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Abstract—Bokeh rendering is a technique used to take pictures
with out-of-focus areas to highlight regions of interest. Due
to limitations in hardware and shooting condition, rendering
a bokeh image from a full-focus image has attracted a lot
of interest. In this paper, we model bokeh rendering as the
combination of salient region retention and bokeh blurring,
and propose a neural network to generate a realistic bokeh
image from a single full-focus image through end-to-end training.
Specifically, we propose a gate fusion block to estimate the salient
area, and introduce a constrained predictive filter for salient
region retention and bokeh blurring within a unified architecture.
Further, we utilize a pixel coordinate-based map to enhance the
training. Experimental results illustrate the effectiveness of our
model. The comparison with state-of-the-art methods (PyNET
[18], DMSHN [12], BGGAN [40], etc.) shows that our model
produces better bokeh effects and retains salient objects.

Index Terms—Bokeh rendering, constrained predictive filter-
ing, coordinate map, saliency retention.

I. INTRODUCTION

OVER the past few years, image enhancement methods
have advanced considerably. In particular, smartphone

image enhancement has witnessed increasing interest from
both the vision and graphics communities, with numerous
methods being published, such as image quality enhancement
[52, 24, 50], image de-blurring [9, 6, 31], photo segmentation
[3, 55] and image denoising [10, 13]. One topic that gained
large popularity over the past years is bokeh rendering.

Bokeh, or depth of field (DoF) effect, is often used in
computational photography for aesthetic purposes. This shal-
low focus technique is used to create images with prominent
out-of-focus regions [8] when using a digital single-lens
reflex camera (DSLR) with a wide aperture. In the out-of-
focus regions, the blur effect on the image edges is caused
not only by Gaussian blur, but also by some edge offsets.
Fig. 1(a) shows a full-focus image and a real bokeh image,
with different out-of-focus and in-focus regions zoomed in,
captured with a DSLR camera. Unfortunately, this optical
process is not feasible for many smartphone users due to
hardware limitations, as smartphone cameras usually have
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Fig. 1. (a) Bokeh effect comparison. The top row shows a bokeh-free image
and bottom row shows a corresponding bokeh image. (b) The pipeline of the
proposed method to produce the bokeh effect from a single image. Iorg is
the full focus image that requires bokeh rendering. The focus part Ifocus and
defocus part Idefocus are separated from Iorg via saliency detection. Then
Ifocus is preserved while Idefocus is rendered to Iblur using blurring and
shifting filters.

smaller sensors with small apertures, producing full-focus
images. Recently some devices have adopted various hardware
approaches, for example using multiple cameras or dual pixel
sensors [44] to promote synthetic bokeh effect rendering.
However, in our case, we propose to render bokeh effect from
a full-focus image without any special hardware requirements,
and thus our model can be used with any existing device.

Traditional bokeh rendering methods depend on a high-
precision depth map to theoretically calculate the blurring
kernels, and produce the bokeh effect by filtering the input
image with the calculated kernels. However how to obtain
a high-precision depth map from a single image input is
challenging. Besides filtering with theoretically calculated ker-
nels also suffers from the complicated applications for robust
and bokeh rendering. Recently, deep learning based methods
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show promising performance on single image bokeh rendering
task, and have won the latest two bokeh effect synthesis
competitions [22, 23]. Currently, major flagship and mid-range
mobile devices have dedicated hardware to accelerate deep
learning models [21]. The performance of such hardware is
already comparable with mid-range Nvidia GPUs [20], making
it possible to run deep learning methods for bokeh rendering
of images on smartphones.

In this paper, we model the bokeh rendering task with
two sub-tasks: salient content retention, and bokeh blurring.
We propose a multi-scale predictive filtering network (MPFN)
to solve the two sub-tasks simultaneously within a unified
architecture. Specifically, we propose constrained predictive
filters (CPF) with three types of kernels shown in Fig. 5,
including a retaining kernel KR, blurring kernel KB , and
shifting kernel KS ; where KR is for salient content retention,
and both KB and KS are for bokeh blurring. We also design
the gate fusion block (GFB) to detect the focused region to
assist the constrained filters in processing RGB images. In
addition, we propose a 2-channel coordinate map (CM) to
solve the position consistency of input patches in training.
We concatenate the CM with the input RGB image along
the channel dimension as the final input to the network.
To demonstrate the effectiveness of our MPFN, we conduct
extensive ablation experiments to verify the impact of each
module. Besides, the comparison with state-of-art methods
proves that our model synthesize better bokeh effects and
retains focused objects accurately.

In conclusion, our main contributions are as follows:
• We propose a novel multi-scale predictive filter network

(MPFN) model for bokeh rendering with two novel mod-
ules: gate fusion block (GFB) and constrained predictive
filter block (CPFB).

• We propose a constrained predictive filter for bokeh
rendering. The CPF introduces three types of filter ker-
nels to precisely retain the salient content of the image
and blur the remaining areas. We also propose a gate
fusion module for detecting salient regions and fusing
the features from salient and non-salient regions.

• We propose a coordinate map (CM) to solve the spa-
tial consistency of input patches in training. We also
demonstrate that introducing the coordinate map (CM)
can restore the side effects caused by inaccurate prior
knowledge (e.g. depth map and saliency map) for single
image bokeh rendering.

The rest of this paper is organized as follows: In Section II,
we briefly review the related work. In Section III, we introduce
our method and describe the architecture of our MPFN in
details. Experimental results are presented in Section IV. In
Section V, we discuss the limitation of our method and future
work. Finally, we conclude this paper in Section VI.

II. RELATED WORK

Infusing bokeh effects into a full-focus image generates
aesthetically pleasing images, drawing the observer’s gaze to
the regions in focus. Several methods [41, 29, 45, 25] have
been proposed for bokeh rendering using both conventional
and learning-based techniques.

Non-learning Method. Riguer et al. [41] propose a
gathering-based method for bokeh effect rendering, and ap-
ply several filters of different shapes and weights to obtain
diverse effects. Kodama et al. [29] improve upon [41] by
replacing the convolution operation in the spatial domain
with a multiplication operation in the frequency domain to
accelerate the rendering procedure. Lee et al. [33] intro-
duce a scattering-based method for simulating more accurate
bokeh for defocused highlights, which are obtained using the
texturing extension of GPU point sprites. Buhler et al. [5]
propose a method based on distributed ray tracing, where a
user-specified probability density function represents the light
intensity distribution within the circle of confusion. Bokeh
rendering and super-resolution are selectively integrated in
[45] into one scheme. An anisotropic filter is designed to
render the bokeh. Jeong et al. [25] improve the effect of
real-time rendering from extrinsic (scene-related) and intrinsic
(relating solely to optical systems) appearance.

Deep Learning Method. With the development of deep
learning, more attention has been paid to its use for automatic
bokeh rendering [39, 40, 37, 27]. Ignatov et al. [19] propose
an efficient multi-level CNN approach to render bokeh effects
on a mobile GPU, named PyNET. To obtain a more efficient
algorithm on mobile devices, Dutta et al. [12] proposed a
stacked encoder-decoder structure similar to PyNET. Besides,
Qian et al. [40] firstly introduce a GAN-based model to
obtain the bokeh rendering effect, and greatly improve the
visual perception of the rendered images. However, the full
convolution models use fixed receptive fields to process all
areas of the image with the same parameters, which is ineffi-
cient in processing focused regions, because the theoretically
focused regions does not need to be processed. Yang et
al. [22] adopt a selective kernel convolution and construct
a two-stage BokehNets approach, which allows neurons to
adaptively adjust their receptive field size based on input and
achieves the best SSIM results in AIM2019 Bokeh Effect
challenge. To distinguish the convolution parameters between
the focused regions and the background regions, Purohit et al.
[39] propose a dense filter network DDDF based on dynamic
filtering mechanism[4]. Due to the limitation of computational
cost, the filtering receptive field of the DDDF is limited
and the generated bokeh blur is incomplete. To balance the
filtering receptive field and computational cost, we propose
a multi-scale predictive filtering network. Different from the
conventional filters, the constrained filter kernels generated by
our model process the focused regions and the background
regions simultaneously.

With the development of computer vision, depth estimation
[14, 30, 34], defocus estimation [2, 32, 7] and saliency detec-
tion [54, 38, 43, 56] have made significant progress, which
also provide more directions for solving bokeh rendering
tasks. Many methods [48, 37, 11, 17] utilize these prior
knowledge to synthesize bokeh effects. Luo et al. [37] utilize
radiance estimation and defocus estimation [47] to predict the
relationship between the amount of blur and the intensity of
pixels in each image, and then synthesizes the bokeh effect
with pre-defined blur kernels. Depth priors seem to be more
suitable for bokeh rendering tasks. Methods [39, 19, 12]
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Fig. 2. The architecture of the multi-scale predictive filter network. The MPFN works in three levels and has three different types of blocks, which are the
gate fusion block (GFB), constrained predictive filter block (CPFB) and image reconstruction block (IRB).

directly send the estimation depth maps [34] to the network
as input, and the experiments prove that the inaccurate depth
maps may reduce the performance of the model [12]. To using
depth maps completely, Dutta et al. [11] treat the bokeh image
as the weighted sum of the original image and a number of
differently smoothed images, where the corresponding weight
maps are predicted by a depth-estimation module. Similar to
method [11], Huang et al. [17] propose a Depth-guided Bokeh
Synthesis Network which can synthesis, refocus and adjust
the level of bokeh of the images. Kaneko et al. [27] proposes
an AR-GANs model which generates a deep DoF image and
depth from a random noise to render a shallow DoF image
via aperture rendering. However, this method cannot directly
process existing full-focused images. Furthermore, Purohit
et al. also send the estimated saliency maps [15] into the
network as input. Xian et al. [48] integrate the depth estimation
module and saliency detection module into the same network,
and synthesis the bokeh effects using a physically motivated
method. However, due to the large difference between the
dataset used for prior knowledge training and the bokeh
dataset, the accuracy of prior knowledge may not be reliable,
and the imprecise prior may degrade models. Besides, there is
currently no method to synthesize bokeh effects based solely
on salience. To overcome the several challenges caused by
prior knowledge, we propose a salient-based bokeh rendering
network. We propose an unsupervised saliency detection mod-
ule that fuses foreground and background features, to guide the
constrained filter to generate more realistic bokeh effects.

III. PROPOSED METHOD

As shown in Fig. 1(a), comparing a full-focus image and
a real bokeh image captured by a DSLR camera, we observe
that the bokeh image consists of focused salient regions and
defocused blurry regions. We formulate the bokeh rendering
task as two sub-tasks: salient content retention, and bokeh
blurring, as shown in Fig. 1(b). In this way, bokeh rendering
from a single all-in-focus image can be formulated as:

Ibokeh = Ψ (Iorg) + Γ (Iorg −Ψ (Iorg)) , (1)

where Iorg is the full-focus image, Ibokeh is the rendered
bokeh image, Ψ is a function of saliency detection that
selectively retains salient content in the image, and Γ is a
bokeh blurring function that simulates bokeh rendering effect.
However, limited by the accuracy of Ψ, directly applying
Eqn. 1 to produce bokeh images would probably retain the
defocused areas, or blur the focused areas by mistake. To
overcome this limitation, we proposed a constrained predictive
filter (CPF) to address both sub-tasks, i.e., to handle fore-
ground pixels retention, background pixels flexible blurring
and shifting within a unified framework. Specifically, the CPF
has three types of kernels, including a retaining kernel KR,
blurring kernel KB , and shifting kernel KS ; where KR is for
salient content retention, and both KB and KS are for bokeh
blurring. With the CPF, the Eqn. 1 can be rewritten as:

Ibokeh = FKR
(Iorg) + FKB ,KS

(Iorg −Ψ(Iorg)) (2)

where FK denotes the filtering operation using the correspond-
ing filtering kernel K. So that we can further rewrite the above
eqation as:

Ibokeh = FCPF (Iorg), CPF(i,j) ∈ {KR,KB ,KS} (3)

where FCPF denotes the filtering operation using the con-
strained predictive filter, and CPF(i,j) ∈ {KR,KB ,KS}
denotes the filter kernel located at (i, j) belongs to one of
the three types {KR,KB ,KS}. Besides, we design a gate
fusion block (GFB) to explicitly detect the salient regions, thus
guiding the CPF to retain focused regions more accurately.

With the two modules as major components, we construct a
multi-scale architecture named Multi-scale Predictive Filtering
Network (MPFN) for synthesizing a coarse-to-fine bokeh
effect. Our MPFN works in three scales and has three types
of blocks, including GFB, CPFB and the image reconstruction
block (IRB). The details of each block are described in
Sections A and B. In addition, we also designed a Coordinate
Map to enhance the model’s training and inference, the details
of which are described in Sec.C.

The architecture of MPFN is shown in Fig. 2. After concate-
nating the coordinate map and image Iorg along the channel
dimension, the input feature map with shape h×w× ctotal is
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transformed into Isub with a shape of h
2 ×

w
2 ×4ctotal through

a space-to-depth layer. Then through a 3 × 3 convolution
followed by a ReLU activation layer, the channel dimension of
Isub becomes nD. With the tensor Isub as input, the following
network has three levels. There is a convolutional layer with
a stride of 2 at the beginning of level 2 and level 3 to
downsample the features’ dimension. Consequently, each level
processes information at a different scale. Following Eqn. 1,
each level sequentially executes the salient content retention,
bokeh blur and the final output reconstruction. For level-2 and
level-3, the output will be used as an additional input to the
finer-level (level-2 and level-1) sub-network. There are two
reasons for doing this: 1) for better learning of salient features,
and 2) after the upsampling layer, the output is sent to the IRB
for image reconstruction.

A. Salient Content Retention

As mentioned above, detecting the salient regions of the
input image is required for CPF to generate satisfied bokeh
effects. We propose the GFB for detecting salient features, see
Fig. 3. Assuming the input of the GFB is xGFBin , a dense block
first extracts deep features, denoted as Zdeep. The dense block
has N densely connected [16] 3 × 3nD-channel convolution
with ReLU activation layers (CDN ∼ CD1). Afterwards,
we design a salient feature detection block to detect salient
features Zs from Zdeep. This block includes three 1 × 1
convolution with the ReLU activation layers (CR1 ∼ CR3)
and another Sign activation layer. The CR1 firstly fatten the
Zdeep. Next, the CR2 and CR3 are sequentially introduced to
produce the raw attention map, which will then be activated
by Sign layer to obtain the binary salient feature Zs. Finally,
we design a gating mechanism to evaluate the reliability of
the salient features Zs, and to fuse the features from salient
and non-salient regions. It is formulated as:

GFB(x) = Ztrans · Zs + (1− Zs) · xGFBin (4)

where Ztrans denotes the deep features obtained from Zdeep
going through the convolution layer CK. TABLE I lists the
attributes of all learnable layers in GFB.

TABLE I
ATTRIBUTES OF LEARNABLE LAYERS IN GFB.

Layer CD1 ∼ CDN CR1 CR2 CR3 CK

kernel 3× 3 1× 1 1× 1 1× 1 1× 1

Output Ch. nD nD · 4 nD · 2 1 nD · 2

We visualize the estimated salient features in Fig. 4. The
proposed salient feature detection block can accurately detect
the salient regions especially around edge areas. For smooth
areas, since retaining or blurring will produce a similar effect,
any estimation is acceptable.

B. Constrained Predictive Filtering

Following the formulation defined in Eqn. 2, to efficiently
handle both salient and non-salient features, we propose a

Fig. 3. The structure of the gate fusion block.

Fig. 4. The salient regions (1−Zs) estimated by the GFB. Following Eqn. 4,
the bright regions denote the salient regions. Rows 1, 3 and 5 are the full-
focus inputs and rows 2, 4 and 6 are the corresponding salient features. As
indicated in Fig. 3, the dark areas denote the salient regions. Note that the
salient features are binary masks

Fig. 5. Description of filter kernels. There are three types of filter kernels.
The blue box KB represents the blurring filter, which is used to blur the pixel
in the domain, while the red box KS implements a local shifting of the pixel,
and the green box KR is used to retain the current pixel.

constrained predictive filter to address both sub-tasks within
a unified framework. The constrained predictive filter consists
of two parts. The first part is the constrained filter generation
module for generating specific types of filter kernels, and the
second part is the predictive filtering module to filter the input
image using the generated constrained filters, see Fig. 5 and
Fig. 6 for illustration.

Constrained Filter Generation. The constrained filter gen-
eration module FG takes an input Iorg ∈ Rc×h×w, where c,
h and w are number of channels, height and weight of the
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Fig. 6. Constrained predictive filter. The constrained predictive filter genera-
tion module generates filters with different kinds kernels based on each pixel
point, and the predictive filtering module processes the input full-focus image
Iorg with the filters to obtain the final image Ibokeh with bokeh rendering
effect.

input Iorg, respectively. It generates filters fθ parameterized
by parameters θ ∈ Rk2×h×w, where k is the filter size:

fθ(i,j) = FG (Iorg (i, j)) (5)

Fig. 5 illustrates the filtering based operations. Given a single
channel image X , we propose three types of filtering kernels
to achieve the corresponding operations: KR is for retaining a
pixel, KB is for flexible blurring, and KS is for pixel shifting.
Specifically, KR, whose the center element is 1 and other
elements are 0s, retains the current pixel. KB , whose elements
are between 0 and 1 and sum to 1, achieves adaptive blur in
the neighborhood. KS , with one non-central element as 1 and
other elements 0s, implements a pixel shift to the center in the
neighborhood. The corresponding operations can be expressed
as:

Y (i, j) = F (X(Ωr(i, j)), θ(i, j)) (6)

where F (·, ·) denotes the filtering operation, r is the radius of
the filter kernel, Ωr(i, j) = {(m,n) | m,n ∈ [i − r, i + r]}
denotes a (2r+ 1)× (2r+ 1) sized region centered on (i, j),
and θ(i, j) ∈ {KR,KB ,KS} denotes the filter kernel located
at (i, j). Obviously, the KR, KB and KS meet the following
unified conditions:

2r+1∑
m=0

2r+1∑
n=0

θ(m,n) = 1 (7)

0 ≤ θ(m,n) ≤ 1,∀(m,n) ∈ Ωr(i, j) (8)

Therefore, we propose to constrain filter parameters with
Softmax function when learning the kernel elements.

Predictive Filtering. As shown in Fig. 6, the predictive
filtering module FP takes the image Iorg and constrained
filters fθ as input and estimates the filtered result Ibokeh, which
can be expressed as:

Ibokeh(i, j) = FP
(
Iorg (i, j), fθ(i,j)

)
(9)

Given a filtering kernel, the effective filtering area is limited
by the kernel size k. A larger kernel size leads to a larger
effective filtering area, but also increases the computation cost.
Therefore, we propose a multi-scale filtering architecture to
achieve a large filtering kernel with multiple small filtering
kernels. Assuming there are in total S scales in the network,
and the size of filtering kernel from the i-th (i ∈ [1, S], i = 1

Fig. 7. The structure of constrained predictive filtering block and image
reconstruction block.

denotes the original scale) scale is ki, then the final effective
filtering area ktotal is ktotal =

∑S
i=1 ki · 2S−i. Since both the

model scale and the filter kernel size affect the final filtering
range, we consider these two factors in the model design.

CNN Modules. We design a CNN-based module named
constrained predictive filtering block (CPFB) following Eqn. 4
- 9. To better work with the multi-scale filtering architecture,
we additionally introduce an image reconstruction block (IRB)
to generate the filtering input. Fig. 7 illustrates the detailed
structures of CPFB and IRB.

Given the input Xin, one branch generates constrained
predictive filters. We first extract the deep features Xdeep
through a dense block similar to the GFB. After that, two
3 × 3 convolutional layers (CP1, CP2) and a pixel-shuffle
layer are used, and the width and height of Xdeep are doubled
and the channel of Xdeep is nD. Finally, a 3 × 3 k2-channel
convolutional layer (Cf ) followed by Softmax activation is
applied to generate the constrained filters fθ, where the
number of channels of the output depends on the filter kernel
size k.

The other branch is used to reconstruct the image. The
input of the IRB is also Xin. We adopt a 3 × 3 convolution
CI and the pixel-shuffle layer to reconstruct the image Xf .
Additionally, the coarser scale output Xlow is added to Xf

for enhancing the details. Finally, image Xf and constrained
predictive filters fθ are sent to the predictive filtering module
to get the image Xout with a bokeh rendering effect, which
can be expressed as:

Xout =
∑

c∈{R,G,B}

∑((
Xc
f ⊗W

)
· fθ
)

(10)

where Xc
f is the single channel feature map and W is the

filtering window. The detailed structure of the predictive
filtering module is shown in Fig. 8. We designed a filtering
window W with the shape of k2×k×k, which can be defined
as:

W(x,y,z) =

{
1 (y = [x/k], z = (x mod k))
0 otherwise (11)

TABLE II lists the attributes of all learnable layers in the
CPFB and IRB.

C. Coordinate Map
Due to memory limitations, the training image pairs are

usually cropped into multiple patches to be sent to the network
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Fig. 8. The structure of Predictive Filtering module.

TABLE II
ATTRIBUTES OF LEARNABLE LAYERS IN THE CPFB AND IRB.

Layer CD1 ∼ CDN CP1 CP2 Cf CI

kernel 3× 3 1× 1 1× 1 3× 3 3× 3

Output Ch. nD nD · 2 nD · 4 k2i 12

for image manipulation tasks. However, this limitation can be
a great challenge for bokeh rendering. As shown in Fig. 9,
patches in different parts of the image may require different
processing to retain focus of salient objects or blur non salient
regions. We observe that the patch’s position is important, and
propose a position-based coordinate map to solve this problem.
The coordinate map is a 2-channel tensor with the same height
and width of the input image. The element at the (x, y) in the
coordinate map denotes the relative position from the center
of the image, which can be expressed as:

C(x, y) = (
x

W
,
y

H
)− 0.5 (12)

where C denotes the coordinate map, and W and H are
the width and height of the input image. We concatenate
the coordinate map and the input image along the channel
dimension to formulate a 5-channel input for the network. In
this way, no matter which parts are cropped from the image,
the corresponding coordinate map will provide the relative
position to guide the network to produce a more accurate
bokeh effect.

D. Loss Function

To train our MPFN, we construct a multi-scale supervision
architecture to guide the network to make predictive filtering
level-by-level. For each level, we adopt the L1 loss as the base
loss function. However, as the L1 loss is a point-wise loss, it
cannot provide edge information to guide the predictive fil-
tering to make appropriate pixel retention or bokeh rendering.
Inspired by [51, 53], we adopt the Advanced Sobel Loss (ASL)

Fig. 9. An illustration of the coordinate map. The blue box represents the
in-focus content and is located in the center of the image, with coordinates
close to (0,0). The red box represents defocused content with coordinates
away from the origin. The coordinate map and the image are concatenated to
form a 5-channel image.

and combine it with the L1 loss to formulate the loss function
for each level, which can be expressed as:

ASL (Isout, I
s
G) =

1

N

∑
| Sobel∗(Isout)−Sobel

∗(IsG) | (13)

loss (Isout, I
s
G) = L1 (Isout, I

s
G) + λ · ASL (Isout, I

s
G) (14)

where IsG and Isout denote the groundtruth and the output of
MPFN at level s, Sobel∗ denotes the advanced Sobel filtering
referring, L1 and ASL denote the L1 loss and ASL loss, and
λ is a hyper-parameter to balance the L1 loss and ASL, which
is set to 0.25. Then the total multi-scale supervision loss can
be obtained as:

Loss =

S∑
s=1

loss (Isout , I
s
G) (15)

IV. EXPERIMENTS

In this section, we conduct extensive ablation studies and
compare the model with the state-of-the-art methods both
quantitatively and qualitatively on the Everything is Better with
Bokeh! (EBB!) dataset, which is also used in the AIM2019
and AIM2020 bokeh effect challenges [22, 23]. The dataset
contains 4694 bokeh and bokeh-free image pairs, and we
separate the first 100 pairs as a testing set, called the Test100
set, for the quantitative evaluation, and the remaining 4594
image pairs for training. Note that the Test100 set is not used
for training. Then, the dataset also contains 200 bokeh-free
images without public ground-truth, denoted as Test200 set,
only for qualitative evaluation. In addition, we also collect
36 full-focus images using a Huawei Mate30 cellphone to
construct an additional testing set (Real36) to further evaluate
all compared models. Fig. 10 exhibits all images of the Real36
dataset. Specifically, this dataset doesn’t have groundtruth
images.

A. Implementation Detail

For the MPFN model, we adopt the following settings, with
nD=64, N=5. The model uses standard Tensorflow packages
[1], and runs on a machine with an Intel i7-10700K CPU,
128GB RAM, and a Nvidia GTX 2080Ti GPU with 11GB
memory. For the training dataset, the initial learning rate is
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Fig. 10. The complete full-focus Real36 dataset captured with a Huawei
Mate30.

set to 10−4 and is halved every 30 epochs. The Adam [28]
is used as our training optimizer with β1 = 0.9, β2 = 0.999.
All images (including the corresponding coordinate maps) are
cropped to 256×256 patches, with the batch size set to 16. It
takes around 80 epochs to train MPFN. In the inference phase,
the full-focus images and corresponding coordinate map are
concatenated along the channel dimension, then sent to the
MPFN for processing.

To fairly evaluate all compared models, we adopt PSNR,
SSIM[46] and LPIPS[49] as the basic quantitative metrics.
Further, we also adopt the Mean Opinion Score (MOS) by
a user study for explicit image quality assessment. To avoid
random subjective bias, we first let the 12 participants score
the generated bokeh images from Test100 with the real bokeh
images as reference using a five point scale (0 - almost
identical from the ground truth, 4 - mostly different). Then,
they are asked to score the generated bokeh images from
Test200 and Real36 with no reference (0 - almost natural
rendering, 4 - mostly identical from the input).

B. Ablation Studies

To verify the effectiveness of components and settings in the
MPFN, we conduct extensive ablation studies, including the
evaluations of model levels, model structures, prior knowledge,
constrained predictive filter sizes and loss functions. Moreover,
as the unified filtering architecture is one of the major con-
tribution of this work, we design a visualization method to
indicate the blurring degrees of predicted filters, which can be
expressed as:

k
(i,j)
visual =

2r+1∑
m=0

2r+1∑
n=0

θ(m,n)× (|m− r|+ |n− r|)
2r + 1

(16)

∀(m,n) ∈ Ωr(i, j), 0 ≤ k(i,j)visual ≤ 1 (17)

The value of k(i,j)visual represents the degree of blurring of the
constrained filter kernel to the pixel (i, j). When k(i,j)visual → 0,
the pixel (i, j) is tended to be retained. While the pixel (i, j)

is tended to be blurred when k(i,j)visual → 1.
Model levels. As described in previous sections, our pro-

posed model has three levels for extracting information at
different scales. In order to verify this setting we tested
variants of our method with different numbers of levels. The
model with only level 1 is called MPFN-1, the model with
level 1 and 2 is called MPFN-2, and the model we use for final
training is MPFN-3. In addition, we use the same subdivision
method that fused the information from level 2 into level 1,

Fig. 11. Visual results obtained with different levels.

TABLE III
PERFORMANCE COMPARISON OF MPFN WITH DIFFERENT LEVELS. THE

AVERAGE RUNNING TIME IS MEASURED ON A 1536× 1024 SIZED IMAGE.

Model MPFN-1 MPFN-2 MPFN-3 MPFN-4

PSNR/SSIM 23.79/0.8716 24.09/0.8823 24.25/0.8861 24.16/0.8822
LPIPS 0.2559 0.2389 0.2297 0.2362
MOS 2.01 1.64 1.35 1.45
Time(s) 0.009 0.012 0.014 0.019

Fig. 12. Visual results obtained with model using different structures.

further complicating the model by designing level 4 and fusing
the output image into level 3, called MPFN-4. All models are
trained with the same training parameters and datasets, and
the Test100 set is used to calculate the PSNR and SSIM.
As shown in TABLE 11, the proposed MPFN-3 achieves
the best PSNR and SSIM on the Test100 set. Moreover, the
visual results provided in Fig. 11 demonstrate that the MPFN-
3 achieves more accurate bokeh blurring and produces more
realistic details of in-focus parts than other models. Therefore,
we adopt the MPFN-3 as the benchmark in the following
experiments.

GFB vs. CPFB vs. IRB. To investigate the effectiveness
of these blocks, we constructed another three models to per-
formed ablation experiments. The M-GFB denotes the model
constructed with only GFBs. The M-GFB-CPFB denotes the
model constructed with GFBs and CPFBs. The M-CPFB-IRB
denotes the model constructed with CPFBs and IRBs. Fig. 15
illustrates the details three models.
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TABLE IV
PERFORMANCE COMPARISON OF MPFN WITH DIFFERENT SETTINGS.

Model Structure
PSNR SSIM LPIPS

GFB CPFB IRB

X 24.12 0.8815 0.2327
X X 24.06 0.8840 0.2383

X X 24.02 0.8807 0.2414
X X X 24.25 0.8861 0.2297

CM DM SM PSNR SSIM LPIPS

24.04 0.8836 0.2370
X 24.25 0.8861 0.2297

X 23.99 0.8812 0.2430
X 24.14 0.8847 0.2341

X X 24.14 0.8829 0.2336
X X 24.22 0.8849 0.2359

X X 24.13 0.8858 0.2327
X X X 24.19 0.8817 0.2359

GFB Activation
PSNR SSIM LPIPS

Sigmoid Sign

X 24.19 0.8861 0.2290
X 24.25 0.8861 0.2297

CPFB Activation
PSNR SSIM LPIPS

ReLU Softmax

X 24.18 0.8845 0.2348
X 24.25 0.8861 0.2297

Fig. 13. Visual constrained filter kernels and results obtained with MPFN
and M-CPFB-IRB.

Referring to TABLE IV, removing IRB substantially re-
duces the PSNR, SSIM and LPIPS performances. The IRB
fully utilizes the features enhanced by GFBs to reconstruct
the images to be filtered, which could better associate with the
CPFB to produce accurate bokeh effect. Comparing M-GFB
with M-GFB-CPFB, introducing CPFB temporally leads a
slight performance reduction. However, from the visualized re-
sults shown in Fig. 12, the CPFB clearly contributes to produce
a more smooth and natural blurring effect on defocused areas.
Moreover, GFB plays a significant role for saliency detection.

TABLE V
PERFORMANCE COMPARISON OF MPFN WITH DIFFERENT FILTER SIZES.

Kernel size 3-5-7 5-7-9 7-9-11 9-11-13

PSNR/SSIM 24.23/0.8841 24.19/0.8833 24.24/0.8855 24.25/0.8861
LPIPS 0.2335 0.2369 0.2356 0.2297
MOS 1.37 1.32 1.31 1.20

TABLE VI
PERFORMANCE COMPARISON OF MPFN TRAINED WITH DIFFERENT LOSS

FUNCTIONS.

Loss L2 L1
L1 L1 L1 L1

+ λ·Perceptual + λ·Laplace + λ·SSIM + λ·ASL

λ - - 1.0 0.5 0.2 0.25
PSNR 24.01 24.04 24.06 24.07 24.15 24.25
SSIM 0.8759 0.8739 0.8739 0.8815 0.8806 0.8861
LPIPS 0.2295 0.2330 0.1993 0.2408 0.2243 0.2297
MOS 1.59 1.46 1.37 1.48 1.46 1.23

Removing GFB leads a sharply performance reduction. From
the visualized results of predicted filters shown in Fig. 13,
the CPFB struggles to predict accurate filters and fails to
preserve the salient content and blur the background. In
general, all three blocks are carefully designed and significant
for rendering bokeh effect.

CM vs. Depth map vs. Saliency map. As mentioned above,
we proposed a coordinate map to assist the network to sense
the patch’s position in the training stage, which is important to
bokeh rendering. Compared to another priors depth map (DM)
and saliency map (SM), both DM and SM are obtained from
the input image by using specifically trained models[34, 36].
The priors brought by corresponding models certainly affect
the MPFN. We listed the performances of introducing different
combinations of priors (CM, DM and SM) to MPFN in
TABLE IV. Singly Introducing CM or SM brings performance
gains in all indexes. However, the additional DM suffers from
the inaccurate depth and unknown focus-depth, cannot further
improve the performance. We also provide the visualization
of predicted filters and final outputs by introducing different
combinations of priors, which is shown in Fig. 14. The SM
could provide a good saliency guidance, but may also mislead
the MPFN to produce inaccurate filters. This limitation is
mainly caused by the model producing a SM cannot sense the
depth information from the input image. Though introducing
DM could partially alleviate this limitation, the predicted filters
still suffer from the inaccurate guidance from the SM. Besides,
it should be noticeable that introducing DM or SM certainly
requires additional computation cost, while our CM is almost
free.

Sizes of constrained predictive filters. According to ktotal,
we propose the multi-scale filtering model and the filter
kernel size together affect the final effective filtering area,
so we select a series of filter kernel sizes for experiments
to prove that the parameters we finally selected are optimal.
Specifically, the filter kernel sizes corresponding to level 1,
level 2 and level 3 are defined as k1, k2 and k3, and we
set a series of different values for k1, k2 and k3 shown in
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Fig. 14. Visual results obtained with MPFN using different prior knowledge.

Fig. 15. llustration of the model combining different blocks. (a) M-GFB. (b)
M-GFB-CPFB. (c) M-CPFB-IRB. (d) Full MPFN.

TABLE VII
PERFORMANCE COMPARISON OF MPFN MODEL AND OTHER RELATED

METHODS ON TEST100 SET.

Method PSNR SSIM LPIPS MOS Parameters FLOPs
GPU CPU GPU-M

Time(s) Time(s) Time(s)

EDSR[35] 23.72 0.8571 0.2517 1.69 1.5M 1.08T 0.007 12.344 1.490
U-net[42] 23.96 0.8695 0.2290 1.45 31M 0.78T 0.006 6.386 2.798
Yang[23] 23.96 0.8811 0.2275 1.15 5.4M 0.45T 0.028 6.808 3.515
PyNET[19] 23.93 0.8757 0.2527 1.23 47.5M 1.34T 0.223 6.861 1.063
Stacked-

23.90 0.8793 0.2320 0.96 10.8M 0.62T 0.019 7.929 0.943
DMSHN[12]
MPFN 24.25 0.8861 0.2297 0.93 8.7M 0.75T 0.014 9.738 1.594

TABLE VIII
MOS COMPARISON OF MPFN AND OTHER RELATED METHODS ON

TEST200 AND REAL36.

EDSR U-net Yang PyNET Stacked- BGGAN
MPFN

[35] [42] [23] [19] DMSHN[12] [40]

Test200 2.10 1.94 1.75 1.75 1.45 1.35 1.28
Real36 1.92 1.67 1.34 1.33 1.33 / 1.24

TABLE V. It’s clear that the larger filter kernel sizes produce

more human-eye pleased results. Meanwhile, because the filter
generation and the filtering operation works on the original
scales, it also consumes more computation resource. To make
a balance, we adopt the filter kernel sizes of 9, 11 and 13 to
formulate our final model in following evaluations.

Loss Function. To demonstrate the validity of the loss
function we adopted, we compare it with several related loss
functions, such as perceptual loss based on VGG16 [26],
Laplace loss and SSIM loss. All loss functions are applied
using the strategy as shown in Eqn. 15 and finally measured
by the MAE function. To balance the outputs of these losses
and L1 loss, we assigned a hyper-parameter λ. To prove that
the L1 Loss is more suitable for our task than the L2 Loss, we
trained with the L2 Loss and compared the results using only
L1 Loss. As shown in TABLE VI, the structural information
provided by the ASL leads to a significant improvement of on
all metrics. Though the perceptual loss can achieve the best
LPIPS performance, it cannot accurately capture the degree
of blurring and gets a comparatively low MOS value. On the
other hand, both the ASL and Laplace losses can provide high-
frequency information. However because the Laplace filter
places a much higher weight on the center than neighbors,
it produces similar results to the L1 loss. Generally, the ASL
loss we adopted is simple and effective for bokeh rendering.

C. Comparison With the State-of-the-Art

In this section, we compare the proposed method with
several state-of-the-art methods on both quantitative and quali-
tative metrics and average running times. The average running
time is measured on Test100. We use a Nvidia 2080Ti GPU,
Intel i7-10700K CPU, Snapdragon 865 mobile processor as
the platforms to measure the running times on GPU, CPU
and mobile GPU (GPU-M) respectively.

Comparison on EBB! dataset. We first compare the results
of the several state-of-the-art methods tested on Test100.
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Fig. 16. Visual results obtained with 6 different methods. From left to right, the original wide depth-of-field images, EDSR [35], U-net [42], PyNET [18],
Yang [23], Stacked-DMSHN [12], our MPFN and the target Canon photo.

Fig. 17. Visual results obtained with 5 different methods for the bokeh rendering task on Test200. From left to right, the original wide depth-of-field images,
PyNET [18], Yang [23], Stacked-DMSHN [12], BGGAN [40] and our MPFN.

Noticing that several recently proposed methods adopt the U-
net[42]-like and EDSR [35]-like architectures, we included
U-net and EDSR in the comparison. All the models were
retrained and tested with the same dataset, and the results
are shown in TABLE VII and TABLE VIII. Our proposed
model MPFN achieves the best PSNR, SSIM and MOS results,
and the third best LPIPS, which is only slightly lower than
Yang [23] and U-net. For the most important MOS results,
our MPFN clearly surpasses all compared methods on Both
Test100 and Test200 datasets. From the user study, our method
clearly achieves a better blurring effect in the defocused area
and produces a smoother bokeh effects than the compared
methods.

Moreover we also conduct a detailed comparison to evaluate
performances of compared methods on focused regions and
bokeh regions seperately. We use the estimated focused fea-
tures to segment the generated bokeh image and groundtruth,
so we get the corresponding images of the focused regions
and the bokeh regions. As shown in TABLE IX, our MPFN
achieves the best PSNR in both the focused and bokeh areas,
indicating that our method is efficient in reconstructing both
the focused and defocused regions. Furthermore, compared to
other bokeh specific methods, our method gains more in the
bokeh area than in the focused area, which means that the
blur effect we generate has less pixel difference from the real
bokeh images.
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Fig. 18. Visual results in new real data captured with a Huawei Mate30. From left to right, the original images, U-net [42], PyNET [18], Yang [23], and our
MPFN.

TABLE IX
PERFORMANCE COMPARISON OF MPFN IN FOCUSED REGIONS AND

BOKEH REGIONS ON TEST100 DATASET.

Method EDSR[35] U-net[47] Yang[22] PyNET[17] Stacked- MPFNDMSHN[12]

Focused regions 31.47 31.66 31.75 31.80 31.63 31.95
Bokeh regions 24.94 25.20 25.16 25.09 25.14 25.50

Because bokeh rendering is a visually oriented task, we
also visualize some results produced by compared methods on
Test100 and Test200 in Figs. 16 and 17, to further highlight
the advantages of our MPFN. From the visual comparison,
our MPFN produces the best bokeh rendering effect without
artifacts and better preserves the details of the focused parts,
such as sharp edges and accurate colors. It is worth mention-
ing that our MPFN is the most efficient one among bokeh
rendering methods running on the GPU device, even though
our parameters and FLOPs are not optimal. However due
to the multiple dense blocks and the unoptimized predictive
filtering modules, our MPFN struggles to efficiently run on
the CPU device and mobile devices. Note that we process half
resolution floating point 16-bit of images on mobile devices.
Optimization for these devices is left for future work.

Generalization to new real data. To test the generalization
ability of our model, we test our model and the other compared
methods on Real36 dataset, which are diverse and different
from EBB! dataset and not used in the training stage. As shown
in Fig. 18, our MPFN accurately blurs the defocus area while
preserving the details of salient objects. From the MOS results
shown in TABLE VIII, our model achieves the best MOS score
on realistic images, and exhibits good generalization ability.

V. LIMITATION AND FUTURE WORK

Although the proposed method can synthesize satisfactory
bokeh effects, but sometimes suffers from the depth-dependent
scenes. As shown in Fig. 19, when input image contains

Fig. 19. Some failure results. The red boxes indicate similar saliency regions
at different depths, and the blue boxes indicate defocus areas at corresponding
depths.

multiple similar saliency regions at different depths, our MPFN
fails to fairly blur the both out-of-focus salient object and
background. Therefore, how to effectively utilize both depth
and saliency information to produce a fair blurring effects for
both salient objects and background is left as one of the future
works. On the other hand, we should also pay attention to the
computation efficiency that the computation cost of MPFN
is only affordable for several flagship processors. Therefore
further improving the computation efficiency allowing the
algorithm running on most of consumer processor is another
future work.

VI. CONCLUSION

In this paper, we present an effective computational ap-
proach for the realistic single image bokeh effect rendering
task. To retain the focus area and simulate bokeh rendering in a
unified architecture, we propose a multi-scale constrained pre-
dictive filtering network using three types of filtering kernels.
In order to obtain accurate edge information after filtering, we
design a gate fusion block for salient feature detection and
fusion of focus and defocused features. Furthermore, we pay
attention to the positional information of pixels and propose
the coordinate map to be sent the network together with full-
focus images for training. Extensive ablation studies validate
the importance of the multi-scale strategy, coordinate map,
and the components of MPFN. Experiments on the Test100,
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Test200 and Real36 datasets show that our model outperforms
state-of-the-art methods.
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