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Bayesian Nonparametric Spatially Smoothed Density
Estimation

Timothy Hanson, Haiming Zhou, and Vanda Inácio de Carvalho

March 2, 2018

Abstract

A Bayesian nonparametric density estimator that changes smoothly in space is de-
veloped. The estimator is built using the predictive rule from a marginalized Polya
tree, modified so that observations are spatially weighted by their distance from the
location of interest. A simple refinement is proposed to accommodate arbitrarily cen-
sored data and a test for whether the density is spatially varying is also developed. The
method is illustrated on two real datasets, and an R function SpatDensReg is provided
for general use.

1 Introduction

Geographic Information Systems (GIS) technology has exploded over the last several
decades due to impactful advances in data storage, computing power, sophisticated
processing techniques, and visualization software. Accordingly, there has been an in-
creasing need for the development of state of the art statistical models for spatial
data as well (for an overview of developed methods, see Gelfand, Diggle, Fuentes, and
Guttorp, 2010). Much recent literature has focused on spatially-varying trends in the
form of random fields. Although fundamental, spatially-varying density estimation has
received much less attention, perhaps due to challenges inherent in adapting existing
methods to the spatial setting. This paper is then motivated by the need to fill a
particular gap in the literature: provide a conceptually simple and computationally
feasible, yet competitive, approach to modeling spatially dependent distributions.

The field of Bayesian nonparametrics has offered several viable spatially varying
density estimators over the last decade, the majority of which are based on convolu-
tions of a continuous kernel with a spatially varying discrete measure. More specifically,
all proposed methods have been extensions of Dirichlet process (DP) mixture mod-
els (Escobar and West, 1995) towards dependent Dirichlet process (DDP) mixtures
(MacEachern, 2001). The first such contribution was proposed by Gelfand, Kottas,
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and MacEachern (2005). These authors developed a DDP for point-referenced spatial
data where the underlying DP base measure was taken to be a Gaussian process over
Euclidean space; as a result, the density estimate is a discrete mixture of normal dis-
tributions where the components’ means are Gaussian process realizations observed at
a spatial location. An extension of this model allowing different surface selection at
different sites was proposed by Duan, Guindani, and Gelfand (2007). In turn, Griffin
and Steel (2006) proposed a spatial DP model that permutes the random variables
building the weights in the stick-breaking representation, allowing the occurrence of
the stick-breaking atoms to be more or less likely in different regions of the spatial
domain. Further, Reich and Fuentes (2007), motivated by the need to analyze hurri-
cane surface wind fields, developed a spatial stick-breaking prior where the weights are
spatially correlated. Related proposals include Petrone, Guindani and Gelfand (2009)
and Rodŕıguez, Dunson, and Gelfand (2010), both developing spatial DP’s where the
stick-breaking weights follow a copula representation. Very recently, Zhou, Hanson
and Knapp (2015) considered a spatial model where the marginal distributions follow
the linear DDP of De Iorio et al. (2009), but a copula induces dependence for georef-
erenced data. The local DP (Chung and Dunson, 2011), developed to accommodate
predictor dependent weights in a DDP with identical margins, offers an approach to
the localized spatial ‘sharing’ of atoms within neighborhoods of fixed size that could be
extended to the spatial setting. Additionally, Fuentes and Reich (2013) generalize the
models of Reich and Fuentes (2007) and Dunson and Park (2008) to the multivariate
spatial setting with non-separable and non-stationary covariance functions. A related
approach, although not relying on the stick-breaking representation, was developed
by Jo et al. (2017), who considered spatial conditional autoregressive (CAR) species
sampling models. In contrast, the frequentist literature on spatial density estimation
is very scarce, with an exception being the spatially weighted kernel density estimator
proposed by Brunsdon and Charlton (2002) (Section 8.4, pp. 202–203).

All of the above methods, as already mentioned, rely on discrete mixtures of smooth
kernels; in fact, each is a particular mixture of normal distributions with some subset
of model parameters changing smoothly in space. To the best of our knowledge, the
only approach to spatial density estimation that does not rely on mixtures is the very
recent Polya tree approach of Tansey et al. (2017). This approach follows Zhao and
Hanson (2011) by taking the conditional probabilities that define the Polya tree to
have a spatial structure. Whereas Zhao and Hanson (2011) consider multiple logistic-
transformed independent CAR priors for the Polya tree conditional probabilities over
a lattice (i.e., areal data), in Tansey et al. (2017) the logistic-transformed Polya tree
conditional probabilities from adjacent spatial locations are shrunk toward each other
via a graph-fused LASSO prior. This latter approach is especially fast and easy to
compute when spatial locations lie on a rectangular grid. However, since the approach
is not marginalized, density estimates at every spatial location need to be computed,
and therefore the method is not immediately amenable to multivariate outcomes. Fur-
thermore, an important drawback of Tansey et al. (2017) is that the fitting algorithm
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requires spatial locations to fall on a rectangular grid, something that rarely happens
with typical observational data, data arising from irregularly-placed monitoring sta-
tions, et cetera.

Our proposed estimator is built upon a modification of the predictive density from a
marginalized Polya tree to accommodate localized behavior. The modification is readily
implemented in existing Markov chain Monte Carlo (MCMC) schemes for models using
marginalized Polya trees (e.g., Hanson, 2006). Because we rely on marginalization, the
method is fast, even for multivariate outcomes. Additionally, and unlike DP priors
based methods, our method does not rely on mixtures; in fact, a nice feature of Polya
trees is that they can be centered at a parametric family (e.g., a normal distribution).
In a similar fashion to the work of Dunson (2007), Dunson, Pillai, and Park (2007), and
Dunson and Park (2008), observations are weighted according to a distance measure.
However, unlike these approaches, a key property of our model is that for extreme
covariate values, the estimator essentially follows the parametric family centering the
Polya tree. That is, in spatial regions where data are sparse, the estimate is smoothed
towards the parametric family, whereas areas that are data-heavy provide a more data-
driven estimate. Also, our estimator can handle spatial locations (e.g., longitude and
latitude), or covariates, or a mixture of spatial location and covariates. Additional
contributions of our work include a refinement to accommodate arbitrarily censored
data and a test for whether the density changes across space (and/or covariates). It
is worth mentioning that although we are mainly interested in density regression, the
methods developed here can be used to model the error in a general regression setup.

The remainder of the paper is organized as follows. In Section 2 we present our
model, associated MCMC scheme, a generalization to censored data, and a permutation
test. Section 3 provides several applications of the methods to real data. Concluding
remarks are provided in Section 4.

2 The predictive model

The Polya tree, and other partition models, lead to a beautifully simple updating
rule. A family of densities {Gθ : θ ∈ Θ} is assumed to approximately hold, and R
is broken up into regions of equal probability 1

2j
under Gθ at level j. As data are

collected, the proportion falling into a region is compared to what is expected under
Gθ; if this proportion is higher than expected under Gθ, then the region is assigned
higher predictive probability, and vice versa. However, the amount of the increase or
decrease relative to Gθ is attenuated through a smoothing parameter c, that signifies
how much confidence one has in the family Gθ to begin with. This simple updating
rule requires only counting the numbers of observations falling into the regions. This
is now developed formally.

Initially assume data follow a univariate Polya tree centered at a normal distribution

y1, . . . , yn|G
iid∼ G, G ∼ PTJ(c,N(µ, σ2)),
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truncated to level J (Hanson, 2006). The predictive density for an observation yi given
the previous values y1:i−1 = (y1, y2, . . . , yi−1) is given by

p(yi|y1:i−1, c, θ) = φ(yi|θ)
J∏
j=1

cj2 +
∑i−1

k=1 I{d2jΦ{
yi−µ
σ }e = d2jΦ{yk−µσ }e}

cj2 + 1
2

∑i−1
k=1 I{d2j−1Φ{yi−µσ }e = d2j−1Φ{yk−µσ }e}

, (1)

where φ(y|θ) is the density function for a N(µ, σ2) random variable, θ = (µ, log σ),
I{A} is the usual indicator function for event A, Φ(·) is the cumulative distribution
function of N(0, 1), d·e is the ceiling function, and c is a precision parameter controlling
how closely G follows the parametric centering distribution N(µ, σ2) in terms of L1

distance (Hanson, 2006). Large values of c (e.g., 100 or 1000) lead to a strong belief
that yis are closely iid from N(µ, σ2). On the other hand, smaller values of c (e.g.,
0.01 or 0.1) allow more pronounced deviations of G from N(µ, σ2). Therefore, the
predictive density in (1) can change dramatically with c. To mitigate the effect of c on
the posterior inference, Hanson (2006) suggests a gamma prior on c which will also be
used for our proposal in equation (2) below.

Now consider spatial data where the observation yi is observed at spatial location
xi. The full data are then {(xi, yi)}ni=1. Note that xi can simply be spatial location, e.g.
longitude and latitude, or covariates, or a mixture of spatial location and covariates. In
the Polya tree an observation yk (k < i) contributes the same weight to the predictive
density (1) of yi, regardless of how close corresponding spatial locations xi and xk are.
If we replace the indicator functions in (1) by a distance measure dψ(xi,xk) only giving
a ‘whole observation’ when xi = xk and some fraction of unity that is a function of the
distance between xi and xk otherwise, we obtain a predictive process with a tailfree
flavor, but the additional flexibility to be able to adapt locally:

p(yi|y1:i−1, c, θ, ψ) = φ(yi|θ)
J∏
j=1

cj2 +
∑i−1

k=1 I{d2jΦ{
yi−µ
σ }e = d2jΦ{yk−µσ }e}dψ(xi, xk)

cj2 + 1
2

∑i−1
k=1 I{d2j−1Φ{yi−µσ }e = d2j−1Φ{yk−µσ }e}dψ(xi, xk)

(2)
The distance measure used herein is a function of the sample Mahalanobis distance

dψ(xi,xk) = exp{−ψ(xi−xk)
′S−1(xi−xk)}, defining an effective window in which data

can affect the predictive density. When ψ = 0 the prediction rule from a Polya tree
with exchangeable observations is obtained as dψ(xi,xk) = 1 for all i and k. When
dψ(xi,xk) ≈ 0, it is essentially as if yk is not in the sample. Note for xi very far
from the sample mean x̄, the distances will all essentially be zero and the parametric
model is obtained. As a consequence, in regions that are data scarce the estimator will
essentially follow the parametric N(µ, σ2) centering the Polya tree.

The Mahalanobis distance gives the commonly-used spatial Gaussian correlation
function when Euclidean coordinates are independently observed. Furthermore the
Mahalanobis distance is anisotropic, allowing for quite different “x” and “y” scales if
present in data, as well as correlated spatial coordinates. Distance measures such as
this are also used in “local Dirichlet process” approaches, e.g. Chung and Dunson
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(2011) as well as earlier versions for densities that change smoothly with covariates,
e.g. Dunson (2007), although not incorporating correlation among variables. The
accommodation of correlation is important because it essentially obviates concerns
about multicollinearity, as well as mitigates a need for variable selection. Superfluous
dimensions of xi are handled naturally within the Mahalanobis distance wherein the
distances between highly positively correlated variables are much less than the same
distances between uncorrelated or negatively correlated variables. We reiterate that
the “locations” xi can be spatial locations, covariates, or mixtures of spatial locations
and covariates.

The joint density for all observations is given by the Markov expansion

p(y1, . . . , yn|c,θ, ψ) =
n∏
i=1

p(yi|y1:i−1, c,θ, ψ), (3)

where p(y1|c,θ, ψ) = φ(y1|θ). This defines a valid joint probability model; however,
p(y1, . . . , yn|c,θ, ψ) is not invariant to the order in which pairs (xi, yi) enter into the
model. That is, p(y1, y2, y3|c,θ, ψ) is not necessarily equal to p(y2, y3, y1|c,θ, ψ). This
has ramifications in terms of drawing inferences for (c,θ, ψ|y1:n).

The posterior

p(c,θ, ψ|y1:n) ∝ p(y1, . . . , yn|c,θ, ψ)p(c,θ, ψ)

depends on the order y1, . . . , yn. To make the posterior invariant to the ordering of the
observed data, we propose to instead use the permutation density

p(c,θ, ψ|y1:n) ∝ p(c,θ, ψ)
1

n!

∑
(i1,...,in)∈P

p(yi1 , . . . , yin |c,θ, ψ),

where P are all permutations of {1, . . . , n}. Dahl, Day, and Tsai (2017) consider a
related scenario in defining a partition distribution indexed by a permutation. Com-
putation of all permutations is not feasible so Dahl et al. (2017) place a uniform
prior distribution over all permutations, allowing the MCMC to numerically perform
the marginalization. In our setting there is no reason to favor one permutation over
another so equal weight is placed on all partitions by the model rather than through
only the prior. Thus the partition is not “updated” during MCMC according to a
Metropolis-Hastings step; rather a different permutation is forced at each MCMC it-
eration.

Although the permutation density avoids order dependence, this dependence is em-
pirically observed to be quite weak. Simply using the data order as observed changes
posterior inference only slightly from that obtained through the permutation density.
Similarly, Newton and Zhang (1999) noted in a Bayesian nonparametric setting involv-
ing the Dirichlet process with censored data, where exchangeability is lost, the order
of updating affects the predictive distribution negligibly.
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We proceed to develop a reasonable prior for ψ. With probability q, assume that
the density is not spatially-varying, i.e. P (ψ = 0) = q; setting q = 0.5 gives the
posterior odds as the Bayes factor so we consider that here. For spatially-varying
densities assume ψ|ψ > 0 ∼ Γ(aψ, bψ), where Γ(a, b) denotes a gamma distribution
with mean a/b. We set aψ = 2 and bψ = (aψ − 1)/ψ0 so that the prior of ψ|ψ > 0 has
mode at ψ0, where ψ0 satisfies exp{−ψ0 max1≤i≤n(xi− x̄)′S−1(xi− x̄)} = 0.001. Thus
the final prior on ψ is the mixture

ψ ∼ q δ0 + (1− q) Γ(aψ, bψ),

where δx is Dirac measure at x and the default is q = 1
2 . A Bayes factor for comparing

the spatially varying model to the exchangeable model is given by

BF =
P (ψ > 0|y1:n)/P (ψ = 0|y1:n)

P (ψ > 0)/P (ψ = 0)
=

q P (ψ > 0|y1:n)

(1− q) P (ψ = 0|y1:n)
.

Two options are taken for (µ, log σ). The default follows Hanson, Branscum, and
Gardner (2008) and Chen and Hanson (2014) by simply fixing them at their maxi-
mum likelihood estimates (MLEs) under the parametric N(µ, σ2) model as c → ∞;
for uncensored data these are of course the sample moments µ̂ = 1

n

∑n
i=1 yi, σ̂

2 =
1
n

∑n
i=1(yi − µ̂)2. When data are censored, the MLEs are not available in closed-form,

but are readily computed by most statistical software packages, e.g. survreg in R using
family="gaussian". The second option is to take a bivariate normal prior N2(θ0,V0)
on θ = (µ, log σ) with θ0 = (µ̂, log σ̂) and V0 being the estimated asymptotic “plug-in”
covariance for the MLE. The only remaining parameters is c; c ∼ Γ(ac, bc) is assumed
with the default c ∼ Γ(5, 1).

The function SpatDensReg is developed within the R package spBayesSurv (Zhou
and Hanson 2018) for the implementation. The usage syntax is

SpatDensReg(formula, data, na.action, prior=NULL, state=NULL,

mcmc=list(nburn=3000, nsave=2000, nskip=0, ndisplay=500),

permutation=TRUE, fix.theta=TRUE)

Here formula is a formula expression with the response returned by the Surv function
in the survival package. It supports right-censoring, left-censoring, interval-censoring,
and mixtures of them. For survival data, the input response should be log survival
times. The argument prior is a list giving the prior information. The list includes the
following elements.

prior element maxL a0 b0 theta0 V0 phia0 phib0 phiq0

corresponding symbol L ac bc θ0 V0 aψ bψ q

The argument permutation is a logical flag to indicate whether a random data permu-
tation will be implemented in the beginning of each iterate; the default is TRUE. The
argument fix.theta is a logical flag to indicate whether the parameters θ are fixed;
the default is TRUE indicating that they are fixed at (µ̂, log σ̂).
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2.1 Markov chain Monte Carlo

The MCMC algorithm uses blockwise adaptive MCMC (Haario, Saksman, and Tam-
minen, 2001). The blocks are (µ, log σ) when the option fix.theta=FALSE is chosen,
c, and ψ; ψ requires some special care, detailed below. The permutation density can
be used by fixing permutation=TRUE which is the default.

For the mixture prior ψ ∼ qδ0 + (1 − q)Γ(aψ, bψ) we need to first conditionally
sample whether ψ = 0 or not. Bayes rule gives

P (ψ = 0|y1:n, c,θ) =
q p(y1:n|c,θ, ψ = 0)

q p(y1:n|c,θ, ψ = 0) + (1− q)
∫∞

0 p(y1:n|c,θ, ψ)γ(ψ; aψ, bψ)dψ
,

where γ(·; a, b) refers to the density of Γ(a, b). Set Γ(·; a, b) to be the cumulative
distribution function of Γ(a, b). The integral can be approximated by a Riemann sum∫ ∞

0
p(y1:n|c,θ, ψ)γ(ψ; aψ, bψ)dψ ≈

K∑
k=1

1

ψk − ψk−1
p(y1:n|c,θ, ψk)γ(ψk; aψ, bψ),

where ψk = Γ−1( k
K+1 ; aψ, bψ) for k = 0, 1, . . . ,K, e.g. K = 20. If ψ = 0 is sampled,

we are done, otherwise we need to sample ψ|ψ > 0 using usual adaptive M-H. When
computing the adaptive variance, only those sample values of ψ that are positive are
included. An option forcing ψ > 0 only (q = 0) is also available which speeds up the
MCMC considerably but disallows the computation of a Bayes factor to test whether
spatial location and/or covariates affect the distribution of the response.

Given the posterior sample {ψ(j), j = 1, . . . ,M}, the Bayes factor for the spatial
model vs. exchangeable model is simply [1−q̄

q̄ ]/[1−q
q ] where q̄ = 1

M

∑M
j=1 I{ψ(j) = 0}.

2.2 Censored data

Censored observations are readily sampled from Metropolis-Hastings proposals based
on the underlying centering distribution. Define

q(yi|y−i, c,θ, ψ) =

J∏
j=1

cj2 +
∑

k 6=i I{d2jΦ{
yi−µ
σ }e = d2jΦ{yk−µσ }e}dψ(xi,xk)

cj2 + 1
2

∑
k 6=i I{d2j−1Φ{yi−µσ }e = d2j−1Φ{yk−µσ }e}dψ(xi,xk)

,

where y−i is y1:n with the ith observation removed.
Let C = {i : δi = 0} be the indices of censored observations where δi = 0 if yi is only

known to lie in the interval yi ∈ (ai, bi), ai < bi, and δi = 1 if yi is observed exactly.
The latent values of Yc = {yi : i ∈ C} are updated via MCMC along with the model
parameters θ, c, and ψ. If i ∈ C propose y∗i ∼ N(µ, σ2) truncated to (ai, bi) and accept
with probability

1 ∧
q(y∗i |y−i, c,θ, ψ)

q(yi|y−i, c,θ, ψ)
,

otherwise leave yi at it’s current value.
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2.3 Direct estimation and a permutation test p-value

For uncensored data, estimation can be sped up substantially by avoiding MCMC
entirely and simply using maximum a posteriori (MAP) estimates coupled with an
empirical Bayes approach to fixing the centering distribution. Dunson (2007) consid-
ered a somewhat related approach in a covariate-weighted Dirichlet process mixture.
Chen and Hanson (2014) consider a hybrid approach for uncensored data by setting
θ = (µ̂, log σ̂), the MLE’s under normality, and maximizing (3) with ψ = 0 over a grid
of c values ci = exp{14

19(i−1)−7} for i = 1, . . . , 20. The spatial version (3) allowing for
ψ > 0 can similarly be maximized over a lattice of (ci, ψj) values. From considerations
in Section 2.1, quantiles of the prior ψj = Γ−1( j

11 ; aψ, bψ) for i = 1, . . . , 10 are reason-
able; call these values S. Similarly ci ∈ C = {0.001, 0.01, 0.1, 0.5, 1, 5, 10, 50, 100, 1000}
could be used giving 100 values of {(ci, ψj)} to compute and maximize (3) over.

The Bayes factor described in Sections 2.1 and 2.2 tests the hypothesis H0 : ψ > 0
relative to H0 : ψ = 0 via MCMC using the priors described in these sections. A
“maximized Bayes factor” from direct estimation is given by

BF =
max(c,ψ)∈C×S p(c, θ̂, ψ|y1:n)

maxc∈C p(c, θ̂, 0|y1:n)
. (4)

This Bayes factor gives the “most evidence” in favor of the spatially-varying model
and akin to a likelihood ratio test, albeit with added prior information and a plug-in
estimate for θ. Consider the null H0 : x ∈ X is independent of y ∈ Y. Under this null
we can repeatedly take random, uniformly distributed permutations (i1, . . . , in) ∈ P,
form “data” {(xj , yij )}nj=1, and compute Bayes factors from (4). The proportion of
these larger than the one based on the original data is a permutation test p-value
(Fisher, 1935) for testing association between the response and spatial location (and/or
covariates).

The function BF.SpatDensReg is developed within the R package spBayesSurv to
obtain the BF in (4) and the permutation test p-value. The usage syntax is

BF.SpatDensReg(y, X, prior = NULL, nperm = 100, c_seq = NULL,

phi_seq = NULL)

Here y is a vector of uncensored responses, rows of X are spatial locations and/or
covariates, prior is the same as the one used in SpatDensReg, nperm is an integer
giving the total number of permutations, c seq is an vector giving grid values for c,
and phi seq is a vector giving grid values for ψ. To illustrate the use of this method,

we generate the data as follows: yi
ind∼ N(βxi, 0.2

2), xi
iid∼ Beta(0.3, 0.3), i = 1, . . . , 300,

where β = 0.01, 0.05, 0.1, 0.5, 1. The following R code is used to obtain these BFs and
p-values. As expected, we see that as β increases, so does the Bayes factor while the
p-value is approaches zero.

library(spBayesSurv)
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set.seed(2017)

beta = c(0.01, 0.05, 0.1, 0.5, 1);

BFs = rep(NA, length(beta));

Pvalues = rep(NA, length(beta));

for(sim in 1:length(beta)){

print(sim);

## Generate data

n = 300;

x = rbeta(n, 0.3, .3)

y = rep(0, n);

uu = runif(n);

for(i in 1:n){

y[i] = rnorm(1, beta[sim]*x[i], .2);

}

prior = list(maxL=6);

res1 = BF.SpatDensReg(y, x, prior=prior, nperm=500);

BFs[sim] = res1$BF;

Pvalues[sim] = res1$pvalue;

}

###### Outputs:

> BFs

beta=0.01 beta=0.05 beta=0.1 beta=0.5 beta=1

4.624762e-01 3.283394e+00 8.828178e+03 1.290706e+30 4.403196e+83

> Pvalues

beta=0.01 beta=0.05 beta=0.1 beta=0.5 beta=1

0.974 0.922 0.000 0.000 0.000

3 Examples

3.1 IgG distribution evolving with age

Jara and Hanson (2011) and Schörgendorfer and Branscum (2013) considered serum
immunoglobulin G (IgG) concentrations from n = 298 children aged 6 months to 6 years
old. Like these authors we consider the log-transformation of the data yi; the log-IgG
values are plotted versus age in Figure 1(f). We consider the spatially smoothed Polya
tree for estimating the log-IgG density as smoothly varying function of age. Unlike
previous authors we rely on only the Polya tree and do not explicitly model an IgG
trend via fractional polynomials.

The following R code is used to fit the proposed model with J = 4 and the default
prior settings in Section 2 except for the option fix.theta=FALSE which provides much
smoother posterior density estimates.
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#needed packages

library(survival)

library(spBayesSurv)

library(coda)

library(DPpackage)

#data management

data(igg); d = igg; n = nrow(d);

d$logIgG = log(d$igg)

#fitting the model

nburn=20000; nsave=5000; nskip=9;

mcmc=list(nburn=nburn, nsave=nsave, nskip=nskip, ndisplay=500);

prior = list(maxL=4, phiq0=0.5);

res1 = SpatDensReg(formula = Surv(logIgG)~age, data=d, prior=prior,

mcmc=mcmc, permutation = TRUE, fix.theta=FALSE);

#output from summary

summary(fit) # most output removed to save space

Posterior inference of centering distribution parameters

(Adaptive M-H acceptance rate: 0.1054):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

location 1.47804 1.49332 0.05165 1.33244 1.53099

log(scale) -0.70716 -0.70207 0.04997 -0.81437 -0.62347

Posterior inference of precision parameter

(Adaptive M-H acceptance rate: 0.35896):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

alpha 0.6967 0.6368 0.3025 0.2866 1.4248

Posterior inference of distance function range phi

(Adaptive M-H acceptance rate: 0.38898):

Mean Median Std. Dev. 95%CI-Low 95%CI-Upp

range 3.527 3.326 1.212 1.805 6.484

Bayes Factor for the spatial model vs. the exchangeable model: Inf

Number of subjects: n=298

The traceplots for θ, ψ and c mixed very well (not shown). The Bayes factor for testing
association between age and log-IgG is∞ indicating a decisive evidence of dependency.
Figures 1 presents the posterior mean and 95% pointwise credible interval of the log-
IgG density at five different ages. These fitted densities are similar to those obtained
by Jara and Hanson (2011). The following R code can be used to provide these plots.
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ygrid = seq(min(d$logIgG), max(d$logIgG), length.out = 200);

xpred = cbind(c(11, 25, 38, 52, 65)/12);

estimates=plot(res1, xpred=xpred, ygrid=ygrid);

for(i in 1:nrow(xpred)){

pdf(file =paste("IgG-densities-age", xpred[i,]*12, "-bf.pdf", sep=""),

paper="special", width=8, height=6)

par(cex=1.5,mar=c(4.1,4.1,2,1),cex.lab=1.4,cex.axis=1.1)

plot(estimates$ygrid, estimates$fhat[,i], "l",

main=paste("IgG data, age=", xpred[i,]*12, "months", sep=""),

xlab="log IgG", ylab="density",

ylim=c(0,1.5), xlim=c(0, 2.5), lty=1, lwd=3);

lines(estimates$ygrid, estimates$fhatup[,i], lty=2, lwd=2);

lines(estimates$ygrid, estimates$fhatlow[,i], lty=2, lwd=2);

dev.off()

}

pdf(file ="IgG-scatter.pdf", paper="special", width=8, height=6)

par(cex=1.5,mar=c(4.1,4.1,2,1),cex.lab=1.4,cex.axis=1.1)

plot(d$age*12, d$logIgG, main="IgG data",

xlab="age (months)", ylab="log IgG")

for(i in 1:5){

points(xpred[i,]*12, -0.2, pch = 16, cex=1.3,

col = "red", las = 1,xpd = TRUE)

text(xpred[i,]*12, 0, paste("", xpred[i,]*12, sep=""),

col = "red", adj = c(-0.1, .5))

}

dev.off()

3.2 Time to infection in amphibian populations

Spatial data on the number of years from discovery to the time-to-arrival of the fun-
gus Batrachochytrium dendrobatidis (Bd) in mountain yellow-legged frog populations
throughout Sequoia-Kings Canyon National Park was considered by Zhou, Hanson, and
Knapp (2015). Once infected, the Bd fungus can wipe out a frog population in a few
weeks, and it is of interest to determine the distribution of time-to-infection and how
it varies spatially. The data consist of n = 309 frog populations (Figure 2(f)) initially
discovered during park-wide surveys conducted from 1997 to 2002, and then resurveyed
regularly through 2011. The observed event time is calculated as the number of years
from the initial survey to either Bd arrival (time actually observed) or the last resurvey
(right censored). By the end of the study, about 11% of the frog populations remained
Bd-negative (right censored), and the rest of populations are interval censored.

We fit the spatially smoothed Polya tree with the same settings as Section 3.1. The
Bayes factor for testing spatial variation of time-to-Bd is estiamted to be ∞, strong
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Figure 1: IgG data. Panels (a)-(e) shows the posterior mean (solid) and 95% pointwise
credible interval (dashed) of the density of log IgG at five different ages. Panel (f) shows the
five age points and the scatter plot of the data.
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evidence that the time-to-Bd distribution spatially varies. Figure 2 shows the posterior
mean and 95% pointwise credible intervals of the log time-to-Bd density at five different
locations (marked in Figure 2(f)). The distribution of log time-to-Bd at location 5 has
two modes which can also be seen from the predictive log times-to-Bd around this
location.

3.3 Simulated data

We generate two datasets from the following two scenarios, respectively.

1. yi
ind∼ N(xi, 0.2

2), xi
iid∼ Beta(0.3, 0.3), i = 1, . . . , 300,

2. yi
iid∼ 0.5N(0.5, 0.22) + 0.5N(1, 0.32), xi

iid∼ Beta(0.3, 0.3), i = 1, . . . , 300.

Here we expect a large BF value for scenario 1 and a BF less than 1 for scenario 2.
The censoring times are generated from Uniform(0.5, 2) so that the censoring rate is
0.13 under scenario 1 and 0.21 under scenario 2.

The spatially smoothed Polya tree is fit with J = 6 and the same prior settings
as Section 3.1. We retain 5,000 scans thinned from 50,000 after a burn-in period of
20,000 iterations. The BF factor for scenario 1 is ∞ as expected, while it is 0.01 under
scenario 2. Figures 3 and 4 present the posterior mean and 95% pointwise credible
interval of the conditional density of y at three different x values under each scenario.
The results demonstrate that the proposed model can capture the conditional densities
quite well without any spatial trend component, although the estimates are a bit spiky.

To investigate the impact of censoring on our model performance, we use the simu-
lated data 1 (Figure 3(d), uncensored version) again under the following two cases: (i)
right-censoring with high censoring rate, and (ii) interval-censoring. For case (i), the
censoring times are generated from N(xi−0.2, 0.52) yielding a 0.67 right-censoring rate.
For case (ii), we first generate right-censored times from Uniform(0.5, 2), then transfer
uncensored times into internal-censored times using the endpoints {0, 0.2, 0.4, . . . , 1.8, 2},
yielding a rate of 0.13 for right-censoring, 0.14 for left-censoring and 0.73 for interval-
censoring. The BF factors for both cases are∞ as expected. The posterior conditional
density estimates (Figure 5) are all close to the truth except for the x = 0 and x = 1
under case (i) for which increasing the sample size can be helpful. In addition, wider
credible intervals are also observed as expected. Overall our method still performs
reasonably well for right-censored data with high censoring rate and interval-censored
data.

4 Conclusion

The prediction rule from a marginalized Polya tree is generalized to spatially smooth
densities over spatial regions, weighing data from proximal locations more heavily than
remote ones. Although ideas presented are quite simple and easy-to-implement, the
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Figure 2: Frog data. Panels (a)-(e) shows the posterior mean (solid) and 95% pointwise
credible interval (dashed) of the log time-to-Bd density at five different locations. Panel (f)
shows the five considered locations and the data locations with circle size representing the
posterior mean of log times-to-Bd.
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Figure 3: Simulated data 1. Panels (a)-(c) shows the posterior mean (dashed) and 95%
pointwise credible interval (dotted) of the conditional density at three different x values; the
solid curves are the corresponding true densities. Panel (d) shows the three x points and the
scatter plot of the data.
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Figure 4: Simulated data 2. Panels (a)-(c) shows the posterior mean (dashed) and 95%
pointwise credible interval (dotted) of the conditional density at three different x values; the
solid curves are the corresponding true densities. Panel (d) shows the three x points and the
scatter plot of the data.
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Figure 5: Simulated data 1 with high right-censoring rate (panels a, b, c) and interval-
censoring (panels c, d, e). Each panel provides the posterior mean (dashed) and 95% point-
wise credible interval (dotted) of the conditional density at three different x values; the solid
curves are the corresponding true densities.
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approach has several advantages quite distinct from other approaches. First, it is
the only method that we are aware of that smooths the density estimate towards a
parametric estimate in data-lean portions of space, e.g. a normal density. The method
is fairly fast and competitive with methods based on the Dirichlet process. Finally, a
freely-available R function SpatDensReg is available in the spBayesSurv package that
makes use of compiled C++ to fit the Bayesian model and report the Bayes factor, for
arbitrarily censored (or uncensored) data.

As with non-spatial Polya trees, the spatially-smoothed version is easily constrained
to be median-zero. Thus median regression with a spatially-weighted error density
is possible leading to heteroscedastic accelerated failure time models that retain the
interpretability of acceleration factors in terms of the median (e.g. Jara and Hanson,
2011; Zhou, Hanson, and Zhang, 2017). For example, the Polya tree can be shifted
and/or stretched via regressions on the centering distribution parameters such as µx =
x′β and log σx = x′τ . Similarly, extension to multivariate outcomes is straightforward,
including the computation of the Bayes factor for testing spatial dependence; however,
obtaining marginal density estimates requires simulating from the Polya tree and using
univariate smoothers, e.g. Hanson, Branscum, and Gardner (2008).

One modification of the model as developed that could potentially improve pre-
diction is the use of a spatially-varying centering distribution θx rather than static θ.
Spatially weighted θx

µx =

∑n
i=1 dψ(xi,x)yi∑n
i=1 dψ(xi,x)

, σ2
x =

∑n
i=1 dψ(xi,x)(yi − µx)2∑n

i=1 dψ(xi,x)
,

are used in the predictive density p(y|y1:n, c,θx, ψ) so that the location and spread
of the centering normal distribution now changes with spatial location. It is unclear,
however, how to create a valid likelihood for the remaining parameters (c, ψ) in (2)
with spatial θx. A possible approach is to simply estimate (c, ψ) via cross-validation
methods. This, an exploration of the permutation test for spatial association in Section
2.3, and the median-regression version of the model are topics for future research.
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Rodŕıguez, A., Dunson, D., and Gelfand, A. (2010). Latent stick-breaking processes.
Journal of the American Statistical Association, 105, 647–659.

Schörgendorfer, A., and Branscum, A.J. (2013). Regression analysis using dependent
Polya trees. Statistics in Medicine, 32, 4679–4695.

Tansey, W., Athey, A., Reinhart, A., and Scott, J.G. (2017). Multiscale spatial density
smoothing: an application to large-scale radiological survey and anomaly detection.
Journal of the American Statistical Association, 112, 1047–1063.

Zhao, L., and Hanson, T. (2011). Spatially dependent Polya tree modeling for survival
data. Biometrics, 67, 391–403.

Zhou, H., Hanson, T., and Knapp, R. (2015). Marginal Bayesian nonparametric model
for time to disease arrival of threatened amphibian populations. Biometrics, 71, 1101–
1110.

Zhou, H., and Hanson, T. (2018). spBayesSurv: Bayesian Modeling and Analysis
of Spatially Correlated Survival Data. R package version 1.1.2 or higher, URL http:

//CRAN.R-project.org/package=spBayesSurv.

Zhou, H., Hanson, T., and Zhang, J. (2017). Generalized accelerated failure time
spatial frailty model for arbitrarily censored data. Lifetime Data Analysis, 23, 495–
515.

20


