits a unique solution in
H1pπq given by upt, zq :“ P tfpzq. This will justify computing the time derivatives of xxP tf, P tfyy.

Before we proceed we will need to introduce some additional notation. We decompose the
generator A of RHMC into its symmetric and antisymmetric component as follows

Afpx, vq “ Bfpx, vq ` λrefp´Sqf,

where

(5.1) Bf :“ x∇xf, vy ´ x∇vf,∇Uy, Sf :“ rI ´Qαsf.
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As before we write tP t : t ě 0u for the semi-group of transition kernels of RHMC, but in this
section we slightly change our point of view and consider it as a semigroup on L2pπq, that is
P t : L2pπq Ñ L2pπq. Its generator will be given by A for smooth enough functions.

In fact even more is true as we will next show that P t is also strongly continuous as a semi-group
on H1pπq. To see why, first recall that the anti-symmetric operator B generates the Hamiltonian
flow z ÞÑ Ξpt, zq with respect to Hpx,vq “ Upxq ` |v|2{2. Let us write tT t : t ě 0u for the
semigroup generated by B, that is T tfpzq “ f pΞpt, zqq for z P Z. Then given a smooth function
f P H1pπq, from the chain rule we have

∇T tfpzq “ ∇f pΞpt, zqq∇zΞpt, zq.

From the variational equations of the Hamiltonian dynamics (see Section 6.1.2 of [51]) and the
upper bounds M and 1 of the Hessians of Upxq and }v}2

2 it follows that for C “ maxp1,Mq, we
have }∇zΞpt, zq} ď eCt for every t ě 0. Using this, we conclude that

}∇xT
tf}2 ` }∇vT

tf}2 ď e2Ct
ĳ

πpdzq
”

|∇xf pΞpt, zqq|2 ` |∇vf pΞpt, zqq|2
ı

“ e2Ct
ĳ

πpdzq
”

|∇xf pzq|
2
` |∇vf pzq|

2
ı

,

by stationarity of the flow. By an approximation argument we can further show that T t : H1pπq Ñ
H1pπq for all t ě 0. Finally tT t : t ě 0u is strongly continuous on H1pπq, since

}∇T sf ´∇f}2 “
ż

|∇f pΞps, zqq∇zΞps, zq ´∇f pzq |2πpdzq

ď

ż

|∇f pΞps, zqq r∇zΞps, zq ´ Is |2πpdzq

`

ż

|∇f pΞps, zqq ´∇f pzq |2πpdzq

ď

ż

|∇f pΞps, zqq |2|∇zΞps, zq ´ I|2πpdzq

`

ż

|∇f pΞps, zqq ´∇f pzq |2πpdzq

ď

ż

|∇f pΞps, zqq |2|∇zΞps, zq ´ I|2πpdzq

` 2
ż

|T s∇fpzq ´∇fpzq|2πpdzq.(5.2)

Since g :“ ∇f P L2pπq, for every ε ą 0 there is a smooth, compactly supported function gε such
that }g ´ gε}L2pπq ă ε. Then

ż

|T sgpzq ´ gpzq|2πpdzq “
ż

|T sgpzq ´ T sgεpzq ` T
sgεpzq ´ gεpzq ` gεpzq ´ gpzq|

2πpdzq

ď

ż

πpdzq |g pΞps, zqq ´ gε pΞps, zqq|2 `
ż

πpdzq |g pzq ´ gε pzq|2

`

ż

πpdzq |gε pΞps, zqq ´ gε pzq|2

“ 2}g ´ gε} `
ż

πpdzq |gε pΞps, zqq ´ gε pzq|2
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ď 2ε`
ż

πpdzq |gε pΞps, zqq ´ gε pzq|2 .

For every fixed ε ą 0, the second term vanishes by bounded convergence. Since ε ą 0 is arbitrary
this shows that }T s∇f ´∇f}2 Ñ 0 as sÑ 0.

Going back to (5.2), notice that the first term also vanishes by the dominated convergence
theorem, since |∇zΞps, zq ´ I| ď 2eCs uniformly in z, |∇zΞps, zq ´ I| Ñ 0 pointwise. Thus T t is
strongly continuous and therefore it admits a densely defined generator, which we denote by B,

B : DpBq Ď H1pπq Ñ H1pπq.

Again it is straightforward to check that B has the expression given earlier.
In addition notice that S is a bounded operator on H1pπq. To see why first notice that an easy

calculation, which will be provided later on in Section 5.2 for completeness, shows that ∇xQα “
Qα∇x and ∇vQα “ αQα∇v whence

}∇xQαf}
2 ` }∇vQαf}

2 ď }Qα∇xf}
2 ` α}Qα∇vf}

2 ď C
`

}∇xf}
2 ` }∇vf}

2˘ ,

since Qα is a contraction on L2pπq. Therefore, applying [63, Theorem 3.2], the operator A :“
B ` λrefp´Sq has domain DpBq and generates a strongly continuous on H1pπq, which we will
denote again by tP t : t ě 0u. This implies that for every f P DpBq, P tf P DpAq for all t ě 0 and
AP tf “ P tAf . This essentially shows that given f P DpBq the abstract Cauchy problem

Bupt, zq

Bt
“ Au,

up0, zq “ f,

admits a unique solution in H1pπq given by upt, zq :“ P tfpzq.

5.2 Proof of Theorem 5.

We introduce some additional notation to keep the presentation concise. First recall the decompo-
sition A “ B ` λrefp´Sq where

Bf “ x∇xf, vy ´ x∇vf,∇Uy, Sf “ rI ´Qαsf,

and let us define the Dirichlet form Epf, gq :“ xf, Sgy. We will also write A :“ ∇v, C :“ ∇x. From
[73, p. 40], or an easy calculation, we have

rA,Bs “ AB ´BA “ ∇x, and rB,Cs “ ∇2U ¨∇v “ ∇2U ¨A.

Since P t “ expptAq, where A is the generator of the RHMC process, an easy calculation shows
that for all f, g P DpBq we have

d
dtxP

tf, P tgy
ˇ

ˇ

ˇ

t“0
“ xAf, gy ` xf,Agy,

This also implies that
d
dtxP

tf, P tfy
ˇ

ˇ

ˇ

t“0
“ 2xAf, fy “ ´2λrefEpf, fq.

since B is antisymmetric, in the sense that xBf, gy “ ´xf,Bgy.
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We want to compute dxxP tf, P tfyy{dt|t“0. To keep notation to a minimum we will write h
rather than P tf . We proceed by computing the derivative of each term individually,

d
dt}Ah}

2 “ 2xAh,AAhy “ ´2λrefxAh,AShy ` 2xAh,ABhy,
d
dtxCh,Ahy “ xCh,Ap´λrefS `Bqhy ` xCp´λrefS `Bqh,Ahy,

d
dt}Ch}

2 “ 2xCh,CAhy “ ´2λrefxCh,CShy ` 2xCh,CBhy.

Term one. We now compute the first term which is given by

´2λrefxAh,AShy ` 2xAh,ABhy.

Notice that

B

Bvi
Qαfpx,vq “

B

Bvi
E

”

f
´

x, αv `
a

1´ α2ξ
¯ı

“ E

”

αfvi

´

x, αv `
a

1´ α2ξ
¯ı

“ αE
”

fvi

´

x, αv `
a

1´ α2ξ
¯ı

,

where to keep notation clear we write BGpx,vq{Bvi to denote the derivative of the expression Gpx, vq
w.r.t. vi, whereas we write fvi

`

x, αv `
?

1´ α2ξ
˘

to denote the derivative of f w.r.t. vi evaluated
at αv `

?
1´ α2ξ.

The above calculation shows that AQα “ αQαA and therefore

´λrefxAh,AShy “ λrefxAh,ApQα ´ Iqhy

“ λrefxAh,AQαhy ´ λrefxAh,Ahy

“ λrefαxAh,QαAhy ´ λrefxAh,Ahy

“ λrefxAh, pαQα ´ IqAhy

“ λrefxAh, αpQα ´ IqAhy ´ p1´ αqλrefxAh,Ahy

“ ´λrefαxAh, SAhy ´ p1´ αqλrefxAh,Ahy.

Continuing we have

xAh,ABhy “ xAh, pAB ´BAqhy ` xAh,BAhy

“ xAh, rA,Bshy ` 0 “ xAh,Chy,

since by the anti-symmetry of B, it follows that xg,Bgy “ 0 for any g.

Term two. We next compute the second term

xCf,Ap´λrefS `Bqfy ` xCp´λrefS `Bqf,Afy.

First we compute the derivative along B

xABh,Chy ` xAh,CBhy “ xABh,Chy ` xAh,BChy ` xAh, rC,Bshy

41



and using that B˚ “ ´B

“ xABh,Chy ´ xBAh,Chy ` xAh, rC,Bshy

“ xrA,Bsh,Chy ` xAh, rC,Bshy

“ xCh,Chy ` xAh, rC,Bshy

“ }Ch}2 ´ xAh,∇2UAhy.

To compute the derivative along S first notice that CQα “ QαC, where in the r.h.s. we tensorise
Qα allowing it to act on each component separately, in the sense that

B

Bxi
E

”

f
´

x, αv `
a

1´ α2ξ
¯ı

“ E

„

B

Bxi
f
´

x, αv `
a

1´ α2ξ
¯



.

Therefore

´λrefxASh,Chy ´ λrefxAh,CShy

“ λrefxApQα ´ Iqh,Chy ` λrefxAh,CpQα ´ Iqhy

“ λrefxpαQα ´ IqAh,Chy ` λrefxAh, pQα ´ IqChy

“ αλrefxpQα ´ IqAh,Chy ` pα´ 1qλrefxAh,Chy ` λrefxAh, pQα ´ IqChy

“ ´p1` αqλrefxSAh,Chy ´ p1´ αqλrefxAh,Chy,

where we used again the fact that Qα is positive.

Term three. Using the same arguments as before we have

xCh,CQαhy “
d
ÿ

i“1

B

B

Bxi
h,

B

Bxi
Qαh

F

“

d
ÿ

i“1

B

B

Bxi
h,Qα

B

Bxi
h

F

“ xCh,QαChy,

where we are overloading the inner product by allowing it to take both vectors and scalars as
arguments, in the case of scalars it integrates the product, in the case of vectors the vector inner
product. Therefore

´λrefxCh,CShy “ λrefxCh,CpQα ´ Iqhy “ ´λrefxCh, SChy.

The next one is

xCh,CBhy “ xCh,CBhy

“ xCh,BChy ´ xCh, rB,Cshy “ 0´ xCh,∇2U ¨Ahy.

Combining all the terms. We now have the tools to compute the derivative of

xxh, hyy :“ a}Ah}2 ´ 2b xCh,Ahy ` c}Ch}2,

which, after multiplying by ´1, is given by

´
d
dtxxh, hyy
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“ ´a
d
dt}Ah}

2 ` 2b d
dt xAh,Chy ´ c

d
dt}Ch}

2

“ 2a
“

λrefp1´ αq}Ah}2 ` λrefα xSAh,Ahy ´ xAh,Chy
‰

` 2b
”

}Ch}2 ´
@

∇2UAh,Ah
D

´ p1` αqλrefxS
1{2Ah, S1{2Chy ´ p1´ αqλref xAh,Chy

ı

` 2c
“

λref xSCh,Chy `
@

∇2UAh,Ch
D‰

“ 2aλrefp1´ αq}Ah}2 ´ 2pa` p1´ αqbλrefq xAh,Chy ` 2b}Ch}2

´ 2b
@

∇2UAh,Ah
D

` 2c
@

∇2UAh,Ch
D

` 2aλrefα xSAh,Ahy ` 2cλref xSCh,Chy ´ 2p1` αqbλref xSAh,Chy .

Remark 14. At this stage we can rewrite the above inequality as

´
1
2

d
dtxxh, hyy ě rap1´ αqλref ´ bM s }Ah}

2 ` b}Ch}2 ´ }JAh} }Ch}

` aαλref}S
1{2Ah}2 ` cλref}S

1{2Ch}2 ´ p1` αqbλref}S
1{2Ah}}S1{2Ch},(5.3)

where S1{2 is the positive, self-adjoint square root of S, and

Jf :“
`

aI ` p1´ αqbλrefI ´ c∇2U
˘

f,

which is also self-adjoint, since ∇2U is symmetric, whence its norm is given by

sup
}f}“1

|xJf, fy| “ sup
}f}“1

ˇ

ˇra` bλrefp1´ αqs xf, fy ´ cx∇2Uf, fy
ˇ

ˇ

“ sup
}f}“1

max
 

ra` bλrefp1´ αqs xf, fy ´ cx∇2Uf, fy, cx∇2Uf, fy ´ ra` bλrefp1´ αqs xf, fy
(

ď sup
}f}“1

max tpa` p1´ αqλrefbq }f} ´ cm}f}, cM}f} ´ pa` p1´ αqλrefbq }f}u

“ max ta` p1´ αqλrefb´ cm, cM ´ a´ p1´ αqλrefbu .

Therefore, if we can find a, b, c ą 0, such that b ă
?

4aαc{p1` αq and

4 rap1´ αqλref ´ bM s b ą maxtcM ´ a´ p1´ αqλrefb, a` p1´ αqbλref ´ cmu
2,

then the RHS of (5.3) is a positive definite quadratic form. In principle this can be used to optimise
the convergence rates among norms of the form (2.17).

We take a slightly different approach. Our goal is to show that for every h, we have d
dtxxh, hyy ď

´µxxh, hyy, or equivalently
´

d
dtxxh, hyy ´ µxxh, hyy ě 0,

After rearrangement, we obtain that

´
d
dtxxh, hyy ´ µxxh, hyy

“ ap2λrefp1´ αq ´ µq}Ah}2 ´ 2pa` p1´ αqbλref ´ µbq xAh,Chy ` p2b´ cµq}Ch}2

´ 2b
@

∇2UAh,Ah
D

` 2c
@

∇2UAh,Ch
D

` 2aλrefα xSAh,Ahy ` 2cλref xSCh,Chy ´ 2p1` αqbλref xSAh,Chy .(5.4)

We will use the following two lemmas.
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Lemma 2. If V,W,Z,A P R2ˆ2 are symmetric matrices such that 0 ĺ A, ´Z ĺ A, A ĺ V `mW
and A ĺ V `MW , then TrpV X `WP ` ZQq ě 0 for all symmetric matrices X,P,Q such that
0 ĺ Q ĺ X and mX ĺ P ĺ MX.

Proof of Lemma 2. First, suppose that M “ m. By the assumptions we have P “ mX, A ľ 0,
and Z ` A ľ 0. Note that if S, T are symmetric positive semidefinite matrices, then TrpST q ě 0.
Using this fact, it follows that

TrpV X `WP ` ZQq “ TrppV `mW qX ` ZQq ě TrpAX ` pZ `AqQ´AQq
ě TrpApX ´Qqq ě 0.

Now suppose that M ą m. Let

A1 “ Z `A, A2 “ A, A3 “
1

M ´m
pV `MW ´Aq, A4 “

1
M ´m

pV `mW ´Aq.

Then A1, A2, A3, A4 ľ 0, and

V “ A2 ´mA3 `MA4, W “ A3 ´A4, Z “ A1 ´A2.

So

V X `WP ` ZQ “ pA2 ´mA3 `MA4qX ` pA3 ´A4qP ` pA1 ´A2qQ

“ A1Q`A2pX ´Qq `A3pP ´mXq `A4pMX ´ P q.

Using positive definiteness of both terms in the matrix products, we have

TrpA1Qq,TrpA2pX ´Qqq,TrpA3pP ´mXqq,TrpA4pMX ´ P qq ě 0,

and therefore
TrpV X `WP ` ZQq ě 0.

Now we are ready to complete the proof of Theorem 5.

Proof of Theorem 5. Let a :“ 1, and

b :“
1` α´ α

´

m
M`m

¯3{4
` 3

4
αm
M`m

2
?
M `m

,

c :“
1` α´ α

2

´

m
M`m

¯1{2

M `m
,

X :“
ˆ

}Ah}2 xAh,Chy
xAh,Chy }Ch}2

˙

,

P :“
ˆ@

∇2UpxqAh,Ah
D @

∇2UpxqAh,Ch
D

@

∇2UpxqAh,Ch
D @

∇2UpxqCh,Ch
D

˙

,

Q :“
ˆ

xSAh,Ahy xSAh,Chy
xSAh,Chy xSCh,Chy

˙

,

V :“
ˆ

2ap1´ αqλref ´ aµ ´a´ p1´ αqbλref ` bµ
´a´ p1´ αqbλref ` bµ 2b´ cµ

˙

,
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W :“
ˆ

´2b c
c 0

˙

,

Z :“
ˆ

2aαλref ´p1` αqbλref
´p1` αqbλref 2cλref

˙

,

A :“
˜ 4p´3`2m´2Mqp´1`αq

3
?
m`Mp1`αq ´

p´3`2m´2Mqp´1`αq
3pm`Mq

´
p´3`2m´2Mqp´1`αq

3pm`Mq ´
p´3`2m´2Mqp´1`αqp1`αq

3pm`Mq3{2

¸

.

Using the fact that x3{4 ´ 3{4x ě 0 for x P r0, 1{2s, it is easy to check that b2 ă ac. Using the
assumption that mI ĺ ∇2U ĺ MI, we have mX ĺ P ĺ MX. Moreover, using the fact that
0 ĺ S ĺ I, we have 0 ĺ Q ĺ X. Based on (5.4) and the above definitions it follows that

(5.5) ´
d
dtxxh, hyy ´ µxxh, hyy “ TrpV X `WP ` ZQq.

One can check, for example using Mathematica, that for every M ě 1, 0 ď α ă 1, the inequalities
0 ĺ A, ´Z ĺ A, A ĺ V `mW and A ĺ V `MW hold for A defined as above. Therefore (5.7)
follows from Lemma 2, and by Grönwall’s lemma, this implies that xxP tf, P tfyy ď expp´µtqxxf, fyy.

5.2.1 From H1 to L2.

To show our L2 bound, we study the reversed process. Denote the variant of the scalar product
xx¨, ¨yy when b is replaced by ´b by xx¨, ¨yy1, i.e.

(5.6) xxh, hyy1 :“ a}∇vh}
2 ` 2bx∇xh,∇vhy ` c}∇xh}

2.

Then by repeating the same arguments as above with v replaced by ´v everywhere, one can show
that we have

(5.7) d
dtxxpP

˚qtf, pP ˚qtfyy1 ď ´µxxpP ˚qtf, pP ˚qtfyy1,

and hence xxpP ˚qtf, pP ˚qtfyy1 ď expp´µtqxxf, fyy1. Similarly to the previous proofs, we can show
that xx¨, ¨yy and xx¨, ¨yy1 are equivalent up to the same constant factor C, and

xxpP tq˚P tf, pP tq˚P tfyy ď C2 expp´2µtqxxf, fyy.

In addition, there exist constants C1, C2 ą 0 such that xxf, fyy ď C1}∇f}2 and }f}2 ď C2xxf, fyy.
Thus, letting f be k-Lipschitz we have

}pP tq˚P tf}2 ď C2xxpP
tq˚P tf, pP tq˚P tfyy1

ď C2 expp´2µtqxxf, fyy1

ď C1C2 expp´2µtq}∇f}2 ď C1C2k
2 expp´2µtq.

Choose t such that C1C2k
2e´2µt “: 1 ´ κ ă 1 and define the self-adjoint operator Q “ pP tq˚P t.

Iterating the above we have for n ě 1 that

}Qnf}2 ď C1C2p1´ κq2nk2 “: Cpfqp1´ κq2n.

The rest is similar to the proof of Proposition 2.8 from Hairer et al. [40]. Let f be k-Lipschitz, and
without loss of generality also assume that }f} “ 1. Let νf be the spectral measure corresponding
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to the self-adjoint operator Q applied to the function f . In particular, since }f} “ 1, νf is a
probability measure. Then

}Qnf}2 “

ż 1

´1
t2nνf pdtq

“

ż 1

´1
t2np2n`2mq{p2n`2mqνf pdtq

ď

ˆ
ż 1

´1
t2pn`mqνf pdtq

˙

2n
2pn`mq

“
`

}Qn`mf}2
˘

2n
2pn`mq

ď

”

Cpfqp1´ κq2pn`mq
ı

2n
2pn`mq

ď Cpfq
2n

2pn`mq p1´ κq2n,

and letting mÑ8 we get for any k-Lipschitz f

}Qnf}2 ď }f}2p1´ κq2n,

noticing that the upper bound is independent of the Lipschitz constant. Since Lipschitz functions
are dense we conclude.

Remark 15. Given any λref ą 0, µ ą 0, the contraction d
dtxxh, hyy ď ´µxxh, hyy holds as long as

there exists coefficients a, b, c P R and a 2 ˆ 2 real valued symmetric matrix A such that a ą 0,
c ą 0, b2 ă ac and 0 ĺ A, ´Z ĺ A, A ĺ V `mW and A ĺ V `MW (with V and W defined
as above). Note that as in the proof of Theorem 3, due to the non-linearity of the constraints we
did not manage to find an analytical expression for the largest possible µ for a given λref, and the
largest possible µ for any λref. However, we believe that the choice of λref and µ as given here is
close to optimal in most of the parameter range 0 ă m ďM ă 8, 0 ď α ă 1.
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A Auxiliary results
Notice that using the independence of X and Z, and the fact that the standard normal distribution
is isotropic, we have

EX„π,Z„Np0,Idq
“

p∇UpXq, Zq`
‰

“ Ep|∇UpXq|qE
“

pw,Zq`
‰

,
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where w is an arbitrary fixed d dimensional unit vector. Now noticing that pw,Zq is a one dimen-
sional standard normal random variable, it follows that E

“

pw,Zq`
‰

“
ş8

x“0
1?
2πx exp

´

´x2

2

¯

dx “
1?
2π . Hence the key part of the proof is to find lower and upper bounds on

Ep|∇UpXq|q “
ş

xPRd |∇Upxq|e
´Upxqdx

ş

xPRd e
´Upxqdx

.

By shifting U , we can assume without loss of generality that Up0q “ 0 and ∇Up0q “ 0 (hence the
minimum is taken in the origin 0). Let Sd1 denote the d-dimensional unit sphere, then by writing
the above integrals along half-lines, we have
(A.1)

Ep|∇UpXq|q “

ş

uPSd1

ş8

r“0 |∇Upruq|e
´Upruqrd´1dr du

ş

uPSd1

ş8

r“0 e
´Upruqrd´1dr du

ě

ş

uPSd1

ş8

r“0
ˇ

ˇ

B
BrUpruq

ˇ

ˇ e´Upruqrd´1dr du
ş

uPSd1

ş8

r“0 e
´Upruqrd´1dr du

If we could lower bound the ratios of the one dimensional integrals
ş8

r“0
ˇ

ˇ

B
BrUpruq

ˇ

ˇ e´Upruqrd´1dr
ş8

r“0 e
´Upruqrd´1dr

,

then a lower bound for Ep|∇UpXq|q follows by rearrangement. This is shown in the following
Lemma.

Lemma A.1. Let d P Zě1, m P Rą0, and let V : Rě0 Ñ R be a differentiable function such that x ÞÑ
V pxq ´mx2

2 is convex, and V 1p0q “ 0. Let A “
ş8

0 xd´1e´V pxqdx and B “
ş8

0 V 1pxqxd´1e´V pxqdx.

Then B ě
?

2mΓp d`1
2 q

Γp d2 q
A.

Proof. First let d “ 1. Then B “
ş8

0 p´e
´V pxqq1dx “ e´V p0q. We have V pxq ě V p0q ` mx2

2 for
x ě 0, so A ď

ş8

0 e´V p0q´m
x2
2 dx “ e´V p0q

a

π
2m “

a

π
2mB, so B ě

?
2m Γp1q

Γp 1
2 q
A.

Now let d ě 2. Then

B “

ż 8

0
pp´xd´1e´V pxqq1 ` pd´ 1qxd´2e´V pxqqdx “ pd´ 1q

ż 8

0
xd´2e´V pxqdx,

so the claim is equivalent to
ş8

0 pc´ xqx
d´2e´V pxqdx ě 0, where c “ Γp d2 q

Γp d´1
2 q
¨
?

2?
m

(here we have used

Γpd`1
2 q “

d´1
2 Γpd´1

2 q). The function x ÞÑ V pxq ´mx2

2 is convex, and its derivative at x “ 0 is 0,
so this function is monotone increasing on Rě0. Hence V pxq ě V pcq ` m

2 px
2 ´ c2q if x ě c, and

V pxq ď V pcq ` m
2 px

2 ´ c2q if x ď c. Thus
ż 8

0
pc´ xqxd´2e´V pxqdx ě

ż 8

0
pc´ xqxd´2e´V pcq´

m
2 px

2´c2qdx

“ e
m
2 c

2´V pcq

ż 8

0
pc´ xqxd´2e´

m
2 x

2dx.

We have
ş8

0 xαe´
m
2 x

2dx “ 1
2p
m
2 q
´
α`1

2 Γpα`1
2 q for every m ą 0 and α ą ´1. So

ż 8

0
pc´ xqxd´2e´V pxqdx ě e

m
2 c

2´V pcq 1
2

ˆ

c
´m

2

¯´
d´1

2 Γ
ˆ

d´ 1
2

˙

´

´m

2

¯´ d
2 Γ

ˆ

d

2

˙˙

“ 0.
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The following lemma will be used to find a simpler lower bound for the ratio Γp d`1
2 q

Γp d2 q
.

Lemma A.2. If s ą 0, then Γps` 3
4 q

Γps` 1
4 q
ą
?
s.

Proof. Let φpsq :“ 1?
s

Γps` 3
4 q

Γps` 1
4 q

for s ą 0. Stirling’s formula implies that limsÑ8 φpsq “ 1. For s ą 0

we have φpsq ą 0 and pφps`1q
φpsq q

2 “ 1´ 1
p1`sqp1`4sq2 ă 1, so φpsq ą φps` 1q. Thus φpsq ą φps` 1q ě

φps` nq for every n P Zě1, and taking nÑ8 we get φpsq ą 1.

Taking s “ d´ 1
2

2 for d P Zě1, we get

(A.2)
Γpd`1

2 q

Γpd2q
ą

d

d´ 1
2

2 .

The next lemma will show the upper bound.

Lemma A.3. Suppose that the potential U : Rn Ñ R satisfies Assumption 1. Then for every
1 ď i ď n, we have E

`

pBiUpXqq
2˘ ďM , implying that E

`

|∇UnpXq|2
˘

ď nM and E p|∇UnpXq|q ď?
nM .

Proof. By Jensen’s inequality, we have

Ep|∇UpXq|q ď
“

Ep|∇UpXq|2q
‰1{2

“

«

Ep

d
ÿ

i“1
pBiUpXqq

2

ff1{2

.

Here
E
`

pBiUpXqq
2˘ “

ş

xPRdpBiUpxqq
2 expp´Upxqqdx

ş

xPRd expp´Upxqqdx ,

and from integration by parts, it follows that for every 1 ď i ď d, we have
ż

xPRd
pBiUpxqq

2 expp´Upxqqdx “
ż

x´iPRd´1

ż

xiPR
pBiUpxqq

2 expp´Upxqqdxidx´i

“

ż

x´iPRd´1

"

r´BiUpxq expp´Upxqqs8xi“´8 `
ż

xiPR
B2
i Upxq expp´Upxqqdxi

*

dx´i

“

ż

x´iPRd´1

ż

xiPR
B2
i Upxq expp´Upxqqdxidx´i ďM

ż

xPRd
expp´Upxqqdx.

The second and third claims now follow by summing up in i, and using Jensen’s inequality.

Proof of Proposition 2. The result follows from Lemmas A.1, A.2 and A.3.

Lemma A.4. Suppose that UnpXq : Rn Ñ R with mId ĺ ∇2UnpXq ĺ MId. Then

E

»

—

–

B1UnpXqV1
´

řn
j“1rBjUnpXqs

2
¯1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X1, V1

fi

ffi

fl

Ñ 0 as nÑ8.
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Proof.

E

»

—

–

B1UnpXqV1
´

řn
j“1rBjUnpXqs

2
¯1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X1, V1

fi

ffi

fl

ď E

„

|B1UnpXq|

|∇UnpXq|

ˇ

ˇ

ˇ

ˇ

X1



¨ |V1|.

Let us denote X´1 :“ pX2, . . . , Xnq, then X´1 given X1 has a conditional distribution with density
that is proportional to expp´UnpX´1, X1qq, which is a log-concave function of X´1, with Hessian
bounded between m and M . By Theorem 5.2 of [45], LpX´1|X1q satisfies a log-Sobolev inequality
with constant C :“ m´1. The functions |∇UnpXq| and |B1UnpXq| are M -Lipschitz in X´1 given a
fixed X1, and hence by Herbst’s argument (see equation (5.8) on page page 95 of [45]),

Pp|B1UnpXq| ´ Ep|B1UnpXq||X1q ě t|X1q ď exp
ˆ

´t2 ¨
2m
M2

˙

,

Pp||∇UnpXq| ´ Ep|∇UnpXq||X1q ď ´t|X1q ď exp
ˆ

´t2 ¨
2m
M2

˙

.

Conditionally on X1, define the event Gt as

Gt :“ t|B1UnpXq| ´ Ep|B1UnpXq||X1q ă t and |∇UnpXq| ´ Ep|∇UnpXq||X1q ą ´tu,

then by the above bounds, we have PpGt|X1q ě 1´2 exp
`

´t2 ¨ 2m
M2

˘

for every t ě 0. Let Gct denote
the complement of Gt. Assuming that 0 ă t ă Ep|∇UnpXq||X1q, the quantity of interest can be
bounded as

E

„

|B1UnpXq|

|∇UnpXq|

ˇ

ˇ

ˇ

ˇ

X1



“ E

„

|B1UnpXq|

|∇UnpXq|
¨ 1Gt

ˇ

ˇ

ˇ

ˇ

X1



` E

„

|B1UnpXq|

|∇UnpXq|
¨ 1Gct

ˇ

ˇ

ˇ

ˇ

X1



ď
Ep|B1UnpXq||X1q ` t

Ep|∇UnpXq||X1q ´ t
` 2 exp

ˆ

´t2 ¨
2m
M2

˙

,(A.3)

where we have used the fact that |B1UnpXq|
|∇UnpXq| ď 1. By Lemma 9 and equation (A.2), it follows that

for any n ě 2,
Ep|∇UnpXq||X1q ě Ep|B´1UnpXq||X1q ě

a

mpn´ 3{2q,

where B´1UnpXq denotes the gradient vector without the first component. By Lemma 11,

Ep|B1UnpXq|q ď
?
M.

Note that |B´1UnpX´1, X1q ´ B´1UnpX´1, X
1
1q| ď M |X1 ´ X 11|, and by Proposition 19 of [74], it

follows that
W1pLpX´1|X1q,LpX´1|X

1
1qq ď

M

m
|X1 ´X

1
1|,

therefore gpX1q :“ Ep|B1UnpXq||X1q is M2

m -Lipschitz in X1. By log-Sobolev inequality and Herbst’s
argument, for any s ě 0, we have

Pp|X1 ´ EpX1q| ě sq ď 2 exp
`

´s2 ¨ 2m
˘

.

Therefore, it follows that

?
M ě Ergs “ ErgpX1q ´ gpEpX1qqs ` gpEpX1qq ě ´

ż 8

r“0
PrgpX1q ´ gpEpX1qq ď ´rsdr ` gpEpX1qq
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ě ´

ż 8

r“0
P

”

|X1 ´ EpX1q| ě r
m

M2

ı

dr ` gpEpX1qq ě ´

ż 8

r“0
2 exp

ˆ

´r2 2m3

M4

˙

dr

ě gpEpX1qq ´ 2
a

pπ{2qM4{m3 ě gpEpX1qq ´ 3 M
2

m3{2 .

Thus gpEpX1qq ď 4 M2

m3{2 , which implies by the Lipschitz property that implying that

Ep|B1UnpXq||X1q “ gpX1q ď 4 M
2

m3{2 `
M2

m
|X1 ´ EpX1q|.

By simple algebra, t “
a

logpnqM2{p2mq satisfies that for n ě 3{2 ` 2 logpnqM2

m2 , we have t ď
1
2
a

mpn´ 3{2q. By combining the above bound with (A.3) and using this t, we have

E

„

|B1UnpXq|

|∇UnpXq|

ˇ

ˇ

ˇ

ˇ

X1



ď
4 M2

m3{2 `
M2

m |X1 ´ EpX1q| `
a

logpnqM2{p2mq
1
2
a

mpn´ 3{2q
`

2
n
,

as long as n ě 3{2` 2 logpnqM2

m2 . This tends to 0 as nÑ8.

Lemma A.5. Suppose that Un satisfies Assumption 1 and let X „ π̄n. Then for any α ą 0

lim
nÑ8

E

„

1
|∇UnpXq|α



“ 0.

Proof of Lemma A.5. We have

(A.4) E

„

1
|∇UnpXq|α



“

ż 8

t“0
P

„

1
|∇UnpXq|α

ě t



dt “ P

”

|∇UnpXq| ď t´1{α
ı

dt.

The function |∇Unpxq| isM -Lipschitz in x, so by the log-Sobolev inequality and Herbst’s argument
(see [45]), for any s ě 0, we have

Pp|∇Unpxq| ď Ep|∇Unpxq|q ´ sq ď exp
ˆ

´s2 ¨
2m
M2

˙

.

In the proof of Proposition 2, we have shown that Ep|∇Unpxq|q ě
b

n´ 1
2
?
m, hence for any s ě 0,

(A.5) P

˜

|∇Unpxq| ď
c

n´
1
2
?
m´ s

¸

ď exp
ˆ

´s2 ¨
2m
M2

˙

.

This bound will be used to control P
“

|∇UnpXq| ď t´1{α‰ for small and intermediate values of t.
However, for large t, the above concentration bound is not sufficiently sharp, as it does not tends
to zero as tÑ8. Hence we will use a different argument, that upper bounds the density of π̄n and
the volume of the space where |∇UnpXq| ď r.

First, note that by Assumption 1, we have Unp0q “ 0 and Un is minimized in 0. Using the lower
and upper bounds on the Hessian of Un, it follows that m

2 |x|
2 ď Unpxq ď

M
2 |x|

2. These bounds
correspond to the log-likelihoods of Gaussian densities, so the normalising constant of Un can be
bounded as

(A.6) p2πqn{2
Mn{2 ď

ż

xPRd
expp´Unpxqqdx ď

p2πqn{2
mn{2 .
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Moreover, using the bounds on the Hessian of Un, it follows that |∇UnpXq| ď r implies that
|X| ď r

m . Since the volume of a ball of radius r
m in Rn is

Vn “
πn{2

Γpn2 ` 1q

´ r

m

¯n
ď 6

´ r

m

¯n
,

it follows that

(A.7) Pp|∇UnpXq| ď rq ď P
´

|X| ď
r

m

¯

ď 6 Mn{2

p2πqn{2
´ r

m

¯n
.

Let a :“ p
b

n´ 1
2
?
m{2q´α, and b “

´

m
?

2π
2
?
M

¯´α
. By upper bounding P

“

|∇UnpXq| ď t´1{α‰ by 1

for 0 ď t ď a, by exp
´

´
pn´ 1

2 qm
2

2M2

¯

for a ă t ď b (using (A.5)), and by 6t´n{α
´ ?

M
m
?

2π

¯n
for t ą b,

by (A.4), for n ą α, we have

E

„

1
|∇UnpXq|α



ď

˜

c

n´
1
2
?
m{2

¸´α

`

ˆ

m
?

2π
2
?
M

˙´α

¨ exp
˜

´
pn´ 1

2qm
2

2M2

¸

` 6
˜ ?

M

m
?

2π

¸n
b´

n
α
`1

n
α ´ 1

ď

˜

c

n´
1
2
?
m{2

¸´α

`

ˆ

m
?

2π
2
?
M

˙´α

¨ exp
˜

´
pn´ 1

2qm
2

2M2

¸

` 6
˜?

M

m

¸α
2´n
n
α ´ 1

which tends to 0 as nÑ8.
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