

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Keith Hayes' Experience-Producing Drives

Citation for published version:

Bouchard, TJ & Johnson, W 2020, 'Keith Hayes' Experience-Producing Drives: An appreciation and extension', Personality and Individual Differences. https://doi.org/10.1016/j.paid.2020.110082

Digital Object Identifier (DOI):

10.1016/j.paid.2020.110082

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Personality and Individual Differences

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

- 2 Keith Hayes' Experience-Producing Drives: An Appreciation and Extension.
- 3 Thomas J. Bouchard, Jr.
- 4 280 Storm Peak Court, Steamboat Springs, CO 80487, United States
- 5 E-mail address: bouch001@umn.edu
- 6 Wendy Johnson
- 7 Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8
- 8 9JZ, UK
- 9 E-mail address: <u>wendy.johnson@ed.ac.uk</u>
- 10 Key words: EPD theory, Agency, Intelligence, Personality, Vocational interests,
- 11 Values, Social attitudes, Evolution
- 12 Declaration of interests: none
- 13 This research did not receive grants from funding agencies in the public, commercial, or
- 14 not-for-profit sectors.

Abstract

16	We discuss the idea of experience-producing drives (EPDs) as introduced by Keith J.
17	Hayes and elaborate on the intellectual context in which he developed it, namely behavior
18	genetics, learning theory, motivation, intelligence and evolutionary theory. We then
19	expand the range of application, from the construct of intelligence where it was
20	developed, to the entire domain of individual differences: that is personality, vocational
21	interests, values and attitudes. We argue, consistent with Hayes' perspective, that EPDs
22	can be understood as facets of an emergent evolved agent designed by evolution to
23	transact actively with the world in a manner conducive to survival and successful
24	reproduction. We stress that "EPD theory" is best conceptualized as a set of ideas that
25	expands the perspective of individual difference psychologists, a meta- rather than formal
26	theory. It is, however, consistent with numerous other perspectives developed over the
27	years in both biology and psychology and we note how. Hayes did not consider whether
28	EPDs might be biologically distinguishable categories and it may not be a relevant
29	question. But we believe numerous useful dimensions can be characterized rigorously, at
30	various developmental 'stages', and we provide an example in adulthood that reflects
31	many of Hayes' ideas.
32	196 words
33	
34	
35	
36	
37	

Keith J. Hayes with Viki

39

40 **1. Introduction**

41 In 1962 Keith J. Haves published an underappreciated classic in psychology. The 42 monograph entitled "Genes, Drives and Intellect" presented a motivational-experiential-43 genetic theory of intelligence. It was not published in a mainstream journal and has not 44 been widely cited. We might be inclined to believe that its obscurity was because it dealt, 45 in part, with the genetics of behavior during a period when the idea of genetic influences 46 on behavior was resisted, but in the same year Paul Meehl, in his presidential address to 47 the American Psychological Association (APA) and published in the American 48 Psychologist, argued that, "schizophrenia, while its content is learned, is fundamentally a 49 neurological disease of genetic origin." (Meehl, 1962, p. 837), and he was not run off the 50 lectern. Hayes' theory was considerably subtler than this about how genes are involved in 51 intelligence: "(a) manifest intelligence is nothing more than an accumulation of learned 52 facts and skills, and (b) innate intellectual potential consists of tendencies to engage in 53 activities conducive to learning, rather than inherited intellectual capacities, as such. 54 These tendencies are referred to here as experience-producing drives (EPDs)." (K. J. 55 Hayes, 1962, p. 337). Perhaps Hayes published outside the mainstream because he dealt 56 with the topic of "intelligence" which at that time had become all but taboo. McNemar in 57 his APA presidential address – "Lost: Our intelligence? Why?" – (1964) tried to explain why, but also reported that, "By far the most provocative recent discussion that I have 58 59 encountered is the closely reasoned 44-page paper by Keith Hayes." (p. 881). He 60 appreciated Hayes' paper because it was an attempt at needed synthesis. As Hayes put it,

61	"This review attempts to integrate the developments which have occurred recently-
62	largely independently-in three areas of psychology: behavior genetics, motivation and
63	the theory of intelligence." (K. J. Hayes, 1962, p. 301). He did not mention it there, but
64	he also incorporated an evolutionary perspective. Hayes was the comparative
65	psychologist who with his wife raised the chimpanzee Vicki in their home (C. Hayes,
66	1951; K. J. Hayes & Hayes, 1951). It is clear from reading their works that EPD theory
67	had its roots in evolutionary thinking. He (1962) cited the works of Groos (1898, 1901),
68	who certainly qualifies as an early evolutionary psychologist. He also cited literature on
69	individual differences in non-human animals at a time when this was rare. This area has
70	exploded recently as illustrated by work on the relations between personality and
71	cognition in fish (e.g., (Lucon-Xiccato & Dadda, 2017).
72	While some parts are inevitably out of date, Hayes' (1962) "closely reasoned"
73	paper is still well worth reading.
74	Our purpose is not to review relevant work since Hayes wrote, though we
75	inevitably touch on it, but rather to expand his theory's scope by applying it to individual
76	differences in general, adding some modern ideas from developmental genetics and
77	evolutionary theory, and bringing it to the attention of wider audiences of
78	psychologically-oriented scientists. In broad brush, these goals can be accomplished by
79	modifying Hayes' original formulation of the theory only slightly. Items in italics have
80	been added.
81	"The argument supporting the motivational-experiential theory involves
82	four main points: (a) Differences in motivation are evolved mechanisms.
83	(b) These motivational differences, along with differences in <i>learning</i>

abilities and differences in extents and nature of opportunities to learn,
cause differences in experience. (c) Differences in experience lead to
differences in psychological traits. (d) The differences commonly referred
to as 'traits' emerge through constantly accumulating, contemporaneously
intertwined, motivated initiated behaviors and responses to experience."
(K. J. Hayes, 1962, p. 303).
Experience-Producing Drive (EPD) Theory posits that a fundamental, ubiquitous
outcome of evolution is the emergence of agency. Complex organisms are agents actively
seeking circumstances in which they can optimally not just survive, but thrive: live in
circumstances conducive to successful reproduction. As Hayes put it, this means that
genes exert their influences on behavior not through any kind of fixed determination, but
by influencing what in the environment attracts attention and how it is perceived and
emotionally and cognitively interpreted, thus influencing motivations and preferences for
future behavior and fostering development of behavioral patterns. Over time,
consistencies in these attentional, perceptual, and interpretive predilections drive
acquisition of experiences that result in pursuit and practice of skills, habitual activities,
and response patterns. Together, these create environmental niches, which in turn
reinforce the underlying drivers through gene-environment interactions and correlations.
Extension of Hayes' idea to all psychological traits is consistent with his
perspective, as he cited a wide array of studies, both human and non-human, of genetic
influences on individual differences (vocational interests, emotionality, aggressiveness,
exploratory behavior, hoarding, activity, etc.). Hayes did not try to enumerate EPDs, and
doing this may be neither necessary nor possible. He did suggest that a statistic, today

107	called 'genetic correlation' (standardized genetic covariance), might be relevant to
108	whether and how they might aggregate into distinguishable population-level 'traits'. He
109	also put manifestation of EPDs in an ontogenetic context, positing that many are
110	expressed and influence learning at opportune life stages and fade in intensity once the
111	relevant learning is in place. Mechanisms underlying such scheduled gene expression are
112	slowly being unraveled (Blundon et al., 2017) and many are now well-established
113	scientific facts. Ronald Wilson (1983) documented their observable trajectories for IQ
114	nicely.
115	2. Theory or Meta-Theory?
116	
117	EPD theory should perhaps be viewed not as a theory but as a metatheory, a set of
118	concepts from multiple intellectual domains, in this case genetics, evolution,
119	development, motivation theory, ethology, comparative psychology, etc.; from which
120	theories and testing methods and practical applications emerge (Bouchard & Loehlin,
121	2001, p. 250-251). The underlying idea that humans create their own environments
122	('niche construction') has been proposed in various forms many times before and since
123	Hayes' work was published. Two widely cited examples since are (Bell, 1968) and Scarr
124	(1996; 1983). Baldwin (1896), Waddington (1942) and (Schmalhausen, 1949) are
125	important examples preceding Hayes. Bell argued for reinterpretation of socialization
126	effects, arguing that often children elicit responses from their parents rather than cause
127	always flowing from parent to child. Like Hayes, Bell cited both human and non-human
128	behavior genetics literature supporting his ideas. Scarr drew on behavior genetics,
129	evolutionary, and developmental psychological literature, arguing strongly that people

130 largely make their own environments. She called hers "a theory of genotype-131 >environment effect", explicitly drawing on the work of Plomin, DeFries and Loehlin 132 (1977) that outlined the roles of genotype-environment interaction and correlation in 133 behavior genetics. Neither article cited Hayes, although Scarr did cite him in later work. 134 The Baldwin (1896) 'effect', an evolutionary process through which culturally 135 developed and learned habits become established genetically within species through 136 natural selection, is now widely accepted, in part due to Waddington's (1942) 137 experimental demonstrations in drosophila melanogaster. Schmalhausen's (1949) 'law' 138 articulated a role in evolution of what is now the often-assumed stress-diathesis model of 139 psycho- and other pathologies. These works have all been widely cited; Bell's (1968) 140 article was a citation classic in 1981. The tightly entwined gene-environment interplay 141 implied by pervasive niche construction has moved into 'mainstream' research on 142 individual differences and is starting to be acknowledged even in developmental 143 psychology. 144 The roles of gene-environment interplay in the development of motivations and in 145 traits as well as niche construction have rarely been addressed. Quite recently, in a 146 comprehensive discussion of the personality trait conscientiousness, Roberts, et al. (2014) 147 pointed to current lack of integration between motivation and trait theories: "Some 148 serious thinking is due on the front of reconciling traits and motives" (p. 132). Dweck 149 (2017) is an exception at least at the phenotypic level, but it is very incomplete at the 150 level of gene-environment interplay (which she explicitly noted). As Bouchard (2016) 151 pointed out, EPD theory addresses the motivation question directly. To Hayes active 152 niche construction involves not just autonomic temperamental responses within

153 contemporaneous (though usually not permanently fixed) capacity constraints but also, at 154 least in humans, interests, preferences, values, and social attitudes that contribute to 155 multi-step goals. It also often involves considerable self-aware planning, 'deliberate 156 practice' (Ericsson, 2004), trade-offs with other goals, willingness to resist impulses, and 157 re-evaluation commonly deemed 'conscious'. It thus seems worthwhile to develop 158 Hayes' ideas in more up-to-date contexts. Because all these activities involve learning 159 and he focused on intelligence as an accumulation of learning, we first address his views 160 on intelligence and learning.

161

3. Intelligence and Learning

162 Hayes wrote his monograph at a time when the idea of a general factor of 163 intelligence had been "lost". He concluded that, "there appears to be very little evidence 164 to support the intuitively attractive notion that the higher levels of intellectual activity 165 depend on special kinds of innate activity... It seems, in short, that higher mental 166 functions are pure concepts, which have no counterparts in the real world of behaving 167 organisms." (p. 312-313). This led him to the view that intelligence, at least in any way 168 that can currently be assessed, consists entirely of learned skills. In this, at some level, he 169 has to have been correct at least for humans. Human infants can do nothing recognizable 170 as intelligent – newborn lizards are veritable geniuses by comparison. Hayes went 171 further, however, and assumed (admitting this assumption was both bold and difficult if 172 not impossible to test) that humans and other organisms do not differ in learning capacity 173 (p. 313-314). On this there is much more room for debate.

174 That intelligence is based on learning was the foundation of EPD Theory. Under175 it, EPDs influence the kinds of stimuli sought and attended to and the ways they are

176	interpreted and acted upon, given available environmental options. This combination of
177	what is experienced and how, determines what is learned, and thus what contributes to
178	subsequent experience. Learning goes on in all environments, but the ranges of available
179	options of what to learn vary. Every organism has some choice among what is available,
180	but no organism has complete freedom of choice. There are always at least some physical
181	constraints, and, especially among humans, social constraints. Hayes was explicit that
182	neither learning nor choice need have much to do with experiencing pleasure or
183	anticipating reward.
184	Hayes lacked a meaningful (theoretically relevant and empirically-based)
185	definition of intelligence on which considerable consensus rested. We now have such a
186	definition, though considerable disagreement persists over our success in measuring it.
187	'Intelligence is a very general mental capability that, among other things,
188	involves the ability to reason, plan, solve problems, think abstractly,
189	comprehend complex ideas, learn quickly and learn from experience. It is
190	not merely book learning, a narrow academic skill, or test-taking smarts.
191	Rather, it reflects a broader and deeper capability for comprehending our
192	surroundings-"catching on," "making sense" of things. (Gottfredson, 1997,
193	p. 13)
194	In summary, intelligence is the ability to learn from experience and do something
195	with it. Under this definition it is necessary to administer a wide variety of mental tasks
196	to assess intelligence adequately; any single format (e.g., Raven's Matrices) is inadequate
197	(Gignac, 2015; Major, Johnson, & Bouchard, 2011). While not explicitly stated, it
198	implies (correctly) that all mental abilities are positively correlated and can be

199	characterized by a general factor, commonly termed the 'g factor'. The generality of this
200	g factor was once widely debated; this is no longer the case (Ángeles et al., 2015;
201	Kaufman, Reynolds, Liu, Kaufman, & McGrew, 2012; Warne & Burningham, 2019).
202	The statistical regularity of the g factor is now well established in the human literature
203	and has also been observed in virtually every species with a brain that has been examined
204	with adequate instruments (Bouchard, 2014). At the statistical level, the g factor can
205	represent the intuitively attractive notion of 'higher mental functioning', but at the
206	functional, behavioral, and biological levels, just what constitutes and goes into
207	developing 'higher mental functioning' is far less clear.
208	Hayes was correct that organisms learn and consequently acquire skills and
209	patterns of behaviors that are often termed 'traits' through transactions with their
210	environments. His premise, however, that there are no individual differences within and
211	across species in learning capacity is much more questionable. There is now considerable
212	evidence in support of genetic influences on tasks assessing learning ability at least
213	within species. Human fear conditioning is genetically influenced (Hettema, Annas,
214	Neale, Kendler, & Fredrikson, 2003) as is psychomotor learning (Fox, Hershberger, &
215	Bouchard, 1996) and eyelid conditioning (Merrill, Steinmetz, Viken, & Rose, 1999). All
216	measured forms of learning show such influences and they can be genetically selected
217	even in fruit flies (Kawecki, 2009). Every animal learns, but just what and how quickly
218	and readily varies within and among species. There may even be multiplicative
219	interactions between EPDs and learning capacities. Such interactions would help explain
220	the enormously skewed distributions of intellectual and creative productivity of all forms
221	- where those falling at the extreme high ends are termed 'geniuses', (Johnson, 2013;

Johnson & Bouchard, 2014).

223 The importance of learned content is illustrated by the Flynn effect, the secular 224 rise in mean IQ throughout the world (Rindermann, Becker, & Coyle, 2017). Reasons for 225 the Flynn effect remain unclear but it is unlikely that it has but one or just a few causes 226 (Lynn, 2007; Williams, 2013). Flynn and Rossi-Cassé (2012) argued that, "Even in 227 developed nations, the notion that the Flynn effect will have identical causes should be 228 banished from the literature" (p. 148). In different times, places, and cultures, humans 229 develop – learn – different mental habits, algorithms, strategies, knowledge content, 230 mnemonics, etc. These are the tools we use in day-to-day life to 'figure things out' and 231 decide what to do. Cognitive ability assessments always draw on these tools to different 232 degrees in people with different backgrounds. This can have large effects that have little 233 or nothing to do with whatever constitutes intellectual *capacity* on performance levels on 234 these always 'drop in from the sky' (Hunt, 2011, p. 12) tasks. Nevertheless, within 235 populations sharing similar culture, time, and place, measures of cognitive abilities 236 continue to correlate highly, and they do similarly for all non-human animals that have been studied (Bouchard, 2014). Stephen Wolfram (2017) has put this in a form 237 238 consistent with the abstract definition of intelligence as g: "human intelligence as we 239 experience it is deeply entangled with human civilization, human culture and ultimately 240 within human physiology-even though none of those details are [sic] presumably relevant 241 in the abstract definition of intelligence".

This entanglement suggests that humans have evolved species-consistent physiological predispositions to develop particular adaptive responses to typically encountered cultural as well as physical environmental experiences that, over time,

become firmly enough engrained to be labelled 'mechanisms' by some (e.g., Tooby &
Cosmides, 2015). But these vary genetically like all biological features that have been
studied (Bouchard, 2004), implying that either ability to learn or willingness to adapt to
the relevant experiences varies. Either way, intelligence seems to be involved.

249 A relevant theoretical debate arises at this point. Intelligence has been defined as a 250 "very general mental capacity" and is often referred to as a "general problem solver" or 251 "domain-general unspecialized mechanism". Some evolutionary psychologists argue that 252 evolved mechanisms arise to solve highly specific problems and that "there is no such 253 thing as a 'general problem solver' because there is no such thing as a general problem" 254 (Symons, 1992, p. 142). But, as Dennett has noted, how general any cognitive 255 mechanism may be is an empirical question (1995, p. 491). The g factor appears to be 256 quite general and has emerged in many species. Perhaps any organism with more than a 257 rudimentary nervous system evolving in a complex environment will manifest a g factor. 258

4. Causation in the Context of Experience-Producing Drives

260 Psychology seeks explanations at multiple levels. These range from species 261 evolution to cultural accumulation to individual development of behavioral 'traits' to 262 typical state-only responses to specific stimuli. Atypical behavioral regularities that 263 surrounding social-group members consider worrisome also demand explanation. Figure 264 1 outlines commonly articulated causal levels, running roughly from distal to proximal. 265 EPD theory provides ideas to address each of them. In doing so, it implicitly recognizes 266 that similar processes operate simultaneously at all levels, generating both distal and 267 proximal causation.

274

The Phenonena	The Focus	The Science
Species Evolution	Human Evolution	Evolutionary Biology
DNA (The Genome)	Allelic Structure	Genomics
Genetic Predispositions	Genome Function	Developmental Genetics
Social Development	Socialization Processes	Developmental/Social Psychology
Psychological Traits	Gene-Environment Interplay	Differential Psychology
Situational Impact	Cognitive and Emotional Responses	Experimental Psychology
Phenomenological Experience	Perceptions, Interpretations, etc.	Clinical Psychology
	Pahaviar/Outcomes	

Behavior/Outcomes

Figure 1. Levels of behavioral causation and associated scientific disciplines

275

276 Hayes discussed the roles of species evolution, the individual genome and the

277 dispositions and traits to which it contributes, environmental factors, situational impacts,

278 perceptions, and cognitive and emotional processing in producing behavior, treating them

as separate 'causes'. Today it seems much clearer that these processes occur

simultaneously and reciprocally, so that behavior emerges from all of them. Yet in most

281 cases, new information elaborates on his ideas rather than undermining them (Johnson,

282 2014). We summarize his ideas of these roles, and note how later developments have283 furthered them in ways that extend his theory.

284

285 Level 1: Species Evolution: As noted, Hayes wrote from the perspective of evolutionary 286 psychology before it had a name. Our reframing of EPD theory simply states that over 287 long periods of time "environments of evolutionary adaptation" shape all human traits. A 288 major issue for scientists is how to characterize and study the emergence of particular 289 adaptations (Lewis, Al-Shawaf, Conroy-Beam, Asao, & Buss, 2017). Interestingly a 290 construct very similar to EPDs, "behavioral drive", was developed independently by the 291 evolutionary biologist Alan Wilson (1985) to explain the evolution of large brains in 292 mammals and birds. According to Wilson "pressure to evolve arises not only from 293 external factors such, as environmental change but also from the brain of mammals and birds: from the power to innovate" (p. 164). This is the investigation of what causes 294 295 evolution to take the directions it does.

296

297 Level 2. DNA (The Genome): Hayes recognized that if genes cause differences among 298 species they could also cause differences among individuals within species. The idea that 299 traits considered socially valuable/'adaptive' might show considerable genetic variance, 300 while controversial and even actively denied well after Hayes wrote, is widely accepted 301 today. Kinship studies in humans and selection studies in animals have long indicated this 302 clearly, but many questioned their validity.

303 Until recently human work in this domain was largely restricted to kinship studies
304 (Boomsma, Busjahn, & Peltonen, 2002). Scientific advances now allow us to calculate

305 "polygenic scores" (roughly counts of individual genetic variants with observed 306 associations with particular traits) and correlate these scores with these and other traits 307 (Khera et al., 2018; Richardson, Harrison, Hemani, & Davey Smith, 2019). Each genetic 308 variant has such a tiny association that extremely large sample sizes and numbers of 309 involved genetic variants are required. Consequently, the best available data are on 310 widely measured morphological traits such as Stature and Body Mass Index. 311 Nevertheless considerable data are available for Educational Attainment (Lee et al., 2018; 312 Rustichini, 2019) and some data are available for intelligence (Savage et al., 2018; 313 Sniekers et al., 2017). Despite generally small proportions of variance these scores 314 account for and the possibility of alternative explanations beyond direct genetic cause for 315 the observed associations, development of these scores has basically demolished 316 opposition to the idea of genetic influences on within-species traits in a way kinship 317 studies never could. It has not, however, done much to articulate just how these genetic 318 influences are manifested. Hayes' theory may, in this area, have been most prescient, as 319 the means he proposed suggest reasons for it.

320

Level 3: Genetic predispositions. The term 'predispositions' is central in describing this level. Predispositions are not traits or characteristics. All traits have to be elicited, and not all are. A physical example is callouses. Not everyone has callouses, but everyone could have them: they are a species-typical skin adaptation to repeated pressure and rubbing in the same spot. A psychological example is sociality. Evolution predisposed us to become highly affiliative but we can only become so in the context of other people, and we tend to do it rather awkwardly, thus less 'adaptively', when our infant caregivers do not offer

328 secure attachment relationships. Unless an organism transacts with relevant 329 environmental stimuli, predispositions do not become fully developed. This idea lies at 330 the core of EPD theory. While not stated quite so explicitly, Hayes' argument is that 331 organisms evolve and develop to do things but just what things depends on their 332 evolutionary history. He also places this 'doing' in the context of individual lifespan 333 development, with expression of some drives being functions of age, sex, previous 334 environmental exposures, and current environmental opportunities and constraints, with 335 balance among drives being of considerable importance.

336 This idea has common currency today. For example, Schmidt (2011) postulated 337 "that sex differences in technical aptitude (TA) stem from differences in experience in 338 technical areas, which is in turn based on sex differences in technical interests." (p. 560). 339 Even such a genetic determinist as Rushton (1988) offered examples of how age and sex 340 moderated expression of altruism and aggression, manifestations of EPDs in our view. 341 Tucker-Drob and Briley (2014) described these processes as "embedded dynamism". 342 Culture is clearly implicated as one reason people develop the particular interests and 343 skills they do. For example, an EPD to arrange materials spatially could be expressed by 344 becoming a dressmaker or landscape architect or city planner, and, historically at least, 345 cultural traditions may have offered women much more opportunity and encouragement 346 for the former than the latter, and men the opposite.

In a prescient discussion of the "synthetic brain", (now called 'artificial' or machine intelligence'), Hayes noted the limitations resulting from machines' lack of EPD's, a feature that still clearly distinguishes them from living organisms. As he pointed out, "This restricts its [a machine's] range of exploratory behavior rather severely, of

351 course; but it could still choose to read some tapes thoroughly and skim others, *if* such an 352 experience-selecting, motivational characteristic were designed into it" (K. J. Hayes, 353 1962, p. 323), a point commonly noted these days as a major limitation in artificial 354 intelligence. The philosopher of science Richard Braithwaite raised this same point long 355 ago in a BBC program that included the brain surgeon Sir Geoffrey Jefferson and Alan 356 Turing discussing Turing test. Braithwaite asserted, "A human's interests are determined, 357 by and large, by his appetites, desires, drives, instincts....It would seem to be necessary 358 to equip the machine with something corresponding to a set of appetites" (Isaacson, 2014, 359 p. 128).

360 Hayes used the term 'drive' to describe "the neural mechanism responsible for an 361 organism's tendency to engage in certain behavior, independently of deficit states" (K. J. 362 Hayes, 1962, p. 306). To rephrase, organisms have evolved to **do** something, and to be 363 **doing** it for its own sake even in the absence of or counter to Skinnerian expectations of 364 reinforcement theory. This agency can, and is, expressed at different levels among, but 365 also within, species - and individuals. The evolutionary philosopher Daniel Dennett 366 (2017) refers to 'Darwinian creatures', who have only hard-wired predispositions; 367 'Skinnerian creatures', who in addition to hard-wired predispositions also have 368 dispositions to try out new behaviors randomly just to see what happens and act 369 accordingly in the future; and finally, 'Popperian creatures', who in addition to the other 370 dispositions, also have dispositions to track what goes on around them, whether it matters 371 to them at the time or not, and store it for future reference in testing hypothetical possible 372 actions - abstract concepts and principles such as arithmetic, democracy, double-blind 373 studies, and computers. According to Dennett, only the last level actually requires what

374 we call 'consciousness'. It is certainly possible that only humans are 'Popperian

375 creatures', but we too execute many, even the majority, of our behaviors at the lower

376 levels (Dennett, 2017).

377 Organisms are thus actively agentic (Canestrelli, Bisconti, & Carere, 2016). The 378 scientific problem is to describe the what, why and how of their agency, especially as 379 implemented in humans (Carere & Maestripieri, 2013). As Hayes noted, an evolved agent 380 is endowed with a variety of drives that work in synchrony with each other. Trying to 381 understand how these emerge biologically is the study of causation at the level of 382 neurobiology (Gee et al., 2016). Artificial intelligence is working towards agency in the 383 sense that organisms have it. Organisms develop their own goals as they go along. How 384 to operationalize this process is a major goal in the domain of 'artificial life' (Stanley & 385 Lehman, 2015).

386 A major step is recently developed 'software agents'. A software agent is a 387 "persistent, goal-oriented computer program that reacts to environment and runs without 388 continuous direct supervision to perform specified functions for end users or other 389 programs" (<<u>http://whatis.techtarget.com/definition/software-agent</u>>). Robots destined 390 for distant planets are now being fitted with such agents (Chien & Wagstaff, 2017). These 391 programs are still far short of 'doing' in the sense that organisms do, however, as the 392 sorts of explorations they carry out are designed into them by their programmers in 393 service of particular goals.

394

395 Level 4: Social development. As emphasized by Bell (1968) and Scarr (1985),

396 correlations between parental behavior and offspring outcomes are difficult to interpret

without appropriate control groups. Hayes recognized this problem implicitly and argued
strongly that differences in environmental exposures alone do not cause differences in *experience* and the relevant learning; motivational differences in what captures attention
and the kinds of experiences sought also contribute.

401 Confusion on this matter abounds. Consider the still widely cited study by Hart 402 and Risley (1995). Put simply, only observing association, they proposed exposure to a 403 rich vocabulary early in childhood as the major *cause* of later high verbal ability. This 404 correlation by itself is un-interpretable as children share genes and thus predispositions to 405 EPDs similar to those of their parents, and parents often do at least as much to respond to 406 their children's EPD expressions as to try to shape their behavior. A huge body of data 407 speaks to this (Bouchard, 2001, 2009). The well-replicated observation that unrelated 408 individuals reared together, assessed as adults, have a near-zero correlation for IQ alone 409 calls into question the theory of mere exposure as a causal influence on IQ development 410 as such pairs of individuals have quite similar early exposures. Other sorts of data are 411 also relevant. Moffitt, et. al (1993), in a rigorous and large scale longitudinal study, found 412 that naturalistic change in IQs, "[was] not systematically associated with environmental 413 changes" (p.499). There were many measures and, as they argued, "To dismiss the 414 findings on the grounds that our assessment of the environment was simply too crude is 415 tantamount to arguing that being hit by a hammer is less consequential than being tapped 416 by a pencil." (p. 494). These and other results led them to draw on Scarr's genotype-417 >environment theory rather than environment alone as the most plausible explanation. 418 Determining that any particular environmental factor is actually causal is very difficult. 419 The environment can be shaped in ways that produce higher IQ or g (Protzko, 2016).

420 The difficulty is that very often unless the interventions persist, fadeout results; that is,

421 effects of interventions that are not ongoing are not maintained and no further gains

422 occur. Rather, the effects disappear (Protzko, 2015).

423 All these results are consistent with Hayes' theory that development and 424 maintenance of IQ are driven by EPDs and are not some kind of fixed-trait manifestation. 425 Protzko (2015) suggested a notion quite similar to EPD theory, arguing that, "It is 426 therefore possible that people select more cognitively demanding environments for 427 reasons other than their intelligence and that intelligence is not a causal factor in those 428 decisions" (Protzko, 2015, p. 208). Stated otherwise, intelligence is not itself an EPD but 429 rather an emergent manifestation of the accumulation of learning arising from the 430 experiences EPDs have fostered (Johnson & Bouchard, 2014, pp. 279-281). Pervasive 431 fade-out is inconsistent with the Dickens and Flynn (2001, p. 347) transactional model 432 that specifies IQ as a driving force; "Higher IQ leads one into better environments, 433 causing still higher IQ, and so on." It is also inconsistent with Cattell's theory of fluid-434 crystalized intelligence and the alternative models proposed by Kan, et al. (2013) and 435 Schmidt (2014). These authors proposed, in one sense or another, that intelligence, as 436 usually conceptualized, drives the acquisition of additional intelligence. EPD theory 437 postulates that numerous EPD-by-environment correlations contribute to the growth and 438 maintenance of g. This view is highly consistent with the evolving network model of 439 intelligence proposed by Savi, et. al. (2019) designed to unify the fields of human ability 440 and human learning.

441

442 Level 5: Psychological traits. Hayes left open the question of whether EPDs could/should 443 be enumerated. He clearly meant personality traits and psychological interests to be 444 considered reflections of EPDs, but his perspective was much more comprehensive, 445 ranging from "overt activity" to "manipulation of the contents of awareness". He also 446 specified that EDPs could be avoidance- as well as approach-oriented, with accumulated 447 experience restricted when avoidance EPDs are strong. This led him to consider the 448 question of EPD 'balance'. He suggested that the most adaptive situation was relatively 449 moderate drives in both directions over broad ranges of content/activity area. He thought 450 unbalanced EPDs – combinations of strong approach EPDs in very specific areas and 451 strong avoidance EPDs in most of the rest - could result in unusual phenomena such as 452 idiot-savants. Such imbalance also appears to be characteristic of the autism spectrum 453 and may well underlie the distinction between the Analytic and Cultured EPDs discussed 454 below.

455 Bouchard (2016) may have conducted the only study that has attempted explicitly 456 to operationalize Hayes' ideas in the individual differences domain. Specifically, he 457 factor analyzed (Principal Axis factoring with oblique rotation) a very broad array of 458 traits; personality (21 scales), psychological interests (23 scales), attitudes (2 scales), 459 work motivations (7 scales), and values (5 scales), to begin to understand their 460 interrelations more comprehensively. He found 12 factors and Table 2 in Bouchard 461 (2016) compared them to a variety of descriptive/explanatory schemes from the 462 individual differences literature. Suffice it to say, none of these schemes encompass all 463 12 factors. Here we briefly summarize the results from an EPD point of view. Excluding 464 the General Psychopathology factor ('p-factor'), which has now been widely replicated

465	(Kotov et al., 2017; Lahey, Krueger, Rathouz, Waldman, & Zald, 2017), the remaining
466	11 factors all meet the requirement that EPDs foster taking things on and seeking to
467	master them. That is, they capture Allport's (1937) assertion that, "personality is
468	something and personality does something" (p. 49). Each trait name is given in bold type
469	and followed with a label consistent with David Campbell's (2002) interest orientation
470	nomenclature that characterizes the underlying goal. This is followed by a hypothesized
471	EPD drive term borrowed from existing literature.
472	
473	Consequently we have:
474	Persuasive > <i>Influencing</i> > Power,
475	Traditional > Conforming > Obedience,
476	Cultured > <i>Creating</i> / <i>Appreciating</i> > Openness,
477	Analytical > Analyzing > Rationality,
478	Realistic > <i>Producing</i> > Practicality/"Hands On",
479	Empathetic > <i>Helping</i> > Altruism,
480	Aggressive > <i>Attacking</i> > Hostility,
481	Affiliative > Socializing > Belongingness,
482	Sensation-Seeking > <i>Adventuring</i> > Need for Stimulation,
483	Self-Reliant > Achieving > Independence,
484	Entrepreneurial > Organizing > Acquisitiveness.
485	We make no claim that this scheme is complete or correct. It is a work in progress
486	and requires replication and refinement, and could vary in cultures other than the one
487	from which these data came. We do claim that it is more encompassing than other

488 schemes and makes some useful distinctions, in particular one between Analytic and 489 Cultural, rather than the single trait of Openness. This distinction captures the important 490 interest dichotomy between the sciences and the humanities (B. C. Campbell & Wang, 491 2012; Snow, 1963), and illustrates the productivity of Hayes' ideas. 492 The 'p factor' is obviously related, in some manner, to so-called "mental 493 disorders". We agree with (Cuijperes, 2019, p. 274) that, "It is still not clear what 494 these disorders exactly are. There are no objective tests or measures to establish the 495 presence of a mental disorder, nor are there clear thresholds for when a patient has a 496 disorder and when not". Essentially, the idea that mental disorders represent taxonomic 497 categories remains unproven (Bouchard, Johnson, & Gottesman, 2019). Nevertheless, 498 some of the p factor's underlying facets may well be evolutionary adaptations (Nesse, 499 2019). And some of its manifestations may be situational adaptations.

500

501 Level 6: Situational impacts. "An organism's experience is considered to be a joint 502 function of its experience-producing drives, and the environment in which these drives 503 operate" (K. J. Hayes, 1962, p. 307). Hayes clearly distinguished between "experience" 504 and "exposure". Exposure to situations offering relevant stimuli is necessary to trigger 505 EPDs, but EPDs are flexible and many different situations can trigger them. At the same 506 time, the specific behavioral patterns arising from them may look very different to 507 observers. For example, someone driven to construct things may end up a carpenter, an 508 engineer, a fashion designer, a sculptor, a chef or baker, among many other outcomes. In 509 many social milieus, it is easy to picture how girls and boys with very similar levels of 510 this particular EPD would have been socially 'siloed' into experiences leading to marked

511	differences in their distributions among these outcomes. At the same time, if a situation
512	has no relevance to an individual's drive system (interests, motives, values), EPDs will
513	not be elicited and other considerations (e.g., social norms, etc.) will influence behavior.
514	Herbert Simon articulated this long ago;
515	"the term environment is ambiguous. We are not interested in describing
516	some physically objective world in its totality, but only those aspects of
517	the totality that have relevance as the "life space" of the organism
518	considered. Hence, what we call the "environment" will depend upon the
519	"needs," "drives," or "goals" of the organism, and upon its perceptual
520	apparatus". (Simon, 1956, p. 130).
521	Experimental science addresses this level of causation, subject to the limitations
522	imposed by the inevitable artificiality of lab environments – their lack of ecological
523	validity (Winograd, Fivush, & Hirst, 1999).
524	
525	Level 7: Phenomenological experience. Hayes was clear that "the concept of EPDs does
526	not imply either enjoyment of the activity or anticipation of its results". Reported
527	experiences are common outcomes assessed in psychological studies and proper sampling
528	of those aspects of behavior is an informative enterprise. Whether predispositions to
529	interpret experiences in various ways can be considered causal is complex, but
530	experiences in doing so accumulate in ways that reinforce those predispositions. The next
531	step in understanding this process will be development of measurement instruments and
532	observational methods sensitive to the individual's role in constructing experience
533	(McGue, Bouchard, Lykken, & Finkel, 1991, p. 401).

535	Level 8: Behavior/Accomplishments. Any prediction or explanation of behavior or
536	behavioral outcomes (i.e., educational accomplishment) based on one or more levels
537	implies the influence of underlying levels unless they can be excluded (e.g., mental
538	retardation due to brain damage at birth does not involve evolution or DNA, etc.).
539	It is clear, for example, that there are evolutionary reasons for two sexes, so observations
540	that many sex-related traits do not follow the same life trajectories in the two sexes
541	should come as no surprise. Changes in traits over the life course do nothing to
542	undermine the presence of genetic influences, and may even help to articulate how they
543	actually arise (Del Giudice, Gangestad, & Kaplan, 2015). At the same time, we cannot
544	use observations of behavioral patterns to infer specific causal explanations at lower
545	levels. For example, the Wilson Effect, the increase in heritability of IQ with age and
546	consequent decline in the relative influences of other factors, most noticeably
547	common/shared family environmental influence, could contradict the emphasis on
548	learning espoused by Hayes. Direct genetic influence could be minor initially and grow
549	with age while shared environmental influences erode with movement toward adult
550	independence. But the same observation could support Hayes' emphasis. Babies are not
551	born with what we measure as intelligence, so every aspect of its later manifestation has
552	been at some level learned. The changes in apparent relative genetic influence may be
553	nothing more than artifacts of distortions in estimates of the various sources of influences
554	created by violations of the assumptions underlying the estimation processes.
555	

556 5. Transactions, not Interactions

557 Psychologists often speak loosely about organisms "interacting" with their 558 environments when they actually mean "transacting with their environments". The term 559 "interaction" is best restricted to its statistical meaning of non-additive association 560 between two variables, direction of influence unclear. The distinction between 561 "transactions" and "interactions" is fundamental to understanding genetic influences on 562 traits. Without an environment to transact with genes cannot do anything. In this sense 563 both environments and genes are equally *essential* in genesis of any behavior or trait. 564 This fact, however, does not preclude one being more *important* than the other. The 565 argument that both genes and environment are important and therefore logically inseparable is often illustrated with a rectangle: since both height and width are 566 567 necessary, they are said to be equally important. The confusion is between *essential* and 568 *important*. Both are essential. For a long flat rectangle, length is more important than 569 height. For a square, height and width are equally important. Their extents can easily be 570 quantified (Tredoux, 2019).

571 EPDs can be best understood as influencing the choices and intensities of the 572 environments with which an individual transacts. There are many transactions between 573 organisms and their environments over very important developmental periods. To the 574 extents they are driven by various perceptual-cognitive-emotional biases influenced by 575 the genotype, they result in particular phenotypes (personality, interests, values, etc.). It is 576 critical to distinguish between mere environmental exposure and organisms' transactions 577 with the environment. An example of failure to do so can be found in a Brookings 578 Institution report from a series called, "Evidence Speaks" (Loeb & York, 2016). The 579 report begins with the following paragraph, citing the Hart and Risley (1995) study

580 discussed earlier; "Many young children grow up without supportive home learning 581 environments. One often cited study found that by the age of four, poor children hear 582 about 30 million fewer words than wealthy children. This fissure manifests in great 583 differences in children's motor, social, emotional, literacy, and numeracy skills when 584 they first start kindergarten, gaps that persist through school and into the labor market." 585 (Loeb & York, 2016). As noted earlier, this study's observations were confounded with 586 genetic influences. As the quote shows, this confounding is still often overlooked 587 (Rohrer, 2018; Schmidt, 2017).

Hayes recognized that IQ tests sample a large universe of test items that measure a variety of abilities. His theory specified that a potentially very bright individual's EPDs cause that person to transact with a broader range of stimuli with more intensity and a higher frequency than one less potentially bright. He stated, "the intellectual potential of children may be measured more effectively with a test of motivation than with a test of childish achievement" (K. J. Hayes, 1962, p.336). He cited examples from relevant studies and characterized the measures as reflecting "innate activity preferences".

595 This is a difficult idea to test, and examples remain rare. The most rigorous 596 relatively recent replication of these general findings is a prospective longitudinal study 597 (ages 3-11) of the relation between Stimulation Seeking (SS) and Intelligence (Raine, 598 Reynolds, Venables, & Mednick, 2002). The participants were members of the large 599 Mauritius Child Health and Development Project. The correlation between SS and g at 600 age 11 was .25 and replicated across sex and ethnic groups. The component of their 601 measure of SS that was most highly associated was physical exploration: .24, compared 602 to verbalizations .15, gregariousness .19 and active social play .15. Numerous potential

603	confounds were tested and rejected. Apparently, no measure of SS was obtained at age
604	11. The correlation of total IQ over time was .30. Given the high likelihood that the IQ
605	measures were more reliable than the SS measures, corrections for attenuation would
606	probably show that SS at age 3 correlated about equally with IQ at age 11. The
607	hypothesis that "young children who physically explore their environment, engage
608	socially with other children, and verbally interact with adults create for themselves an
609	enriched, stimulating, varied and challenging environment" was supported (Raine et al.,
610	2002, p. 669). We proposed a process similar to this as an explanation of the similarity in
611	IQ of adult monozygotic twins reared apart and credited Hayes for the idea; "It is a
612	plausible conjecture that a key mechanism by which the genes affect the mind is indirect,
613	and that genetic differences have an important role in determining the effective
614	psychological environment of the developing child (K. J. Hayes, 1962)." (Bouchard,
615	Lykken, McGue, Segal, & Tellegen, 1990, p. 227).
616	This raises several questions that need to be addressed in future research. It is
617	possible that the 'potentially bright' vary in degree to which their capacity for
618	'brightness' depends not just on intensity of their EPDs, but also breadth, as Hayes noted
619	with his concept of EPD 'balance'. The degree to which brightness potential would end
620	up being expressed would thus depend on a match between the variety of available
621	environmental stimuli and a child's particular EPDs, and the degree to which
622	socialization processes allowed and/or fostered particular expressions consistent with
623	what is assessed as 'brightness'.
624	

6. In Conclusion

626	The EPD approach to understanding human individual differences has many
627	important implications for both research and practice. As we have argued elsewhere; "if
628	the genome impresses itself on the psyche largely by influencing the character, selection,
629	and impact of experiences during development – if the correct formula is nature via
630	nurture – then intervention is not precluded even for highly heritable traits, but should be
631	more effective when tailored to each specific child's talents and inclinations" (Bouchard
632	et al., 1990, p. 228). Krapohl, et. al. (2014) have recently made the same argument in the
633	context of a behavior genetic analysis of educational achievement. They argued, correctly
634	in our view, that education should have the twin goals of teaching (building in
635	knowledge) and eliciting (bringing out talents and inclinations).
636	The EPD idea also leads to a stronger incorporation of ideas from the world of
637	work into personality assessment. That there is a "world of work" is a very modern
638	distinction; the environment of early humans was almost solely a 'world of work' (Judge
639	& Hogan, 2015). From an EPD perspective, most personality theories are impoverished
640	because they do not incorporate what underlies goal-directed behavior, namely values
641	and attitudes. Perhaps that is because specific attitudes and values are so often
642	controversial. Most importantly, EPD Theory views humans as dynamic exploring
643	organisms — Popperian creatures with an evolutionary history — who create their own
644	unique environmental niches.

645	References
646	
647	
648	Allport, G. W. (1937). Personality: A psychological interpretation. New York: Holt,
649	Rinehardt & Winston.
650	Ángeles, Q. M., Escorial, S., Román, F. J., Morillo, D., Jarabo, A., Privado, J.,
651	Colom, R. (2015). Can we reliably measure the general factor of intelligence (g)
652	through commercial video games? Yes, we can! Intelligence, 53, 1-7.
653	doi:10.1016/j.intell.2015.08.004
654	Baldwin, J. M. (1896). A new factor in evolution. The American Naturalist, 30, 441-451.
655	Bell, R. Q. (1968). A reinterpretation of the direction of effects in studies of socialization.
656	Psychol Rev, 75(2), 81-95.
657	Blundon, J. A., Roy, N. C., Teubner, B. J. W., Yu, J., Eom, T. Y., Sample, K. J.,
658	Zakharenko, S. S. (2017). Restoring auditory cortex plasticity in adult mice by
659	restricting thalamic adenosine signaling. Science, 356(6345), 1352-1356.
660	doi:10.1126/science.aaf4612
661	Boomsma, D. I., Busjahn, A., & Peltonen, L. (2002). Classical twin studies and beyond.
662	Nature Reviews: Genetics, 3, 872-882.
663	Bouchard, T. J., Jr. (2001). Description vs. strong inference: Review of Howe, M. J., The
664	psychology of high abilities. Intelligence, 29, 187-188.
665	Bouchard, T. J., Jr. (2009). Strong Inference: A Strategy for Advancing Psychological
666	Science. In K. McCartney & R. Weinberg (Eds.), Experience and Development: A

- *Festschrift in honor of Sandra Wood Scarr* (pp. 39-59). London: Taylor and
 Francis.
- Bouchard, T. J., Jr. (2014). Genes, Evolution and Intelligence. *Behavior Genetics*, 44(6),
 549-577. doi:10.1007/s10519-014-9646-x
- 671 Bouchard, T. J., Jr. (2016). Experience producing drive theory: Personality "writ large".
- 672 *Personality and Individual Differences, 90, 302-314.*
- 673 doi:10.1016/j.paid.2015.11.007
- Bouchard, T. J., Jr., Johnson, W., & Gottesman, I. I. (2019). The genetics of
- 675 personality/psychopathology: A brief review of constructs, results, approaches
- and implications. In A. C. Miu, J. R. Homberg, & K.-P. Lesch (Eds.), Genes,
- 677 *brain and emotions: Interdisciplinary and translational perspectives*: Oxford
 678 University Press.
- Bouchard, T. J., Jr., & Loehlin, J. C. (2001). Genes, evolution and personality. *Behavior Genetics*, *31*, 243-273. doi:10.1023/A:1012294324713
- 681 Bouchard, T. J., Jr., Lykken, D. T., McGue, M., Segal, N. L., & Tellegen, A. (1990).
- 682 Sources of human psychological differences: the Minnesota Study of Twins
- 683 Reared Apart. *Science*, *250*(4978), 223-228. doi:10.1126/science.2218526
- 684 Campbell, B. C., & Wang, S. S. (2012). Familial linkage between neuropsychiatric
- disorders and intellectual interests. *PLOS ONE*, 7(1), e30405.
- 686 doi:10.1371/journal.pone.0030405
- 687 Campbell, D. P. (2002). The history and development of the Campbell Interest and Skills
- 688 Survey. Journal of Career Assessment, 10(2), 150-168.

- 689 Canestrelli, D., Bisconti, R., & Carere, C. (2016). Bolder takes all? The behavioral
- 690 dimension of biogeography. *Trends in Ecology & Evolution, 31*(1), 35-43.
- 691 doi:10.1016/j.tree.2015.11.004
- 692 Carere, C., & Maestripieri, D. (Eds.). (2013). Animal personalities: Behavior,
- 693 *Physiology, and Evolution.* Chicago and London: University of Chicago Press.
- 694 Chien, S., & Wagstaff, K. R. (2017). Robotic space exploration agents. Science Robotics,
- 695 2(7). doi:10.1126/scirobotics.aan4831
- 696 Cuijperes, P. (2019). Target and outcomes of psychotherapies for mental disorders: An
 697 overview. *World Psychiatry*, 18(3), 274-286.
- 698 Del Giudice, M., Gangestad, S. W., & Kaplan, H. S. (2015). Life history theory and
- evolutionary psychology. In D. M. Buss (Ed.), *The handbook of evolutionary psychology* (2 ed.). New York: Wiley.
- 701 Dennett, D. C. (1995). *Darwin's dangerous idea: Evolution and the meaning of life*. New
 702 York: Simon and Schuster.
- 703 Dennett, D. C. (2017). From bacteria to Bach and back: The evolution of minds. New
- 704 York: Norton.
- 705 Dickens, W. T., & Flynn, J. R. (2001). Heritability estimates versus large environmental
- 706effects: the IQ paradox resolved. Psychol Rev, 108(2), 346-369.
- 707 doi:10.1037//0033-295X. 108.2.346
- 708 Dweck, C. S. (2017). From needs to goals and representations: Foundations for a unified
- theory of motivation, personality, and development. *Psychol Rev, 124*(6), 689-
- 710 719. doi:10.1037/rev0000082

711	Flynn, J. R., & Rossi-Casé, L. (2012). IQ gains in Argentina between 1964 and 1998.
712	Intelligence, 40(2), 145-150. doi:10.1016/j.intell.2012.01.006
713	Fox, P. W., Hershberger, S. L., & Bouchard, T. J., Jr. (1996). Genetic and environmental
714	contributions to the acquisition of a psychomotor skill. Nature, 384, 356-358.
715	Gee, D. G., Fetcho, R. N., Jing, D., Li, A., Glatt, C. E., Drysdale, A. T., Consortium,
716	P. (2016). Individual differences in frontolimbic circuitry and anxiety emerge
717	with adolescent changes in endocannabinoid signaling across species.
718	Proceedings of the National Academy of Sciences of the USA, 113(16), 4500-
719	4505. doi:10.1073/pnas.1600013113
720	Gignac, G. E. (2015). Raven's is not a pure measure of general intelligence: Implications
721	for g factor theory and the brief measurement of g. Intelligence, 50, 71-79.
722	doi:10.1016/j.intell.2015.07.006
723	Gottfredson, L. S. (1997). Editorial: Mainstream science on intelligence: An editorial
724	with 52 signatories, history, and bibliography. Intelligence, 24, 13-24.
725	Groos, K. (1898). The play of animals. New York: Appleton.
726	Groos, K. (1901). The play of man. New York: Appleton.
727	Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of
728	young American children. Baltimore: Paul H. Brookes.
729	Hayes, C. (1951). The ape in our house. New York: Harper.
730	Hayes, K. J. (1962). Genes, drives, and intellect. Psychological Reports, 10, 299-342.
731	doi:10.2466/pr0.1962.10.2.299
732	Hayes, K. J., & Hayes, C. (1951). The intellectual development of a home-raised
733	Chimpanzee. Proceedings of the American Philosophical Society, 95, 105-109.

- Hettema, J. M., Annas, P., Neale, M. C., Kendler, K. S., & Fredrikson, M. (2003). A twin
 study of the genetics of fear conditioning. *Archives of General Psychiatry*, 60,
 702-708.
- 737 Hunt, E. (2011). *Human intelligence*. Cambridge: Cambridge University Press.
- 738 Isaacson, W. (2014). *The innovators*. New York: Simon & Schuster.
- Johnson, W. (2013). Greatness as a manifestation of experience-producing drives. In S.
- Kaufman (Ed.), *The complexity of greatness: Beyond talent or practice* (pp. 3-16).
 Cambridge: Cambridge University Press.
- 742 Johnson, W. (2014). *Developing difference*. Basingstroke, England: Palgrave Macmillan.
- 743 Johnson, W., & Bouchard, T. J., Jr. (2014). Genetics of Intellectual and Personality Traits
- Associated with Creative Genius: Could Geniuses be Cosmobian Dragon Kings? .
- 745 In D. K. Simonton (Ed.), *The Wiley Handbook of Genius* (pp. 269-296). Oxford,
- 746 UK: Wiley.
- 747 Judge, T. A., & Hogan, R. (2015). Fitness, adapatation, and survival: The role of socio-
- anthropic characteristics, personality, and intelligence in work behavior. In S. M.
- 749 Colarelli & R. D. Arvey (Eds.), *The biological foundations of organizational*
- 750 *behavior* (pp. 91-118). Chicago and London: University of Chicago Pressq.
- 751 Kan, K.-J., Wicherts, J. M., Dolan, C. V., & van der Maas, H. (2013). On the aature and
- nurture of intelligence and specific cognitive abilities: The more heritable, the
 more culture dependent. *Psychological Science*, *24*, 2420-2438.
- 754 doi:10.1177/0956797613493292
- Kaufman, S. B., Reynolds, M. R., Liu, X., Kaufman, A. S., & McGrew, K. S. (2012). Are
 cognitive g and academic achievement g one and the same g? An exploration on

757	the Woodcock–Johnson and Kaufman tests. <i>Intelligence</i> , $40(2)$, 123-138.
758	doi:10.1016/j.intell.2012.01.009
759	Kawecki, T. J. (2009). Evolutionary ecology of learning: insights from fruit flies.
760	Population Ecology, 52(1), 15-25. doi:10.1007/s10144-009-0174-0
761	Khera, A. V., Chaffin, M., Aragam, K. G., Haas, M. E., Roselli, C., Choi, S. H.,
762	Kathiresan, S. (2018). Genome-wide polygenic scores for common diseases
763	identify individuals with risk equivalent to monogenic mutations. Nature
764	Genetics, 50(9), 1219-1224. doi:10.1038/s41588-018-0183-z
765	Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., .
766	Zimmerman, M. (2017). The Hierarchical Taxonomy of Psychopathology
767	(HiTOP): A dimensional alternative to traditional nosologies. J Abnorm Psychol,
768	126(4), 454-477. doi:10.1037/abn0000258
769	Krapohl, E., Rimfeld, K., Shakeshaft, N. G., Trzaskowski, M., McMIllan, A., Pingault,
770	JB., Plomin, R. (2014). The high heritability of educational achievement
771	reflects many genetically influenced traits, not just intelligence. Proceedings of
772	the National Academy of Sciences, 111, 15273-15278.
773	doi:10.1073/pnas.1408777111
774	Lahey, B. B., Krueger, R. F., Rathouz, P. J., Waldman, I. D., & Zald, D. H. (2017).
775	Validity and utility of the general factor of psychopathology. World Psychiatry,
776	<i>16</i> (2), 142-143.
777	Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Cesarini, D.
778	(2018). Gene discovery and polygenic prediction from a genome-wide association

- study of educational attainment in 1.1 million individuals. *Nature Genetics*, 50(8),
- 780 1112-1121. doi:10.1038/s41588-018-0147-3
- 781 Lewis, D. M. G., Al-Shawaf, L., Conroy-Beam, D., Asao, K., & Buss, D. M. (2017).
- Evolutionary psychology: A how-to guide. *Am Psychol*, 72(4), 353-373.
- 783 doi:10.1037/a0040409
- Loeb, S., & York, B. (2016). Helping parents help their children. Retrieved from
- 785 Washington, D.C.: <u>https://www.brookings.edu/research/helping-parents-help-</u>
 786 their-children/
- 787 Lucon-Xiccato, T., & Dadda, M. (2017). Personality and cognition: Sociability
- negatively predicts shoal size discrimination performance in guppies. *Frontiers in Psychology*, 8, 1-7. doi:10.3389/fpsyg.2017.01118
- 790 Lynn, R. (2007). Review of Flynn, J. R. What is intelligence? Beyond the Flynn effect.
- 791 Cambridge, UK: Cambridge University Press.
- Major, J. T., Johnson, W., & Bouchard, T. J., Jr. (2011). The dependability of the general
 factor of intelligence: Why small, single-factor models do not adequately
- represent g. Intelligence, 39, 418-433. doi:10.1016/j.intell.2011.07.002
- 795 McGue, M., Bouchard, T. J., Jr., Lykken, D. T., & Finkel, D. (1991). On genes,
- environment and experience. *Behavioral and Brain Sciences*, 14(3), 400-401.
- 797 McNemar, Q. (1964). Lost: Our intelligence? Why? American Psychologist, 19, 871-882.
- 798 Meehl, P. E. (1962). Schizotaxia, Schizotypy, Schizophrenia. American Psychologist, 17,
- 799 827-838.

- 800 Merrill, K. A., Steinmetz, J. E., Viken, R. J., & Rose, R. J. (1999). Genetic influences on
- 801 human conditionability: a twin study of the conditioned eyeblink response.
- 802 *Behavior Genetics*, 29(2), 95-102.
- 803 Moffitt, T. E., Caspi, A., Harkness, A. R., & Silva, P. A. (1993). The natural history of
- change in intellectual performance: Who changes? How much? Is it meaningful? *Journal of Child Psychology and Psychiatry*, *34*(4), 455-506.
- Nesse, R. M. (2019). Good reasons for bad feelings: Insights from the fron tieres of
 evolutionary psychiatry. London: Allen Lane.
- 808 Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-environment interaction
- and correlation in the analysis of human behavior. *Psychological Bulletin, 84*,
 309-322.
- Protzko, J. (2015). The environment in raising early intelligence: A meta-analysis of the
 fadeout effect. *Intelligence*, *53*, 202-210. doi:10.1016/j.intell.2015.10.006
- 12 Index effect. *Intelligence*, 55, 262 216. doi:10.1016/j.inteli.2015.10.000
- 813 Protzko, J. (2016). Does the raising IQ-raising g distinction explain the fadeout effect?

814 *Intelligence*, 56, 65-71. doi:10.1016/j.intell.2016.02.008

815 Raine, A., Reynolds, C., Venables, P. H., & Mednick, S. A. (2002). Stimulation seeking

and intelligence: A prospective longitudinal study. *Journal of Personality and Social Psychology*, 82, 663-674.

- 818 Richardson, T. G., Harrison, S., Hemani, G., & Davey Smith, G. (2019). An atlas of
- 819 polygenic risk score associations to highlight putative causal relationships across
- the human phenome. *eLife*, 8. doi:10.7554/eLife.43657

821	Rindermann, H., Becker, D., & Coyle, T. R. (2017). Survey of expert opinion on
822	intelligence: The Flynn effect and the future of intelligence. Personality and
823	Individual Differences, 106, 242-247. doi:10.1016/j.paid.2016.10.061
824	Roberts, B. W., Lejuez, C., Krueger, R., Richards, J. M., & Hill, P. L. (2014). What is
825	concientiousness and how can it be assessed. Developmental Psychology, 50,
826	1315-1330. doi:10.1037/a0031109
827	Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical causal
828	models for observational data. Advances in Methods and Practices in
829	Psychological Science, 1(1), 27-42. doi:10.1177/2515245917745629
830	Rushton, J. P. (1988). Epigenetic rules in moral development: Distal-proximal
831	approaches to altruism and aggression. Aggressive Behavior, 14, 35-50.
832	Rustichini, A., Iacono, W. G., Lee, J. McGue, M. (2019). Polygenic score analysis of
833	educational achievement and intergenerational mobility
834	Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., de Leeuw, C. A.,
835	Posthuma, D. (2018). Genome-wide association meta-analysis in 269,867
836	individuals identifies new genetic and functional links to intelligence. Nature
837	Genetics, 50(7), 912-919. doi:10.1038/s41588-018-0152-6
838	Savi, A. O., Marsman, M., van der Maas, H. L. J., & Maris, G. K. J. (2019). The Wiring
839	of Intelligence. Perspectives on Psychological Science, 14(6), 1034-1061.
840	doi:10.1177/1745691619866447
841	Scarr, S. (1985). Constructing psychology: Making facts and fables for our times.
842	American Psychologist, 40, 499-512.

843	Scarr, S. (1996). How people make their own environments: Implications for parents and
844	policy makers. Psychology, Public Policy, and Law, 2, 204-228.
845	doi:10.1037/1076-8971.2.2.204
846	Scarr, S., & McCartney, K. (1983). How people make their own environments: A theory
847	of genotype -> environment effects. Child Development, 54, 424-435.
848	doi:10.2307/1129703
849	Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection.
850	Oxford: Blakston.
851	Schmidt, F. L. (2011). A Theory of Sex Differences in Technical Aptitude and Some
852	Supporting Evidence. Perspectives on Psychological Science, 6, 560-573.
853	doi:DOI: 10.1177/1745691611419670
854	Schmidt, F. L. (2014). A general theoretical integrative model of individual differences in
855	interests, abilities, personality traits, and academic and occupational achievement:
856	A commentary on four recent articles. Perspectives in Psychological Science, 9,
857	211-218. doi:10.1177/1745691613518074
858	Schmidt, F. L. (2017). Beyond questionable research methods: The role of omitted
859	relevant research in the credibility of research. Archives of Scientific Psychology,
860	5(1), 32-41. doi:10.1037/arc0000033
861	Simon, H. A. (1956). Rational choice and the structure of the environment. Psychol Rev,
862	63(2), 129-138. doi:10.1037/h0042769
863	Sniekers, S., Stringer, S., Watanabe, K., Jansen, P. R., Coleman, J. R. I., Krapohl, E.,
864	Posthuma, D. (2017). Genome-wide association meta-analysis of 78,308

865	individuals identifies new loci and genes influencing human intelligence. Nature
866	Genetics, 49(7), 1107-1112. doi:10.1038/ng.3869
867	Snow, C. P. (1963). The two cultures: A second look. Cambridge: Cambridge University
868	Press.
869	Stanley, K. O., & Lehman, J. (2015). Why greatness cannot be planned: The myth of the
870	objective. New York: Springer.
871	Symons, D. (1992). On the use and misuse of Darwinism in the study of human behavior.
872	In J. H. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind:
873	Evolutionaty psychology and the generation of culture (pp. 137-162). New York:
874	Oxford University Press.
875	Tredoux, G. (2019). The nature and nurture of rectangles. Retrieved from
876	http://galton.org/reviews/Rectangles/tredoux-2019-HeritabilityAndRectangles.pdf
877	Tucker-Drob, E. M., & Briley, D. A. (2014). Continuity of genetic and environmental
878	influences on cognition across the life span: A meta-analysis of longitudinal twin
879	and adoption studies. Psychological Bulletin, 140, 949-979.
880	doi:10.1037/a0035893
881	Waddington, C. H. (1942). Canalization of development and the inheritance of acquired
882	characteristics. Nature, 150, 563-565.
883	Warne, R. T., & Burningham, C. (2019). Spearman's g found in 31 non-Western nations:
884	Strong evidence that g is a universal phenomenon. <i>Psychol Bull</i> , 145(3), 237-272.
885	doi:10.1037/bul0000184
886	Williams, R. L. (2013). Overview of the Flynn effect. Intelligence, 41(6), 753-764.
887	doi:10.1016/j.intell.2013.04.010

- Wilson, A. C. (1985). The molecular basis of evolution. *Scientific American*, 253(4), 164173.
- 890 Winograd, E., Fivush, R., & Hirst, W. (Eds.). (1999). Ecological approaches to
- 891 *cognition: Essays in honor of Ulric Neisser*. Mahwah, New Jersey: Erlbaum.
- 892 Wolfram, S. (2017). A new kind of science: A 15-year view. Retrieved from
- 893 <u>http://blog.stephenwolfram.com/2017/05/a-new-kind-of-science-a-15-year-view/</u>