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Abstract: Electric thermal loads, such as those for space heaters, water heaters and air con-
ditioners, due to their association with energy storage, are deferrable. Thus, they can become
an effective tool to compensate for the mismatches between power generation and power demand
induced by renewable sources. Load reduction and load increase may appear to be equivalent to
generation increase and generation withdrawal, but there is a significant difference in the asso-
ciated post-load-control energy rebound phenomena. These phenomena can provoke undesirable
post-load-control changes in the demand dynamics. The contribution of this paper is twofold. First,
we define a flexibility product that load aggregators could propose that would involve a mean energy
increase or decrease offer for a price and also guarantee bounds on the post-load-control deviations
from normal. Second, we provide aggregators with the mathematical tools to specify the maximum
load relief or increase possible under specific constraints on post-control recovery dynamics. The
analysis rests on successive solutions of a linear program and exploits recent results on load control
based on mean field game theory. We consider the case of aggregate electric water heater loads.

Keywords: Energy market; mean field game theory; load control; demand response; aggrega-
tor; rebound

1 Introduction

Many jurisdictions have adopted energy transition policies that focus on increasing the use of
intermittent renewable energy sources in the electricity mix [7]. However, the introduction of such
sources brings new challenges linked to the instability they can potentially bring to the electricity
grid because their power generation is highly variable. To increase the integration of power produced
by these sources, it is essential to ensure a balance between generation and demand. This balance
is often achieved by generation with a high marginal cost such as the use of gas-fired plants (when
renewable power is insufficient) or reductions in renewable energy (when too much is available).
Load management is thus a promising way to support the greater integration of renewables.

Load management or demand response (DR) consists in controlling flexible loads to compensate
for fluctuation in generation. Much research has focused on quantifying the DR potential for peak
reduction and load shifting, e.g., by reducing the peak on hot days [20] or by energy sharing among
prosumers [3]. Projects such as PowerShift Atlantic [28] have demonstrated that this is both
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technically possible and economically promising. In many places worldwide, including Ontario
(Canada), industrial customers can already participate in DR programs [11].

To make residential load management programs possible and to integrate this flexibility into
energy markets, a new entity is needed: the aggregator. Indeed, on its own, a residential building
has only a negligible impact on the generation/load balance of the grid, but a group of such loads
can have a significant impact. The role of the aggregator is thus to offer a flexibility product on
the electricity market while incentivizing consumer participation. (For a discussion of the need for
more aggregators in Europe, see [6]; for a hierarchical model with competing aggregators, see [5]).
In particular, residential customers can participate via the energy storage potential of devices such
as batteries, electric water heaters (EWHs), electric space-heaters and air conditioners. However,
introducing this new player into the market requires new regulations and policies, as argued in [18]
and [30], so that aggregators can really develop. Few studies address the important question of the
nature of the offers that aggregators of residential loads can reasonably make [23].

Moreover, there are major barriers to entry for investors and customers, which limit the benefits
of storage on the grid. These barriers are discussed in [27], and [8] makes a strong case for their
removal in the context of California. [2] discusses the barriers in the European context and proposes
a new regulatory framework. The main challenge is the fact that the current market structure in
many regions does not accurately compensate flexible resources for the benefits they provide [9].
This motivates our design of a novel flexibility product that could be offered on the energy markets
to maximize the value of residential energy storage.

There are various studies of flexibility products from the point of view of the aggregator. Some
assess the potential flexibility without determining the specific load control needed to achieve such
flexibility. For example, [26] focuses on the macroscopic/aggregator level and uses a mixed integer
linear programming approach with two phases to provide a DR program optimizing the cost and
benefits for aggregators and end-users. Similarly, [1] considers small commercial and residential
buildings to study the potential flexibility taking into account the comfort of the occupants (from
the point of view of the aggregator) without specifying how dispatchable loads are controlled to
achieve the flexibility target.

Other studies focus on specific load types and study the controls needed to achieve the desired
flexibility. Our paper is in this category: we study the EWH control that provides flexibility when
aggregated. Other approaches in this category include [4], which uses a robust optimization to
address the management of thermal loads, such as EWHs, and battery storage with the integration
of photovoltaic electric sources. The authors consider the question of uncertainties and incorpo-
rate battery degradation, using 25 Portuguese households as a testbed. The aggregation of small
prosumers in the Iberian market is studied in [13]: the authors develop a two-stage stochastic
optimization model to support the aggregator. The approach in [35] optimizes the benefits of the
group of consumers with a focus on the real-time energy market; it models thermal loads with
typical centralized ON/OFF controls. Similarly, the work in [29] is concerned with the aggregation
of residential consumers considering EWH and battery storage systems and seeks to maximize cost
savings while ensuring a minimum level of comfort. The study is based on a market analysis and
considers centralized ON/OFF controls.

One aspect in which our study differs from these is in the nature of the EWH control: we
consider a decentralized and more complex control based on the theory of mean field games (MFGs).
MFGs were introduced by [19] and developed independently in the engineering literature by [10].
Another aspect is that all these papers assume that the aggregator can affect the consumers’ loads
throughout the day. We make the more realistic assumption that the aggregator’s control applies
to specific time periods. Consequently, we define a flexibility product that can be purchased during
a certain time interval; during that interval it can be viewed by the utility as a set of dispatchable
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sources of load reductions or increases. Since the product is time-limited, we include constraints
on what happens when the aggregator’s control has ended, when it is desirable to avoid a rebound
peak; see [24] for a discussion of rebound damping in a large heat-pump study.

We argue that because of the peculiarities of DR or equivalently demand dispatch (DD), includ-
ing in particular systematic rebound or payback phenomena following the application of controls,
a new class of DR-specific products must be defined. Our contribution is twofold. First, we define
a novel load flexibility product that could be offered on the energy markets and which, beyond
specifying a mean load reduction or increase over a fixed time period, provides guarantees on the
size of post-load-control rebound dynamics, all relative to a normal base case consumption pattern.
Second, assuming the adoption of a recently proposed collective load control methodology [16] based
on the theory of MFGs, we develop an algorithm based on linear programming and simulation that
an aggregator could use to assess the maximum offer it can propose within the constraints of the
product.

MFG theory [10,19] lies at the intersection of statistical mechanics, game theory and optimiza-
tion. It is devoted to the analysis of games with many players who have a negligible individual
impact but collectively create a stable mass effect. The corresponding controls have several ad-
vantages, including decentralization and communication parsimony. In this paper we build our
analysis on the MFG-based load control strategy introduced in [16] and further discussed in [17],
which is ideally suited for aggregator-based coordination of many deferrable loads. Closely related
to the MFG methodology is a hierarchical load control strategy for the maximum integration of
renewable sources explored in the SMARTdesc project at Polytechnique Montreal (see [21], [31]
and [33]). It relies in particular on the deferrability of EWH loads, the same class of loads that we
consider.

The hierarchical load-control methodology that we assume has two levels:
(i) A macroscopic level for the aggregator’s planning decisions. At this level, the collection of con-
trolled EWHs is represented as a single-layer massive water heater with a volume equal to the sum
of the volumes of the individual controlled EWHs; a single heating element with a power rating
equal to the sum of the power ratings of the individual EWHs; a deterministic hot-water energy
extraction process corresponding to a scaled-up version of the mean individual hot-water energy
extraction processes; and temperature constraints identical to those of the individual EWHs. Using
this macro model the aggregator determines a realistic schedule of energy reductions or increases
with rebound constraints that it can offer on energy markets.
(ii) A microscopic individual EWH level where the global targets set by the aggregator are collec-
tively met via decentralized locally computed feedback-control policies based on MFG theory. The
individual EWH models at this level are much more detailed and involve in general more than one
uniformly mixed layer (two for the analysis reported in this paper).

The rest of the paper is structured as follows. In Section 2, we define our novel rebound-
constrained aggregator-proposed load flexibility product. Sections 3, 4 and 5 provide the technical
background for the assumed hierarchical load-control methodology. The microscopic individual
stochastic EWH load model is described in Section 3. In Section 4, we review the elements of a
prescriptive game framework whereby the aggregator sends an overall mean temperature target
to the group of EWHs under its supervision, and each EWH responds with a locally computed
and implemented control, consistent with its current ability to contribute to the global energy
increase or decrease objective. The computation of the individual EWH control laws involves the
approximate fixed-point mean temperature trajectory calculation detailed in Section 5. In Section
6, using the tools developed in the previous sections, we present a recursive algorithm based on
linear programming and Monte Carlo simulation. It helps the aggregator to assess the maximum
mean load increase or decrease it can offer, while satisfying a constraint on the size of the post-
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load-control deviations from nominal uncontrolled behavior, as a result of a payback phenomenon.
Section 7 presents a case study illustrating the calculations involved, together with a profitability
analysis for the aggregator under different assumptions on the incentives it can offer. Section 8
summarizes our conclusions and discusses directions for further research.

2 Flexibility product definition

The flexibility product developed in this paper can be seen as the following function:

F (c̄W , Tstart, Tend, trebound, rrebound)

where c̄W represents the average load reduction or increase offered by the aggregator on the time
interval Tstart to Tend, relative to an agreed “nominal” load demand curve for the group of EWHs
and for the time period of interest. During this period, the control implemented will be MFG-based.
The sign of c̄W is negative for a proposed load reduction or positive for an increase. Furthermore,
the aggregator guarantees that on the interval [Tend, Tend + trebound] the deviation of the collective
EWH load from the nominal because of payback phenomena [34] will not exceed a percentage
rrebound.

3 Individual water heater model at the microscopic level

Nomenclature

Parameters

ṁin
t Rate of water extraction at time t in kg/s

xenv Temperature of the EWH surroundings in °C
xin Inlet water temperature in °C
Ml water mass in layer l in kg
Al Lateral surface of layer l in m2

Cpf Specific heat of the fluid in J/(kgK)
U Loss coefficient between tank and surroundings in J/(m2Ks)
V̇ mix Water flow of extraction in l/s

Variables

xl,t Temperature of layer l at time t in °C
ūl,t Power from heating at layer l at time t in W

To describe the dynamics of the temperature of a EWH, we model the tank using n = 2 equal
perfectly mixed volume layers, i.e., with uniform temperature as shown in Figure 1. Note that the
figure includes one heating element per uniformly mixed water layer. In reality there is only one
heating element, in the bottom layer, but we include separate (virtual) heating elements in other
layers to compensate for modeling imperfections. We do not model the convection phenomena that
allow heat to travel from the bottom layers toward the top layers in the absence of water draws;
they would jeopardize the linearity of our model and thus complicate our MFG analysis. The
heating rate of the actual EWH heating element can be calculated as the sum of the heating rates
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of the fictitious heating elements computed on the basis of our linear model. This type of model
reflects the stratification of temperature in a typical tank. We used just two layers to simplify the
computations, but the analysis can be extended to n layers.

(ṁin, x1)

xenv (temperature of environment)

x2

x1

(ṁin, xin)

Figure 1: EWH model showing tank with two perfectly mixed layers; water is input and extracted
at the same rate but at different temperatures.

The thermal dynamics are described by the energy balance in each layer:

M1Cpf
dx1,t

dt
=UA1(xenv − x1,t) + ū1,t+ ṁin

t Cpf (x2,t − x1,t) (1a)

M2Cpf
dx2,t

dt
=UA2(xenv − x2,t) + ū2,t+ ṁin

t Cpf (xin,t − x2,t) (1b)

Note that ṁin
t is modeled as a piecewise constant hot-water extraction ON-OFF process. It has

time-dependent extraction, and the transition rate evolves according to a continuous time Markov
chain, with the states θt taking values in Θ = {0, 1}. From state 0, the Markov chain switches to
state 1 according to a exponential law with rate α0, and from state 1 it switches to state 0 according
to a exponential law with rate α1. As discussed in [22], one can introduce an infinitesimal generator

L =

(
−α0 α0

α1 −α1

)
and the probability ζj,t for the Markov chain θt to be in state j ∈ {0, 1} at time

t: ζt = [ζ0,t, ζ1,t] with dζt
dt = ζtL

T .
State j = 0 represents the absence of extraction of water, and state j = 1 represents the presence

of such extraction at time t with flow V̇ mix so we have ṁin
t = θtV̇

mix. Equations (1a) and (1b) can
be written in matrix form as follows:

� xt = (x1,t, x2,t)
T

� ūt = (ū1,t, ū2,t)
T

� A(θt) =

−
A1U + ṁin

t (θt)Cpf
M1Cpf

ṁin
t (θt)

M1

0 −
A2U + ṁin

t (θt)Cpf
M2Cpf



� B =


1

M1Cpf
0

0
1

M2Cpf
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� c̄(θt) =

(
A1U

M1Cpf
xenv,

A2Uxenv + ṁin
t (θt)Cpfxin

M2Cpf

)T
The thermal dynamics thus take the form

dxt
dt

= A(θt)xt +Būt + c̄(θt) (2)

In the optimal control strategy detailed in Section 4, to keep the customers comfortable, we do
not penalize the effort needed to maintain the EWH at its temperature at the start of the control
horizon, but rather the effort needed to deviate from it when aiming for a different temperature.
The thermal effort needed to remain on average at the initial temperature is thus obtained for free
in our formulation, and ū1,t, ū2,t can be written as follows:

ū1,t=u1,t (2a)

ū2,t=u1,t + ufree2,t (2b)

with

ufree2,t = UA1(x1,0 − xenv) + UA2(x2,0 − xenv) + E

 ∑
θt∈{1,2}

ζθt,∞ṁ
in
t (θt)Cpf (x1,t − xin,t)

 (3)

Then, the thermal dynamics take the form

dxt
dt

= A(θt)xt +But + c(θt) (4)

where c(θt) is modified from (2) to account for the free effort.

4 MFG-based control strategy

Nomenclature

Parameters

xlow Lower comfort temperature, i.e., minimum permissible mean temperature in EWH
xhigh Upper comfort temperature, i.e., maximum permissible mean temperature in EWH
Nwh Number of EWHs
qx0 Cost coefficient
R Cost matrix
Aj Matrix A(θt) for θt = j, j ∈ {0, 1}
cj Vector c(θt) for θt = j , j ∈ {0, 1}

L =

(
−α0 α0

α1 −α1

)
; infinitesimal generator of Markov chain θt

Variables

xi,t Temperature vector of EWH i at time t
ūi,t Power input vector in EWH i at time t
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The control strategy we implement was introduced in [16]. As mentioned earlier, it is based on
MFG theory [10,19]. We consider a homogeneous group of N EWHs with identical layer structure
and water extraction statistics. Their mean temperature is to follow a target temperature of y.
In this prescriptive game theoretic framework, a cost function is attributed to a generic individual
EWH i ∈ {1, · · · , N} as follows:

JNi (ui, j, t) =E

 T∫
t

[
(Hxi,τ − z)2qyτ+ (Hxi,τ −Hxi,0)2qx0

]
dτ |θt = j


+ E

 T∫
t

[
||ui,τ ||2R

]
dτ+ (Hxi,T − z)2qyT+ (Hxi,T −Hxi,0)2qx0 |θt = j


(5)

where

� qyt =

∣∣∣∣λ t∫
0

(Hx̄τ − y)dτ

∣∣∣∣;
� z is set to xlow if the objective is to decrease the mean aggregate temperature, and to xhigh

if the objective is to increase that temperature;

� x̄t =
N∑
i=1

1
N xi,t is the vector of mean temperatures of the group of EWHs;

� H =
(

1
2

1
2

)
;

� ||ui,t||2R = (ui,t)
TRui,t.

Let us remark that xi,t and x̄t are vectors whose dimension is the number of layers in the tank.
Thus, Hxit is the mean water temperature in EWH i.

This formulation of the cost function is unusual in that the cost coefficient qyt generating the
pressure to go toward z (first term on the RHS of (5)) is an integral cost depending on the deviation
from the target. This means that the pressure (either to store energy or to decrease energy power
consumption) continues to build up as long as the mean temperature has not reached the target
temperature. This temperature change is partially countered by the second term on the RHS of
(5), which penalizes deviations from the EWH’s initial temperature. Thus, each EWH reaches its
own specific steady-state with a mean temperature somewhere between the initial temperature and
temperature z (ensuring local customer comfort), while the overall mean temperature for the set
of EWHs reaches the target y. This happens while we minimize the relative temperature changes
in each EWH. Furthermore, those EWHs that can contribute the most are subject to the highest
pressure, and they contribute accordingly when we compute their best response policy.

When the number of controlled EWHs is large, the laws of large numbers dictate that the ag-
gregate mean temperature vector x̄t converges to a deterministic (but a priori unknown) trajectory.
Because that trajectory no longer depends on the actions of individual EWHs, (5) can be viewed
as an isolated EWH, leading to a classical optimal tracking problem [15]. Viewed as a tracking
problem for a linear quadratic regulator, this problem can be solved through a system of Riccati
equations with variables Πj

t and offset variables sji,t [16].
This system can be used to compute the control we need to apply to each individual EWH to

achieve the common goal of reaching the target temperature. The system depends on the unknown
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qyt and to obtain it, we need to consider that individuals that are optimally responding to the
assumed qyt must collectively produce a mean temperature response x̄t such it replicates the assumed
qyt . When this condition is fullfilled, one can claim that the Nash equilibrium of the game has been
reached. The above argument implies that we need to find the fixed point of the following system:

qyt =

∣∣∣∣λ ∫ t

0
(Hx̄τ − y)dτ

∣∣∣∣ (6a)

−dΠ0
t

dt
= Π0

tA
0 +A0TΠ0

t −Π0
tBR

−1BTΠ0
t − α0Π0

t + α0Π1
t + (qyt + qx0)HTH (6b)

Π0
T = (qyT + qx0)HTH (6c)

−dΠ1
t

dt
= Π1

tA
1 +A1TΠ1

t −Π1
tBR

−1BTΠ1
t + α1Π0

t − α1Π1
t + (qyt + qx0)HTH (6d)

Π1
T = (qyT + qx0)HTH (6e)

−ds
0
t

dt
= (A0 −BR−1BTΠ0

t )
T s0

t + Π0
t c

0 − (qyt z + qx0Hx̄0)HT − α0s
0
t + α0s

1
t (6f)

s0
T = −(qyt z + qx0Hx̄0)HT (6g)

−ds
1
t

dt
= (A1 −BR−1BTΠ1

t )
T s1

t + Π1
t c

1 − (qyt z + qx0Hx̄0)HT + α1s
0
t − α1s

1
t (6h)

s1
T = −(qyt z + qx0Hx̄0)HT (6i)

dx̄0
t

dt
= (A0 −BR−1BTΠ0

t )x̄
0
t − α0x̄

0
t + α1x̄

1
t + ζ0,tc

0 − ζ0,tBR
−1BT s0

t (6j)

dx̄1
t

dt
= (A1 −BR−1BTΠ1

t )x̄
1
t + α0x̄

0
t − α1x̄

1
t + ζ1,tc

1 − ζ1,tBR
−1BT s1

t (6k)

x̄t = x̄0
t + x̄1

t (6l)

x̄0
t = E(1(θt = 0)x̄t) (6m)

x̄1
t = E(1(θt = 1)x̄t) (6n)

where ζt = [ζ1,t, ζ,t] is defined by

dζt
dt

= ζtL
T (6o)

Computing the fixed point of (6) corresponds to finding the Nash equilibrium of the MFG.
Then qyt can be used to find the individual control laws of each EWH. To simplify the solution

process we used ζ∞ =

[
α1

α1 + α0
,

α0

α1 + α0

]
, the quasi steady-state probability of the Markov chain,

instead of ζt. The algorithm used to find the fixed point is described in the next section.

5 Near-fixed-point framework

While under some technical conditions a fixed point always exists [16], it may not always be
desirable, i.e., associated with a bounded qyt as t goes to infinity (or equivalently, a mean EWH
temperature that converges to the target y). We instead look for a desirable near-fixed point such
that the trajectory converges to y when t → ∞, which means that the cost coefficient trajectory
qyt (λ) must converge to some qy∞ satisfying the steady-state equation of (6) with x̄∞ = y. Since
convergence to a fixed point with an iterative algorithm depends strongly on the choice of integration
coefficient λ, we modify our approach relative to [16], inspired by the near-fixed-point calculations
in [17], to rely on the solution of a suitable optimization problem.

Let Sλ(x̄t(λ)) be the solution of (6) for mean temperature trajectory x̄t and coefficient λ in the
definition of qyt . We want to select the trajectory that is closest to a fixed point within a family of
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mean trajectories x̄t(λ) with the correct steady-state behavior. This family, first introduced in [17]
for space heaters, is constructed as follows. Let Nq > nq > 1 and t0 > 0. We solve system (6) with
the cost coefficient

qyt =

{
nqq

y
∞ if t ∈ [0, t0]

qy∞ if t ≥ t0
to obtain x̄1,t and with

qyt =

{
Nqq

y
∞ if t ∈ [0, t0]

qy∞ if t ≥ t0
to obtain x̄2,t. Although they may not be fixed points, these two trajectories satisfy the correct
steady-state behavior and constitute the bounds of the family. The associated lambdas are

λ1 =
qy∞∣∣∫∞

0 (Hx̄1
τ − y)dτ

∣∣ and λ2 =
qy∞∣∣∫∞

0 (Hx̄2
τ − y)dτ

∣∣ .
The family is then defined as

F(f) = {x̄t(λ)|λ =
qy∞∣∣∫∞

0 (Hx̄(λ)τ − y)dτ
∣∣ , x̄t(λ) = fx̄1,t + (1− f)x̄2,t,

f ∈ [0, 1], λ ∈ [min(λ1, λ2),max(λ1, λ2)]}.

Within this family, we select the trajectory that is the closest to a fixed point using the following
optimization problem where the optimized variables are on nq, Nq, t0 and f :

min a1

so as to be a fixed point︷ ︸︸ ︷
||x̄t(λ)− Sλ(x̄t(λ))||L2 +a2

convergence to the target︷ ︸︸ ︷
(Sλ(x̄t(λ))(T )− y)2 (7a)

s.t. x̄1,t, λ1, x̄2,t, λ2 computed as described above (7b)

x̄t(λ) ∈ F(f) (7c)

Nq ∈ [1, Nmax
q ] (7d)

nq ∈ [1, nmaxq ] (7e)

t0 ∈ [0, tmax0 ] (7f)

where Nmax
q , nmaxq and tmax0 are chosen arbitrarily: we set them to (4,2,5).

The choice of the length of the control horizon T and of nq andNq allows us to regulate somewhat
the speed at which we wish the aggregate control to operate. The resulting optimal trajectory x̄t
may be sent by the aggregator to all EWHs so that they implement locally their optimal control
policy. Alternatively, if local computational capacity permits, the optimization can be carried out
locally by each EWH with only the aggregate mean temperature vector communicated at the start
of the control horizon.

6 Assessment of potential flexibility product offer based on
macroscopic-level EWH model

Nomenclature

Parameters

xenv Temperature of surroundings
xin Inlet fluid temperature
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xlow Lower comfort temperature
xhigh Upper comfort temperature
Cpf Specific heat of fluid
U Loss coefficient between tank and surroundings
ρ Water density
V EWH volume
A EWH surface area
V̇ mix Water flow of extraction

Q̇ Maximum power of the heating elements, equal to
∑

i Q̇i, the sum of the maximum
power of the heating elements of the individual EWHs.

Nwh Number of EWHs
∆t Time discretization step
Tstart Time at which control of EWHs starts
Tend Time at which control of EWHs stops
T1 Time dividing the control horizon: on each interval the objective is slightly different

(see Figure 2)
trebound Duration of constraint on size of post-control rebound
rrebound Acceptable range for post-control rebound as percentage of base load
dt Uncontrolled demand at time t
pbt Base aggregate EWH power demand at time t
xmix Temperature desired by customer
ζj,∞(t) Quasi steady-state probability of state j of the water extraction Markov chain associated

with the infinitesimal generator Lt defined by ζ∞(t) =

[
α1

α1 + α0
,

α0

α1 + α0

]
Cdirection Indicator for increase (+1) or decrease (-1) in power consumption
cd Integer coefficient in a bisection-type search

Variables

pst Simulated aggregated EWH power demand
ϕmaxt Upper bound on energy to inject into EWH on interval [t, t+ ∆t]
ϕmax = (ϕmaxTstart

, · · · , ϕmaxt , · · · , ϕmaxTend
)

ϕmax
prev Upper bound vector in bisection-based algorithm applied to the bounds of the energy

to inject into EWH: equals (ϕmaxprev,Tstart
, · · · , ϕmaxprev,t, · · · , ϕmaxprev,Tend

)

ϕmint Lower bound on energy to inject into EWH on interval [t, t+ ∆t]
ϕmin = (ϕminTstart

, · · · , ϕmint , · · · , ϕminTend
)

ϕmin
prev Lower bound vector in bisection-based algorithm applied to the bounds of the energy

to inject into EWH: equals (ϕminprev,Tstart
, · · · , ϕminprev,t, · · · , ϕminprev,Tend

)

Decision variables

et Energy stored in EWHs at time t
ϕt Energy to inject into EWHs on interval [t, t+ ∆t]
wt Intermediary variable used to penalize variability in power demand
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In this section we describe how to determine the maximum increase/decrease in the power con-
sumption that the aggregator is able to achieve with a given set of EWHs given the constraints on
the rebound size guaranteed in the proposed flexibility product. This information is then used in
the MFG-based approach from Section 5 to determine the target temperatures.

At the macroscopic level, and for aggregator planning purposes, recall that we model the set
of EWHs as one massive aggregated EWH, with insulation characteristics identical to those of the
individual EWHs, a volume equal to the sum of their volumes, a single perfectly mixed layer,
and a unique heating element with power rating equal to the sum of the individual power ratings.
Subsequently, an energy balance analysis allows us to find the maximum amount of energy that can
be injected into this aggregate EWH during a given ∆t. We use a single-layer EWH for the aggregate
model since only the determination of the mean temperature is relevant for the determination of
the control of the individual EWHs. As discussed in Section 3, the individual EWHs are modeled
with a two-layer model. The stored energy can then be converted into a target temperature for the
mean field control using the equation

yt =
et

NwhρCpf
+ xenv.

Two conditions need to be satisfied. First, the EWH power demand must be as close as possible
to constant during the control horizon. Second, the percentage rebound relative to the no-control
base case beyond the end of the horizon must lie within an acceptable range, denoted rrebound
and defined as a percentage deviation from the base power demand of the EWHs. This second
condition guarantees that the action of the aggregator does not have unwanted consequences in the
post-control period. The time intervals and objectives of our flexibility product are summarized in
Figure 2.

To find the maximum achievable flexibility under the two conditions, we developed an algorithm
with four blocks. The first is a scheduler that computes a temperature schedule depending on the
bounds on the injected energy ϕt for t ∈ [Tstart, Tend]: ϕmin = (ϕminTstart

, ϕminTstart+∆t
, · · · , ϕminTend

) and

ϕmax = (ϕmaxTstart
, ϕmaxTstart+∆t

, · · · , ϕmaxTend
). The initial values of these vectors are ϕmin

init = (0, 0, · · · , 0)

and ϕmax
init = (Q̇∆tNwh, · · · , Q̇∆tNwh). The second block is a Simulator that performs a Monte

Carlo simulation of Nwh water heaters under the temperature schedule computed at the current
iteration, the control described in Section 4 and the dynamics described in Section 3. The third
block is an Updater that determines the value of the bounds ϕmin, ϕmax depending on whether
or not the rebound constraint is satisfied. The last block is the Convergence test that determines
whether we return to the first block or exit the algorithm. Figure 3 presents the flowchart.

6.1 Scheduler

The scheduler is based on linear programming and outputs a temperature schedule for the mean
field controller.

Objective function to maximize

Obj(ϕt, zt, t ∈ [Tstart, Tend]) = a1

∑
t∈]Tstart,Tend]

Cdirection(pbt − pt)

− a2

∑
t∈]Tstart,T1[

wt − a3

∑
t∈[T1,Tend]

wt

11



Tstart T1

Maximizing flexibility

Keep

power

demand

constant

Tend

Anticipate post-

control rebound

while keeping power

demand constant

Power demand

remains in

range around

base demand

Tend + trebound

Thermostatic control Mean field control Thermostatic control

Figure 2: Specification of the differing objectives used over time to manage the post-control re-
bound.

The first term maximizes the mean increase/decrease in power demand relative to the base (i.e.,
uncontrolled) power demand, while the second and third terms penalize the variability in the control
power demand in the two time periods.

Constraints

� The residential power consumption at each time step is the sum of the uncontrollable part dt
and the controllable part, namely the amount of power injected into the EWH:

pt = dt +
ϕt
∆t

� wt is an intermediary variable that captures an upper bound on |pt−pt−1| to be subsequently
penalized as part of the cost:

wt ≥ pt − pt−1

wt ≥ pt−1 − pt

� The energy stored in the water heater at time t is equal to the amount of energy stored at
t− 1 plus the energy injected minus the losses:

et = et−1 + ϕt − l(et−1)

l(et) = lc(et) + lextr(t)

where

lc(et) = UA

(
et

CpfρV
+Nwh(xin − xenv)

)
lextr(t) = ρCpf (xmix − xin)V extract(t)

V extract(t) =
∑

j∈{1,2}

Nwhζj,∞(t)V̇ mix
j ∆t

lc(et) corresponds to the loss from heat transfer by conduction with the environnement, le(t)
is the energy loss due to the water extraction, and V extract(t) represents the mean volume of
water drawn for the aggregated EWH.
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Scheduler

ϕmin
init ,ϕ

max
init
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Temperature schedule

Updater

Simulated aggregated power

consumption pst on the interval

[Tstart, Tend + trebound]
ϕmin,ϕmax

Convergence Test
False

True

ϕmin,ϕmax

Figure 3: Flowchart for algorithm that determines the maximum flexibility at the macroscopic
level.

� The energy stored in the EWH is linked to the temperature:

eTstart = NwhρV Cpf (xinit − xin)

et ≥ NwhρV Cpf (xlow − xin)

et ≤ NwhρV Cpf (xhigh − xin)

This gives bounds on the energy we are able to store, depending on the initial amount of
energy stored.

� The amount of energy that can be injected into the EWH is bounded below and above by
the components of ϕmin and ϕmax at each time step. Bdown(t) and Bup(t) in (8c) and (8d)
below are active depending on the value of Cdirection and prevent overshooting/undershooting
the initial temperature as we act to decrease/increase the power consumption; ϕt is bounded
above/below accordingly:

ϕt ≥ ϕmint (8a)

ϕt ≤ ϕmaxt (8b)

ϕt ≥ Bdown(t− 1) (8c)

ϕt ≤ Bup(t− 1) (8d)
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where

Bdown(t) =NwhρV Cpf (C+xlow + C−xinit − xin)− et + lt

Bup(t) =NwhρV Cpf (C−xhigh + C+xinit − xin)− et + lt

C+ =
(1 + Cdirection)

2

C− =
(1− Cdirection)

2

6.2 Simulator

The Simulator performs the simulation of the Nwh water heaters individually under the tem-
perature schedule computed by the Scheduler through a Monte-Carlo simulation on the horizon
[Tstart−2h, Tend+trebound]. We use simulation because the power demand during the rebound phase
after Tend, needed to evaluate the rebound value, depends on the temperature distributions within
the EWHs, and these distributions cannot be obtained from an aggregate model. Monte-Carlo
simulation is needed because the temperature distribution depends on the individual end-use water
demand Markov chain processes. Note that the simulation corresponds to standard thermostatic
control until Tstart, then moves to MFG-based control until Tend, at which point thermostatic con-
trol resumes. At Tend, EWHs with a cold mean temperature (below xlow) are set to an ON state,
and all others are set to the OFF state.

6.3 Updater

The Updater takes as input the aggregated power demand computed by the Simulator pst , p
b
t and

rrebound.
First, the Updater performs a rebound constraint test:

1. If |pst − pbt | ≥ rreboundpbt , the rebound constraint is not satisfied;

2. If |pst − pbt | ≤ rreboundpbt , the rebound constraint is satisfied.

Then, using a technique similar to bisection, it updates the bounds:

ϕmin = (ϕminTstart , ϕ
min
Tstart+∆t

, · · · , ϕminTend
) and ϕmax = (ϕmaxTstart , ϕ

max
Tstart+∆t

, · · · , ϕmaxTend
)

Only the last term of the vectors needs to be changed by the algorithm. Indeed, we then regulate
the amount of energy to be injected into the tank on the last interval, to correct the size of the
upcoming rebound. This has a ripple effect on the other components of the ϕmin and ϕmax vectors
through constraints (8c) and (8d).

� If we are in case 1, the bounds are too permissive. They are updated as follows:

– If Cdirection = 1: ϕmax
prev = ϕmax and ϕmaxTend

=
(cd − 1)ϕmaxTend

+ ϕminprev,Tend

cd

– If Cdirection = −1: ϕmin
prev = ϕmin and ϕminTend

=
ϕmaxprev,Tend

+ (cd − 1)ϕminTend

cd

� If we are in case 2, the bounds may not be permissive enough. They are updated as follows:

– If Cdirection = 1: ϕmin
prev = ϕmax and ϕmaxTend

=
(cd − 1)ϕmaxTend

+ ϕmaxprev,Tend

cd

14



– If Cdirection = −1: ϕmax
prev = ϕmin and ϕminTend

=
ϕminTend

+ (cd − 1)ϕminprev,Tend

cd

ϕmin
prev and ϕmax

prev are initialized with ϕmin
init and ϕmax

init . The value of cd can be set to 2 or to
say 10 or 50 if we want a slower variation in the bounds (since the variation of the rebound is not
monotone, a slower change may be desirable to avoid missing the minimum rebound).

We observe that acting on ϕmaxTend
, ϕminTend

will lead to a corresponding change in the temperature

schedule. The last target of the schedule will follow the same trend as ϕmaxTend
, ϕminTend

. For example,

a decrease/increase of ϕmaxTend
/ϕminTend

will result in a decrease/increase of the last target temperature.
Combining this with the last term of the objective function, which ensures that the power con-
sumption remains as constant as possible on [T1, Tend], we expect that the target temperature will
gradually increase or decrease on [T1, Tend] to prepare the EWHs to shift to thermostatic control
and anticipate the post-control rebound. The case study in Section 7 confirms this.

6.4 Convergence Test

We exit the algorithm if C+|ϕmaxprev,Tend
−ϕmaxTend

|+C−|ϕminprev,Tend
−ϕminTend

| is small enough or when we

reach the maximum number of iterations, where C+ =
(1 + Cdirection)

2
and C− =

(1− Cdirection)

2
.

7 Case Study

Nomenclature

Parameters

Nwh Number of EWHs (i.e., clients)
Tstart Time at which control of EWHs starts
Tend Time at which control of EWHs stops
trebound Duration of post-control rebound check
rrebound Acceptable range for post-control rebound
c̄W Mean value deviation of controlled power demand from base power demand over [Tstart, Tend];

negative for a load reduction and positive for a load increase
Ceq Auction clearing price
Ccontroli Price paid by client i when MFG control is applied
Cbasei Price paid by client i when no control is applied
Fi Net cash flow of month i
I Initial investment
a Discount rate

We use the setup of the SMARTDesc project [31]. We consider 500 identical EWHs with a two-layer
tank. The infinitesimal generator Lt of the Markov chain modeling water extraction is piecewise
constant every 2 h during the day, with the values taken from [32]. The Markov chain has two
states θt ∈ {0, 1} that represent the absence or presence of water extraction, and ṁt = V̇ mixθt
where V̇ mix = 2.62 `/min is the extraction flow. Table 1 gives the parameter values.

We ran the scheduler described in Section 6 with T1 = Tstart + 2h and Tend = Tstart + 4h,
i.e., the EWHs are controlled for four hours, with flexibility maximization for the first two hours,
and anticipation of the post-control rebound during the remaining time. Then we constrained

15



Table 1: Parameter values for simulations
Q̇i 4500W A 2.55m2

xenv 25°C Ml 136.5 kg
xin 15°C Cpf 4190 J/(kgK)
xlow 50°C U 28.38J/(m2Kmin)

xhigh 60°C V̇ mix
j 2.62 l/min

xmix 38°C qx0 8000h−1

V 273 ` R

(
0.025 0

0 0.025

)
h−1

the modified power demand to remain in the interval limits around the base power demand for
trebound = 2h. All the computations were carried out on a Intel(R) Core(TM) i7-2600 CPU @

3.40 GHz with eight processors. The results are reported in Figures 5 and 6.
The total power consumption considered is that of 500 homes and represents the sum of the

uncontrollable demand, dt, and that of the 500 EWHs simulated independently with distinct initial
conditions and extraction trajectories. This corresponds to Monte Carlo simulations of 500 EWHs
with the parameters given in Table 1. The base power demand with which our simulations are
compared is the total power consumption of the 500 homes. The power demand data are taken
from the public-demand data of the Independent Electricity System Operator (IESO) of Ontario,
Canada [12]. We used the data from January 30, 2019. This data represents the overall power
demand; we applied a reduction coefficient, 10−4, to obtain the power consumption for 500 homes.
Figure 4 shows the evolution of the parameter values of the hot water demand Markov chain over
the day.

We consider two cases:

� Case 1: Active control between 7:00 and 11:00. This consists of a two-hour period of power
reduction relative to base power demand, then two hours to anticipate the rebound; after
11:00 the mean field control ends and we revert to classical thermostatic control.

� Case 2: Active control between 14:00 and 18:00. This consists of a two-hour period of power
increase relative to base power demand, then two hours to anticipate the rebound; after 18:00
we revert to classical thermostatic control.

Figures 5 and 6 show the output of our optimization for the two cases. The results are very
similar. The target temperature schedules (Figures 5a and 6a) show that on the first part of
the control period (before T1) the strategy is to have a target temperature that decreases (resp.
increases). After T1 the target starts to increase (resp. decrease) again to heat (resp. cool) the
EWHs gradually to anticipate the rebound and keep the temperature distribution away from the
comfort bounds. Figures 5b and 6b show that while achieving the objective of decreasing (resp.
increasing) the power demand, the rebound stays within a 9% range (resp. 14% range) of the base
power consumption. This percentage is part of the specification of the flexibility product, and it
can be tailored to the needs of the utility.

Figures 5a and 6a show that the simulated mean temperatures of the 500 EWHs do not reach
the target temperatures in the decreasing-temperature phase whereas in the increasing-temperature
phase they are closer to the target temperatures. This is because in the cooling phase the EWHs
need more time to reach the target temperatures, and 15 minutes is not enough.

In case 2, we reach the comfort upper bound. So if the initial temperature were lower, we
expect that we could have had more flexibility, as we could have increased the temperature more.
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Figure 4: Evolution of the parameters of the Markov chain during the day.
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Figure 5: Case 1: Decrease of the power demand.

An initial phase during which we decrease the temperature of the EWHs, to anticipate our need for
flexibility, could then be beneficial. The converse will be true in a situation where a power decrease
is needed.
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Figure 6: Case 2: Increase of the power demand.

The assumption of piecewise constant statistics for the hot-water-demand Markov chain leads
to some simulation issues. Figure 4b shows that the steady-state probability of water extraction
can undergo huge variations at certain hours (6:00 or 14:00 for example), and this has an impact on
the simulation as we can see in Figure 7. Figure 7a shows that at 14:00 there is an unwanted drop
in the power demand that is linked to the sudden changes in the Markov chain statistics. Similarly,
we observe an unexpected increase in Figure 7b at 6:00. These side effects likely have two sources.
First, in equation (6) we used the steady-state probability ζj∞ instead of the transient probability
ζjt to simplify the solution. Second, for analysis and model identification reasons, we used a model
of the hot-water-demand Markov chain associated with piecewise constant statistics instead of a
more realistic model with continuously changing statistics.

(a) Power demand of the group of EWHs with 14:00
in the control interval

(b) Power demand of the group of EWHs with 6:00
in the control interval

Figure 7: Simulation artefacts due to discontinuities in hot-water demand.

Recall that the main constraint added in this work is that post-load-control deviations from
the base behavior should remain within predefined bounds that are part of the flexibility product
specification. However, in cases such as that shown in Figure 8, such deviation can be beneficial
since it results in a decrease of the evening peak demand. This indicates that constraints on the

18



post-load-control deviations should depend in general on the operator’s goals.
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Figure 8: Flexibility offer with beneficial oscillation.

Financial assessment
To assess the economic viability of aggregation we consider the case of Ontario (Canada) with

the Ontario time-of-use (TOU) prices; all figures are given in Canadian dollars. TOU prices [25]
are used to measure the impact of flexibility control. The financial incentives given to participating
customers should be 0 if they pay less when the control is applied or the net cost of the flexibility
action if they pay more. We next need to evaluate for how much the aggregator can sell their
flexibility on the market. For this we rely on the Auction clearing price of the Demand Response
Auction in Ontario [12]. In this auction, bidders commit to providing flexibility for every business
day of a six-month period. Given these two quantities, we can evaluate the profit for the aggregator
for each flexibility product. Table 2 summarizes the results for cases 1 and 2. The profit equation
is as follows:

Profit =

Product billing︷ ︸︸ ︷
Ceq × c̄W −

Incentives to consumers︷ ︸︸ ︷
Nwh∑
i=1

min(0, Ccontroli − Cbasei ) (9)

We next perform a net present value (NPV) study for an EWH aggregator, with the following
formula:

NPV (T ) =

T∑
i=0

Fi
(1 + a)i

− I (10)

We consider that the initial investment I is the cost of purchase of new EWHs for the 500 homes,
with an average cost of $425 each. The lifetime is expected to be 10 to 15 years, so T is set to
120 or 180 months. The net cash flow each month, Fi, is the profit obtained from the combination
of the two flexibility offers (cases 1 and 2) every day, and we consider a discount rate, a, of 6%
per year, or 0.49% per month [14]. Table 3 gives the results of this study. With a participation of
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40% from the aggregator, the NPV becomes positive in 5 years, and with a 50% participation, it
becomes positive in 7.5 years. This type of investment seems to be profitable with a participation
rate below 40% to 50%, taking into account the lifetime of an EWH. Keeping in mind that the
outcome of the financial assessment strongly depends on the assumptions and flexibility offer made,
this simple study suggests that an investment of more than 50% of the price of a new EWH would
not be profitable. More detailed studies should be carried out in the future, and in particular, the
dependence of the participation rates on the incentives provided should be carefully assessed.

Table 2: Profit from sale of flexibility on market for Cases 1 and 2

Duration
Rebound c̄W

Profit (CAD)Case Percentage in kW
on [Tstart, Tend]

1 4 9% 203 47.6

2 4 14% 27 6.3

Table 3: Net present value after 10 years and 15 years given different participation rates and
profitability times

Discount Participation Profitability
NPV in CAD (10 y) NPV in CAD (15 y)

rate (%) time (months)

0.49% 100 – -65 798 -18 915

0.49% 50 80 40 451 87 334

0.49% 40 61 61 701 108 584

0.49% 30 44 82 951 129 834

0.49% 0 0 146 701 193 584

8 Conclusion

In this paper, we have proposed a flexibility product for a water heater aggregator. The control
strategy used for the water heaters is a mean field approach that is suited for controlling large-scale
groups. We have adapted a recently developed strategy [17] for solving the mean field control
problem for space-heaters to the case of water heaters. More precisely, we used an optimization
approach to find a trajectory for the water heaters to follow as an approximate mean field control
strategy that is guaranteed to meet the target. Then, to assess the possible flexibility that the
group of water heaters could provide during a fixed interval, we used a linear program that works
as a target scheduler for the mean field controller. The output is a schedule that maximizes the
flexibility provided. To incorporate an additional constraint that ensures that the rebound, at
the end of the control period, is limited compared to the base power consumption, we added a
bisection-like algorithm to iterate on possible temperature schedules and find eligible schedules.
This algorithm allows the aggregator to evaluate the possible flexibility that it can offer for its
group of water heaters, the flexibility product being defined by:

� the time interval for application of the aggregator control, [Tstart, Tend];

� the mean deviation of the modified power demand from the base demand over [Tstart, Tend];

� the allowed percentage of deviation from the base demand in the post-control period;
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� the duration of the post-control period.

The proposed algorithms have limitations. One is the computational time required: Optimiza-
tion packages are relatively slow in solving (7) to determine a specific optimal mean temperature
trajectory. In particular, to simulate the detailed behavior of a collection of water heaters for a

given planned mean temperature trajectory with the scheduler, we need a total of
Tend − Tstart

∆t
trajectories. The solvers used in this project take 30 s on average to compute one trajectory, which
means that for a 4 h control with 15 min time steps, it takes more than 480 s (8 min) to obtain a
complete temperature plan. In addition, to find an acceptable temperature plan for a given rebound
percentage, it is necessary to simulate several plans, and the computing time becomes fairly long.

The second limitation is that our analysis is deterministic: the base power of the controlled
water heaters and the rest of the uncontrolled user demand are considered to be known over the
control horizon whereas in reality they are stochastic quantities. This limitation is more serious in
the presence of renewable sources of generation.

In future work, it would be interesting to consider stochastic approaches for the scheduler to
take into account the uncertainty on both the production of renewable sources and on the water
extraction statistics. This would result in a more robust schedule. It could also be of interest to
develop a specific near-fixed-point solver that could exploit the form of the optimization problem for
greater efficiency. Finally, more detailed economic modelling could give more reliable information
on the profitability of the activities of aggregators.
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