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Abstract Background:
To determine whether gene-gene interaction network analysis of RNA sequencing (RNA-Seq) of
synovial biopsies in early rheumatoid arthritis (RA) can inform our understanding of RA pathogenesis
and yield improved treatment response prediction models.



Methods:
We utilized four well curated pathway repositories obtaining 10,537 experimentally evaluated gene-
gene interactions. We extracted specific gene-gene interaction networks in synovial RNA-Seq to
characterize histologically defined pathotypes in early RA and leverage these synovial specific gene-
gene networks to predict response to methotrexate-based disease-modifying anti-rheumatic drug
(DMARD) therapy in the Pathobiology of Early Arthritis Cohort (PEAC). Differential interactions
identified within each network were statistically evaluated through robust linear regression models.
Ability to predict response to DMARD treatment was evaluated by receiver operating characteristic
(ROC) curve analysis.
Results:
Analysis comparing different histological pathotypes showed a coherent molecular signature matching
the histological changes and highlighting novel pathotype-specific gene interactions and mechanisms.
Analysis of responders vs non-responders revealed higher expression of apoptosis regulating gene-gene
interactions in patients with good response to conventional synthetic DMARD. Detailed analysis of
interactions between pairs of network-linked genes identified the SOCS2/STAT2 ratio as predictive of
treatment success, improving ROC area under curve (AUC) from 0.62 to 0.78. We identified a key role
for angiogenesis, observing significant statistical interactions between NOS3 (eNOS) and both CAMK1
and eNOS activator AKT3 when comparing responders and non-responders. The ratio of
CAMKD2/NOS3 enhanced a prediction model of response improving ROC AUC from 0.624 to 0.726.
Conclusions:
We demonstrate a novel, powerful method which harnesses gene interaction networks for leveraging
biologically relevant gene-gene interactions leading to improved models for predicting treatment
response.

Keywords (separated by '-') Rheumatoid arthritis - RNA sequencing - Synovial biopsy - Network analysis - Pathobiology of Early
Arthritis Cohort study (PEAC)
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RESEARCH

Network analysis of synovial RNA 
sequencing identifies gene-gene interactions 
predictive of response in rheumatoid arthritis
Elisabetta Sciacca1,2, Anna E. A. Surace1,2, Salvatore Alaimo3, Alfredo Pulvirenti3, Felice Rivellese1, 
Katriona Goldmann1,2, Alfredo Ferro3, Vito Latora4,5, Costantino Pitzalis1* and Myles J. Lewis1,6* 

Abstract 

Background:  To determine whether gene-gene interaction network analysis of RNA sequencing (RNA-Seq) of syno-
vial biopsies in early rheumatoid arthritis (RA) can inform our understanding of RA pathogenesis and yield improved 
treatment response prediction models.

Methods:  We utilized four well curated pathway repositories obtaining 10,537 experimentally evaluated gene-gene 
interactions. We extracted specific gene-gene interaction networks in synovial RNA-Seq to characterize histologically 
defined pathotypes in early RA and leverage these synovial specific gene-gene networks to predict response to meth-
otrexate-based disease-modifying anti-rheumatic drug (DMARD) therapy in the Pathobiology of Early Arthritis Cohort 
(PEAC). Differential interactions identified within each network were statistically evaluated through robust linear 
regression models. Ability to predict response to DMARD treatment was evaluated by receiver operating characteristic 
(ROC) curve analysis.

Results:  Analysis comparing different histological pathotypes showed a coherent molecular signature matching 
the histological changes and highlighting novel pathotype-specific gene interactions and mechanisms. Analysis of 
responders vs non-responders revealed higher expression of apoptosis regulating gene-gene interactions in patients 
with good response to conventional synthetic DMARD. Detailed analysis of interactions between pairs of network-
linked genes identified the SOCS2/STAT2 ratio as predictive of treatment success, improving ROC area under curve 
(AUC) from 0.62 to 0.78. We identified a key role for angiogenesis, observing significant statistical interactions between 
NOS3 (eNOS) and both CAMK1 and eNOS activator AKT3 when comparing responders and non-responders. The ratio 
of CAMKD2/NOS3 enhanced a prediction model of response improving ROC AUC from 0.624 to 0.726.

Conclusions:  We demonstrate a novel, powerful method which harnesses gene interaction networks for leveraging 
biologically relevant gene-gene interactions leading to improved models for predicting treatment response.
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Background
Differential gene expression analysis is a common start-
ing point for many gene expression studies. However, this 
only reveals differences at the level of individual genes. 
The identification of statistical interactions between 
pairs of genes can enhance understanding of biological 
processes and functional mechanisms which are active 
within tissues. However, the large number (20,000-
50,000) of expressed genes detectable by RNA-Seq ren-
ders analysis of all possible gene-gene correlations (of 
the order of 109) computationally time consuming and 
confounded by substantial numbers of false positive 
gene-gene pairs which are biologically and functionally 
unrelated.

In the current study, we developed a novel network tool 
integrating information from four pathway repositories 
[1–4] obtaining 10,537 gene-gene interactions. The gene-
gene interactions include protein-protein interactions 
which have been reported from experiments in the litera-
ture including co-immunoprecipitation, yeast-2-hybrid 
and direct molecular biology studies, as well as gene-
gene interactions based on integration of microRNA and 
transcriptome data [5]. This network tool was applied to 
RNA-Seq data on synovial biopsies and blood samples 
from early rheumatoid arthritis (RA) patients to char-
acterize statistical differences in gene-gene interactions 
between histologically defined RA subgroups known 
as pathotypes [6, 7] and between responders and non-
responders to conventional synthetic disease-modifying 
anti-rheumatic drugs (csDMARD).

Patients treated with csDMARD are often subject to 
lack of treatment efficacy [8, 9]. Several studies have tried 
to predict patients’ responsiveness based on synovial 
gene expression, mostly from joint replacement tissue. 
However, the presence of concomitant immunosuppres-
sive medications and use of microarrays are major limita-
tions of these studies [10–13].

For these reasons in the present work, we used RNA-
seq data from the Pathobiology of Early Arthritis Cohort 
[6] where synovial biopsies and blood samples were taken 
from a cohort of 94 early, treatment-naïve RA patients. 
In this cohort, Lewis et al. [6] identified three histologi-
cal and molecular subgroups characterized by (i) B cell 
infiltration (lympho-myeloid pathotype), (ii) macrophage 
infiltration (diffuse-myeloid pathotype), and (iii) absence 
of immune cells with stromal cell predominance (pauci-
immune fibroid pathotype). In the present study, we use a 
novel network approach to identify functionally relevant 

gene-gene interactions that were not highlighted before 
and which are for the first time associated with response 
to csDMARD at 6 months through robust linear mode-
ling incorporating interaction terms. While the previous 
study could not derive any prediction model using single 
gene expressions, here we demonstrate that the use of 
a new, network-based tool can detect significant gene-
gene pairs that improved predictive models of response 
to csDMARD treatment as tested by receiver operating 
characteristic (ROC) curve analysis.

Methods
This study used the dataset described in Lewis et al. [6, 
7] where RNA-Seq data from 94 early, treatment-naïve 
RA patients fulfilling the 2010 ACR/EULAR criteria was 
collected. Eleven samples had ungraded histopathol-
ogy or were removed due to poor RNA quality, leaving 
83 samples with RNA-Seq and matched histology in the 
present study (Table  1). Patients were stratified follow-
ing the same histopathological classification described 
in the previous work [5]: lympho-myeloid, diffuse-mye-
loid, and pauci-immune. After a baseline synovial biopsy 
and blood sample collection (treatment-naïve), patients 
underwent 6  months of methotrexate-based csDMARD 
therapy. Responsiveness was assessed according to 
DAS28 EULAR criteria. Our study compared both histo-
pathological and treatment response groups, with sepa-
rate analyses run for each classification (Table 1).

The analytical pipeline summarized in Fig.  1A shows 
the steps through which informative gene networks and 
predictive gene pairs were extracted for each classifica-
tion. In brief, an extensive network of curated protein-
protein and gene-gene interactions was built by merging 
KEGG pathways with micro-RNA and transcription fac-
tor databases [5]. The network was replicated for each 
subgroup and average gene expressions were used to 
infer weights on network nodes. Networks were then 
filtered by weight removing genes with mean expres-
sion under the 75th percentile. Adjacent gene-gene pairs 
within the network overlapping across subgroups were 
also removed, thus revealing subgroup-specific networks 
where statistical significance of the gene-gene links was 
then assessed using robust linear regression on RNA-
Seq gene expression data. When running this pipeline 
for DAS28-ESR EULAR response categorization, path-
way linked gene-gene pairs which demonstrated a sta-
tistically significant interaction in a linear model were 
subsequently selected for incorporation into a logistic 

Keywords:  Rheumatoid arthritis, RNA sequencing, Synovial biopsy, Network analysis, Pathobiology of Early Arthritis 
Cohort study (PEAC)
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regression model to predict EULAR response. See sup-
plementary methods for full details of methods at each 
stage of the analysis pipeline. For comparison, predic-
tive models on synovial RNA-Seq were compared with 
blood RNA-Seq in matched patients (n = 67), of which 
59 patients had matched histology. Genotyping was per-
formed as previously described [14]. HLA imputation is 
described in the Supplementary methods.

Results
Lympho‑myeloid pathotype gene network is associated 
with leukocyte chemokines, chemoattractants and antigen 
processing
Synovial biopsies from patients with RA demonstrate 
distinctive histological pathotypes associated with cor-
responding gene signatures [6, 7]. In the present analy-
sis gene-gene interaction networks specific for the 

Table 1  Baseline demographics of treatment-naïve RA patients recruited into the Pathobiology of Early Arthritis Cohort (PEAC)

Lymphoid (N = 49) Myeloid (N = 18) Fibroid (N = 16) Total (N = 83) p-value

Age (years) 52.3 (16.2) 50.4 (16.5) 53.2 (15.0) 52.1 (15.9) 0.865

Gender 0.608

  F 37 (75.5%) 12 (66.7%) 13 (81.2%) 62 (74.7%)

  M 12 (24.5%) 6 (33.3%) 3 (18.8%) 21 (25.3%)

Disease duration 
(months)

5.9 (3.3) 4.8 (2.6) 7.0 (3.5) 5.8 (3.3) 0.152

RF 0.203

  pos 32 (69.6%) 9 (52.9%) 7 (46.7%) 48 (61.5%)

  neg 14 (30.4%) 8 (47.1%) 8 (53.3%) 30 (38.5%)

CCP 0.025

  pos 39 (84.8%) 10 (55.6%) 9 (60.0%) 58 (73.4%)

  neg 7 (15.2%) 8 (44.4%) 6 (40.0%) 21 (26.6%)

DAS28 6.2 (1.2) 5.6 (1.2) 5.2 (1.6) 5.8 (1.3) 0.029

ESR (mm/hr) 50.9 (28.1) 37.6 (25.4) 30.8 (27.7) 44.1 (28.4) 0.025

CRP (μg/mL) 25.0 (26.5) 17.5 (26.0) 14.4 (41.7) 21.3 (29.9) 0.395

TJC 12.6 (7.2) 9.9 (6.3) 10.9 (8.9) 11.7 (7.4) 0.396

SJC 8.4 (5.7) 7.1 (4.3) 5.2 (5.0) 7.5 (5.4) 0.116

VAS 67.9 (24.0) 61.1 (21.7) 57.8 (27.1) 64.5 (24.2) 0.287

HAQ 1.6 (0.8) 1.4 (0.6) 1.6 (0.8) 1.5 (0.7) 0.499

DAS28 EULAR 0.603

  Good 15 (36.6%) 4 (30.8%) 7 (53.8%) 26 (38.8%)

  Moderate 20 (48.8%) 8 (61.5%) 4 (30.8%) 32 (47.8%)

  None 6 (14.6%) 1 (7.7%) 2 (15.4%) 9 (13.4%)

Fig. 1  Network analysis of synovial RNA sequencing in early RA reveals gene-gene interactions uniquely linked to the lympho-myeloid pathotype. 
A Analytical pipeline using network approach to extract informative networks and predictive gene pairs from RNA-seq profiles. Having defined 
subgroups of patients, an extensive network of interactions is built using merged KEGG pathways enriched with micro-RNAs and transcription 
factors. The network is replicated for each subgroup and the average expression level of each gene in a subgroup is used to infer a weight on 
each network node. A first filtering step removes, from each network, nodes (genes) whose weight (subgroup average expression level) is below 
an optimal threshold obtained via percolation analysis. The second filtering step pull out links (gene-gene interactions) overlapping two or more 
networks. Robust linear regression with interaction term is used to extract significant gene-gene links. A logistic regression model is built for each 
significant gene-gene pair to predict response. Ability to predict response is tested by receiver operating characteristic (ROC) curve analysis. B 
Network of unique active interactions in the lympho-myeloid pathotype. Clusters LM1-LM4. Selected clusters of interest. Labels are determined 
by gene ontology (GO)/pathway enrichment analysis. Percentages indicate the number of cluster genes included in the associated GO/pathway 
term. Cluster LM1. Cluster of chemokines needed for leukocyte recruitment (93.5% enrichment). Cluster LM2. Antigen processing and presentation 
with T cell activation genes (100% enrichment). Cluster LM3. Group of focal adhesion genes comprising collagens, integrins and laminins (93.9% 
enrichment). Cluster LM4. TNF signaling through mTOR (48.8% enrichment). Cluster LM5. Interferon regulation signaling (87.5% enrichment). Cluster 
LM6. Genes of the intrinsic and extrinsic apoptotic pathways (50.8% enrichment). C Correlation plots showing differential gene-gene correlations 
with interactions associated with pathotype. Statistical analysis by robust linear regression model. p-value of the gene to pathotype interacting term 
is shown. Correlation plots of gene pairs CD28 and PIK3R1, CD79A and LYN, and TNC and ITGB7 across different pathotypes

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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lympho-myeloid, diffuse myeloid and pauci-immune 
fibroid pathotypes were generated (Fig.  1A, see Sup-
plementary Methods for more detail). In Fig. 1B, the six 
most prominent clusters of the lympho-myeloid specific 
network are shown (full network Fig. S1). Gene ontol-
ogy (GO) enrichment analysis was employed to label 
gene clusters associated with chemokine signaling (LM1), 
antigen processing/presentation (LM2), focal adhesion 
(LM3), tumor necrosis factor (TNF) signaling (LM4), 
retinoic acid-inducible gene (RIG)-I-like receptor signal-
ing (LM5), and apoptosis (LM6).

The presence of multiple chemokine signaling elements 
including CCR1 and its ligands CCL5 and CCL14, CCR2 
together with its ligand CCL2 and CCR7 and its ligands 
CCL19 and CCL21, suggests that local activation and 
recruitment of lymphocytes to inflamed joints is a central 
feature of the lympho-myeloid pathotype (Fig. 1B, cluster 
LM1) [15, 16].

The lympho-myeloid network contained LM2, an anti-
gen processing and presentation cluster (Fig.  1B) with 
prominence of T cell genes including CD8A with dif-
ferent major histocompatibility complex (MHC) class I 
genes and T cell activation genes (CD247, ZAP70, CD28, 
CD86). Using a robust linear model, the lympho-myeloid 
pathotype showed a significant difference (p = 0.00016) 
in correlation between CD28 and the class I phospho-
inositide 3-kinase (PI3K) signaling regulator PIK3R1, 
which is important for T cell function downstream of 
CD28, when compared to the other two pathotypes. B 
cell recruitment and stimulation was also implied by the 
presence of CXCL13 and the CD79A-LYN link (Fig.  1B, 
cluster LM1). Phosphorylation of the B cell receptor 
binding CD79a by Lyn kinase is an initial event in B cell 
receptor engagement. Differential correlation between 
LYN and CD79A was observed in the lympho-myeloid 
subgroup (p = 0.0012) compared to the diffuse-myeloid 
and pauci-immune fibroid subgroups (Fig. 1C, Table S1).

Invasion and migration of cells requires interaction 
with the extracellular matrix through macromolecu-
lar assemblies known as focal adhesions. Cluster LM3 
(Fig. 1B) included multiple focal adhesion genes includ-
ing collagens, laminins, integrins, and Tenascin C (TNC), 
which plays an important role in the development 
and regeneration of articular cartilage [17] and whose 

interaction with integrins has been widely studied in can-
cer [18]. Correlation between ITGB7 and TNC was poor 
in the diffuse-myeloid and pauci-immune fibroid sub-
groups but significantly stronger in the lympho-myeloid 
subgroup (p = 0.027).

Other active pathways in the lympho-myeloid patho-
type included NF-kB and mammalian target of rapa-
mycin (mTOR) signaling as part of chemokine and TNF 
signaling (Fig. 1B, clusters LM1 and LM4), and RIG-I-like 
receptor signaling centered around inhibitor of nuclear 
factor kappa B kinase subunit epsilon (IKBKE) (cluster 
LM5). Increased cell turnover in the lympho-myeloid 
pathotype is suggested by cluster LM6 which contained 
intrinsic and extrinsic apoptosis-related genes TRAF2, 
BAD, BAK, BCL2, and cytotoxic T cell marker GZMB 
(granzyme B).

Macrophage activation and T cell activation underlie 
the diffuse‑myeloid pathotype gene network
The diffuse-myeloid specific network was of much 
smaller size (Fig. 2A, full network Fig. S2) after common 
links were removed, which may reflect the fact that this 
subgroup has overlapping characteristics with both of 
the other two pathotypes. On one hand, this category is 
characterized by the infiltration of macrophages, which 
are also present in the lympho-myeloid subgroup; on the 
other hand, the absence of B and plasma cell aggregates 
is a feature in common with the pauci-immune fibroid 
pathotype.

One cluster with the same associated GO term as 
observed in the lympho-myeloid subgroup was for focal 
adhesion (Fig.  2A, cluster DM1), consistent with the 
role of integrins in macrophage infiltration into tissues. 
Uniquely for the diffuse-myeloid pathotype, genes from 
the PPAR (peroxisome proliferator-activated receptor) 
signaling pathway, which is involved in fatty acid stor-
age and has been linked to pathological synovial inflam-
mation in RA [19–21], were observed in this network 
(Fig. 2A, cluster DM2). PPAR-γ (PPARG​), which is criti-
cal for macrophage reprogramming [22], and surround-
ing network genes including adiponectin (ADIPOQ) and 
its receptor (ADIPOR2) are significantly upregulated in 
the diffuse-myeloid pathotype specifically.

(See figure on next page.)
Fig. 2  PPAR-γ signaling is key driver of the diffuse-myeloid pathotype while Wnt/Notch signaling pathways characterize the pauci-immune 
fibroid pathotype. A Network of unique active interactions in the diffuse-myeloid pathotype. Cluster DM1. Extracellular matrix genes for focal 
adhesion (75.6% enrichment). Cluster DM2. Cluster of PPAR signaling pathway (78.6% enrichment). B Network of unique active interactions in the 
pauci-immune fibroid pathotype. Cluster PF1. Group of focal adhesion genes comprising collagens, integrins and laminins (93.3% enrichment). 
Cluster PF2. Cluster of genes of the Ras signaling pathway (76.6% enrichment). Cluster PF3. Clusters of Notch-, Wnt- and TGF-beta signaling (95.8% 
enrichment). Cluster PF4. Cytokine-cytokine interaction of pro-inflammatory genes (100% enrichment). C Correlation plots showing differential 
gene-gene correlations with interactions associated with pathotype. Statistical analysis by robust linear regression model. p-value of the gene to 
pathotype interacting term is shown. Regression plot of ITGAV and LAMA3, WNT11 and SFRP2 in different pathotypes
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Fig. 2  (See legend on previous page.)
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The Wnt signaling pathway characterizes 
the pauci‑immune fibroid pathotype network
Compared to the diffuse-myeloid pathotype, the pauci-
immune fibroid pathotype had a more extensive net-
work (Fig.  2B, full network Fig. S3). Extracellular 
matrix genes including collagens (COL1A1, etc.) and 
laminins (LAMB1/2, etc.) were present as an overlap-
ping theme across all three pathotypes in fibroid clus-
ter PF1 (Fig. 2B), lympho-myeloid cluster LM3 (Fig. 1B) 
and diffuse-myeloid cluster DM1 (Fig.  2A), with differ-
ent integrins (ITGA4, ITGB7, ITGB3, ITGA10) as hubs. 
Of these, the fibroid hub ITGA10 is highly expressed by 
chondrocytes [23] and selectively binds collagen [24]. 
Significant statistical interactions across pathotypes were 
observed for correlations of ITGA10 and several neigh-
boring gene nodes (Fig. S4). Another hub node, chon-
droadherin (CHAD), is a cartilage matrix protein that 
promotes attachment of chondrocytes, fibroblasts, and 
osteoblasts [25]. CHAD was most strongly correlated 
with ITGA10, ITGB4, and ITGA3 in the lympho-myeloid 
pathotype (Fig. S5). Among the genes linked to laminin 
alpha-3 (LAMA3), the integrin subunit alpha V (ITGAV) 
is of particular interest since polymorphisms of this 
gene have been associated with both angiogenesis [26] 
and susceptibility to RA [27]. In our data, its interaction 
with LAMA3 showed negative correlation in the pauci-
immune fibroid subgroup in contrast to the other two 
pathotypes (Fig. 2C). These results suggest that ITGA10, 
ITGAV, CHAD, and LAMA3 play central roles in differ-
entiating the pathotypes.

In a separate cluster PF2 we observed several nodes 
related to the Ras signaling pathway (Fig. 2B), comprising 
epidermal, fibroblast, nerve, vascular endothelial, insulin-
like and platelet-derived growth factors, associated with 
signaling molecules through Src, MAPK, and PI3K. Fibro-
blast related pathways were found in cluster PF6 linked to 
transforming growth factor (TGF)-beta and Wnt signal-
ing pathway (cluster PF3), which included the secreted 
frizzled related proteins SFRP1 and SFRP2. SFRP1 and 2 
are Wnt inhibitors which show reduced expression in RA 
[28, 29] synovium. Hence, it is notable that we found a 
stronger positive correlation between SFRP2 and WNT11 
in the fibroid pathotype (Fig. 2C).

Another cluster of major interest was found around 
the pro-inflammatory cytokine Interleukin (IL)-17D 
in cytokine-cytokine receptor interaction cluster PF4 
(Fig.  2B). IL-17 family members are involved in RA 
pathogenesis and IL17D is expressed in rheumatoid 
nodules [30]. Cluster PF4 comprised cytokine recep-
tors playing key roles in RA, implicating pro-inflam-
matory activation of fibroblasts and stromal cells in the 
fibroid pathotype given the absence of immune effector 
cells. Key transcription factors identified in the fibroid 

specific network included RUNX1, AKT, FOXO1A, and 
mTOR (Table  2). In summary, these analyses revealed 
functional links between genes characterizing core 
biological differences which shape each of the three 
pathotypes.

Apoptosis genes characterize the good‑response network
We performed a separate analysis to identify gene net-
works related to treatment outcome. To allow a cleaner 
definition of response signatures we excluded sam-
ples classified as moderate responders in this phase of 
the analysis. Synovial gene expression of patients who 
responded well to csDMARD was associated with a rela-
tively small gene network (Fig. 3A, full network Fig. S6). 
The most prominent cluster was centered around B cell 
lymphoma 2 (BCL2) with genes linked to PI3K-Akt sign-
aling (Fig.  3A, cluster R1). Edges to this node included 
other cell death regulating genes (BAX, BAD, BAK1), 
multiple cathepsins (CTSB, CTSS, CTSK) needed for cas-
pase activation, as well as STAT and mitogen-activated 
protein (MAP) kinase signaling genes. Additional clusters 
of genes linked to the good-responder group consisted 
of alpha and gamma chain laminin genes (cluster R2) 
and key chemokines and chemokine receptors including 
CCL19 and CXCL13 (cluster R3).

Activation of the SOCS2‑STAT2 negative feedback loop 
is predictive of good response to csDMARD
Among links characterizing the good-responder group, 
the SOCS2-STAT2 link is of particular interest. Sup-
pressor of cytokine signaling 2 (SOCS2) is one of a fam-
ily of negative regulators of cytokine receptor signaling 
that acts on the JAK/STAT​ pathway. Regression analysis 
revealed differential correlation of SOCS2 and STAT2 
between responders and non-responders (p = 0.015, 
Fig. 3B, Table S4). Following on from this observation, we 
fitted a logistic regression model to predict response as 
a function of the two genes. After evaluation of possible 
confounding factors, we added age as an additive covari-
ate to the linear model (Table S6). The interaction term 
(the gene ratio between STAT2 and SOCS2) was signifi-
cant (p = 0.010) as observed in a plot of the regression 
model dichotomizing STAT2 expression at ± 1 standard 
deviation (Fig. 3C). ROC curve analysis of the ability of 
the model to predict response found that the combined 
model incorporating SOCS2, STAT2, and STAT2/SOCS2 
ratio showed an area under the curve (AUC) value of 0.87 
(Fig. 3D). Removal of the STAT2/SOCS2 ratio term from 
the linear model resulted in a substantial drop in AUC 
to 0.71, confirming that the gene ratio interaction term 
strongly improved the predictive ability of the model.
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Endothelial activation genes link to differential 
responsiveness to DMARD therapy
The gene expression network specific to the non-
responder group showed similarities to the lympho-
myeloid gene network as we obtained cluster NR1 of 

class I human leukocyte antigen (HLA) genes linked by 
pathway analysis to antigen presentation (Fig.  4A, full 
network Fig. S7) and cluster NR2 of leucocyte attract-
ing chemokine genes around nodes CCR2 and CXCR5. 
The B cell mediator activity of CXCR5 is known to be 

Table 2  GO/pathway enrichment analysis on network clusters

Enrichment terms marked with an asterisk (a) are unique across pathotypes, those marked with a dagger (b) are unique among good/poor responders

Network Cluster Enrichment term Nr. of associated 
genes

% of associated 
genes

Adj p-value

Lympho-myeloid LM1 Chemokine signaling pathwaya 29/31 93.5 6.49e−55

LM2 Antigen processing and presentationa 6/6 100.0 5.78e−14

LM3 Focal adhesion 31/33 93.9 2.54e−58

LM4 TNF signaling pathwaya 20/41 48.8 3.72e−32

LM5 RIG-I-like receptor signaling pathwaya 7/8 87.5 1.19e−15

LM6 Apoptosisa 33/65 50.8 2.74e−52

LM7 MAPK signaling pathwaya 44/71 62.0 1.4e−59

LM8 Wnt signaling pathway 13/16 81.2 7.56e−24

LM9 positive regulation of interleukin-8 productiona 6/12 50.0 5.92e−09

LM10 Interleukin-2 family signalinga 3/3 100.0 2.46e−07

LM11 disulfide oxidoreductase activitya 4/4 100.0 1.27e−09

Diffuse-myeloid DM1 Focal adhesion 34/45 75.6 7.1e−57

DM2 PPAR signaling pathwaya 22/28 78.6 1.11e−47

DM3 Dopaminergic synapsea 23/30 76.7 8.94e−43

DM4 EPHA-mediated growth cone collapsea 3/3 100.0 3.78e−08

DM5 Cam-PDE 1 activationa 4/4 100.0 1.41e−13

DM6 Adherens junctiona 5/6 83.3 1.35e−08

Pauci-immune Fibroid PF1 Focal adhesion 42/45 93.3 2.06e−79

PF2 Ras signaling pathwaya 49/64 76.6 1.09e−79

PF3 Wnt signaling pathway 23/24 95.8 1.2e−12

PF4 Cytokine-cytokine receptor interactiona 18/18 100.0 4.41e−37

PF5 VEGFR2 mediated vascular permeabilitya 4/7 57.1 1.07e−06

PF6 Regulation of RUNX1 Expression and Activitya 3/3 100.0 1.59e−07

PF7 TGF-beta signaling pathwaya 9/14 64.3 6.25e−17

PF8 mTOR signalinga 6/6 100.0 7.35e−16

PF9 Adrenergic signaling in cardiomyocytesa 9/11 81.8 5.71e−16

PF10 Vascular smooth muscle contractiona 12/19 63.2 2.75e−20

Good Responders R1 PI3K-Akt signaling pathwayb 34/64 53.1 3.76e−39

R2 ECM-receptor interactionb 7/7 100.0 2.74e−16

R3 Chemokine receptors bind chemokinesb 6/6 100.0 1.07e−15

R4 MAP2K and MAPK activationb 5/7 71.4 1.91e−10

R5 disulfide oxidoreductase activityb 4/4 100.0 1.27e−09

R6 Triglyceride catabolismb 3/3 100.0 3.77e−08

R7 Cam-PDE 1 activationb 4/4 100.0 1.41e−13

Non Responders NR1 Antigen processing and presentationb 6/6 100.0 5.78e−14

NR2 Chemokine signaling pathwayb 25/25 100.0 1.6e−49

NR3 Wnt signaling pathwayb 23/31 74.2 1.02e−16

NR4 VEGFR2 mediated vascular permeabilityb 7/18 38.8 3.12e−14

NR5 Olfactory transductionb 32/50 64.0 6.9e−10

NR6 RIG-I-like receptor signaling pathwayb 5/6 83.3 4.88e−31

NR7 Platelet activation, signaling and aggregationb 24/39 61.5 1.34e−17
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initiated by G-protein family genes and particularly 
depends upon the availability of Gαi2 and Gαi3. GNAI3, 
which encodes Gαi3, showed differential correlation with 
CXCR5 when comparing non-responders to responders 
(Fig. 4B). The non-responder network also showed a Wnt 
signaling cluster (NR3) analogous to cluster PF3 in the 

pauci-immune fibroid network, and an angiogenesis clus-
ter, NR4, centered around NOS3 (nitric oxide synthase 3, 
eNOS) with surrounding genes linked by pathway analy-
sis to VEGFR2-mediated vascular permeability. Vascu-
lar endothelial growth factor (VEGF) can activate eNOS 
either through Ca2+/calmodulin or by kinase-mediated 

Fig. 3  Apoptosis and SOCS/STAT signaling differentiate responders to methotrexate-based therapy from non-responders. A Network of unique 
active interactions in conventional synthetic DMARD responders. Cluster R1. Cell survival genes part of the PI3K-Akt signaling pathway (53.1% 
enrichment). Cluster R2. Extracellular matrix receptor genes (100% enrichment). Cluster R3. Chemokines receptors binding chemokines (100% 
enrichment). B Robust linear regression of SOCS2 and STAT2 with interaction term associated with response. p-value of the gene to response 
interacting term is shown. C Logistic regression of response as a function of SOCS2 and STAT2. p-value of the response to gene interacting term is 
shown. Expression of STAT2 is dichotomized at ± 1 standard deviation. D Receiver operating characteristic curve analysis of the response prediction 
ability of the robust linear model incorporating the ratio term (black line) or not (dotted blue line)

(See figure on next page.)
Fig. 4  Gene pair interactions linked to endothelial activation and Akt signaling enhance prediction of response to methotrexate-based therapy. A 
Network of unique active interactions in conventional synthetic DMARD poor responders. Cluster NR1. Antigen processing and presentation cluster 
(100% enrichment). Cluster NR2. Genes of the chemokine signaling pathway (100% enrichment). Cluster NR3. Cluster associated to Wnt signaling 
pathway (74.2% enrichment). Cluster NR4. Cluster linked to VEGFR2 mediated vascular permeability (38.8% enrichment). Red boxes highlight 
predictive gene pairs. B–E, H, L Robust linear regression with interaction term associated with response for B GNAI3 and CXCR5 C NOS3 and CAMK1, 
D NOS3 and AKT3 E AKT1 and PPP2R3B, H NOS3 and CAMK2D, L ATP1B1 and PIK3CD. p-values of the interacting terms are shown. F, I, M Logistic 
regression of response as a function of F AKT1 and PPP2R3B, I NOS3 and CAMK2D, M ATP1B1 and PIK3CD. p-values of the response to gene interacting 
term are shown. Expression of the second gene is dichotomized at ± 1 standard deviation. G, J, N Receiver operating characteristic (ROC) curve 
analysis of the of robust linear model ability to predict response using G AKT1 and PPP2R3B J NOS3 and CAMK2D N ATP1B1 and PIK3CD. All plots 
show a ROC curve for both the model including the gene-gene ratio interaction term (in black) and the equivalent model excluding the ratio
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Fig. 4  (See legend on previous page.)
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phosphorylation [31]. We observed a molecular signature 
for both processes, with differential correlation between 
NOS3 and CAMK1 (calcium/calmodulin-dependent pro-
tein kinase I) or AKT3 (AKT serine/threonine kinase 3) 
with evidence of statistical interaction between respond-
ers and non-responders (p = 0.036 and p = 0.016 respec-
tively, Fig.  4C, D). AKT1, a member of the same AKT 
family that activates NOS3, was also found to be corre-
lated with its regulator PPP2R3B (protein phosphatase 2 
regulatory subunit B”beta). Statistical analysis by robust 
linear regression showed a significant interaction term 
between response and gene expression when comparing 
response categories (p = 0.0096, Fig. 4E). A logistic model 
incorporating AKT1, PPP2R3B, and the ratio between 
the two genes was highly predictive of response (Fig. 4F), 
reaching an AUC of 0.81 (Fig.  4G). Another Ca2+/
calmodulin-dependent kinase gene, CAMK2D, dem-
onstrated differential interaction with NOS3 between 
responders and non-responders (p = 0.022, Fig.  4H). 
The NOS3/CAMK2D ratio was found to be a significant 
term (p = 0.00904) in a logistic model for prediction of 
response to csDMARD (Fig.  4I) with an AUC of 0.73, 
which fell to 0.62 if the NOS3/CAMK2D ratio term was 
excluded (Fig. 4J).

Another noteworthy process involved the class I phos-
phoinositide 3-kinase (PI3K) gene PIK3CD primar-
ily found in leukocytes. Correlation between PIK3CD 
and ATP1B1 differed significantly between respond-
ers and non-responders (p = 0.048, Fig.  4L). A logistic 
regression model fitted to predict response outcome 
showed a significant interaction term (p = 0.0339) for 
PIK3CD/ATP1B1 ratio (Fig.  4M). The ability of this 
model in predicting response outcome was good with an 
AUC of 0.75 (Fig. 4N), which dropped to 0.62 if the inter-
action term was excluded.

HLA‑DRB1 alleles did not show link to differential 
responsiveness to DMARD therapy
It is well known that specific HLA alleles are the most 
important genetic risk factors to develop anti-citrul-
linated autoantibody-positive RA [32]. As mentioned 
above, HLA genes were observed in both the lympho-
myeloid and the non-responder specific networks. Fur-
thermore, anti-CCP positive patients dominate the 
lympho-myeloid group (Table  1). On the basis of this 
observations, we identified the top five most frequent 
HLA-DRB1 alleles in our cohort and assessed whether 
differential recurrence could be observed across patho-
types, CCP status and EULAR response groups. Table 
S10 shows the distribution of the HLA-DRB1 alleles 
across pathotypes indicating no statistical difference 
across them. Similarly, Tables  S11-S12 show no signifi-
cant association of HLA-DRB1 alleles either in anti-CCP 

positive patients or in EULAR non-responders by linear 
regression analysis (see supplementary methods). To fur-
ther investigate the possible predictive role of HLA-DRB1 
alleles, we also systematically added additional HLA-
DRB1 allele terms to the predictive models described in 
the previous paragraphs. Results shown in Tables  S13-
S16 indicate that the HLA-DRB1 alleles as additive terms 
never reached significant p-value levels and typically 
worsened statistical significance of the remaining terms 
in the linear models.

Predictive models derived from synovial RNA‑seq 
show indication of prediction ability in a small subset 
of matched blood samples
For comparison, predictive models on synovial RNA-Seq 
were tested in blood RNA-Seq samples from 54 matched 
patients. Of the four predictive gene-gene interactions 
discussed in the previous paragraphs, only PPP2R3B-
AKT1 showed significant p-value in the interaction term 
of the model formula, with subsequent AUC reaching 
0.89 (Fig. S8A, B).

PIK3CD-ATP1B1, STAT2-SOCS2, and CAMK2D-
NOS3 did not reach significance on p-value levels 
for their interaction term (Fig. S8C, E, G), although 
PIK3CD-ATP1B1 and STAT2-SOCS2 showed reasonable 
AUC (0.81 and 0.75 respectively, Fig. S8D, F). However, 
the number of individuals with blood RNA-Seq were 
small, so the AUC estimate is noisier than for synovial 
RNA-Seq.

Discussion
Investigating differential gene-gene interactions in spe-
cific groups of patients can enhance understanding of 
functional pathogenic mechanisms that cannot be cap-
tured from single gene level analyses such as differential 
gene expression studies. Using an extensive network of 
experimentally validated interactions, we characterized 
gene networks in histological subgroups (pathotypes) as 
well as responder/non-responder subgroups of patients 
from the PEAC cohort [6, 7]. We confirmed our previ-
ous finding that the pathotypes are delineated by the 
type of cells infiltrating the tissue, namely macrophages 
for the diffuse-myeloid pathotype, B cells for the lympho-
myeloid pathotype and fibroblasts for the pauci-immune 
pathotype. However, beyond this, we uncovered critical 
gene interactions driving processes which clearly differ-
entiate the three pathotypes and may explain underlying 
mechanisms that differ between pathotypes. Network 
analysis showed that alterations in the interplay between 
collagens, laminins and integrins play a central role in 
differentiating the three pathotypes. This may reflect 
tissue destructive processes within the joint and extra-
cellular matrix (ECM) remodeling processes leading to 
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differential effects on immune cell tissue infiltration dur-
ing RA pathogenesis distinguishing the pathotypes.

In lympho-myeloid and the diffuse-myeloid subgroups, 
the specific gene networks were dominated by TNF and 
chemokine signaling consistent with macrophage infil-
tration characterizing the diffuse-myeloid subgroup and 
B/T cell infiltration characterizing the lympho-myeloid 
subgroup. In addition to these well-known pathways, we 
observed cytotoxic T cell genes in the lympho-myeloid 
network where we observed HLA class I genes around 
CD8 (Fig. 1B cluster LM2) and pro-inflammatory genes 
around granzyme B (GZMB, cluster LM6), which is a 
marker for two distinct synovial CD8+ T cell subtypes 
(SC-T5, SC-T6) recently identified in single-cell RNA-Seq 
studies [33]. The diffuse-myeloid gene network (Fig. 2A) 
demonstrated subnetworks centered around PPAR-γ and 
its control over fatty acid metabolism which fits with the 
importance of these pathways in regulating M1/M2 tis-
sue macrophage differentiation. Adiponectin (ADIPOQ) 
has received attention for its role in RA pathogenesis [19] 
and its expression is elevated in early RA patients [34, 
35].

In the pauci-immune fibroid pathotype, we found gene 
networks involving (i) multiple integrin genes which 
may represent the interaction between fibroblasts and 
the ECM, (ii) TGF-beta together with SMAD signal-
ing molecules involved in fibroblast differentiation, and 
(iii) an array of growth factor genes (FGF, PDGF, IGF, 
VEGF) and specific cytokines (IL-17D) (Fig.  2B). Thus, 
the pauci-immune fibroid pathotype consists of an envi-
ronment driving fibroblast chemotaxis, proliferation and 
differentiation [36].

In the second phase of our analysis, we examined 
networks specific for good-responders to methotrex-
ate-based DMARD therapy in comparison to poor-
responders. Multiple chemokines and chemokine 
receptors were observed in the good-response network, 
consistent with their importance in immune cell infiltra-
tion into inflamed tissues. Humby et al. [7] showed that 
good-responders had significant reduction in synovial 
expression of genes associated with lymphoid aggre-
gation, as measured by Nanostring panel, including 
CXCL13 and CCL19 which overlap with the present 
study’s good-response network.

Along with leukocyte recruitment and T cell activa-
tion, the lympho-myeloid subgroup also expressed clus-
ter LM6 which contained apoptosis related genes that 
showed some degree of overlap with a similar cluster 
(R1) in the good-responders which was centered around 
BCL2. The role of apoptosis in RA is highly debated 
[37]. One previous study has shown increased caspase 
activation in inflamed synovial tissue which normalized 

alongside downmodulation of apoptosis regulators fol-
lowing successful DMARD therapy [38].

Multiple STAT and JAK genes were also observed in 
the good-responder network (Fig.  3A) consistent with 
their importance in promoting synovial tissue inflam-
mation and the development and mainstream usage of 
JAK inhibitors as key therapeutics in RA. When analyz-
ing gene-gene pairs, we observed a statistically significant 
interaction between STAT2 and SOCS2 expression which 
differentiated responders and non-responders (Fig.  3B, 
C). Accordingly, the ratio of STAT2-SOCS2 significantly 
improved a prediction model of treatment response 
(Fig.  3D). A previous study looking at SOCS1-3 found 
increased expression of SOCS2 in RA peripheral blood 
T cells and synovial fluid macrophages [39]. SOCS genes 
are typically suppressors of STAT-mediated cytokine 
signaling, so it is highly plausible that the ratio between 
specific STAT and SOCS genes could regulate resolution 
of inflammation and thus influence response to therapy.

This theme of interactions between pairs of genes 
known to regulate each other was also observed for other 
gene pairs including AKT1 and its regulator PPP2R3B. 
Statistical interaction was found between PPP2R3B and 
AKT1 and response, and the ratio of PPP2R3B to AKT1 
improved the AUC of a predictive model. Similarly, 
CAMK2D and NOS3 showed statistical interaction with 
response, and the NOS3/CAMK2D ratio improved pre-
diction of response. We found similar statistical interac-
tions between CAMK1 and NOS3 and AKT3 and NOS3. 
These results suggest that altered biological interactions 
involving these gene pairs differentiates responders from 
non-responders. The strong involvement of Ca2+/calm-
odulin-dependent kinases and eNOS in inflammation-
induced vascular permeability suggests that vascular 
permeability may be a novel mechanism which poten-
tially explains therapeutic response vs failure of metho-
trexate-based DMARD therapy.

In addition, we also observed notable interactions in 
other parts of the PI3K/AKT/mTOR pathway, including 
an improved predictive model for the ratio of PI3 kinase 
PIK3CD and the sodium-potassium ATPase ATP1B1. 
Interestingly, reduction in synovial expression of PIK3CD 
has been linked with response to anti-TNF therapy in RA 
patients [40, 41]. ATP1B1 has been identified as a bio-
marker of prognosis and treatment response in different 
cancer settings [42], which suggests that it may be a glob-
ally important predictive biomarker.

Our study has limitations (i) in the number of patients 
for which synovial and blood RNA-Seq data was available 
and (ii) in the lack of similar validation cohorts in early 
RA. However, we aim to validate the observed gene-gene 
interactions and predictive models, in future cohorts 
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including the R4RA trial [43] and forthcoming STRAP 
trial [44].

Conclusions
In summary, we identified gene-gene networks specific to 
histologically defined pathotypes in early RA, revealing 
new biological mechanisms which underlie the develop-
ment of each pathotype. We identified specific gene net-
works which differentiate responders to DMARDs from 
poor-responders. Further analysis of these networks 
identified gene pairs whose ratios enhanced models 
predicting response at 6 months. This approach has sig-
nificant clinical potential to identify interacting pairs of 
genes which can be used to stratify patients into respond-
ers and non-responders.
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