
OR I G I N A L A R T I C L E

Single-cell sequencing reveals the heterogeneity and
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Abstract

Background: Endometrial cancer (EC) is one of the most common gynecologic malig-

nancies with increasing morbidity. Cell–cell and cell-matrix interactions within the

tumour microenvironment (TME) exert a powerful influence over the progression of

EC. Therefore, a comprehensive exploration of heterogeneity and intratumoral

crosstalk is essential to elucidate the mechanisms driving EC progression and develop

novel therapeutic approaches.

Methods: 4 EC and 2 normal endometrium samples were applied for single-cell RNA

sequencing (scRNA-seq) analysis. In addition, we also included the public database to

explore the clinical benefits of the single cell analysis.

Results: 9 types of cells were identified with specific expression of maker genes. Both

the malignant epithelial cells and cells comprising the immune microenvironment dis-

played a high degree of intertumoral heterogeneity. Notably, the proliferation T cells

also showed an exhausted feature. Moreover, the malignant cells may induce an immu-

nosuppressive microenvironment through TNF-ICOS pair. Cancer-associated fibro-

blasts (CAFs) were divided into four subsets with distinct characteristics and they

maintained frequent communications with malignant cells which facilitating the pro-

gression of EC. We also found that the existence of vascular CAF (vCAF) may indicate

a worse prognosis for EC patients through integrating TCGA database.

Conclusion: The TME of human EC remains highly heterogeneous. Out finding that

malignant cells interact closely with immune cells and vCAFs identifies potential ther-

apeutic targets.

1 | INTRODUCTION

Endometrial cancer (EC) is one of the most common malignant

gynaecological cancers with increasing morbidity. Although most

patients have a relatively favourable 5-years survival as high as 80%,

patients progress to the terminal stage quickly upon relapse.1,2 The

prognosis of EC has remained constant for years due to the fixed

treatment mode, although numerous studies have been designed to

reveal the biological characteristics and pathogenesis.

Tumours are complex ecosystems composed of different cell

types, such as epithelial cells, immune cells, and stromal cells.3 The

molecular subtypes identified based on the bulk sequencing of EC

have been divided into four specific expression patterns that are

closely related to disease prognosis.4 This specific expression patternZhicheng Yu and Jun Zhang contributed equally to this work.
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was partially attributed to the distinct proportions of various cell types

in the tumour microenvironment (TME), indicating that the heteroge-

neity of EC is vital for disease progression. In addition, a prominent

desmoplastic stroma in the TME, which is mainly composed of cancer-

associated fibroblasts (CAFs), is a hallmark of a worse prognosis for

patients with EC.5 Therefore, a deeper understanding of the heteroge-

neity and intratumor crosstalk of distinct cells in the TME would help

to identify more efficacious therapeutic targets for EC.

Single-cell RNA sequencing (scRNA-seq) has emerged as a power-

ful tool to reveal heterogeneity and cellular communication in a num-

ber of cancers, including breast cancer, lung cancer, head and neck

cancer, pancreatic ductal adenocarcinoma and liver cancer.6–10 Salient

anti-tumour effects have been achieved when blocking the interaction

between different cells identified by scRNA-seq.11 However, the het-

erogeneity and intratumoral crosstalk of EC remain poorly elucidated

at single-cell resolution.

In this study, we profiled the transcriptome of 41,358 single cells

from four EC tissues and two normal endometrial clinical samples

based on 10� Genomics scRNA-seq to elucidate the heterogeneity

and intratumoral crosstalk in EC.

2 | MATERIALS AND METHODS

2.1 | EC and control samples

Four EC tissues and two control tissue samples were collected from

Union Hospital, Tongji Medical College, Huazhong University of Sci-

ence and Technology approved by the Institutional Review Board

(2020-S218) and patients enrolled in the study provided written

informed consent. No patients received treatment prior to surgery,

such as chemotherapy or radiotherapy. The control normal endome-

trium was obtained from patients who underwent hysterectomy due

to nonmalignant gynaecological diseases. In addition, two patients

with EC were excluded: patient EC1 was concurrently diagnosed with

high-grade serous ovarian carcinoma, and patient EC5 was not

included because of an unsatisfactory number of cells captured.

2.2 | Preparation of single-cell suspensions and
quality control

The freshly resected tissues were divided into two equal parts: one

was prepared for subsequent single-cell sequencing, and the other

was processed for pathological diagnosis and immunohistochemical

studies. We first washed the tissue with 1� DPBS (calcium- and

magnesium-free) twice and cut the tissue into approximately 2 mm

pieces with ophthalmic scissors to prepare the single-cell suspension.

Second, 3 ml of collagenase I (1 mg/ml) was added to sufficiently

digest the tissues for 50 min. Then, the cell suspension was filtered

through a 70 μm cell strainer and centrifuged for 7 min at 300 g.

Finally, the sediment was washed twice with precooled 1� DPBS con-

taining 0.04% BSA after removing the supernatant. Dead cells were

eliminated by excluding Sytox-positive (Dead Cell Removal Kit, Mil-

tenyi Bio.tec) cells according to the manufacturer's instructions, which

increased the efficiency of sorting live cells for subsequent library

construction and sequencing. The quality control of the cell suspen-

sion was estimated using a Countess II Automated Cell Counter. Eligi-

ble samples were defined as containing greater than 85% of living

cells and a density greater than 1 � 106 cells/ml.

2.3 | Gene expression library construction and
sequencing

The gene expression library was constructed according to the instruc-

tions of the 10� Genomics Chromium single-cell kit. The libraries

were then pooled and

sequenced using the Illumina NovaSeq 6000 platform.

2.4 | Generation and preprocessing of single-cell
transcriptomes

The primary row data were converted to fastq format using the

Illumina bcl2fastq converter and filtered to obtain clean data. The

criteria included the following: 1, removal of polyA reads, 2, removal

of reads containing more than 3 indeterminate bases, and 3, removal

of low-quality reads (the number of bases with a Q value less than or

equal to 5 that accounted for more than 20% of the total reads). Then,

the clean data were processed using Cell Ranger software (version

4.0.0) provided by 10� Genomics to demultiplex cellular barcodes

and align valid barcodes, and STAR was used to align the reads with

the reference genome (GRCh38-2020-A). The gene expression pat-

tern was measured by determining unique molecular identifier (UMI)

counts using Cell Ranger (Figure S2A,B).

Then, the multiplets and low-quality cells were identified and fil-

tered. Scrublet software was applied to predict multicellular barcodes

and remove multicellular barcodes (Figure S2D). Low-quality cells were

excluded when 20% or more UMIs were mapped to mitochondrial genes

to avoid the effect of apoptotic or lytic cells (Figure S2E). Next, we used

Seurat to remove foreign cells. A gene with expression in more than

3 cells was considered expressed, and each cell was required to have at

least 200 expressed genes. After strict quality control was performed,

41,358 single cells were detected in the downstream analysis in this

study. Then, the gene expression data were normalized using the Seurat

package with the normalization method “LogNormalize” to reduce the

discrete number of gene expression counts. Finally, the correct trans-

criptome expression matrix was generated for subsequent analysis.

2.5 | Dimensionality reduction, clustering and
annotation

Highly variable genes (HVGs) were generated using the Seurat “Find
Variable Features” function with default parameters except for
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selection.method=“vst” (Figure S2F). For clustering, HVGs were

selected, subjected to principal component analysis (PCA) and the top

30 significant principal components (PCs) were selected to perform

uniform manifold approximation and projection (UMAP) dimensional-

ity reduction (Figure S2C). Cells were clustered with the Find Clusters

function (dims.use = 1:30, resolution = 0.5) and were visualized in

two dimensions using UMAP. Then, the SingleR R package with refer-

ence to Blueprint and the Human Primary Cell Atlas transcriptomic

datasets were applied to annotate each cell cluster.12,13 The Seurat

alignment method canonical correlation analysis (CCA) was applied for

the integrated analysis of datasets.

2.6 | Identifying malignant cells with an InferCNV
analysis based on scRNA sequencing data

The copy number variation in the four patients with EC was calculated

from single-cell transcriptomic profiles using InferCNV.14 Epithelial

cells from normal endometrial tissue were selected as references.

Briefly, CNV scores were computed in a sliding window equal to

101 for each chromosome with default parameters. Then, the expres-

sion matrix of reference and observation samples were combined for

subsequent unsupervised K-means clustering to identify the malignant

subcluster. The variance was calculated based on each score derived

from InferCNV to normalize the background noise. Finally, the sub-

clusters with relatively higher CNV scores were considered malignant

cells. A total of 2334 epithelial cells were identified as nonmalignant

cells, and 16,050 epithelial cells were considered malignant cells.

2.7 | Estimating the cycling cells

We first calculated the G1/M and G2/M scores for each cell by ana-

lysing a relevant gene set to estimate the cycling cells.15 Second, the

cutoff value to distinguish high cycling cells from low cycling cells was

considered the median plus 2 MAD (median absolute deviation).6

Briefly, cells were deemed to be high cycling cells if they had higher

G1/M or G2/S scores, and low cycling cells were those with lower

G1/M or G2/S scores. Finally, 6695 cells were determined to be high

cycling cells, and 34,560 cells were determined to be low cycling cells.

For epithelial cells, 4050 cells were regarded as high cycling cells, and

14,334 cells were regarded as low cycling cells.

2.8 | Inter- and intracellular crosstalk analysis
using cellphone DB and scMLnet

Cellphone DB was employed to explore the cell–cell interactions

between malignant cells and niche cell subtypes based on the ligand–

receptor pairs.16 The receptors and ligands with a mean expression

level > 1 and a p value < 0.01 were considered positive ligand–

receptor pairs. GGplot2, psych, qgraph, igraph and tidyverse R pack-

ages were used to visualize the intratumor crosstalk network.

scMLnet was used to explore the intercellular and intracellular

signalling network between CAFs, T cells and malignant cells. The

analysis details of scMLnet were elucidated as previously.17,18

LogFC > 2 and p_valj < 0.05 were considered as the cutoff criteria.

2.9 | Differential expression and enrichment
analyses

We calculated the differentially expressed genes (DEGs) in cell sub-

groups using the findmarker function provided by Seurat.

Avg_logFC > 0.5 and p_val_adj < 0.05 were considered as the cutoff

criteria. The ClusterProfiler R package was used to perform GO and

KEGG analyses. GSEA was performed to show the enriched gene set

based on the expression of each gene. We used GSVA R packages to

accomplish the GSVA analysis.

2.10 | Trajectory analysis

We used the Monocle 2.0 package (v 2.10.0) to analyse single-cell tra-

jectories and determine the continuous process of T cell exhaustion.

We used the top 1000 differentially expressed genes in CD8+ Tcyto

cells and Tex cells to sort cells in pseudotime order. Branch expression

analysis modelling (BEAM analysis) was used to analyse branch fate-

related genes based on pseudotime analysis.

2.11 | Classification of molecular subgroups by
consistent clustering

The ConsensusClusterPlus package in R software was applied for con-

sistent clustering to determine subgroups of EC samples from TCGA.

The Euclidean squared distance metric and the K-means clustering

algorithm were used to classify samples into k clusters with k = 2 to

k = 8. Eighty percent of the samples were selected in each iteration,

and the results were compiled after 50 iterations. We determined the

optimal number of clusters by constructing a consistent cumulative

distribution function (CDF) graph and the delta region graph.

2.12 | Construction of a prognostic predictive
signature

Univariate Cox regression analysis was conducted to identify the

prognostic value of the DEGs in vCAFs, and genes with a

p value < 0.01 were considered statistically significant. The regression

coefficient (β) was determined by performing a multivariate Cox

regression analysis, and the risk score = (βmRNA1 * expression level

of mRNA1) + (βmRNA2 * expression level of mRNA2) + … -

+ (βmRNAn * expression level of mRNAn). Patients with survival data

were divided into high- and low-risk groups based on the median

risk score.
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2.13 | Independence of the prognostic gene
signature from other clinical characteristics

Univariate and multivariate Cox proportional hazard regression ana-

lyses were performed to determine whether the predictive ability of

the prognostic model was independent of conventional clinical char-

acteristics. A bilateral p value < 0.05 was considered statistically sig-

nificant. The hazard ratios (HRs) and 95% confidence intervals were

calculated.

2.14 | HE and IHC analysis

After deparaffinization, slides were hydrated in alcohol and endoge-

nous peroxidase activity was quenched for 20 min in 3% hydrogen

peroxide. Antigen epitope retrieval was induced by high temperature

and pressure. To examine the expression pattern of candidate anti-

bodies in EC tissues, sections were immunostained with primary anti-

bodies overnight at 4�C, The secondary antibody used for

immunostaining was biotin-conjugated anti-rabbit immunoglobulin

(Wuhan antgene biotechnology Co.,Ltd, Cat. No. ANT058).

The following antibodies were used to detect specific proteins:

anti-EPCAM (rabbit, 1:4000, Abcam, Cat. No. ab282457), anti-α-SMA

(rabbit, 1:2000, Abcam, Cat. No. Ab5694), anti-PDPN (rabbit, 1:4000,

Abcam, Cat. No. Ab236529), anti-IGF1 (rabbit, 1:100, ABclone, Cat.

No. A0830), anti-MYH11 (rabbit, 1:1000, Abcam, Cat. No. Ab133567)

and anti-CD74 (rabbit, 1:200, Abcam, Cat. No. ab108393).

2.15 | Statistical analysis

Continuous variables are summarized as the means ± standard

deviations (SD). Differences between groups were compared using

the Wilcox test with R software. The significance of differences in

survival time was calculated using the log-rank test with a threshold

of a p value < 0.05. Kaplan–Meier curves were plotted to show the

differences in survival times.

3 | RESULTS

3.1 | Single-cell transcriptomic profiling of human
endometrial cancer

Four endometrial tumours and two normal endometrial tissues were

collected to explore the complex cellular diversity and relevant

molecular characteristics (Figure 1A). The specific clinical pathologi-

cal features and H&E staining of tissues from the enrolled patients

are shown in Table S1 and Figure S1. Two experienced pathologists

checked and approved the sections to determine the consensus

diagnosis. After filtering with strict standards, 41,358 single cells

with a median of 1313 genes per cell were retained for further

bioinformatics analysis. The numbers of cells captured in each sam-

ple are shown in Table S2. We conducted principal component anal-

ysis (PCA) and uniform manifold approximation and projection

(UMAP) following gene expression normalization to reduce the

dimensionality. Then, graph-based clustering was used to divide the

cells into 26 clusters (Figure 1B) that were annotated for nine cell

types with specific expression of marker genes: epithelial cells

(18,394 cells, 44.5%, marked with KRT8 and KRT18), T cells (9825

cells, 23.8%, marked with CD2, CD3D and CD3E), fibroblasts (7901

cells, 19.1%, marked with COL1A1, SFRP4, ACTA2, COL1A2), mac-

rophages (2259 cells, 5.5%, marked with CD163, CD86, C1QB and

C1QA), natural killer (NK) cells (1095 cells, 2.6%, marked with GNLY,

NCAM1, and XCL1), endothelial cells (688 cells, 1.7%, marked with

A2M, VWF and ENG), B cells (819 cells, 2.0%, marked with IGKC

and CD79A), monocytes (331 cells, 0.8%, marked with S100A8 and

S100A9) and dendritic cells (DC) (46 cells, 0.1%, marked with

GPR183 and PLD4) (Figures 1D–F, S2G, Table S3). Conspicuously,

the proportion of each cell type varied substantially among different

samples, indicating the existence of intertumoral heterogeneity in

endometrial cancer (Figure 1C,G).

3.2 | Identification of malignant epithelial cells in
endometrial cancer

We first explored the cycling status of all cell subtypes to identify

malignant epithelial cells and found that epithelial cells included a

large proportion of high cycling cells, indicating that the epithelial

cells were actively undergoing mitosis (Figure 2A). An analysis of

copy number variation (CNV) was employed to distinguish malig-

nant epithelial cells from epithelial cells isolated from normal sam-

ples (Figure S3). Then, we re-clustered the epithelial cells into six

classes and calculated the CNV scores for each class (Figure 2B,C).

We referred to C4 as a nonmalignant epithelial class for two rea-

sons: (1) C4 had the lowest CNV score, and (2) C4 cells were pri-

marily derived from normal samples. Therefore, C1, C2, C3, C5

and C6 were considered malignant epithelial classes. The differen-

tial expressed genes (DEGs) revealed that each class had unique

transcriptomic characteristics (Figure 2E, Table S4). We also

explored the representative marker genes of each class, such as

CAPS (C1), SOX4 (C2), SLPI (C3), WFDC2 (C5) and MUC16 (C6) in

TCGA and GTEx databases (Figure 2D). The expression levels of

these oncogenes were higher in tumour samples, consistent with

the results of our single-cell sequencing analysis. Gene set varia-

tion analysis (GSVA) showed the distinct functions of six classes,

such as the PPAR signalling pathway (C1), glycosaminoglycan bio-

synthesis heparan sulfate (C2), DNA replication and P53 signalling

pathway (C3), calcium signalling pathway (C4), intestinal immune

network for IgA production (C5) and cytokine-cytokine receptor

interaction (C6) (Figure 2F). Overall, the malignant epithelial cells

of endometrial cancer may play diverse roles in tumour

progression.
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3.3 | Malignant cells might induce an
immunosuppressive microenvironment in endometrial
cancer

The immune microenvironment of endometrial cancer is considered

crucial to the prognosis, and overall survival varies substantially in

patients with different immune subtypes.19 We classified T cells into

11 clusters to explore the inherent heterogeneity of the immune

microenvironment, and the t-SNE plot shows the distribution among

cancer and normal samples (Figure 3A,B). All clusters had a relative

expression of CD3D except Cluster 5 (Figure 3C), and the DEG analy-

sis showed that Cluster 5 did not contain a marker gene (Figure S4A);

F IGURE 1 Comprehensive overview of human endometrial cancer. (A) Schematic diagram of scRNA-seq analysis workflow; (B) UMAP
plotting of the 41,358 cells showing 27 cell clusters; (C) The sample origin of the cells; (D) The distinct cell types identified by marker genes;
(E) The number of cells in each cell type; (F) Bubble plots showing marker genes for 9 distinct cell types; (G) Bar plots showing the proportion of

cell types in each sample

YU ET AL. 5 of 12



therefore, we identified it as an undetermined cluster (Figure S4B).

Clusters 0, 1, 3, 4, 8, 9 and 10 were associated with the marker CD8A,

Clusters 2 and 7 were associated with the marker CD4, and Cluster

6 was considered NKT cells labelled with KLRF1 (Figure 3C). Then,

Clusters 0, 3, 4 and 8 were named cytotoxic CD8+ T cells

(CD8+Tcyto) marked with GZMK, GZMA, NKG7 and IFNG. Clusters

F IGURE 2 Transcriptomic heterogeneity of malignant cells in EC. (A) The cell cycling status of distinct cell types; (B) The heatmap of the
relative expression density of genes on each chromosome by comparing the tumour cell genome with a series of normal cell reference genomes;
(C) The CNV scores of each k-means class; (D) The expression level of marker gene in TCGA dataset, (*p < 0.05); (E) Heatmap of DEGs in each
k-means class; (F) Differences in pathway activity (scored per cell by GSVA) in 6 epithelial cell sub-clusters
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F IGURE 3 Profiling of immune microenvironment in EC and intratumoral crosstalk with malignant cells. (A) t-SNE plotting of the T cells
showing 11 cell clusters; (B) The sample origin of the cells; (C) t-SNE plots of marker genes for each cell type as indicated; (D) Violin plots of
selected cytotoxicity, proliferation, and suppressive genes in distinct T cell subclusters; (E) Bar plots showing the proportion of cell types in
each sample; (F) Interaction analysis showing enriched receptor-ligand pairs in subsets of T cells and malignant cells; (G) Trajectory of
differentiation from CD8+ Tcyto into Tex predicted by monocle 2; (H) Significantly up-regulated genes in the differentiation process coloured
by cell clusters
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1, 7 and 10 represent activated T cells with exhausted features based

on the expression of effector (IFNG and NKG7), cytotoxic (GZMK and

GZMA) and immune checkpoint molecules (PDCD1, CTLA4, and

LAG3); thus, we designated them experienced T cells (Tex).20 Cluster

2 was characterized by a high level of FOXP3, indicating that it was a

regulatory T cell (CD4+ Treg) population. Cluster 9 was referred to as

proliferation T cells, which was marked with MKI67 and TOP2A

(Figure 3D). We concluded that the immune microenvironment varies

substantially between different people, suggesting that the individual

heterogeneity has to be considered concerning immune-based ther-

apy (Figure 3E). Proliferating T cells also showed exhausted character-

istics based on the expression of PDCD1, CTLA4, LAG3, HAVCR2 and

TIGIT (Figure 3D). We performed inter-cellular interaction analyses

based on ligand-receptor pairs to explore the frequent communication

between different subtypes of T cells and malignant cells. We con-

clude that proliferation T cells maintain the most frequent interactions

with other subtypes of T cells (Figure S4C). In addition, malignant cells

may induce an immunosuppressive microenvironment due to greater

interactions with T cells presenting exhausted characteristics through

ligand-receptor pairs such as TNF-ICOS, indicating that blocking TNF-

ICOS binding may affect the interaction of CD4+ Tregs with malig-

nant cells and might be an effective therapeutic target for endometrial

cancer (Figure 3F). To further explore the intracellular gene regulatory

networks, an integrated multilayer network between malignant epi-

thelial cells and T cells was constructed through scMLnet (Table S5).

Proliferation T cells maintained close communications with malignant

epithelial cells which was consistent with our Cellphone DB results.

Furthermore, malignant epithelial cells may accelerate the prolifera-

tion of CD4+Tregs and CD8+Tex through CALM1/FAS binding, and

then activate the downstream nuclear factor kB (NF-kB) transcript

factors, such as NFKBIA, NFKB2 and REL, regulating downstream

CCND2, CDK6 and TRAF1 expression (Figure S5). These results

suggested that malignant epithelial cells played an important role in

the formation of immunosuppressive microenvironment in EC.

A trajectory analysis was applied using CD8+ Tcyto cells and Tex

cells to investigate the dynamic expression pattern under the exhaus-

tion of T cells (Figure S4D). The pseudotime results showed that

CD8+ Tcyto cells ultimately transited to Tex cells after experiencing

three diverging cell fates (Figure 3G). Along the trajectory, the levels

of exhaustion markers such as CTLA-4 and HAVCR2 were gradually

increased during the transition. In addition, GBP5 and SOX4 displayed

a similar trend to the exhaustion markers, indicating that they might

represent potential markers of T cell depletion (Figure 3H).

3.4 | Cancer-associated fibroblasts show distinct
characteristics

An intense desmoplastic reaction has been observed in many malig-

nant tumours, such as pancreatic ductal adenocarcinoma (PDAC), cer-

vical cancer and colorectal cancer.21–23 Picrosirius red and IHC

staining for α-SMA revealed that the desmoplastic reaction was also

prominent in endometrial cancer (Figure 4A). We generated 2059

cancer-associated fibroblasts (CAFs) from four endometrial cancer

samples, which were further clustered into four subclusters

(Figure 4B,C). All clusters were positive for the expression of classic

fibroblast markers such as ATCA2, COL1A1, COL3A1, and THY1

(Figure S6A). The heterogeneity of CAFs was obviously detected in

the t-SNE dimensionality reduction plot. In addition, each cluster

showed an exclusive expression pattern, suggesting that it may per-

form a unique function in the tumour ecosystem (Figure 4D,

Table S6). We compared the genes between CAFs and fibroblasts in

normal endometrium (NE) to initially explore the functions, and Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses revealed that the up-regulated genes in

CAFs were enriched for extracellular matrix organization, response to

wounding, angiogenesis, antigen processing and presentation, indicating

the distinct characteristics of CAFs (Figure S6D).

Cells in Cluster 0, accounting for 37.2% of the CAFs, featured an

extracellular matrix (ECM) signature, such as glycoprotein (PDPN),

structural protein (COL12A1), matricellular proteins (FBLN2 and

SOX6) and matrix modifying enzymes (LOXL1 and MMP2)

(Figures 4D and S6B). In addition, the GO enrichment analysis showed

that the upregulated genes were enriched in the terms extracellular

matrix organization, extracellular structure organization and collagen

metabolic process (Figure 4E). Thus, we defined Cluster 0 as matrix

CAFs (mCAF-C0-PDPN). Cluster 1, which comprised 34.7% of CAFs,

expressed SLPI, IGF1, CD24, CXCL12 and TFF3 at high levels

(Figures 4D and S6B). The GO terms enriched in this cluster were

related to myeloid leukocyte migration, mononuclear cell migration

and leukocyte chemotaxis (Figure 4E). Therefore, we designated Clus-

ter 1 as an inflammatory CAF population (iCAF-C1-IGF1). Cluster

2 was characterized by high levels of MYH11, GJA4, RGS5, ESAM,

MCAM and EPAS1 (Figures 4D and S6B). The GO enrichment analysis

also showed that muscle system process, muscle contraction and tis-

sue migration were enriched in this cluster (Figure 4E). Meanwhile, we

explored the markers (CD34, CDH5, PECAM1 and TIE1) of endothe-

lial cells to eliminate the disturbance of endothelial cells and proved

the low expression levels (Figure S6C). Therefore, we accordingly

named Cluster 2 vascular CAFs (vCAF-C2-MYH11). As the cluster

with the fewest cells, Cluster 3 was characterized by antigen-

presentation signatures, such as major histocompatibility complex II

(MHC-II) genes (CD74, HLA-DPA1, HLA-DPB1 and HLA-DQB1)

(Figures 4D and S6B). Moreover, enriched GO terms were mainly

involved in immunomodulation, such as regulation of T cell activation

and regulation of leukocyte cell–cell adhesion (Figure 4E). Thus, we

designated Cluster 3 as antigen-presenting CAFs (apCAF-C3-CD74).

Interestingly, cells in Cluster 3, which were mainly derived from EC4,

expressed immune checkpoint molecules (PDCD1, CTLA-4, LAG3,

HAVCR2, TIGIT and ICOS) at high levels, indicating that they may

contribute to an immunosuppressive microenvironment in EC4

(Figure S6E). Gene set variation analysis (GSVA) also showed that

each cluster had specific biological functions that were consistent

with the enrichment results (Figure 4F). In addition, we further veri-

fied the presence of those clusters in EC samples using IHC staining

(Figure S7).
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3.5 | Ligand–receptor analysis and multilayer
signalling network indicates frequent communication
between malignant cells and CAFs

Malignant cells maintained frequent communication with other

cells in the tumour microenvironment to accomplish their biological

functions. A ligand–receptor analysis was conducted as described

above to explore the internal crosstalk between malignant and stro-

mal cells. We concluded that various degrees of interactions

existed between malignant cells and different types of CAFs. Inter-

estingly, the interactions between malignant and stromal cells were

more frequent than those between malignant cells (Figure S6F). We

F IGURE 4 Distinct cancer-associated fibroblasts subpopulations detected in human EC. (A) H&E, picrosirius red staining in EC and normal
tissues; (B) t-SNE plotting of the cancer-associated fibroblasts (CAFs) showing 4 cell clusters; (C) The sample origin of the cells; (D) Heatmap
showing the top 10 DEGs (Wilcoxon test) for each cluster; (E) GO analysis of DEGs in distinct CAF subclusters; (F) GSVA analysis revealing the
hallmark pathways in distinct CAF subclusters; (G) Dot plot showing receptor-ligand pair analysis of the interactions between malignant cells and
distinct cell types
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sought to identify effective cytokines, such as interleukins, growth

factors and chemokines, mediating the functions of malignant and

stromal cells. Notably, the highest expression of TIMP1 and FGFR2

was observed in malignant cells and different types of CAFs

(Figure 4G). In addition, the IGF1/α6β4 complex pair was enriched

in the interactions between iCAFs and malignant cells, consistent

with the finding that malignant subclusters displayed activation sig-

natures such as DNA replication and the mTOR signalling pathway

(Figure 2F). Multilayer signalling network revealed that CAFs

showed more ligands than malignant epithelial cells (Table S7). The

transcription factors such as SMAD7, KLF4 and TBX2 and down-

stream proto-oncogenes such as MYC, MET and CDK1 were regu-

lated by the ligand–receptor binding of CAFs and malignant

epithelial cells (Figure S8). These results indicated that the frequent

intratumor crosstalk between different cell types contributes to the

malignant progression of EC.

3.6 | vCAFs facilitated the malignant progression
of endometrial cancer and was a poor prognostic
factor

We next analysed public endometrial carcinoma (EC) data from TCGA

(https://cancergenome.nih.gov/) to investigate the clinical value of

gene expression patterns in different types of CAFs. Due to the hetero-

geneity of CAFs, the DEGs of four CAFs were applied for consistent

clustering, respectively (Figures 5A and S9A), and the survival analysis

showed that the three clusters determined by vCAF resulted in signifi-

cant differences in survival (Figure 5B). The ESTIMATE score was

derived by combined Stromal score and Immune score to predict the

tumour purity.24 The C3 cluster with the lowest stroma score calcu-

lated using the Estimate R package was associated with prolonged sur-

vival (Figure 5C). In addition, classic stromal markers, such as COL6A3,

COL6A1, COL3A1, C11orf96, TIMP1, LUM and PTGDS, were

F IGURE 5 Prognostic significance of vCAF. (A) Heatmap showing the clustering result for the value of consensus clustering based on the
vCAF markers; (B) Kaplan-Meier survival analysis of tumour samples grouped in A; (C) Violin plots showing the estimated scores of TME in each
cluster, (*p < 0.05, **p < 0.01, ***p < 0.001); (D) The expression level of classic stroma markers in each cluster; (E) Kaplan-Meier survival curve of
the prognostic model for TCGA EC patients; (F) Time-dependent ROC curves of the prognostic model for 1-,3- and 5-year overall survival in EC;
(G) The infiltrating immune cells in different cluster
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expressed at relatively lower levels in the C3 cluster than in the other

clusters (Figure 5D). However, the clinicopathological information indi-

cated that the C3 cluster had worse differentiation and later stages

(Figure S9B). Univariate and subsequent multivariate Cox regression

analyses were applied to construct the prognostic model and better

explore the prognostic value of vCAFs (Figure S9C). Based on the

results of Kaplan–Meier survival analysis, patients in the low-risk group

experienced a significantly longer OS than those in the high-risk group

(Figure 5E), and we also performed a ROC curve analysis to evaluate

the predictive accuracy of our prognostic model (Figure 5F). Moreover,

the prognostic model was indicated to be an independent factor for

conventional clinical characteristics (Figure S9D). Interestingly, we

found that the tumour microenvironment of the C3 cluster contained

more infiltrating CD8+ T cells, consistent with a previous study show-

ing that the stromal component may impede immune cell infiltration

(Figures 5G and S9E).25,26 These results revealed that the existence of

vCAFs was a poor prognostic factor for EC patients.

4 | DISCUSSION

Tumour heterogeneity is one of the reasons that leads to treatment

failure.27 In this study, scRNA-seq was applied to comprehensively

delineate the heterogeneity and intratumor crosstalk of human ECs at

single-cell resolution. This granularity of analysis facilitated identifica-

tion of subtype of CAF (vCAF) as an independent characteristic of a

worse prognosis. We also determined that the characteristics of the

immune microenvironment varied between different patients with

EC. In addition, malignant cells may induce an immunosuppressive

microenvironment by interacting with exhausted T cells, potentially

driving resistance to PD-1/PD-L1-based immunotherapy.28

The TME, also termed the tumour stroma or tumour mesenchyme,

is composed of fibroblasts, inflammatory cells, blood vessels, extracellu-

lar matrix (ECM) and basement membrane. These components interact

with tumour cells to ensure the relative homeostasis of the TME. Previ-

ous studies have elucidated that the desmoplastic reaction in the TME

is an unfavourable prognostic indicator for patients with colorectal can-

cer, intrahepatic cholangiocarcinoma and endometrial cancer.29–31

However, the heterogeneity of CAFs makes this conclusion controver-

sial because different types of CAFs may have opposite functions.32,33

Hutton et al. distinguished two pancreatic fibroblast lineages with

distinct functions using mass cytometry, concluding that CD105pos

fibroblasts are tumour permissive, whereas CD105neg fibroblasts

suppress tumour growth in a manner dependent on adaptive immunity.34

Most previous studies have focused on the protumorigenic functions of

CAFs based on coculture or coimplantation with cancer cells in vitro and

in vivo, while this topic remains unelucidated in EC.35–37 The roles of

different types of CAFs in disease progression and prognosis must be

clarified, and future studies will address this critical point.

The advent of single-cell sequencing has facilitated a deeper under-

standing of the complex TME at single-cell resolution. Four types of

CAFs with different characteristics were defined in our study through

single-cell sequencing. By combining our results with those from public

databases, we identified that vCAFs were an independent risk factor

for EC in part because they restrained the infiltration of immune cells.

Min Zhang et al. verified the existence of CD146+ vCAFs that exhibited

close interactions with intrahepatic cholangiocarcinoma (ICC) cells

through the IL-6/IL-6R interaction.11 Although we highlighted the role

of vCAFs in the progression of EC, important roles for other types of

CAFs could not be excluded. Recent studies have reported that mCAFs,

iCAFs and apCAFs play crucial roles in tumour aggression and overall

survival through various mechanisms.38–40 However, the results need

to be validated in an independent dataset in future.

Taken together, our findings revealed a comprehensive trans-

criptomic landscape of human EC and confirmed the prognostic signifi-

cance of vCAFs, which may provide deeper insights into cancer therapy.
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