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Abstract

We propose a Markov chain Monte Carlo
(MCMC) scheme to perform state inference in
non-linear non-Gaussian state-space models. Cur-
rent state-of-the-art methods to address this prob-
lem rely on particle MCMC techniques and its
variants, such as the iterated conditional Sequen-
tial Monte Carlo (cSMC) scheme, which uses
a Sequential Monte Carlo (SMC) type proposal
within MCMC. A deficiency of standard SMC
proposals is that they only use observations up to
time t to propose states at time t when an entire
observation sequence is available. More sophisti-
cated SMC based on lookahead techniques could
be used but they can be difficult to put in practice.
We propose here replica cSMC where we build
SMC proposals for one replica using information
from the entire observation sequence by condi-
tioning on the states of the other replicas. This
approach is easily parallelizable and we demon-
strate its excellent empirical performance when
compared to the standard iterated cSMC scheme
at fixed computational complexity.

1. Introduction

We consider discrete-time state-space models. They can
be described by a latent Markov process (X

t

)

t�1

and an
observation process (Y

t

)

t�1

, (X
t

, Y
t

) being X ⇥ Y-valued,
which satisfy X

1

⇠ µ(·) and

X
t+1

|{X
t

= x} ⇠ f(·|x) Y
t

|{X
t

= x} ⇠ g(·|x)
(1)

for t � 1. Our goal is to sample from posterior distribution
of the latent states X

1:T

:= (X
1

, ..., X
T

) given a realization
of the observations Y

1:T

= y
1:T

. This distribution admits a
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density given by

p(x
1:T

|y
1:T

) / µ(x
1

)g(y
1

|x
1

)

T

Y

t=2

f(x
t

|x
t�1

)g(y
t

|x
t

).

(2)
This sampling problem is now commonly addressed us-
ing an MCMC scheme known as the iterated cSMC sam-
pler (Andrieu et al., 2010) and extensions of it; see, e.g.,
(Shestopaloff & Neal, 2018). This algorithm relies on a
SMC-type proposal mechanism. A limitation of these al-
gorithms is that they typically use data only up to time t
to propose candidate states at time t, whereas the entire
sequence y

1:T

is observed in the context we are interested
in. To address these issues, various lookahead techniques
have been proposed in the SMC literature; see (Chen et al.,
2013) for a review. Alternative approaches relying on a
parametric approximation of the backward information fil-
ter used for smoothing in state-space models (Briers et al.,
2010) have also been recently proposed in (Scharth & Kohn,
2016; Guarniero et al., 2017; Ruiz & Kappen, 2017; Heng
et al., 2017). When applicable, these iterative methods have
demonstrated good performance. However, it is unclear
how these ideas could be adapted to the MCMC framework
investigated here. Additionally these methods are difficult
to put in practice for multimodal posterior distributions.

In this paper, we propose a novel approach which allows
us to build proposals for cSMC that allows considering all
observed data in a proposal, based on conditioning on repli-
cas of the state variables. Our approach is based purely on
Monte Carlo sampling, bypassing any need for approximat-
ing functions in the estimate of the backward information
filter.

The rest of this paper is organized as follows. In Section
2, we review the iterated cSMC algorithm and outline its
limitations. Section 3 introduces the replica iterated cSMC
methodology. In Section 4, we demonstrate the methodol-
ogy on a linear Gaussian model, two non-Gaussian state
space models from (Shestopaloff & Neal, 2018) as well as
the Lorenz-96 model from (Heng et al., 2017).

2. Iterated cSMC

The iterated cSMC sampler is an MCMC method for sam-
pling from a target distribution of density ⇡ (x

1:T

) :=
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Algorithm 1 Iterated cSMC kernel K (x
1:T

, x0
1:T

)

cSMC step.

1. At time t = 1

(a) Sample b
1

uniformly on [N ] and set xb1
1

= x
1

.

(b) For i 2 [N ] \{b
1

}, sample xi

1

⇠ q
1

(·).
(c) Compute w

1

(x
0

, xi

1

) for i 2 [N ].

2. At times t = 2, . . . , T

(a) Sample b
t

uniformly on [N ] and set xbt
t

= x
t

.
(b) For i 2 [N ] \{b

t

}, sample

ai
t�1

⇠ Cat{w
t�1

(x
a

j
t�2

t�2

, xj

t�1

); j 2 [N ]}.

(c) For i 2 [N ] \{b
t

}, sample xi

t

⇠ q
t

( ·|xa

i
t�1

t�1

).

(d) Compute w
t

(x
a

i
t�1

t�1

, xi

t

) for i 2 [N ].

Backward sampling step.

1. At times t = T

(a) Sample b
T

⇠ Cat{w
T

(x
a

j
T�1

T�1

, xj

T

); j 2 [N ]}.

2. At times t = T � 1, ..., 1

(a) Sample b
t

⇠
Cat{�

t+1

(xj

t

, x
bt+1

t+1

)w
t

(x
a

j
t�1

t�1

, xj

t

); j 2 [N ]}.

Output x0
1:T

= xb1:T
1:T

:=

⇣

xb1
1

, . . . , xbT
T

⌘

.

⇡
T

(x
1:T

). It relies on a modified SMC scheme target-
ing a sequence of auxiliary target probability densities
{⇡

t

(x
1:t

)}
t=1,...,T�1

and a sequence of proposal densities
q
1

(x
1

) and q
t

(x
t

|x
t�1

) for t 2 {2, ..., T}. These target den-
sities are such that ⇡

t

(x
1:t

)/⇡
t�1

(x
1:t�1

) / �
t

(x
t�1

, x
t

).

2.1. Algorithm

We define the ‘incremental importance weights’ for t � 2

as

w
t

(x
t�1

, x
t

) :=

⇡
t

(x
1:t

)

⇡
t�1

(x
1:t�1

) q
t

(x
t

|x
t�1

)

/ �
t

(x
t�1

, x
t

)

q
t

(x
t

|x
t�1

)

(3)

and for t = 1 as

w
1

(x
0

, x
1

) :=

⇡
1

(x
1

)

q
1

(x
1

)

. (4)

We introduce a dummy variable x
0

to simplify notation. We
let N � 2 be the number of particles used by the algorithm
and [N ] := {1, ..., N}. We introduce the notation x

t

=

�

x1

t

, . . . , xN

t

�

2 XN , a
t

=

�

a1
t

, . . . , aN
t

�

2 {1, . . . , N}N ,
x

1:T

= (x

1

,x
2

, ...,x
T

), a
1:T�1

= (a

1

,a
2

, ...,a
T�1

) and

x

�bt
t

= x

t

\xbt
t

, x�b1:T
1:T

=

n

x

�b1
1

, . . . ,x�bT
T

o

, a�bt
t�1

=

a

t�1

\abt
t�1

, a

�b2:T
1:T�1

=

n

a

�b2
1

, . . . ,a�bT
T�1

o

and set b
t

=

a
bt+1

t

for t = 1, ..., T � 1.
It can be shown that the iterated cSMC kernel, described
in Algorithm 1, is invariant w.r.t. ⇡(x

1:T

). Given the cur-
rent state x

1:T

, the cSMC step introduced in (Andrieu et al.,
2010) samples from the following distribution

�(x

�b1:T
1:T

,a�b2:T
1:T�1

�

�

�

xb1:T
1:T

, b
1:T

) = �
x1:T

⇣

xb1:T
1:T

⌘

⇥
N

Y

i=1,i 6=b1

q
1

�

xi

1

�

T

Y

t=2

N

Y

i=1,i 6=bt

�(ai
t�1

, xi

t

�

�

x

t�1

), (5)

where

�
�

ai
t�1

= k, xi

t

�

�

x

t�1

�

=

w
t�1

(x
a

k
t�1

t�2

, xk

t�1

)

P

N

j=1

w
t�1

(x
a

j
t�1

t�2

, xj

t�1

)

⇥ q
t

(xi

t

�

�xk

t�1

). (6)

This can be combined to a backward sampling step in-
troduced in (Whiteley, 2010); see (Finke et al., 2016;
Shestopaloff & Neal, 2018) for a detailed derivation. It
can be shown that the combination of these two steps de-
fined a Markov kernel that preserves the following extended
target distribution

�(x
1:T

,a�b2:T
1:T�1

, b
1:T

) :=

⇡(xb1:T
1:T

)

NT

⇥ �(x

�b1:T
1:T

,a�b2:T
1:T�1

�

�

�

xb1:T
1:T

, b
1:T

) (7)

as invariant distribution. In particular, it follows that if
x
1:T

⇠ ⇡ then x0
1:T

⇠ ⇡. The algorithm is described in
Algorithm 1 where we use the notation Cat{c

i

; i 2 [N ]} to
denote the categorical distribution of probabilities p

i

/ c
i

.

Iterated cSMC has been widely adopted for state space
models, i.e. when the target is ⇡(x

1:T

) = p(x
1:T

|y
1:T

). The
default sequence of auxiliary targets one uses is ⇡

t

(x
1:t

) =

p(x
1:t

|y
1:t

) for t = 1, ..., T � 1 resulting in the incremental
importance weights

w
t

(x
t�1

, x
t

) / f(x
t

|x
t�1

)g(y
t

|x
t

)

q
t

(x
t

|x
t�1

)

(8)

for t � 2 and

w
1

(x
0

, x
1

) / µ(x
1

)g(y
1

|x
1

)

q
1

(x
1

)

(9)

for t = 1. Typically we will attempt to select a proposal
which minimizes the variance of the incremental weight,
which at time t � 2 is qopt

t

(x
t

|x
t�1

) = p(x
t

|x
t�1

, y
t

) /
g(y

t

|x
t

)f(x
t

|x
t�1

) or an approximation of it.
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2.2. Limitations of Iterated cSMC

When using the default sequence of auxiliary targets for state
space models, iterated cSMC does not exploit a key feature
of the problem at hand. The cSMC step typically uses a
proposal at time t that only relies on the observation y

t

, i.e.
q
t

(x
t

|x
t�1

) = p (x
t

|x
t�1

, y
t

), as it targets at time t the pos-
terior density p (x

1:t

|y
1:t

). In high-dimensions and/or in the
presence of highly informative observations, the discrepancy
between successive posterior densities {p (x

1:t

|y
1:t

)}
t�1

will be high. Consequently the resulting importance weights
{w

t

(x
a

i
t�1

t�1

, xi

t

); i 2 [N ]} will have high variance and the
resulting procedure will be inefficient.

Ideally one would like to use the sequence of marginal
smoothing densities as auxiliary densities, that is ⇡

t

(x
1:t

) =

p (x
1:t

|y
1:T

) for t = 1, ..., T � 1. Unfortunately, this is not
possible as p (x

1:t

|y
1:T

) / p (x
1:t

|y
1:t�1

) p (y
t:T

|x
t

) can-
not be evaluated pointwise up to a normalizing constant.
To address this problem in a standard SMC framework, re-
cent contributions (Scharth & Kohn, 2016; Guarniero et al.,
2017; Ruiz & Kappen, 2017; Heng et al., 2017) perform
an analytical approximation p̂ (y

t:T

|x
t

) of the backward
information filter p (y

t:T

|x
t

) based on an iterative parti-
cle mechanism and target instead {p̂ (x

1:t

|y
1:T

)}
t�1

where
p̂ (x

1:t

|y
1:T

) / p (x
1:t

|y
1:t�1

) p̂ (y
t:T

|x
t

) using proposals
of the form q

t

(x
t

|x
t�1

) / f (x
t

|x
t�1

) p̂ (y
t:T

|x
t

). These
methods can perform well but it requires a careful design of
the analytical approximation and is difficult to put in prac-
tice for multimodal posteriors. Additionally, it is unclear
how these could be adapted in an iterated cSMC framework
without introducing any bias.

Versions of iterated cSMC using an independent approxi-
mation to the backward information filter based on Particle
Efficient Importance Sampling (Scharth & Kohn, 2016) have
been proposed (Grothe et al., 2016) though they still require
a choice of analytical approximation and use an approxima-
tion to the backward information filter which is global. This
can become inefficient in high dimensional state scenarios.

3. Replica Iterated cSMC

We introduce a way to directly use the iterated
cSMC algorithm to target a sequence of approximations
{p̂ (x

1:t

|y
1:T

)}
t�1

to the marginal smoothing densities of
a state space model. Our proposed method is based on
sampling from a target over multiple copies of the space as
done in, for instance, the Parallel Tempering or Ensemble
MCMC (Neal, 2010) approaches. However, unlike in these
techniques, we use copies of the space to define a sequence
of intermediate distributions in the cSMC step informed
by the whole dataset. This enables us to draw samples of
X

1:T

that incorporate information about all of the observed
data. Related recent work includes (Leimkuhler et al., 2018),

where information sharing amongst an ensemble of replicas
is used to improve MCMC proposals.

3.1. Algorithm

We start by defining the replica target for some K � 2 by

⇡̄(x
(1:K)

1:T

) =

K

Y

k=1

p(x
(k)

1:T

|y
1:T

). (10)

Each of the replicas x
(k)

1:T

is updated in turn by running
Algorithm 1 with a different sequence of intermediate tar-
gets which we describe here. Consider updating replica
k and let p̂(k)(y

t+1:T

|x
t

) be an estimator of the backward
information filter, built using replicas other than the k-th
one, x

(�k)

t+1

= (x
(1)

t+1

, . . . , x
(k�1)

t+1

, x
(k+1)

t+1

, . . . , x
(K)

t+1

). For
convenience of notation, we take p̂(k)(y

T+1:T

|x
T

) := 1.
At time t, the cSMC does target approximation of the
marginal smoothing distribution p (x

1:t

|y
1:T

) as in (Scharth
& Kohn, 2016; Guarniero et al., 2017; Ruiz & Kappen, 2017;
Heng et al., 2017). This is of the form p̂(k) (x

1:t

|y
1:T

) /
p (x

1:t

|y
1:t

) p̂(k) (y
t+1:T

|x
t

). This means that the cSMC for
replica k uses the novel incremental weights at time t � 2

w
(k)

t

(x
t�1

, x
t

) :=

p̂(k) (x
1:t

|y
1:T

)

p̂(k) (x
1:t�1

|y
1:T

) q
t

(x
t

|x
t�1

)

(11)

/ g(y
t

|x
t

)f(x
t

|x
t�1

)p̂(k) (y
t+1:T

|x
t

)

p̂(k) (y
t:T

|x
t�1

) q
t

(x
t

|x
t�1

)

and w(k)

1

(x
0

, x
1

) / g(y
1

|x
1

)µ(x
1

)p̂(k)(y
t+1:T

|x
1

)/q
1

(x
1

).
We would like to use the proposal minimizing the vari-
ance of the incremental weight, which at time t � 2 is
qopt
t

(x
t

|x
t�1

) / g(y
t

|x
t

)f(x
t

|x
t�1

)p̂(k) (y
t+1:T

|x
t

) or an
approximation of it.

The full replica cSMC update for ⇡̄ is described in Algo-
rithm 2 and is simply an application of Algorithm 1 to a
sequence of target densities for each replica. A proof of the
validity of the algorithm is provided in the Supplementary
Material.

Algorithm 2 Replica cSMC update
For k = 1, . . . ,K

1. Build an approximation p̂(k) (y
t+1:T

|x
t

)

of p (y
t+1:T

|x
t

) using the replicas

(x
(1)

0

t+1

, . . . , x
(k�1)

0

t+1

, x
(k+1)

t+1

, . . . , x
(K)

t+1

) for t =

1, ..., T � 1.

2. Run Algorithm 1 with target ⇡(x
1:T

) = p(x
1:T

|y
1:T

)

and auxiliary targets ⇡
t

(x
1:t

) = p̂(k) (x
1:t

|y
1:T

) for

t = 1, . . . , T � 1 with initial state x
(k)

1:T

to return

x
(k

0
)

1:T

.

Output x(1:K)

0

1:T

.
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One sensible way to initialize the replicas is to set them to
sequences sampled from standard independent SMC passes.
This will start the Markov chain not too far from equilibrium.
For multimodal distributions, initialization is particularly
crucial, since we need to ensure that different replicas are
well-distributed amongst the various modes at the start of
the run.

3.2. Setup and Tuning

The replica cSMC sampler requires an estimator
p̂(k) (y

t+1:T

|x
t

) of the backward information filter based
on x

(�k)

t+1

. For our algorithm, we propose an estimator
p̂(k) (y

t+1:T

|x
t

) that is not based on any analytical approx-
imation of p (y

t+1:T

|x
t

) but simply on a Monte Carlo ap-
proximation built using the other replicas,

p̂(k) (y
t+1:T

|x
t

) /
X

j 6=k

f(x
(j)

t+1

|x
t

)

p(x
(j)

t+1

|y
1:t

)

, (12)

where p (x
t+1

|y
1:t

) denotes the predictive density of x
t+1

.
The rationale for this approach is that at equilibrium the com-
ponents of x(�k)

t+1

are an iid sample from a product of K � 1

copies of the smoothing density, p (x
t+1

|y
1:T

). Therefore,
as K increases, (12) converges to

Z

f (x
t+1

|x
t

)

p (x
t+1

|y
1:t

)

p (x
t+1

|y
1:T

) dx
t+1

/
Z

f (x
t+1

|x
t

) p (y
t+1:T

|x
t+1

) dx
t+1

= p (y
t+1:T

|x
t

) . (13)

In practice, the predictive density is also unknown and we
need to use an approximation of it. Whatever being the
approximation p̂ (x

t+1

|y
1:t

) of p (x
t+1

|y
1:t

) we use, the
algorithm is valid. We note that for K = 2, any approxima-
tion of the predictive density results in the same incremental
importance weights.

We propose to approximate the predictive density in (13) by
a constant over the entire latent space, i.e. p̂(x

t+1

|y
1:t

) = 1.
We justify this choice as follows. If we assume that we
have informative observations, which is typical in many
state space modelling scenarios, then p(x

t+1

|y
1:T

) will tend
to be much more concentrated than p(x

t+1

|y
1:t

). Thus,
over the region where the posterior has high density, the
predictive density will be approximately constant relative
to the posterior density. This suggests approximating the
predictive density in (13) by its mean with respect to the

posterior density,
Z

f (x
t+1

|x
t

)

p (x
t+1

|y
1:t

)

p (x
t+1

|y
1:T

) dx
t+1

⇡
R

f (x
t+1

|x
t

) p (x
t+1

|y
1:T

) dx
t+1

R

p (x
t+1

|y
1:t

) p (x
t+1

|y
1:T

) dx
t+1

⇡
1

K

P

K

k=1

f(x
(k)

t+1

|x
t

)

1

K

P

K

k=1

p(x
(k)

t+1

|y
1:t

)

. (14)

Since the importance weights in cSMC at each time are
defined up to a constant, sampling is not affected by the
specific value of 1

K

P

K

k=1

p(x
(k)

t+1

|y
1:t

). Therefore, when
doing computation it can simply be set to any value, which
is what we do.

We note that while the asymptotic argument doesn’t hold
for the estimator in (14), when the variance of the predictive
density is greater than the variance of the posterior density,
we expect the estimators in (12) and (14) to be close for any
finite K.

An additional benefit to approximating the predictive density
by a constant is reduction in the variance of the mixture
weights in (12). To see why this can be the case, consider
the following example. Suppose the predictive density of
x
t+1

is N (µ,�2

0

) and the posterior density is N (0,�2

1

),
where �2

1

< �2

0

. Computing the variance of the mixture
weight, we get

Var
✓

1

p(x
t+1

|y
1:t

)

◆

=

2⇡�2

0

p

2�2

1

⌫
1

exp



µ2

✓

1

�2

0

+

1

(�2

0

)

2⌫
1

◆�

� 2⇡�2

0

�2

1

⌫
2

exp



µ2

✓

1

�2

0

+

1

(�2

0

)

2⌫
2

◆�

. (15)

where

⌫
1

=

✓

1

2�2

1

� 1

�2

0

◆

⌫
2

=

✓

1

�2

1

� 1

�2

0

◆

. (16)

From this we can see that variance increases exponen-
tially with the squared difference of predictive and posterior
means, µ2. As a result, we can get outliers in the mixture
weight distribution. If this happens, many of the replicas
will end up having low weights in the mixture. This will
reduce the effective number of replicas used. Using a con-
stant approximation will weight all of the replicas uniformly,
and allow us to construct better proposals, as illustrated in
Section 4.1.

A natural extension of the proposed method is to update
some of the replicas with other than replica cSMC updates.
Samples from these replicas can then be used in estimates of
the backward information filter when doing a replica cSMC
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update. This makes it possible to parallelize the method, at
least to some extent. For instance, one possibility is to do
parallel independent cSMC updates on some of the replicas.

Performing other than replica cSMC updates on some of
the replicas can be useful in multimodal scenarios. If all
replicas are located in an isolated mode, and the replica
cSMC updates use an estimate of the backward information
filter based on replicas in that mode, then the overall Markov
chain will tend not to transition well to other modes. Using
samples from other types of updates in the estimate of the
backward information filter can help counteract this effect
by making transitions to other high-density regions possible.

4. Examples

We consider four models to illustrate the performance of
our method. In all examples, we assume that the model
parameters are known. The first is a simple linear Gaussian
model. We use this model to demonstrate that it is sensible
to use a constant approximation to the predictive density
in our estimator of the backward information filter. We
also use the linear Gaussian model to better understand the
accuracy and performance of replica cSMC. The second
model, from (Shestopaloff & Neal, 2018), demonstrates
that our proposed replica cSMC method is competitive with
existing state-of-the-art methods at drawing latent state se-
quences in a unimodal context. The third model, also from
(Shestopaloff & Neal, 2018), demonstrates that by updating
some replica coordinates with a standard iterated cSMC
kernel, our method is able to efficiently handle multimodal
sampling without the use of specialized “flip” updates. The
fourth model is the Lorenz-96 model from (Heng et al.,
2017), which has very low observation noise, making it a
challenging case for standard iterated cSMC.

To do our computations, we used MATLAB on an OS X
system, running on an Intel Core i5 1.3 GHz CPU. As a
performance metric for the sampler, we used autocorrela-
tion time, which is a measure of approximately how many
steps of an MCMC chain are required to obtain the equiva-
lent of one independent sample. The autocorrelation time
is estimated based on a set of runs as follows. First, we
estimate the overall mean using all of the runs. Then, we
use this overall mean to estimate autocovariances for each
of the runs. The autocovariance estimates are then aver-
aged and used to estimate the autocorrelations ⇢̂

k

. The
autocorrelation time is then estimated as 1 + 2

P

M

m=1

⇢̂
m

where M is chosen such that for m > M the autocorrela-
tions are approximately 0. The code to reproduce all the
results is publicly available at https://github.com/
ayshestopaloff/replicacsmc.

4.1. A Linear Gaussian Model
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0 for t = 1, . . . , T . The la-
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1,i

= 1/(1� �2

i

) for i = 1, . . . , d. The observations
are Y

i,t

|{X
i,t

= x
i,t

} ⇠ N (x
i,t

, 1) for i = 1, . . . , d and
t = 1, . . . , T . We set T = 250, d = 5 and the model’s
parameters to ⇢ = 0.7 and �

i

= 0.9 for i = 1, . . . , d.
We generate a sequence from this model to use for our
experiments.

Since this is a linear Gaussian model, we are able to com-
pute the predictive density in (12) exactly using a Kalman
filter. So for replica k, we can use the following importance
densities,

q
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(x
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) / µ(x
1

)

X
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f(x
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2
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,

q
T
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) / f(x
T

|x
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), (17)

where t = 2, . . . , T � 1. Since these densities are Gaussian
mixtures, they can be sampled from exactly. However, as
pointed out in the previous section, this approach can be
inefficient. We will show experimentally that using a con-
stant approximation to the predictive density in (12) actually
improves performance. In all experiments, we intialize all
replicas to a sample from an independent SMC pass with the
same number of particles as used for cSMC updates. Also,
the different runs in our experiments use different random
number generator seeds.

We first check that our replica method produces answers
that agree with the posterior mean computed by a Kalman
smoother. To do this, we do 10 replica cSMC runs with 100

particles and 2 replicas for 25, 000 iterations, updating each
replica conditional on the other. We then look at whether the
posterior mean of x

i,t

computed using a Kalman smoother
lies within two standard errors of the overall mean of 10

https://github.com/ayshestopaloff/replicacsmc
https://github.com/ayshestopaloff/replicacsmc
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(a) Replica cSMC, 2 replicas.
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(b) Replica cSMC, 75 replicas.
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(c) Replica cSMC, 75 replicas,
constant approximation to predic-
tive.

Figure 1. Estimated autocorrelation times for each latent variable.
Different coloured lines correspond to different latent state compo-
nents. The x-axis corresponds to different times.

replica cSMC runs. We find this happens for about 91.4%
of the x

i,t

. This indicates strong agreement between the an-
swers obtained by replica cSMC and the Kalman smoother.

Next, we investigate the effect of using more replicas. To do
this, we compare replica cSMC using 2 versus 75 replicas.
We do 5 runs of each sampler. Both samplers use 100 parti-
cles and we do a total of 5, 000 iterations per run. For the
sampler using 75 replicas, we update replica 1 at every itera-
tion and replicas 2 to 75 in sequence at every 20-th iteration.
For the sampler using 2 replicas, we update both replicas at
every iteration. In both samplers, we update replica 1 with
replica cSMC and the remaining replica(s) with iterated
cSMC. After discarding 10% of each run as burn-in, we use
all runs for a sampler to compute autocorrelation time.

We can clearly see in Figures 1a and 1b that using more
replicas improves performance, before adjusting for compu-
tation time. We note that for this simple example, there is
no benefit from using replica cSMC with a large number of
replicas if we take into account computation time.

To check the performance of using the constant approxi-
mation versus the exact predictive density, we run replica
cSMC with 75 replicas and the same settings as earlier, ex-
cept using a constant approximation to the predictive density.
Figure 1c shows that using a constant approximation to the
predictive density results in peformance better than when
using the true predictive density. This is consistent with our
discussion in Section 3.2.
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Figure 2. Estimated autocorrelation times for each latent variable.
Different coloured lines correspond to different latent state compo-
nents. The x-axis corresponds to different times.

The linear Gaussian model can also be used to demonstrate
that due to looking ahead, a fixed level of precision can be
achieved with much fewer particles with replica cSMC than
with standard iterated cSMC. In scenarios where the state
is high dimensional and the observations are informative, it
is difficult to efficiently sample the variables x

i,1

with stan-
dard iterated cSMC using the initial density as the proposal.
We do 20 runs of 2, 500 iterations of both iterated cSMC
with 700 particles and of replica cSMC with 35 particles
and 2 replicas, with each replica updated given the other.
We then use the runs to estimate the standard error of the
overall mean over 20 runs. For the variable x

1,1

sampled
with iterated cSMC we estimate the standard error to be ap-
proximately 0.0111 whereas for replica cSMC the estimated
standard error is a similar 0.0081, achieved using only 5%
of the particles.

Finally, we verify that the proposed method works well
on longer time series by running it on the linear Gaussian
model but with the length of the observed sequence set to
T = 1, 500. We use 2 replicas, each updated given the other,
and do 5 runs of 5, 000 iterations of the sampler to estimate
the autocorrelation time for sampling the latent variables. In
Figure 2 we can see that the replica cSMC method does not
suffer from a decrease in performance when used on longer
time series.

4.2. Two Poisson-Gaussian Models

In this example, we consider the two models from
(Shestopaloff & Neal, 2018). Model 1 uses the same la-
tent process as Section 4.1 with T = 250, d = 10 and
Y
i,t

|{X
i,t

= x
i,t

} ⇠ Poisson(exp(c + �x
i,t

)) for i =

1, . . . , d and t = 1, . . . , T where c = �0.4 and � = 0.6.
For Model 2, we again use the latent process in Section
4.1, with T = 500, d = 15 and Y

i,t

|{X
i,t

= x
i,t

} ⇠
Poisson(�|x

i,t

|)) for i = 1, . . . , d and t = 1, . . . , T where
� = 0.8. We assume the observations are independent given
the latent states.

We generate one sequence of observations from each model.
A plot of the simulated data along dimension i = 1 is shown
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(a) Data for Model 1.
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(b) Data for Model 2.

Figure 3. Simulated data from the Poisson-Gaussian models.
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(a) Iterated cSMC+Metropolis.
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(b) Replica cSMC.

Figure 4. Model 1. Estimated autocorrelation times for each la-
tent variable, adjusted for computation time. Different coloured
lines corresponds to different latent state components. The x-axis
corresponds to different times.

in Figure 3. We set the importance densities q
t

for the
replica cSMC sampler to the same ones as in Section 4.1,
with a constant approximation to the predictive density.

MODEL 1

We use replica cSMC with 5 replicas, updating one replica
conditional on the other. We start with both sequences
initialized to 0. We set the number of particles to 200. We
do a total of 5 runs of the sampler with 5, 000 iterations,
each run with a different random number generator seed.
Each iteration of replica cSMC takes approximately 0.80
seconds. We discard 10% of each run as burn-in.

Plots of autocorrelation time comparing replica cSMC to
the best method in (Shestopaloff & Neal, 2018) for sam-
pling each of the latent variables are shown in Figure 4.
The benchmark method takes approximately 0.21 seconds
per iteration. We can see that the proposed replica cSMC
method performs relatively well when compared to their
best method after adjusting for computation time. The fig-
ure for iterated cSMC+Metropolis was reproduced using
code available with (Shestopaloff & Neal, 2018).

MODEL 2

For this model, the challenge is to move between the many
different modes of the latent state due to conditioning on
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(a) Trace plot for x1,300.
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(b) Trace plot for x3,208x4,208.

Figure 5. Trace plots for Model 2.

|x
i,t

| in the observation density. The marginal posterior
of x

i,t

has two modes and is symmetric around 0. Addi-
tional modes appear due to uncertainty in the signs of state
components.

We use a total of 50 replicas and update 49 of the 50 replicas
with iterated cSMC and one replica with replica cSMC. This
is done to prevent the Markov chain from being stuck in
a single mode while at the same time enabling the replica
cSMC update to use an estimate of the backward informa-
tion filter based on replicas that are distributed across the
state space. We initialize all replicas using sequences drawn
from independent SMC passes with 1, 000 particles, and
run the sampler for a total of 2, 000 iterations. Both replica
cSMC and iterated cSMC updates use 100 particles.

In Figure 5 we plot every other sample of the same func-
tions of state as in (Shestopaloff & Neal, 2018) of the
replica updated with replica cSMC. This is the the coor-
dinate x

1,300

with true value �1.99 and x
3,208

x
4,208

with
true value �4.45. The first has two well-separated modes
and the second is ambiguous with respect to sign. We see
that the sampler is able to explore different modes, with-
out requiring any specialized “flip” updates or having to
use a much larger number of particles, as is the case in
(Shestopaloff & Neal, 2018).

We note that the replicas doing iterated cSMC updates tend
to get stuck in separate modes for long periods of time,
as expected. However, as long as these replicas are well-
distributed across the state space and eventually explore
it, the bias in the estimate of the backward information
filter will be low and vanish asymptotically. The samples
from the replica cSMC update will consequently be a good
approximation to samples from the target density. Further
improvement of the estimate of the backward information
filter based on replicas in multimodal scenarios remains an
open problem.

4.3. Lorenz-96 Model

Finally, we look at the Lorenz-96 model in a low-noise
regime from (Heng et al., 2017). The state function for this
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Figure 6. Simulated data from Lorenz-96 model along coordinate
i = 1.

model is the Itô process ⇠(s) = (⇠
1

(s), . . . , ⇠
d

(s)) defined
as the weak solution of the stochastic differential equation
(SDE)

d⇠
i

= (�⇠
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i�2
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i�1

⇠
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i

+↵)dt+ �
f

dB
i

(18)

for i = 1, . . . , d, where indices are computed modulo
d, ↵ is a forcing parameter, �2

f

is a noise parameter and
B(s) = (B

1

(s), . . . , B
d

(s)) is d-dimensional standard
Brownian motion. The initial condition for the SDE is
⇠(0) = N (0,�2

f

I
d

). We observe the process on a reg-
ular grid of size h > 0 as Y

t

⇠ N (H⇠(th), R), where
t = 0, . . . , T . We will assume that the process is only
partially observed, with H

ii

= 1 for i = 1, . . . , p and 0

otherwise, for p = d� 2.

We discretize the SDE (18) by numerically integrating the
drift using a fourth-order Runge-Kutta scheme and adding
Brownian increments. Let u be the mapping obtained by
numerically integrating the drift of (18) on [0, h]. This
discretization produces a state space model with X

1

⇠
N (0,�2

f

I), X
t

|{X
t�1

= x
t�1

} ⇠ N (u(x
t�1

),�2

f

hI) for
t = 2, . . . , T + 1 and Y

t

|{X
t

= x
t

} ⇠ N (Hx
t

, R) for
t = 1, . . . , T +1. We set d = 16,�2

f

= 10

�2, R = 10

�3I
p

and ↵ = 4.8801. The process is observed for 10 time units,
which corresponds to h = 0.1, T = 100, and a step size of
10

�2 for the Runge-Kutta scheme. A plot of data generated
from the Lorenz-96 model along one of the coordinates is
shown in Figure 6.

We compare the performance of replica cSMC with two
replicas, updating each replica conditional on the other,
to an iterated cSMC scheme. For iterated cSMC, we use
the model’s initial density as q

1

and the model’s transition
density as q

t

for t � 2. For replica cSMC, we use the
following importance densities for replica k,
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), (19)

where t = 2, . . . , T�1 and � is the p-dimensional Gaussian
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(a) Standard cSMC trace, x1,45.
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(b) Replica cSMC trace, x1,45.

Figure 7. Lorenz-96 model. Comparison of standard cSMC and
replica cSMC.

density with mean Hu�1

(x
(j)

t+1

) and variance �2

f

hI
p

, that is,
the mean is computed by running the Runge-Kutta scheme
backward in time starting at the replica state x

(j)

t+1

. We
initialize the iterated cSMC sampler and each replica in
the replica cSMC sampler with a sequence drawn from an
independent SMC pass with 3, 000 particles. We run replica
cSMC with 200 particles for 30, 000 iterations (0.7 seconds
per iteration) and compare to standard iterated cSMC with
600 particles, which we also run for 30, 000 iterations (0.7
seconds per iteration), thus making the computational time
equal.

Figure 7 shows the difference in performance of the two
samplers by trace plots of x

1,45

(true value �0.23), from
one of the runs, plotting the samples every 30th iteration.
We can see that replica cSMC performs noticeably better
when compared to standard iterated cSMC.

5. Conclusion

We presented a novel sampler for latent sequences of a non-
linear state space model. Our proposed method leads to
several questions. The first is whether there are other ways
to estimate the predictive density that does not result in
mixture weights with high variance. Another question is to
develop better guidelines on choosing the number of replicas
to use in a given scenario. It would also be interesting to
look at applications of replica cSMC in non time-series
examples. Finally, while the proposed method offers an
approach for sampling in models with multimodal state
distributions, further improvement is needed.
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1. Validity of Replica cSMC

It is easy to see that the proposed update leaves ⇡̄ invari-
ant. Let M

x

(�k)
1:T

(x(k)0

1:T |x(k)
1:T ) be the cSMC transition ker-

nel used to update replica x
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write the replica cSMC transition kernel M as a product,
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(3:K)
1:T

= p(x(1)0

1:T |y1:T )p(x(2)0

1:T |y1:T )

⇥
Z

KY

k=3

p(x(k)
1:T |y1:T )M

x

(�k)
1:T

(x(k)0

1:T |x(k)
1:T )dx

(3:K)
1:T

=
KY

k=1

p(x(k)0

1:T |y1:T ) (by induction)

= ⇡̄(x(1:K)0

1:T ).
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