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For a mixed-integer linear problem (MIP) with uncertain constraints, the radius of robust feasibility (RRF)

determines a value for the maximal “size” of the uncertainty set such that robust feasibility of the MIP

can be guaranteed. The approaches for the RRF in the literature are restricted to continuous optimization

problems. We first analyze relations between the RRF of a MIP and its continuous linear (LP) relaxation. In

particular, we derive conditions under which a MIP and its LP relaxation have the same RRF. Afterward,

we extend the notion of the RRF such that it can be applied to a large variety of optimization problems and

uncertainty sets. In contrast to the setting commonly used in the literature, we consider for every constraint

a potentially different uncertainty set that is not necessarily full-dimensional. Thus, we generalize the RRF

to MIPs as well as to include “safe” variables and constraints, i.e., where uncertainties do not affect certain

variables or constraints. In the extended setting, we again analyze relations between the RRF for a MIP and

its LP relaxation. Afterward, we present methods for computing the RRF of LPs as well as of MIPs with

safe variables and constraints. Finally, we show that the new methodologies can be successfully applied to

the instances in the MIPLIB 2017 for computing the RRF.

Key words : Robust Optimization, Mixed-integer programming, Uncertainty sets, Robust feasibility

1. Introduction

Robust optimization is a well-established method for protecting an optimization problem from data

uncertainties that are usually defined via so-called uncertainty sets. Such data uncertainties may

arise as a result of estimation and prediction errors as well as from a lack of (future) information.
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Robust optimization plays an important role in many applications such as finance, energy, supply

chain, health care, etc., see Gorissen et al. (2015) and the literature therein. For detailed overviews

of the research area of robust optimization, we refer to Ben-Tal and Nemirovski (2008), Ben-Tal

et al. (2009), Bertsimas et al. (2011), Gorissen et al. (2015), Buchheim and Kurtz (2018). One

of the main goals consists in finding robust feasible solutions, i.e., solutions which are feasible for

all realizations of a given uncertainty set. A solution is robust optimal if it is robust feasible and

attains the best possible objective value. The corresponding robust optimization problem, also

called robust counterpart, is, in general, semi-infinite. Nevertheless, for several important classes

of optimization problems and uncertainty sets, it is possible to reformulate the robust counterpart

as an algorithmically tractable finite optimization problem. This is in particular true for mixed-

integer linear optimization and convex uncertainty sets, see for example Ben-Tal et al. (2015) for

a comprehensive treatment.

Intensive research has been conducted in developing algorithmically tractable robust counter-

parts. However, in applications it also important to construct appropiate uncertainty sets. Some

proposals for constructing “good” uncertainty sets are given in Gorissen et al. (2015), Bertsimas

and Brown (2009), Bertsimas et al. (2018). High-volume uncertainty sets may lead to overly con-

servative solutions that are overly protected and furthermore lead to bad objective function values,

when compared to the nominal solution. The overall goal of constructing “good” uncertainty sets

consists in prohibiting too conservative, intractable, or even infeasible robust optimization prob-

lems due to the choice of the uncertainty set. In order to achieve these goals, it is useful to know

the maximal “size” of a given uncertainty set such that a robust feasible solution still exists. In

this paper, we study one notion of “size”: the radius of robust feasibility (RRF). It is motivated

by the notion of the consistency radius used in the linear semi-infinite programming, see Cánovas

et al. (2005, 2011, 1999).

In this work, we investigate the problem of determining the RRF for a mixed-integer linear

optimization problem (MIP), both from a theoretical as well as from a practical point of view.

To evaluate our methods on a set of realistic MIPs from different applications, we apply them to

compute the RRF for the benchmark instances of the MIPLIB 2017 library.

In general, the RRF is defined as the supremum over all scaled sizes of a given uncertainty

set such that robust feasibility is guaranteed. Consequently, it is possible that the supremum is

not attained, i.e., the RRF is not attained. In this case, the uncertain problem is not feasible for

the uncertainty set scaled by the RRF, but it is feasible for every smaller scaling, see Goberna

et al. (2014). The RRF has been researched only for continuous problems. For linear problems

(LPs), theoretical and numerical tractable models for the RRF w.r.t. different compact and convex

uncertainty sets are provided in Chuong and Jeyakumar (2017), Goberna et al. (2015, 2014). The
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RRF is introduced in robust convex optimization in Goberna et al. (2016). The authors further

provide an upper bound of the RRF for convex problems with convex polynomial constraints

and establish a method for computing the RRF of convex problems with SOS-convex polynomial

constraints. In Li and Wang (2018), Chen et al. (2020), exact analytical formulas for the RRF of

convex problems with general convex and compact uncertainty sets are established. We also note

that in the recent paper Chen et al. (2020) lower and upper bounds for the RRF of convex problems

with different full-dimensional uncertainty sets for every constraint are given. We note that the

RRF has connections to recent developments in the fields of stability and sensitivity analysis of

robust optimization problems, see e.g., Chan and Mar (2017), Crespi et al. (2018), because it

computes the solution that is most insensitive w.r.t. feasibility and changes, in form of scaling, of

the uncertainty set.

We generalize the above-mentioned approaches in three directions: We allow that the uncertainty

sets are different and not necessarily full-dimensional for every constraints. We do not require zero

to be in the interior of the uncertainty set and finally, we allow integer variables in the optimization

problem. This enables us to consider a wider variety of applications for the RRF. For instance, we

can include “safe” constraints and variables, i.e., constraints and variables that are not affected

by uncertainty. For example, if all coefficients of a constraint are deterministic, this constraint is

safe. If all coefficients of some variable are deterministic in the constraint system, this variable is

safe. The drawback of this generalization is, that we lose some of the nice theoretical properties of

the RRF, e.g., finiteness, see Goberna et al. (2014). Furthermore, the generalizations require the

developement of new algorithmic techniques to compute the RRF.

The RRF has been studied for specific applications. For instance, in Carrizosa and Nickel (2003)

the authors try to find the “most robust” facilities w.r.t. demand uncertainties for the Weber

problem of facility location design. One can show that their problem is equivalent to computing

the RRF. However, for this equivalence to hold, one cannot use the standard definition of the RRF,

but one needs to extend it to include safe constraints and variables as in Section 3. The core idea

in Carrizosa and Nickel (2003) is to remove the objective of the original problem and reintroduce it

into the problem as a budget constraint for a fixed budget (e.g. the original optimal value). Then

one can compute the RRF, with the budget constraint considered safe, to obtain a solution that

can be seen as a “most robust” solution. The budget specifies how much a decision maker is willing

to pay to obtain a robust solution. With the help of varying the budget, one can support decision

makers by showing them the trade-off between robustness and worse objective values. With our

work, the same idea can now be applied to general MIPs. The authors of Carrizosa et al. (2015) also

use the concept of the RRF in facility location design. They consider a bi-objective problem that

consists of maximizing robustness via the RRF and minimizing the estimated total cost. For LPs
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another example is the flexibility index problem, e.g., the RRF of an LP with a box uncertainty

set, see Zhang et al. (2016).

A more complex variant of the RRF plays an important role in the context of design and control

of gas networks. In the European Entry-Exit market system, the transmission system operator is

obliged to allocate so called technical capacities in the network while guaranteeing the feasibility of

the gas transport for any injection and withdrawal within these capacities, see Koch et al. (2015)

for a more detailed explanation. The computation of technical capacities leads to a two-stage

nonlinear robust optimization problem that has not been solved in general so far. The latter problem

can be solved by applying a complex variant of the extended RRF including “safe” constraints

and variables and different radii for different constraints. Thus, this work is a first step towards

computing technical capacities in gas network operations.

The key contributions of our paper are as follows:

(i) We first introduce the RRF for MIPs in Section 2. We then analyze in detail the relations

between the RRF of a MIP and its LP relaxation in the common setting of the literature, i.e.,

where the uncertainty set is full-dimensional. We prove the main result that if the RRF of the

LP relaxation is not attained, then this RRF equals the RRF of the corresponding MIP. The

latter result enables us to compute the RRF of a MIP using known techniques for the RRF

of LPs under certain conditions.

(ii) We extend the concept of the RRF to include “safe” variables and constraints in Section 3 in

order to make the RRF applicable to a broader spectrum of problems and applications. We

then again analyze relations between the RRF of a MIP and its LP relaxation. Further, we

prove a necessary optimality condition for the RRF which is also sufficient under additional

assumptions.

(iii) We provide first algorithms for computing the RRF including “safe” variables and constraints

in Section 4. Finally, we present a computational study of the RRF w.r.t. the MIPLIB 2017

library, see MIPLIB 2017. We compare the performance of the proposed methods and the com-

puted RRF. We also consider the price of robustness which measures the difference between

the optimal objective value of the nominal problem and the corresponding value of the robust

problem and discuss the obtained results.

2. Relations between the RRF of a MIP and of its LP Relaxation

In this section, we first introduce the radius of robust feasibility for a MIP and then relate it to

that of its LP relaxation. In the following, let us consider a feasible MIP with coefficients āj ∈Rn

and b̄j ∈R, j ∈ J , of the constraints and finite index set J ⊂N that is composed of

min
x∈Zk×Rn−k

{cTx : (āj)Tx≤ b̄j, j ∈ J}. (P)
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For fixed α≥ 0, let the robust counterpart for the uncertain MIP (P) with uncertainty set αU ⊆
Rn+1 be given by

min
x∈Zk×Rn−k

{cTx : (aj)Tx≤ bj, ∀(aj, bj)∈ {(āj, b̄j) +αu : u∈ U}, j ∈ J}, (PRα)

whereby U ⊆ Rn+1 is a convex and compact uncertainty set. In analogy

to Goberna et al. (2014, 2016), Chuong and Jeyakumar (2017), Li and Wang (2018), we further

assume that the uncertainty set U contains zero in its interior.

Assumption 1. Uncertainty set U includes zero in its interior, i.e., 0∈ int U holds.

This implies that the uncertainty set U is full-dimensional, i.e. every variable is affected by uncer-

tainties. We note that one can transform a robust optimization problem with an uncertainty set

that does not contain zero to an equivalent robust problem with an uncertainty set that contains

zero, see Chapter 1 of the book Ben-Tal et al. (2009). It is, however, not possible to guarantee

that zero is in the interior of the uncertainty set U . This is the case, for instance, if one variable is

not affected by uncertainty, i.e., the projection of U on a single variable is just the set containing

only zero. Furthermore, we note that the standard transformation of the uncertainty set does not

maintain the form of (PRα).

Assumption 1 guarantees that the radius of robust feasibility of LPs is finite, as shown in Goberna

et al. (2014). Additionally, we assume that the nominal problem (PR0) is feasible, i.e., {x ∈ Zk ×
Rn−k : ājx≤ b̄j, j ∈ J} 6= ∅. Following the notion of Chuong and Jeyakumar (2017), Goberna et al.

(2014), who consider the radius of robust feasibility for linear problems, we define the radius of

robust feasibility (RRF) for the parametric uncertain mixed-integer problem (P) as

ρMIP := sup{α≥ 0: (PRα) is feasible}.

The definition of the RRF ρMIP does not necessarily imply the feasibility of (PRρMIP
), even in the

case of linear problems, see Example 2.2 in Goberna et al. (2014). If (PRρMIP
) is feasible, we say

that the RRF is attained, otherwise it is not attained. Proposition 2.3 in Goberna et al. (2014)

states a sufficient condition so that the RRF is attained by a feasible solution.

We note that (PRα) is a semi-infinite MIP that consists of infinitely many constraints and

finitely many variables. Thus, it cannot easily be solved by known techniques. We now reformulate

(PRα) with the help of Fenchel duality in order to obtain an ordinary robust counterpart, i.e., the

robust counterpart consists of finitely many variables and constraints. For ease of notation, we use

index set I := {1, ..., n} and b := n+ 1 in the remainder of this paper. We further introduce the

indicator function δ(x | U) for x ∈ Rn+1, which evaluates to zero if x ∈ U holds and otherwise to

+∞. Moreover, let δ?(y | U) = supu∈U y
Tu denote the conjugate function of the indicator function,

which is also called support function.
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Proposition 1. Let α≥ 0 be fixed. Then, the feasible region of (PRα) equals the feasible region

of the ordinary counterpart

{x∈Zn×Rn−k | (āj)Tx+αδ?((x,−1)T | U)≤ b̄j, j ∈ J}. (1)

Proof. The claim follows from Theorem 2 in Ben-Tal et al. (2015) and the positive homogeneity

of δ?(y | U). �

Consequently, we obtain

min
x∈Zk×Rn−k

{cTx : (āj)Tx+αδ?((x,−1)T | U)≤ b̄j, j ∈ J}. (PRCα)

as the ordinary robust counterpart of (PRα).

In general, for fixed α ≥ 0, problem (PRCα) is a convex constrained mixed-integer problem.

This holds, because for a convex and compact set U the support function δ?(y | U) is convex in

y, see Boyd and Vandenberghe (2004). For many uncertainty sets U such as boxes, balls, cones,

polyhedrals, or convex functions, an explicit formulation of (PRCα), especially the computation of

the support function, can be found in Ben-Tal et al. (2015).

All existing techniques for computing the RRF of continuous problems, such as Chuong and

Jeyakumar (2017), Goberna et al. (2016, 2014), Li and Wang (2018), Chen et al. (2020), are based

on concepts that are not transferable to MIPs. Hence, we now analyze relations about the RRF

of (P) and of its LP relaxation

min
x∈Rn
{cTx : (āj)Tx≤ b̄j, j ∈ J}. (LP)

The robust counterpart for the uncertain linear problem (LP) with uncertainty set αU ⊆ Rn+1

and its ordinary reformulation equal the continuous relaxations of (PRα) and (PRCα). We denote

them by

min
x∈Rn
{cTx : (aj)Tx≤ bj, ∀(aj, bj)∈ {(āj, b̄j) +αu : u∈ U}, j ∈ J}, (LPRα)

min
x∈Rn
{cTx : (āj)Tx+αδ?((x,−1)T | U)≤ b̄j, j ∈ J}. (LPRCα)

We first prove some basic results, which show among other things that the RRF of (LP) is always

an upper bound for ρMIP.

Theorem 1. Let ρMIP be the RRF of (P). The RRF of its continuous relaxation (LP) is denoted

by ρLP. Then, the following statements hold:

(i) 0≤ ρMIP ≤ ρLP.

(ii) RRF ρMIP is finite.
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Proof. Each feasible solution of a MIP is feasible for its LP relaxation. Thus, the RRF of (LP)

is always an upper bound for the corresponding RRF of (P). Furthermore, the RRF of an LP

is finite if 0 ∈ int U holds, see Goberna et al. (2014). Consequently, the RRF of (P) is finite as

well. �

Next, we state a monotonicity fact regarding the feasibility of (PRα). It is based on the obser-

vation that if a robust optimization problem is feasible, then so is the same problem for a subset

of the uncertainty set.

Observation 1. If x is a feasible solution to (PRα), then x is also feasible for (PRα′) for all

α′ ∈ [0, α].

We now show with the help of an example that the RRF of (P) and of its LP relaxation (LP)

are not necessarily equal.

Example 1. The constraints of the nominal problem are given by

− 2x1 ≤−1.5, 2x1 ≤ 3.5, x1 ∈Z, (2)

with uncertainty set U := [−1,1]2. Since

δ?((x1,−1) | [−1,1]2) = max
u1,u2∈[−1,1]

(u1x1−u2) = |x1|+ 1

holds, Proposition 1 leads to the following robust counterpart of (2)

− 2x1 +α|x1| ≤−1.5−α, 2x1 +α|x1| ≤ 3.5−α, x1 ∈Z. (3)

The only feasible solution for the nominal problem (2) is x1 = 1. Further, x1 = 1 is feasible to (3)

if and only if α ∈ [0,0.25] holds. Consequently, the RRF of (2) equals 0.25. Now, we consider the

LP relaxation of (2). The corresponding robust counterpart equals the relaxation of (3). If x1

is a feasible solution of the relaxation of (3), then it is a feasible solution of (2). Consequently,

0.75≤ x1 ≤ 1.75 holds. Since x1 > 0, one has

1.5 +α

2−α
≤ x1 ≤

3.5−α
α+ 2

which entails α≤ 4
9
. Conversely, if 0≤ α≤ 4

9
, then every x1 satisfying the previous inequalities is a

feasible solution of the relaxation of (3). Thus, the RRF of the relaxation is 4
9

that is attained by

x1 = 1.25. We note that the RRF of (2) and its relaxation are attained, i.e., (PR0.25) and (LPR 4
9
)

are feasible.

This leads to the following.

Observation 2. Let ρMIP be the RRF of (P) and ρLP the RRF of its LP relaxation (LP). MIPs

with ρMIP <ρLP exist.
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We now state the main result of this section, namely that if ρLP is not attained, then (P) and

(LP) have the same RRF. This result provides sufficient conditions such that the RRF of a MIP

can be computed by the RRF of the LP relaxation. In detail, we first compute the RRF of the

LP relaxation with known techniques. If this RRF is not attained, then it is also the RRF of the

corresponding MIP. Otherwise, we obtain an upper bound which is useful for computing the RRF

as we will see in Section 4. Additionally, we show that a similar connection between the RRF of a

MIP and its LP relaxation is not necessarily given if ρLP is attained. These findings are summarized

in the next theorem.

Theorem 2. Let ρMIP be the RRF of (P) and ρLP the RRF of its LP relaxation (LP). Then,

the following statements hold:

(i) If the RRF of (LP) is not attained, then ρMIP = ρLP holds.

(ii) If the RRF of (P) is attained, then the RRF of (LP) is also attained.

(iii) MIPs exist such that the RRF ρLP is attained and ρMIP is attained.

MIPs exist such that the RRF ρLP is attained and ρMIP is not attained.

We will now present several examples and lemmas. With their help, we will prove Theorem 2 at

the end of this section.

In general, the RRF is not necessarily attained by a feasible solution. If (P) and (LP) have the

same RRF and (PRρMIP
) is feasible, then the RRF of (LP) is also attained because each feasible

solution of (PRρMIP
) is also feasible to (LPRρLP

). A reversal of this relation is not true in general.

That means, if the RRF of (LP) is attained, then (PRρMIP
) is not necessarily feasible. We show

this with the help of the following example.

Example 2. The constraints of the nominal problem are given by

−x1− 2x2 ≤ 0.5, −x1 + 2x2 ≤ 2.5, x1, x2 ∈Z, (4)

with uncertainty set U := [−1,1]3. From Proposition 1 the robust counterpart of (4) reads as

−x1 +α|x1| − 2x2 +α|x2| ≤ 0.5−α, (5a)

−x1 +α|x1|+ 2x2 +α|x2| ≤ 2.5−α, x1, x2 ∈Z. (5b)

For α∈ [0,1), we set x2 = 0 and (−1+α)< 0 holds. Consequently, (x1,0) is feasible for (5) whenever

x1 ∈ N satisfies x1 ≥ 0.5−α
α−1

. Thus, the RRF of (4) is at least 1. We now consider α = 1. Since

−x1 + α|x1| ≥ 0 holds for every x1 ∈ R, it follows x2 > 0 by (5a). Consequently, from (5) we

obtain −x2 ≤−0.5 and 3x2 ≤ 1.5 that has to be satisfied by an integer solution which leads to a

contradiction. Consequently, the RRF of (4) equals 1 due to Observation 1 and further it is not

attained. We now consider the relaxation of (4), i.e., x1, x2 ∈R. Its robust counterpart equals the
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relaxation of (5). Then, x1 = 0, x2 = 0.5 is a feasible solution for α ∈ [0,1] of the corresponding

robust counterpart. For α> 1 the inequality −x1 +α|x1| ≥ 0 holds for x1 ∈R and thus, from (5a)

it follows x2 > 0. Consequently, we obtain from (5) the inequalities −x2 <−0.5 and x2 < 0.5 that

have to be satisfied, which is a contradiction. Thus, the RRF of the relaxation of (4) equals 1 and

it is attained.

If we slightly increase the right-hand side of (4), then we obtain the same result that (LPRρLP
) is

feasible and (PRρMIP
) is infeasible, but this time ρMIP < ρLP holds. An example for this adaption

is given as follows.

Example 3. The constraints of the nominal problem are given by

−x1− 2x2 ≤ 0.6, −x1 + 2x2 ≤ 2.6, x1, x2 ∈Z.

Then, the RRF of (P) equals 1 and it is not attained. The RRF of (LP) equals 16
15

that is attained

by x1 = 0, x2 = 0.5.

We now show several statements that lead to the proof of the main result (i) of Theorem 2. The

latter says that if (LP) does not attain its RRF, then (P) and (LP) have the same RRF. We first

prove that if the RRF ρMIP is not attained, then an unbounded sequence of solutions exists such

that for every α< ρMIP an element of the sequence solves (PRCα).

Lemma 1. If the RRF ρMIP of (P) is not attained, then a positive and strictly increasing sequence

(αl)l∈N and an unbounded sequence in Rn, (xl)l∈N, exist such that (αl)l∈N converges to ρMIP and xl

is feasible to (PRCαl) for all l ∈N.

Proof. Since (P) is feasible and ρMIP is not attained, ρMIP > 0 holds. Consequently, a positive

and strictly increasing sequence (αl)l∈N that converges to ρMIP exists. Furthermore, a sequence in

Rn, (xl)l∈N, exists such that xl is feasible to (PRCαl) for all l ∈ N. We now have to show that

the sequence (xl)l∈N is unbounded. To this end, we contrarily assume that (xl)l∈N is bounded.

Consequently, and by passing to a subsequence if necessary, we may assume that xl −→ x̄ holds,

with x̄i ∈ Z for i = 1, . . . , k thanks to the closedness of Z. Considering (PRCαl) together with a

solution xl for an arbitrary j ∈ J leads to

(āj)Txl +αlδ?((xl,−1)T | U)≤ b̄j. (6)

Passing to the limit in (6), we obtain

(āj)T x̄+ ρMIPδ
?((x̄,−1)T | U)≤ b̄j.

Thus, x̄ is a feasible solution to (PRCρMIP
), which contradicts the requirements. �
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We next prove that under the given conditions we can arbitrarily expand the slack of any

constraint of (PRαl).

Lemma 2. Let (αl)l∈N be a strictly increasing positive sequence and an unbounded sequence in

Rn, (xl)l∈N, exist such that xl is feasible to (PRαl) for all l ∈N. Then, for an arbitrary value M ≥ 0

and index l̂ ∈ N there exists an index l̄ > l̂ such that for all u = ( uIub ) ∈ U , j ∈ J , and l ≥ l̄ the

inequality

(āj)Txl +αl̂(uTI x
l−ub) +M ≤ b̄j

holds.

Proof. For a sufficiently small number β > 0, we know that ±βev ∈ U for v ∈ I holds, whereby

ev is the vth unit vector of Rn+1, because 0∈ int U . Passing to a subsequence if necessary, we know

that v ∈ I with |xlv| −→ +∞ exists because the sequence (xl)l∈N is unbounded. We can assume

w.l.o.g. that xlv −→+∞ holds due to ±βev ∈ U . Additionally, we can assume that (xlv)l>l̂ is strictly

increasing and we know that (αl)l∈N is strictly increasing. Consequently, an index l̄ exists such that

for all l≥ l̄ the inequality (αl−αl̂)βxlv ≥M holds. We now choose an arbitrary index j ∈ J , u∈ U ,

and consider l > l̄. From the convexity of U it follows u′ := αl̂

αl
u+ (1− αl̂

αl
)βev ∈ U . The element xl

is a feasible solution to (PRαl). Hence,

(āj)Txl +αl((u′I)
Txl−u′b) = (āj)Txl +αl̂(uTI x

l−ub) + (αl−αl̂)βxlv ≤ b̄j (7)

is satisfied for every l > l̄. The inequality (αl−αl̂)βxlv ≥M , which is independent from the chosen

u, holds and thus, (7) shows the claim. �

Due to the compactness of U , we know that rounding down any solution leads to a bounded

difference in the left side of any constraint in (PRCα). For x ∈ Rn, bxc denotes the vector whose

vth component is the lower integer part of xv.

Lemma 3. For fixed α≥ 0, a positive value M > 0 exists such that the inequalities

|(āj)T (x−bxc) +αuTI (x−bxc)| ≤M (8)

are satisfied for any u∈ U , x∈Rn, and j ∈ J .

Finally, we can prove Theorem 2.

Proof of Theorem 2. Examples 1, 2, and 3 show Statement (iii).

We now prove Statement (i). To this end, we assume w.l.o.g. that ρLP is positive. The RRF ρLP

is not attained and hence, from Lemma 1 it follows that a strictly increasing positive sequence

(αl)l∈N with 0<αl <ρLP and an unbounded sequence in Rn, (xl)l∈N, exist such that αl converges to

ρLP and xl is feasible to (LPRαl) for all l ∈N. For an arbitrary fixed index l̂ ∈N, we now construct
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a solution x̂l̂ that is feasible to (PR
αl̂

). Due to Lemma 3, we can choose M > 0 such that (8) is

satisfied. We now apply Lemma 2 for this value M . Consequently, a solution xl exists such that

the inequalities

(āj)Txl +αl̂(uTI x
l−ub) +M ≤ b̄j, u∈ U , j ∈ J, (9)

are satisfied. For an arbitrary element u∈ U and j ∈ J , the inequalities

b̄j ≥ (āj)Txl +αl̂(uTI x
l−ub) +M

= (āj)T bxlc+αl̂(uTI bxlc−ub) + (āj)T (xl−bxlc) +αl̂uTI (xl−bxlc) +M

≥ (āj)T bxlc+αl̂(uTI bxlc−ub),

follow from (8) and (9). Thus, x̂l̂ := bxlc is an integer solution to (PR
αl̂

). We have arbitrarily chosen

l̂ ∈ N and hence, we can construct for each l̂ ∈ N an integer solution which is feasible for (PR
αl̂

).

This, the convergence of (αl̂)l̂∈N to ρLP, and Statement (i) of Theorem 1, prove that ρMIP = ρLP

holds.

We now show Statement (ii). We contrarily assume that the RRF of (LP) is not attained. Thus,

ρMIP = ρLP follows from Statement (i) of Theorem 2. Due to the requirements, (PRρMIP
) is feasible,

which is a contradiction to the assumption, because each feasible solution of (PRρMIP
) is feasible

to (LPRρLP
). �

The proof of this theorem closes the section. We will extend our investigations to linear opti-

mization problems that contain safe constraints and variables in the following section.

3. Extension of the RRF to Include Safe Constraints and Variables

As mentioned in the introduction, there is a need to integrate safe variables and constraints into

the concept of the RRF since often only parts of optimization models are affected by uncertainty

in practice. Thus, a full-dimensional uncertainty set U with 0 ∈ int U such as in Assumption 1 is

not given in this context. Consequently, many known techniques for computing the RRF of LPs

such as in Goberna et al. (2014, 2016), Chuong and Jeyakumar (2017), Li and Wang (2018), Chen

et al. (2020) are not applicable anymore. Moreover, it is sometimes necessary to choose different

not necessarily full-dimensional uncertainty sets for different constraints. In this case, the setting

of Section 2, in which we consider in line with the common literature the same full-dimensional

uncertainty set U for all constraints, is not suitable. Additionally, a general weakness of the common

definition of the RRF in view of comparing the RRF for different models of the same problem is

that scaling the constraints of the nominal problem (P) changes the RRF, which can make the

RRF values meaningless in practice. We illustrate this by the following example.
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Example 4. We consider the uncertainty set U = [−1,1]2. Then, a nominal problem with con-

straints given by −x1 ≤ 1, x1 ∈R, has RRF 1 whereas scaling this nominal problem by a factor of

2 leads to −2x1 ≤ 2, x1 ∈R, with RRF 2.

The latter example and the above mentioned limitations of the setting for the RRF from Section 2

motivate us to extend this setting. This will allow us to apply the concept of the RRF to more

MIP instances and applications such as computing the “most robust” solution in robust facility

location design.

We now introduce our extended setting for the RRF of a MIP. In analogy to Section 2, we

consider the nominal MIP (P). Let α ≥ 0 be a fixed value and µj the smallest absolute nonzero

coefficient of the jth constraint of (P). The robust counterpart for the uncertain MIP (P) with

uncertainty sets αŪj, j ∈ J, is now given by

min
x∈Zk×Rn−k

{cTx : (aj)Tx≤ bj, ∀(aj, bj)∈ {(āj, b̄j) +αu : u∈ Ūj}, j ∈ J}, (EPRα)

whereby for j ∈ J the uncertainty set Ūj := µj Uj ⊂Rn+1 is composed of a convex and compact set

Uj that is scaled by µj. In contrast to (PRα) of Section 2, we now consider in (EPRα) for every

constraint an own uncertainty set. These sets are not necessarily equal. Additionally, for j ∈ J

every uncertainty set Ūj is scaled by the smallest absolute nonzero coefficient of the jth constraint.

The latter prevents that the RRF of a MIP can be increased by scaling the nominal problem such

as in Example 4, which we will show later in this section, see Lemma 5. We note that the uncertain

problem (PRα) of the previous section is a special case of the extended uncertain problem (EPRα).

In contrast to the setting of Section 2 that requires zero in the interior of the uncertainty set,

see Assumption 1, we relax this condition such that zero is only a part of our uncertainty set.

Consequently, the uncertainty set is not necessarily full-dimensional and we now can model safe

variables and constraints. A variable xi, i∈ I, is said to be safe for the jth constraint, j ∈ J , if the

projection of Ūj on the ith axis equals {0}. Further, a variable xi, i ∈ I, is said to be safe if it is

safe for each constraint (āj)Tx≤ b̄j, j ∈ J .

For constraints, we now differentiate between two notions of being safe. A constraint (āj)Tx≤

b̄j, j ∈ J, is syntactically safe if Ūj = {0}. It is semantically safe, if δ?((x,−1)T | Ūj) = 0 for all

feasible points x∈Rn of (P). Whereas a syntactically safe constraint is also semantically safe, the

converse statement is not necessarily true.

Considering the input data of the optimization problem, we can easily check whether a constraint

is syntactically safe but not whether it is semantically safe. We note that decision makers can

explicitly model syntactically safe constraints by setting the corresponding uncertainty set to zero.

Throughout the following sections, we use safe as short form of semantically safe, if not explicitly

stated otherwise.
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The requirement that the uncertainty set contains zero is reasonable because it ensures that the

nominal problem (EPR0) is feasible for the RRF.

Assumption 2. Zero is contained in every uncertainty set Ūj for j ∈ J .

In analogy to Section 2, we define the radius of robust feasibility (RRF) of a given MIP in our

extended setting by

ρMIP := sup{α≥ 0: (EPRα) is feasible}.

Similar to Proposition 1, we reformulate the feasible region of the semi-infinite problem (EPRα)

and obtain the ordinary robust counterpart

min
x∈Zk×Rn−k

{cTx : (āj)Tx+αδ?((x,−1)T | Ūj)≤ b̄j, j ∈ J}. (EPRCα)

In analogy to Section 2, the robust counterparts corresponding to the continuous relaxation

of (EPRα) equal the continuous relaxation of (EPRCα). We note that the setting of Section 2 is

included in our extended setting of this section. We now compare the two settings and highlight

similarities and differences.

First, we summarize all statements of Section 2 that are satisfied in our extended setting and

can be shown analogously to the previous section.

Observation 3. Let ρMIP be the RRF of (P) and ρLP the RRF of its LP relaxation (LP). Then,

the following statements hold:

(i) 0≤ ρMIP ≤ ρLP.

(ii) MIPs with ρMIP <ρLP exist.

(iii) MIPs exist such that the RRF ρLP is attained and ρMIP is attained.

MIPs exist such that the RRF ρLP is attained and ρMIP is not attained.

We also note that Observation 1 and Lemma 1 are valid in our new setting, which can be shown

in analogy to Section 2.

We now turn to the differences between the two considered settings for the RRF. Using coun-

terexamples we show that several statements of the previous Section 2 are not satisfied in our

extended setting. Especially, the main result, Statement (i) of Theorem 2, is not satisfied anymore.

First, we note that the RRF is not necessarily finite in our new setting, which especially holds for

every feasible nominal problem (P) if the uncertainty set contains only zero.

Observation 4. MIPs exist such that the RRF of (P) is infinite.

The next example shows that if the RRF ρLP of the LP relaxation (LP) is not attained, then the

RRF ρMIP of (P) is not necessarily equal to ρLP.
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Example 5. The constraints of the nominal problem are given by

x1 ≤ 1, −x1 ≤ 0.1, −x2 ≤−2, x1 ∈Z, x2 ∈R, (10)

with the uncertainty sets Ū1 = [0]2× [−0.5,0.5], Ū2 = 0.1 · ([0]2× [−5,5]), and Ū3 = [0]× [−1,1]× [0].

Proposition 1 leads to the robust counterpart of (10)

x1 ≤ 1− 0.5α, −x1 ≤ 0.1− 0.5α, −x2 +α|x2| ≤−2, x1 ∈Z, x2 ∈R. (11)

From Counterpart (11) it follows that the RRF ρMIP of (10) equals 0.2 and it is attained by any

point (0, x2) such that x2 ≥ 2.5.

We now consider the LP relaxation of (10) and the corresponding counterpart, which is the

continuous relaxation of (11). For every α ∈ [0,1) the element (x1, x2) = (0.5,2/(1−α)) is feasible

for the continuous robust counterpart. Furthermore, for α = 1 the corresponding counterpart is

infeasible because −x2 + |x2| ≤−2, x2 ∈R, cannot be satisfied. Consequently, the RRF ρLP of the

LP relaxation of (10) equals 1 and is not attained by a feasible solution.

From Example 5 it follows that the main result of Section 2, Statement (i) of Theorem 2, is not

valid in our new setting for the RRF. Furthermore, Statement (ii) of Theorem 2 does not hold.

Lemma 4. Let ρMIP be the RRF of (P) and ρLP the RRF of its LP relaxation (LP). Then, the

following statements hold:

(i) MIPs exist such that ρLP is not attained and ρMIP <ρLP holds.

(ii) MIPs exist such that the RRF ρMIP is attained and ρLP is not attained.

In addition that we can now handle safe constraints and variables in our extended setting, we now

prove that scaling the nominal problem by a positive factor does not change the RRF, which is

not valid for the RRF in the setting of Section 2, see Example 4.

Lemma 5. Let ρMIP be the RRF of (P) and λj > 0, j ∈ J, positive factors. Then, ρMIP is also the

RRF of the λ-scaled problem (P), i.e., ρMIP is the RRF of

min
x∈Zk×Rn−k

{cTx : λj(āj)Tx≤ λj b̄j, j ∈ J}. (12)

Proof. For every j ∈ J , scaling the jth constraint of the nominal problem (P) by λj also scales

the smallest absolute nonzero coefficient µj of the jth constraint by λj. Hence, for j ∈ J the uncer-

tainty set Ūj is scaled by λj. From this it follows that the uncertain problem of (12) equals (EPRα).

Thus, ρMIP is also the RRF of (12). �
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We now have analyzed similarities and differences for the setting of the RRF in Section 2 and

our extended setting. To conclude this section, we present a necessary optimality condition for the

RRF of a MIP in our extended setting that we then extend to a necessary and sufficient condition

under additional assumptions. Its basic idea is rather simple, if none of the constraints is tight

for a considered feasible solution, then we can increase the uncertainty set which implies that the

chosen size of the uncertainty set was not maximal.

Theorem 3. Let α≥ 0 be the finite RRF of (P). Then, for every feasible solution x∈Zk×Rn−k

of (EPRCα) there exists an index j ∈ J which satisfies

(āj)Tx+αδ?((x,−1)T | Ūj) = b̄j.

Proof. Let α ∈R be the finite RRF of (P). We contrarily assume that (ε,x) with ε > 0 exists

such that x is feasible for (EPRCα) and

(āj)Tx+αδ?((x,−1)T | Ūj) + ε≤ b̄j, j ∈ J \S, (13)

is satisfied, whereby δ?((x,−1)T | Ūj) is positive only for j ∈ J \S. We note that J \S is nonempty,

because the RRF is finite. Further, the support function δ?((x,−1)T | Ūj) is nonnegative because

for j ∈ J the uncertainty set Ūj contains zero. The inequalities

α≤ b̄j − (āj)Tx− ε
δ?((x,−1)T | Ūj)

, j ∈ J \S

hold, which follows from (13). We now set

α′ = min
l∈J\S

b̄l− (āl)Tx

δ?((x,−1)T | Ūl)
.

Then, α′ >α holds because ε is positive. Furthermore, for j ∈ J \S the inequality

(āj)Tx+α′δ?((x,−1)T | Ūj)≤ (āj)Tx +
b̄j − (āj)Tx

δ?((x,−1)T | Ūj)
δ?((x,−1)T | Ūj)≤ b̄j

is satisfied. Consequently, the solution x is feasible for (EPRCα′). This shows together with Obser-

vation 1 that α cannot be the RRF of (P). �

In the following, the index set SMIP ⊆ J contains all “safe” constraints, i.e., for every feasible

solution x of (P) the equality δ?((x,−1)T | Ūj) = 0 holds for j ∈ SMIP. If the RRF of a given MIP

is attained and for each feasible solution x of (P) the counterpart δ?((x,−1)T | Ūj) is positive for

j ∈ J \SMIP, then the previous necessary optimality condition can be extended to a necessary and

sufficient optimality condition. To this end, we introduce the optimization problem (SPRCα)

sup
x,ε

ε

s.t. (āj)Tx+αδ?((x,−1)T | Ūj) + ε≤ b̄j, j ∈ J \SMIP, (SPRCα)

(āj)Tx≤ b̄j, j ∈ SMIP, x∈Zk×Rn−k, ε≥ 0.



Liers, Schewe, Thürauf: Radius of Robust Feasibility for Mixed-Integer Problems
16 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2020-01-OA-026

Lemma 6. Let ρMIP be the RRF of (P), α ≥ 0, and for every feasible solution x of (P) the

inequality δ?((x,−1)T | Ūj)> 0 holds for j ∈ J \SMIP. If the optimal objective value of (SPRCα) is

zero, then it is attained and α equals ρMIP.

Proof. Due to the optimal objective value being zero and constraint ε≥ 0, Problem (SPRCα)

is feasible and every feasible solution (ε,x) satisfies ε = 0 . Consequently, the optimal objective

value is attained. For a given α≥ 0, let (0, x) be an optimal solution of (SPRCα). We now assume

that α 6= ρMIP holds. If α > ρMIP is satisfied, then this is a contradiction to the optimality of the

RRF ρMIP due to Observation 1 and the feasibility of (SPRCα). We now assume 0 ≤ α < ρMIP.

Consequently, α′ with 0≤ α<α′ ≤ ρMIP and a solution x′ exists such that

(āj)Tx′+α′δ?((x′,−1)T | Ūj)≤ b̄j, j ∈ J, (14)

holds. Due to the requirements δ?((x′,−1)T | Ūj)> 0 for j ∈ J \SMIP is satisfied and thus, from (14)

follows

(āj)Tx′+αδ?((x′,−1)T | Ūj)< b̄j, j ∈ J \SMIP.

Consequently, the objective value of (SPRCα) is

ε= min
j∈J\SMIP

b̄j − (āj)Tx′−αδ?((x′,−1)T | Ūj)> 0

for (ε,x′). This is a contradiction to the optimality of (0, x) for α. Thus, α= ρMIP is satisfied. �

Finally, we present our necessary and sufficient optimality condition for the RRF.

Theorem 4. Let the RRF ρMIP of (P) be attained, SMIP 6= J , and for every feasible solution x

of (P) the inequality δ?((x,−1)T | Ūj)> 0 holds for j ∈ J \SMIP. Then, the value α equals ρMIP if

and only if the optimal objective value of (SPRCα) equals zero.

Proof. The RRF is attained, i.e., (EPRCρMIP
) is feasible. Moreover, for every feasible solution x

of (P) the inequality δ?((x,−1)T | Ūj)> 0 holds for j ∈ J \SMIP with SMIP 6= J and thus, the RRF

is finite. Let α be equal to the RRF ρMIP and ε the optimal objective value of (SPRCα). Since the

RRF is attained, (EPRα) and (SPRCα) are feasible. Consequently, ε cannot equal zero while being

not attained. If ε is positive, then a feasible solution (ε,x) of (SPRCα) with ε > 0 exists. This is

a contradiction to the optimality of α because of Theorem 3 and its proof. Consequently, ε equals

zero and is attained by a feasible solution of (SPRCα). Thus, the claim is shown by Lemma 6. �

Theorem 4 is valid for the setting of Section 2 without assuming δ?((x,−1)T | U)> 0 for every

feasible solution x of (P) because Assumption 1 implies the latter.

We now move on to the computation of the RRF for LPs as well as MIPs including safe variables

and constraints in our extended setting.
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4. Computing the RRF Including Safe Constraints and Variables

Many known techniques for computing the RRF rely on full-dimensional uncertainty sets and

compute the RRF for continuous problems, see Goberna et al. (2014, 2016), Chuong and Jeyakumar

(2017), Li and Wang (2018), Chen et al. (2020). Hence, it is not obvious if and how these techniques

can be applied to our extended setting of Section 3 in which MIPs with different not necessarily

full-dimensional uncertainty sets are considered. The latter enables us to consider MIPs including

safe variables and constraints. Consequently, there is a lack of methods that compute the RRF

for LPs as well as for MIPs including safe variables and constraints. This section is structured

as follows. We first show a method for computing the RRF of LPs including safe variables and

constraints. We then briefly show that the RRF of a bounded integer problem can be computed

by solving maximally two integer problems. Finally, we present first methods for computing the

RRF of MIPs in our extended setting of Section 3.

4.1. Computing the RRF for Linear Problems

In this subsection, we present a method for computing the RRF of (LP). To this end, we consider

our general setting of Section 3. Throughout this section, we split the constraints of (LP) into

“safe” constraints SLP ⊆ J , i.e. for every feasible solution x of (LP) the equality δ?((x,−1) | Ūj) = 0

holds for j ∈ SLP, and into “uncertain” constraints J \SLP. Additionally, we require the following

assumption for the uncertainty sets.

Assumption 3. We assume for the uncertain constraints that, up to scaling, all uncertainty sets

are identical, i.e., Ūj = µj λj U ⊂ Rn+1 for j ∈ J \ SLP holds whereby U is a convex and compact

uncertainty set and λj is positive for j ∈ J \SLP.

We note that typically the uncertainty sets Ūj, j ∈ J , are positive multiples of the Euclidean unit

closed ball or of some cartesian product U =
∏
i∈I [−δi, δi], with δi ≥ 0 for all i∈ I, which is in line

with Assumption 3. Moreover, the positive homogeneity of δ?(x | Ūj) for j ∈ J and Assumption 3

lead to

δ?((x,−1)T | Ūj) = µjλjδ?((x,−1)T | U), j ∈ J \SLP. (15)

Thus, under Assumption 3, for all feasible points x∈Rn of (LP), the equality δ?((x,−1)T | Ūj) = 0

either holds for all j ∈ J \SLP or for no index j ∈ J \SLP.

We note that this setting is more general than that of Section 2 because it does not require a full-

dimensional uncertainty set and thus, we allow safe variables and constraints. We further consider

objective functions as extended-value functions whereby we follow the extended-value definition

in Hiriart-Urruty and Lemaréchal (1993). Consequently, if an optimization problem is infeasible,

then its objective value is +∞ for minimization problems, respectively −∞ for maximization

problems. Furthermore, 1
+∞ := 0 and 1

0
:= +∞ hold.
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We now give a derivation of our method that is based on fractional programming. We first handle

the case that a feasible solution x of (LP) without uncertainty exists, i.e., δ?((x,−1)T | U) = 0.

Then, we consider the case that the RRF is zero. Afterward, we present a method that computes

the RRF if the latter is positive. Finally, we combine these results in an algorithm that computes

the RRF for LPs.

Clearly, if a feasible solution of (LP) which is not affected by any uncertainty exists, then the

RRF is infinite.

Proposition 2. Let x ∈ Rn be a feasible solution to (LP) such that the equality δ?((x,−1)T |

U) = 0 holds. Then, the RRF of (LP) is infinite.

Next, we show that the requirement of Proposition 2 can be checked algorithmically. We know

that δ?((·,−1)T | U) ≥ 0 holds due to Assumption 2. Consequently, we can verify if the equation

δ?((x,−1)T | U) = 0 holds for any feasible solution x of (LP) by checking the feasibility of the

convex problem

min
x

0 (16a)

s.t. (āj)Tx≤ b̄j for all j ∈ J, (16b)

δ?((x,−1)T | U)≤ 0. (16c)

Lemma 7. A feasible solution x of (LP) with δ?((x,−1)T | U) = 0 exists if and only if Prob-

lem (16) is feasible.

We now assume that for every feasible solution x of the nominal problem (LP) the inequality

δ?((x,−1)T | U)> 0 holds, since otherwise the RRF is infinite which we can detect by the previously

stated model.

Due to the definition of the RRF, the feasibility of (LP), and Assumption 3, the RRF of Prob-

lem (LP) can be computed by the nonlinear problem

sup
α,x

α

s.t. (āj)Tx+αµjλjδ?((x,−1)T | U)≤ b̄j for all j ∈ J \SLP,

(āj)Tx≤ b̄j for all j ∈ SLP,

which we can reformulate as

sup
x

min
j∈J\SLP

b̄j − (āj)Tx

µjλjδ?((x,−1)T | U)
(17a)

s.t. (āj)Tx≤ b̄j for all j ∈ SLP. (17b)
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Problem (17) is a generalized fractional program. Additionally, for every feasible solution of the

nominal problem (LP) and for every ratio in the objective function the corresponding nominator

is nonnegative and concave and the denominator is positive and convex. Thus, Problem (17) has

the form of a concave generalized fractional program, see (Avriel et al. 2010, Chapter 7). We now

reduce Problem (17) to a concave single ratio fractional program, which then can be reformulated

as a concave problem. To this end, we reformulate Problem (17) as follows

sup
x,ε,z

z

δ?((x,−1)T | U)
(18a)

s.t. (āj)Tx+ εj ≤ b̄j for all j ∈ J \SLP, (18b)

(āj)Tx≤ b̄j for all j ∈ SLP, (18c)

εj ≥ 0 for all j ∈ J \SLP, (18d)

εj
µjλj

≥ z ≥ 0 for all j ∈ J \SLP. (18e)

We note that Problem (18) is a concave fractional program with a single ratio in the objective

function. Furthermore, the RRF of (LP) is strictly positive if and only if a feasible solution (x, ε, z)

of (18) with z > 0 exists because δ?((x,−1)T | U)> 0 holds. We now assume that the variable z is

positive and show that we can algorithmically check if the RRF is zero with the help of a linear

problem.

sup
x,ε,z

z

δ?((x,−1)T | U)
s.t. (18b)− (18e), z > 0. (19)

Lemma 8. Problem (19) is feasible if and only if the RRF of (LP) is strictly positive.

Proof. Let (x, ε, z) satisfy constraints (18b)–(18e). Then, (x, ε, z) is feasible for Problem (19)

if and only if z > 0 holds, which in turn is equivalent to the optimal value of Problem (18) being

strictly positive. �

Clearly, we can check if Problem (19) is feasible by solving a linear problem.

Lemma 9. Problem (19) is feasible if and only if the objective value of problem

max
x,ε,z

z s.t. (18b)− (18e) (20)

is positive.

Using linear Problem (20), we can detect whether the RRF of (LP) is strictly positive or zero.

We now handle the case that the RRF is strictly positive. Thus, we consider the optimization

problem, in which we minimize the reciprocal of the original objective function of (19)

inf
x,ε,z

δ?((x,−1)T | U)

z
s.t. (18b)− (18e), z > 0. (21)
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We note that Problem (19) and (21) have the same feasible region and for every feasible solution

the corresponding objective value is positive. Both problems share the same optimal solutions and

the optimal values are reciprocal to each other. Throughout this section, we consider objective

values in the extended-value sense.

Lemma 10. Let (x, ε, z) be a feasible solution of Problem (19). Then, (x, ε, z) is an optimal

solution of Problem (19), if and only if (x, ε, z) is an optimal solution of Problem (21).

Let v and v̂ be the optimal values of (19) and (21). Then, the equation v = 1
v̂

holds in the

extended-value sense.

Due to Lemma 10, the optimal value of (21) is zero if and only if the RRF of (LP) is infinite.

Problem (21) is equivalent to a concave fractional program with affine denominator. Thus, we

can apply a variable transformation that was suggested by Charnes and Cooper (1962) for linear

fractional programs and later extended to nonlinear fractional programs by Schaible (1976), see

also Avriel et al. (2010) and the references therein. The transformation is given by

y=

yxyε
yz

=
1

z

xε
z

 , t=
1

z
. (22)

Applying this variable transformation to Problem (21) together with Proposition 7.2 in Chapter 7

of Avriel et al. (2010) and the positive homogeneity of the support function lead us to the following

lemma.

Lemma 11. Let (x, ε, z) and (y, t) be given such that Transformation (22) holds. Then (x, ε, z)

is feasible for Problem (21) if and only if (y, t) is feasible to problem

inf
y,t

δ?((yx,−t)T | U) (23a)

s.t. (āj)Tyx + yεj − tb̄
j ≤ 0 for all j ∈ J \SLP, (23b)

(āj)Tyx− tb̄j ≤ 0 for all j ∈ SLP, (23c)

yεj ≥ µ
jλj for all j ∈ J \SLP, (23d)

t > 0. (23e)

Furthermore, the optimal values of Problems (21) and (23) are equal.

We now relax Problem (23) by requiring t≥ 0 instead of t > 0 in order to obtain the computa-

tionally tractable convex optimization problem

inf
y,t

δ?((yx,−t)T | U) s.t. (23b)− (23d), t≥ 0. (24)
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All constraints of Problem (24) are linear. Furthermore, optimizing (24) has the same computa-

tional complexity as optimizing a linear function over the given uncertainty set U with additional

linear constraints.

We note that if Problem (23) is feasible, then the objective values of (23) and (24) are finite due

to Assumption 2, which implies δ?((yx,−t)T | U)≥ 0. Further, we now prove that these objective

values are equal.

Lemma 12. Let Problem (23) be feasible. Then, the optimal values of Problems (23) and (24)

are equal.

Proof. Let v be the optimal value of Problem (23) and vrelax the optimal value of Problem (24).

As Problem (24) is a relaxation of Problem (23), vrelax ≤ v holds.

So, assume, by contradiction, that there exists a solution (y∗, t∗) of Problem (24) with corre-

sponding objective value v∗ and v∗ < v. Thus, t∗ = 0 holds. As Problem (23) is feasible, there exists

a feasible point (ȳ, t̄) with t̄ > 0.

Now, set [
yk

tk

]
=
k− 1

k

[
y∗

t∗

]
+

1

k

[
ȳ
t̄

]
for all k ∈N.

Then, the pairs (yk, tk) are feasible for Problem (24) as its feasible region is convex. Since tk > 0

holds, (yk, tk) is also feasible to (23). The objective values vk of these solutions converge to v∗ as

the support function, δ?((ykx,−tk)T | U), is continuous. Hence, there exists a k̄ ∈N such that vk̄ < v

holds, which contradicts the fact that v is the optimal value of Problem (23). Consequently, the

optimal values of Problem (24) and of Problem (23) are equal. �

Again, we use extended-values in this section.

Lemma 13. Let Problem (23) be feasible and v the optimal value of (24). Then, the RRF of (LP)

is given by 1
v
.

Proof. The claim follows from combining the previous Lemmas 12, 11, and 10. �

Using the previous results, we now state a complete procedure to compute the RRF of (LP)

whereby the uncertainty sets satisfy Assumption 2 and 3.

Theorem 5. Let the robust counterpart for the uncertain linear problem (LP) with uncertainty

sets αŪj, j ∈ J , satisfy Assumptions 2 and 3. Then, Algorithm 1 computes the RRF of (LP).

Proof. If Algorithm 1 stops in Line 1, then the RRF is infinite due to Proposition 2 and

Lemma 7. If Algorithm 1 stops in Line 3, then the RRF is zero due to Lemmas 8 and 9. If

Algorithm 1 stops in Line 5, then the feasibility of (23) follows from the positive objective value

of (20) and Lemmas 9–11. Thus, we can apply Lemma 13, which proves the claim. �
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Algorithm 1: Computing the RRF of a Linear Problem

Input: Linear Problem (LP) and uncertainty sets Ūj for j ∈ J.

Output: RRF of (LP).

1 if Problem (16) is feasible then return +∞ .

2 Solve (x, ε, z)← (20).

3 if z = 0 holds then return 0.

4 Compute optimal objective v of Problem (24).

5 return 1
v
.

In summary, we can efficiently compute the RRF of (LP) including safe variables and constraints

by solving at most one linear and two convex optimization problems. Especially, solving the latter

problems has the same computational complexity as optimizing a linear objective function over the

given uncertainty set with additional linear constraints. In addition to the benefit for computing

the RRF of LPs, the results can be used as an upper bound for the RRF of the corresponding MIPs

which will be helpful for the later presented methods. We also note that under certain conditions

the RRF of a MIP can be computed by the RRF of its LP relaxation, see Theorem 2.

4.2. Computing the RRF of Bounded Integer Problems

In this subsection, we briefly show that for a bounded linear integer problem we can compute its

RRF in the setting of Section 3 by maximally solving two convex integer problems. The latter

problems have the same complexity as solving an integer problem with linear objective function over

the given uncertainty set with additional linear constraints. For the remainder of this subsection,

we assume w.l.o.g. that our bounded integer problem (P) is a binary problem.

We first show that the compactness of the feasible region of (P) ensures that its RRF is either

attained or infinite and the latter can be checked algorithmically. To this end, we note that Lemma 1

is also valid for a finite RRF in the setting of Section 3 which can be proven analogously.

Lemma 14. If the feasible region of (P) is compact, then the corresponding RRF is either

attained or infinite.

Proof. We contrarily assume that the RRF is not attained and finite. Due to Lemma 1 an

unbounded sequence of feasible solutions to (P) exists, which contradicts the compactness of the

feasible region of (P). �

Additionally, we can detect if the RRF is infinite. In doing so, the index set SMIP contains all

safe constraints of (P) that are not affected by uncertainty.
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Lemma 15. Let the feasible region of (P) be compact. Then, the RRF of (P) is infinite if and

only if the convex integer problem

min
x

0 s.t. (16b), δ?((x,−1)T | Ūj)≤ 0, j ∈ J \SMIP, x∈ {0,1}n, (25)

is feasible.

Proof. We first assume that the RRF of (P) is infinite. Due to the requirements and the

definition of the RRF, a positive and strictly increasing sequence (αl)l∈N that converges to +∞
exists. Furthermore, a sequence in Rn, (xl)l∈N, exists such that xl is feasible to (EPRCαl) for

all l ∈ N. Due to the compactness of the feasible region of (P), the sequence (xl)l∈N is bounded.

Consequently, and by passing to a subsequence if necessary, we may assume that xl −→ x̄ holds.

Considering (EPRCαl) together with a solution xl leads to the feasible inequalities

(āj)Txl +αlδ?((xl,−1)T | Ūj)≤ b̄j, j ∈ J \SMIP.

Since sequence (xl)l∈N is bounded, (αl)l∈N converges to +∞, and δ?((xl,−1)T | Ūj) is nonnegative

for j ∈ J \SMIP, it follows from the previous inequalities that for j ∈ J \SMIP the support function

δ?((xl,−1)T | Ūj) converges to zero. Due to this, xl −→ x̄, and the continuity of δ?((xl,−1)T | Ūj) for

j ∈ J \ SMIP, the equality δ?((x̄,−1)T | Ūj) = 0 holds for j ∈ J \ SMIP. Because of the compactness

of the feasible region and xl −→ x̄, the solution x̄ is feasible to (P). Thus, it is feasible to (25).

If Problem (25) is feasible, then from the nonnegativity of the support function δ?((·,−1)T | Ūj)
for j ∈ J \SMIP, it directly follows that the RRF is infinite. �

Due to the previous two lemmas, we can algorithmically check if the RRF of (P) is infinite. Thus,

we now assume that the RRF is finite. Consequently, the RRF is attained because of Lemma 14

and we can compute the RRF by solving the nonlinear problem

max
α,x

α (26a)

s.t. (āj)Tx+ δ?((αx,−α)T | Ūj)≤ b̄j for all j ∈ J \SMIP, (26b)

(āj)Tx≤ b̄j for all j ∈ SMIP, (26c)

α≥ 0, x∈ {0,1}n. (26d)

We can equivalently replace the nonlinear term αx in (26) by suitable Big-M constraints because

the RRF of (P) is finite and x are binaries.

In summary, we can compute the RRF for bounded integer problems in the setting of Section 3

by solving (25) and (26). This method is straightforward and is mainly presented for the sake of

completeness. Furthermore, preliminary computational results showed that its performance is bad

in general and cannot be used for practical computations. It is also massively worse in comparison

to the methods of the next section that are based on improved effective binary search algorithms.
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4.3. Computing the RRF of Mixed-Integer Problems

In this subsection, we present different methods to compute the RRF of MIPs (P) in our extended

setting of Section 3 in the case that the RRF is finite. In doing so, the presented methods share a

common basic structure, see Algorithm 2. We note that the considered setting of the RRF includes

safe constraints, respectively variables, and an own not necessarily full-dimensional uncertainty set

for every constraint.

For the remainder of this subsection, we assume that the RRF of (P) is finite and bounded from

above by ū. Further, we know that the RRF is bounded from below by zero. In analogy to Observa-

tion 1 for α≥ 0 a monotonicity statement w.r.t. the corresponding ordinary counterpart (EPRCα)

holds. Thus, we can apply a classic binary search (ClassicBin) on α w.r.t. (EPRCα) in order to

find an approximation of the RRF. This approximation differs from the RRF no more than an a

priori given error tol> 0. Binary search is already in itself an efficient algorithm. However, we show

in addition that our theoretical findings on RRF can be used to even improve on binary search in

practical computations.

Lemma 16. Let ρMIP be the RRF of (P). Further, let α be the output of ClassicBin with initial

lower bound zero, ū an upper bound of the RRF, and the tolerance tol. Then, (EPRCα) is feasible,

|ρMIP−α| ≤ tol holds, and ClassicBin performs at most dlog2( ū
tol

)e many iterations.

An important benefit of this simple approach is that in each step of the binary search it is suf-

ficient to only check the feasibility of (EPRCα). With the help of standard techniques of robust

optimization, e.g., see Ben-Tal et al. (2015), Problem (EPRCα) can be reformulated such that its

computational complexity is equal to checking the feasibility of an optimization problem over the

given uncertainty set with additional linear constraints.

We now improve ClassicBin by adding a scaling argument so that whenever (EPRCα) is feasible,

we tighten the lower bound in the binary search. To this end, Algorithm 2 represents the basic

structure of this scaling binary search (ScalingBin) and its explicit components are given in Table 1.

Method ScalingBin still maintains the properties of ClassicBin.

Lemma 17. Let ρMIP be the RRF of (P). Further, let α be the output of ScalingBin. Then,

(EPRCα) is feasible, |ρMIP − α| ≤ tol holds, and ScalingBin performs at most dlog2( ū
tol

)e many

iterations.

Proof. If we replace the operation Lower of ScalingBin, see Table 1, by l= α, then ScalingBin

equals a classic binary search. Thus, we have to prove that the outcome α′ of Lower satisfies

α ≤ α′ ≤ ū and that Problem (EPRCα′) is feasible. From the proof of Theorem 3 it follows the

inequality α≤ α′ and the feasibility of Problem (EPRCα′). Consequently, α′ ≤ ū holds due to the

monotonicity of (EPRCα) w.r.t. α and ū being an upper bound for ρMIP. �
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Algorithm 2: Basic Algorithm

Input: Nominal problem (P), uncertainty sets Ūj for j ∈ J , tolerance tol> 0,

RRF upper bound ū.

Output: RRF of (P).

1 Initialization. Init

2 while Condition do
3 Update Estimate RRF. Estim

4 Solve Subproblem. Subp

5 Check Optimality. Optim

6 Update Upper Bound. Upper

7 Update Lower Bound. Lower

8 return Results.

Table 1 Overview of algorithms with their specific components in Algorithm 2

ScalingBin MaxScalingBin PureScaling

Init l← 0, u← ū l← 0

Condition |u− l|> tol (EPRC(l+tol)) feasible

Estim α← u+l
2

α← l+ tol

Subp x← (EPRCα) (ε,x)← (SPRCα)

Optim if ε= 0 then return (α,optimal)

Upper
if (EPRCα) infeasible

then ū← α
if (SPRCα) infeasible

then ū← α

Lower SMIP←{j ∈ J | δ?((x,−1)T | Ūj) = 0}, l←minj∈J\SMIP

b̄j−(āj)T x

δ?((x,−1)T |Ūj)

Results l (l,non optimal)

We note that if the RRF is attained by the solution x in the operation Subp, then ScalingBin

directly scales the lower bound l to the RRF in the operation Lower, which is shown in the following

lemma.

Lemma 18. Let the RRF ρMIP of (P) be attained and 0 ≤ α ≤ ρMIP. Additionally, let x be a

feasible solution to (EPRCα) as well as to (EPRCρMIP
) and SMIP = {j ∈ J | δ?((x,−1)T | Ūj) = 0}.

Then, minj∈J\SMIP

b̄j−(āj)T x

δ?((x,−1)T |Ūj)
= ρMIP holds.

Proof. The claim follows in analogy to the proof of Theorem 3. �

We now integrate in ScalingBin the optimality condition for the RRF of Lemma 6 and Theo-

rem 4 as an additional termination condition. Algorithm MaxScalingBin preserves the properties of
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ClassicBin for every feasible solution x of (P) under the additional assumption δ?((x,−1)T | Ūj)> 0

for j ∈ J . Furthermore, in the case that the RRF is attained MaxScalingBin immediately stops

if the RRF is computed. The latter is not guaranteed in ScalingBin because it possibly has to

tighten the upper bound first before it stops. In order to avoid this effect, MaxScalingBin solves

Problem (SPRCα) to optimality in every iteration whereas ScalingBin only checks the feasibil-

ity of (EPRCα) in every iteration. We note that the computational complexities of (SPRCα)

and (EPRCα) are equal.

Lemma 19. Let the inequalities δ?((x,−1)T | Ūj) > 0 for j ∈ J \ SMIP hold for every feasible

solution x of (P). Let ρMIP ∈R be the finite RRF of (P) and (α,flag) the output of MaxScalingBin.

Then, (EPRCα) is feasible. Additionally, if flag is equal to optimal, then α = ρMIP, otherwise,

|ρMIP−α| ≤ tol holds. Furthermore, MaxScalingBin performs at most dlog2( ū
tol

)e many iterations.

Proof. Problem (SPRCα) is feasible if and only if (EPRCα) is feasible. Consequently, if MaxS-

calingBin returns (α,non optimal) the claim follows from Lemma 17. Otherwise, the claim follows

from Lemma 6. �

Finally, we present an approach that is similar to MaxScalingBin and needs the same assumption,

i.e., the inequalities δ?((x,−1)T | Ūj) > 0 for j ∈ J hold for every feasible solution x of (P). The

method, given by Algorithm PureScaling, is based on computing the maximal slack in each iteration

and then scaling the current value of the RRF. The main goal is that if we get close to the RRF very

fast, then we can detect this without tightening the upper bound of the RRF in many iterations

such as it can happen in the previous presented approaches. We note that PureScaling is not based

on a binary search. Additionally, the upper bound of the RRF is only necessary to guarantee a

finite runtime.

Lemma 20. Let the inequalities δ?((x,−1)T | Ūj) > 0 for j ∈ J \ SMIP hold for every feasible

solution x of (P). Let (α,flag) be the output of PureScaling and ρMIP ∈R the finite RRF of (P).

Then, (EPRCα) is feasible. Additionally, if flag is equal to optimal, then α = ρMIP, otherwise,

|ρMIP−α| ≤ tol holds. Furthermore, PureScaling performs at most dρMIP
tol
e many iterations.

Proof. The claim follows from Lemma 19 and the construction of PureScaling. �

We note that the worst-case runtime of PureScaling is inferior to the worst-case runtime of the

presented approaches based on binary search. But in practice PureScaling detects faster if the

computed RRF is in the a priori given tolerance than the approaches based on binary search, which

we investigate experimentally in the next section.
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5. Computational Results

In this section, we present a computational study for the previously described methods to compute

the RRF for MIPs of the MIPLIB 2017 library, see MIPLIB 2017. To be more precise, we evaluate

the impact of the aspects:

(a) The chosen method: We compare the bounded IP approach (26), the classic binary search,

and Methods ScalingBin, MaxScalingBin, and PureScaling.

(b) The performance: We compare the runtime of every method and the corresponding number

of iterations.

(c) Characterization of the instances: We analyze the instances w.r.t. their computed RRF ρMIP

and the impact of the uncertainties. In particular, we compare the optimal nominal objective

value to the optimal objective value of (PRρMIP
). This comparison quantifies the price of

robustness.

We implemented the algorithms in Python 3.6.5 and solved the MIPs with Gurobi 8.0.1,

see Gurobi Optimization, LLC (2018). All computations were executed on a 4-core machine

with a Xeon E3-1240 v5 CPU and 32 GB RAM. Our test set consists of 165 instances from the

MIPLIB 2017 library. Out of the entire MIPLIB 2017 library of 1065 instances, we only considered

the benchmark set of 240 instances. We further excluded 38 instances that are classified as hard in

the MIPLIB 2017. This guarantees that we can solve the nominal problem by state-of-the-art avail-

able programs within a reasonable runtime. Additionally, we excluded the remaining 5 infeasible

instances. We next determine the types of constraints that we consider as syntactically safe, i.e.,

these constraints have an uncertainty set consisting only of the zero vector. First, we consider every

constraint that consists just of a single variable as safe because it directly represents a lower bound

of the corresponding variable. Additionally, every constraint that contains only binary variables

with coefficients ±1 is safe because these constraints usually represent combinatorial structures.

Considering the latter constraints as unsafe leads to infeasibility in most of the cases, i.e., the RRF

is zero. Due to the same reason, we consider equalities as safe. In doing so, we also exclude equali-

ties that are simply rewritten as two linear inequalities. No further presolve routines for detecting

implicit equalities are processed. Considering the previously mentioned constraints as safe leads

to 32 instances that only contain safe constraints. Consequently, these instances are also excluded,

which finally results in our test set of 165 instances.

In all computations, we used Gurobi with standard settings with the following adaptions. For

all methods, we disabled dual reductions in order to have a more definitive conclusion about

infeasibility of the model. For the classical binary search and ScalingBin, we set the parameter

solution limit to 1 because we are only interested in the feasibility of the corresponding MIP in

every iteration. In contrast to this, we solve the upcoming MIPs in every iteration of MaxScalingBin
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and PureScaling to optimality. In order to prevent that the extended runtime of solving these MIPs

to optimality exceeds the potential benefit of maximizing the slack together with scaling the RRF,

described in MaxScalingBin and PureScaling, we set the relative MIP gap to 0.5 as this value

turned out to be reasonable in our preliminary computational results. We consider an absolute

tolerance of 10−4 and set the time limit to 2 h. Furthermore, we introduced a relative tolerance

of 10−4 as an additional termination condition in order to avoid numerical issues.

We next turn to the considered uncertainty set. We compute the RRF in the extended framework

of Section 3. Consequently, the jth unsafe constraint has the uncertainty set Ūj := µj Uj ⊂ Rn+1,

composed of a convex and compact set Uj that is scaled by the smallest absolute nonzero coefficient

µj of the jth constraint. In our computational study, the uncertainty set Uj for the jth unsafe

constraint is given as follows. For each variable with nonzero coefficient in the jth constraint,

the uncertainty set for this variable is given by the interval [−1,1]. The latter interval is also the

uncertainty set of the right-hand side. If a variable has coefficient zero in the considered constraint,

then it is considered safe for this constraint, i.e., its corresponding uncertainty set contains only

zero. In total, the uncertainty set Uj is given by the corresponding cross products of intervals [−1,1]

and sets {0}. For Ūj 6= {0}, it follows from the the construction of Ūj that the (n+ 1)th unit vector

of Rn+1 is in Ūj and thus, δ?((x,−1) | Ūj)> 0 holds for every x∈Rn. Consequently, each constraint

with uncertainty set unequal to zero is (semantically) unsafe.

We next turn to the computation of an upper bound of the RRF w.r.t. the considered uncertainty

set, which is necessary for the proposed methods. For the chosen uncertainty set, an upper bound

ū of the RRF for (P) is given by

ū= min
j∈K

max{0, b̄j,max{|āji | : i= 1, ..., n}}
µj

,

whereby K is the index set of the unsafe constraints. The value ū is an upper bound for the RRF

due to the following short explanation. If we assume that the RRF α satisfies α> ū, then an index

k ∈K exists such that ±āki ∈ α Ūki for i ∈ {1, ..., n} and −(max{0, b̄k}+ ε) ∈ α Ūkb̄ for a sufficient

small ε > 0 holds. Consequently, for every solution x a realization u∈ Ūk exists such that

(āk)Tx+α((uI)
Tx−ub̄)− b̄k > 0

holds, which directly implies the infeasibility of (EPRα).

We now turn to the presentation and discussion of the numerical results. We note that we

excluded the bounded IP approach in this numerical analysis because preliminary results showed

that its performance is massively worse when compared to the other proposed methods. The per-

formance of the proposed methods might differ between instances with positive RRF and instances
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with RRF zero. For example, if the RRF is zero, then only PureScaling automatically terminates

after a single iteration independent from the chosen MIP gap. Consequently, we will separately

analyze the numerical results for instances with positive RRF and with RRF zero. According to

our results, the considered 165 instances split into the following sets: 66 instances with positive

RRF, 85 instances with RRF zero, 13 instances which could not be solved in the timelimit of 2 h

by any method, and one instance (rmatr100-p10) which could not be solved due to numerical

issues. We now use log-scaled performance profiles to compare runtimes as proposed in Dolan and

Moré (2002). We note that all runtimes include the computation of the upper bound. Figure 1

shows the performance profiles for instances with positive RRF and Figure 2 for instances with

RRF zero. Furthermore, a short statistical summary of the runtimes and number of iterations is

given in Tables 2 and 3. Overall, we see that the performance of the classical binary search and

ScalingBin is nearly the same, independent from the RRF values. For instances with positive RRF,

we see that the classical binary search, ScalingBin, and PureScaling solve the same number of

instances, 97 % overall, while MaxScalingBin solves one instance less. In doing so, the best per-

formance is given by PureScaling which outperforms the remaining methods. The performance of

MaxScalingBin follows which is slightly better in comparison to the classic binary search, respec-

tively ScalingBin. For instances with RRF zero, we recognize a similar performance pattern. This

time the performances of MaxScalingBin and PureScaling are nearly identical and they outper-

form the other approaches in most of the cases. This improved performance of MaxScalingBin

and PureScaling for instances with RRF zero is mainly explained by the fact that both algorithms

almost always terminate after the first iteration, see Table 3. We note that this behavior is not

necessarily guaranteed for MaxScalingBin in contrast to PureScaling due to the chosen MIP gap.

However, the numerical results show that in most of the cases (SPRCα) is solved to optimality

in the first iteration, i.e., the corresponding objective value is zero. Consequently, a RRF of zero

is immediately detected. MaxScalingBin as well as PureScaling solve 96 % of the instances with

RRF zero, whereas the classic binary search and ScalingBin solve all of these instances. The effect

that the latter two approaches solve slightly more instances can be explained by the fact that

both methods only check feasibility in every iteration instead of solving the corresponding MIPs

to optimality as in MaxScalingBin and PureScaling. Generally, the latter is more time-consuming.

Considering the number of iterations, maximizing the slack together with scaling the RRF,

as proposed in MaxScalingBin and PureScaling, significantly reduces the number of necessary

iterations. In general, the number of iterations in MaxScalingBin is higher than in PureScaling

because the latter checks in every iteration if the computed RRF is already in tolerance and does

not have to lower an upper bound such as MaxScalingBin. Furthermore, it is interesting to see

that scaling the RRF without maximizing the slack, as we do in ScalingBin, does not significantly
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Figure 1 Log-scaled performance profiles of runtimes for instances with positive RRF
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Figure 2 Log-scaled performance profiles of runtimes for instances with RRF zero

decrease the necessary number of iterations, respectively the runtime, in comparison with the

classical binary search. Furthermore, the statistical parameters of Tables 2 and 3 indicate that in

most cases the RRF can be computed quickly (< 60 s). Only for a minority of the instances the

runtimes drastically increase.

Based on the previous analysis of the results, we suggest to compute the RRF of a MIP as follows.

First, run PureScaling with a small time or iteration limit. If the RRF could not be computed within

the set limit, then we suggest to switch to the classical binary search, respectively to ScalingBin,

because these methods solve more instances overall.

Finally, we turn to a short discussion about the price of robustness. To this end, we compare the

optimal objective value of the nominal problem (P) and of the robust problem (PRρMIP
). In the time

limit of 2 h, we could optimally solve 51 of the 66 Problems (PRρMIP
) with positive RRF. We then

computed the price of robustness p as follows. Let the value w be the optimal nonzero objective

value of (P) and w∗ of (PRρMIP
). Then, the price of robustness is given by p= w∗−w

|w| . As we can see

in Table 4, the price of robustness is subject to strong fluctuations. On the one hand instances with

a small or even zero price of robustness exist. On the other hand for some instances the robustness

of the solution comes along with an immense deterioration of the objective value. Surprisingly, the



Liers, Schewe, Thürauf: Radius of Robust Feasibility for Mixed-Integer Problems
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2020-01-OA-026 31

Table 2 Number of solved instances (out of 66 instances with positive RRF) and statistics for the runtimes and

number of iterations (always taken only for all instances solved to optimality)

ClassicBin ScalingBin MaxScalingBin PureScaling

#solved 64 64 63 64

time/s niter time/s niter time/s niter time/s niter

Minimum 0.23 15.00 0.13 1.00 0.11 1.00 0.11 1.00
1st Quartile 1.56 15.00 1.69 15.00 1.48 10.50 0.63 1.00
Median 7.30 15.00 9.20 15.00 6.85 14.00 3.35 1.00
Mean 315.12 17.50 259.72 16.13 196.18 13.38 251.98 3.22
3rd Quartile 82.98 18.00 83.27 17.00 42.59 17.00 42.67 3.00
Maximum 5800.64 32.00 6857.40 32.00 4276.22 32.00 4622.70 29.00

Table 3 Number of solved instances (out of 85 instances with RRF zero) and statistics for the runtimes and

number of iterations (always taken only for all instances solved to optimality)

ClassicBin ScalingBin MaxScalingBin PureScaling

#solved 85 85 82 82

time/s niter time/s niter time/s niter time/s niter

Minimum 0.26 15.00 0.32 15.00 0.17 1.00 0.16 1.00
1st Quartile 5.69 15.00 5.95 15.00 2.14 1.00 2.15 1.00
Median 23.46 15.00 24.03 15.00 6.69 1.00 6.84 1.00
Mean 199.03 16.41 201.30 16.41 117.00 1.35 115.28 1.00
3rd Quartile 102.61 16.00 105.57 16.00 29.74 1.00 29.60 1.00
Maximum 4447.14 35.00 4490.15 35.00 2565.66 16.00 2567.18 1.00

median shows that for many instances the price of robustness is in a reasonable limit keeping in

mind that the considered uncertainty set has its maximal size w.r.t. robust feasibility. The results

illustrate that choosing the “most robust” solution, as proposed in Section 1, does not necessarily

come along with a high price of robustness. Furthermore, the price of robustness can be limited a

priori by a so called budget constraint that is often desired in applications, see Section 1. Overall,

the RRF can be useful as a decision rule to decide between different robust optimal solutions w.r.t.

the size of the uncertainty set. We further note that the numerical results do not indicate relations

between the percentage of unsafe constraints, the size of the RRF, and the price of robustness. The

detailed numerical results of each instance can be found in our online supplement.

In practice, a decision maker often faces the following bi-objective challenge: On the one hand,

one aims at guaranteeing robust feasibility of an optimal solution for the largest possible uncer-

tainty set αŪj, j ∈ J , i.e., one wants to maximize α∈ [0, ρMIP], respectively α∈ [0, ρMIP[ if the RRF

is not attained. On the other hand, however, one wants to minimize the optimal value of the

robust counterpart or, equivalently, the price of robustness, which usually comes with a smaller α.
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Table 4 Statistics for the best computed RRF and price of robustness (always taken only for all instances

solved to optimality).

Unsafe Constraints (%) RRF Price of Robustness (%)

Minimum 0.003 0.0001 0.00
1st Quartile 4.118 0.6200 93.28
Median 37.848 0.9901 384.16
Mean 43.015 67.0442 29 368 526 813.18
3rd Quartile 83.777 1.1509 20 877.96
Maximum 100.000 1006.0000 1 297 693 684 636.35

Consequently, a trade-off between robustness and minimum cost has to be made. We exemplar-

ily illustrate three different characteristics for this trade-off in Figures 3-5, that we found in our

computational experiments. To this end, we first discretized the interval [0, ρMIP] equidistantly and

then computed the optimal value of the robust counterpart for each of these points. From Figure 3,

it can be concluded that an increase in robustness comes with increasing cost, i.e., the price of

robustness increases. Here, the trade-off between robustness and the optimal value is quite regular,

i.e., for a possibly small increase of robustness, we always find a solution with a modest increase

of cost. In contrast to this, we have a stepwise effect in Figure 4. Here, increasing the robustness

can lead to two different effects regarding the cost. On the one hand, an increase of robustness

can have almost no effect on the cost, which is for example the case for the interval (0,0.20). But

on the other hand, pushing the robustness above a certain level, even by a really small increase,

can lead to a very large increase of the cost, which is for example the case for a robustness level

of at least 0.20. In Figure 5, both previously mentioned effects between robustness and cost exist.

For α ∈ [0,0.35], an increase of the robustness comes with larger cost, i.e., the price of robustness

increases. In contrast to this, for α ∈ [0.35,0.8509] an increase of the robustness comes with no or

a modest increase of the optimal value of the robust counterpart.

Overall, an increase of robustness usually comes with an increase of the optimal value, i.e. the

price of robustness increases. But as Figure 4 and 5 show, sometimes there is a possibility to

significantly increase the robustness for small or no cost.

6. Conclusion

In this paper, we studied the problem of finding the “maximal” size of a given uncertainty set for

a MIP such that its robust feasibility is guaranteed. In doing so, we determined this maximal size

with the help of the radius of robust feasibility (RRF). We first motivated the investigations of

this paper. We introduced the RRF for MIPs and then analyzed it w.r.t. its LP relaxation in the

common setting of the literature. The latter requires a full-dimensional uncertainty set and thus,

every variable is “unsafe”. In particular, we proved that the RRF of a MIP and of its LP relaxation
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Figure 3 Trade-off between robustness and cost, i.e., optimal value of robust counterpart (EPRCα) as a function

of the size of αŪj , j ∈ J , for instance binkar10 1 with RRF ρMIP = 0.9459.

Figure 4 Trade-off between robustness and cost, i.e., optimal value of robust counterpart (EPRCα) as a function

of the size of αŪj , j ∈ J , for instance comp07-2idx with RRF ρMIP = 0.3333.

equal if the RRF of the relaxation is not attained. In special cases, this allows us to compute the

RRF of a MIP with known techniques for the RRF of LPs. In order to make the RRF applicable

to a broader spectrum of optimization problems, we extended the common setting of the RRF

such that the uncertainty set is not necessarily full-dimensional and potentially different for every

constraint. This allows to model safe variables and constraints, which are not affected by any

uncertainty. We then proposed methods for computing the RRF of linear as well as mixed-integer

problems in our extended setting. These methods can be seen as a first benchmark for computing

the RRF including safe variables and constraints. Finally, we illustrated the applicability of our

methods by computing the RRF for MIPs of the MIPLIB 2017 library.
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Figure 5 Trade-off between robustness and cost, i.e., optimal value of robust counterpart (EPRCα) as a function

of size of αŪj , j ∈ J , for instance drayage-100-23 with RRF ρMIP = 0.8509.

Further research and methods for computing the RRF in the extended framework are desirable,

especially for a comparison with our methods. Also the extended RRF can now be applied to com-

pute the “most robust” solution within an a priori budget for different applications. Additionally, it

seems promising to use the information about the “maximal” size of an uncertainty set, computed

by the RRF, in order to construct suitable uncertainty sets for robust optimization models. More-

over, sizing uncertainty sets w.r.t. alternative concepts of robustness, e.g., adjustable robustness,

plays an important role in many applications: e.g., in gas networks it can be used for validating

the feasibility of a booking Schewe et al. (2020) and for the optimal operation under technical

uncertainties Aßmann et al. (2019). Thus, introducing the RRF for other concepts of robustness,

especially adjustable robustness, are interesting topics for future research.
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Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math. Program.

91(2, Ser. A):201–213, URL http://dx.doi.org/10.1007/s101070100263.

Goberna MA, Jeyakumar V, Li G, Linh N (2016) Radius of robust feasibility formulas for classes of convex

programs with uncertain polynomial constraints. Oper. Res. Lett. 44(1):67–73, URL http://dx.doi.

org/10.1016/j.orl.2015.11.011.
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