
Muses: Enabling Lightweight Learning-Based
Congestion Control for Mobile Devices

Zhiren Zhong∗†‡, Wei Wang†, Yiyang Shao†, Zhenyu Li∗‡¶, Heng Pan∗¶,
Hongtao Guan∗, Gareth Tyson‖

x
, Gaogang Xie‡§, Kai Zheng†

∗Institute of Computing Technology, Chinese Academy of Sciences, †Huawei, China,
‡University of Chinese Academy of Sciences, §Computer Network Information Center, Chinese Academy of Sciences,

¶Purple Mountain Laboratories, China, ‖Queen Mary University of London,
x
Hong Kong University of Science & Technology

{zhongzhiren,zyli,pangheng,guanhongtao}@ict.ac.cn, xie@cnic.cn,
{wangwei375,shaoyiyang,kai.zheng}@huawei.com, gareth.tyson@qmul.ac.uk

Abstract—Various congestion control (CC) algorithms have
been designed to target specific scenarios. To automate this
process, researchers have begun to use machine learning to
automatically control the congestion window. These, however,
often rely on heavyweight learning models (e.g., neural networks).
This can make them unsuitable for resource-constrained mobile
devices. On the other hand, lightweight models (e.g., decision
trees) are often incapable of reflecting the complexity of diverse
mobile wireless environments. To address this, we present Muses,
a learning-based approach for generating lightweight congestion
control algorithms. Muses relies on imitation learning to train
a universal (heavy) LSTM model, which is then used to extract
(lightweight) decision tree models that are each targeted at an
individual environment. Muses then dynamically selects the most
appropriate decision tree on a per-flow basis. We show that Muses
can generate high throughput policies across a diverse set of
environments, and it is sufficiently light to operate on mobile
devices.

I. INTRODUCTION

Congestion control (CC) has been a popular research topic
for over 30 years. Many congestion control algorithms have
been proposed, often relying on domain specific expertise to
“hard-code” algorithms that manage the congestion window
(cwnd) based on a range of signals, including packet loss
[1], [2], jitter [3], [4], ECN [5], [6], BDP variation [7], and
hybrids [8], [9].

The limitation of these hard-coded algorithms is that they
rely on assumptions about the underlying network. As these
assumptions feed into the corresponding control function (e.g.,
linear [2], cubic [1], inverse proportional [3]), these algorithms
may perform poorly when deployed in networks in which the
assumptions do not hold. For instance, it has been proven
that the use of traditional (e.g., Reno) CC algorithms in
wireless networks is problematic [10] [11]. This is because
wireless networks have two major characteristics that make CC
challenging: large variability in channel capacity, and “noisy”
congestion signals that are difficult to interpret. These two
obstacles make it difficult to manually design a suitable control
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logic based on assumptions related to feedback signals for all
wireless networks.

To overcome this, recent proposed learning-based algo-
rithms [12]–[17] have tried to avoid hard-coding heuristics.
Instead, they strive to autonomously learn the optimal conges-
tion policy. For example, PCC [13] and Vivace [17] try to de-
cide how to change the sending rate using online optimization
theory; whereas, Indigo [14] generates a neural network model
by training offline across a wide range of network parameters.

The performance of these learning-based algorithms has
shown notable gains compared to hard-coded algorithms [18].
However, there are significant challenges when porting them
to mobile wireless environments. Most notably, many rely on
heavyweight models such as LSTMs [19]. These have high
computational and memory costs, making them infeasible for
low cost mobile devices. For example, loading an LSTM
(with 2 layers and 256 units) on an Android device uses
about 74MB of memory, with inference times reaching 25
ms (Section II-C).

An obvious solution would be to rely on lightweight models
such as decision trees. However, in most cases, they are not
rich enough to deal with the diversity of wireless scenarios. For
example, we find that when working in a stable environment
(i.e., where the characteristics of the underlying network are
consistent), a decision tree gets similar F1-Score prediction
performance compared to the LSTM. However, it is much
worse (9%) when the environment becomes dynamical (i.e.,
the characteristics of the underlying network are diverse), as
shown in Section II-C.

Motivated by the above observations, we seek a solution
for a lightweight learning-based congestion control scheme
for mobile devices to offer both low overhead and high
performance. We underpin our approach with one key insight:
it is not necessary to train a model that performs well in all
networks, rather we can pre-train multiple models for different
networks and select the most appropriate one at runtime.

This paper proposes a multi-stage learning-based CC
scheme, named Muses. Muses generates multiple lightweight
decision trees by extracting and decomposing the policy of a



universal heavyweight model LSTM. Muses then selects the
most feasible decision tree on a per-flow basis. Specifically,
Muses follows three stages: (i) It leverages Imitation Learning
(IL) to train an LSTM in a comprehensive “global” environ-
ment. (ii) It decomposes the LSTM into many decision trees
for different sub-environments based on a K-means clustering
method. (iii) It selects the most appropriate decision tree at
runtime for each individual flow.

Our experiments show that the lightweight model signifi-
cantly reduces inference time and memory usage compared to
the heavyweight model. For example, on average, it achieves
4.2us inference time and 61KB runtime memory, which are
3 orders of magnitude superior to the heavyweight model. It
also attains both higher throughput and lower delay compared
to typical hard-coded (e.g., Cubic, Verus) and learning-based
(e.g., Indigo, Orca) algorithms. For example, Muses reaches
97.8% bandwidth utilization, and achieves 2.29× lower 95th
percentile one-way queuing delay compared to Cubic in a
steady Wi-Fi environment; in real LTE networks, it gains
1.75× higher throughput than Verus [20], while reducing
delay by 9%. Finally, we integrate Muses into WebRTC [21]
and show that it achieves a higher video bitrate (1.34×)
with similar frames per second compared to the default GCC
algorithm [22].

II. BACKGROUND & MOTIVATION

A. Wireless CC is Hard for Hard-Coded Algorithms

Whereas in prior years, mobile devices acted largely as
data recipients, they have since become huge data generators.
Social media (e.g., TikTok,), backup services (e.g., Dropbox)
and live video streamings (e.g., Facebook Live) have meant
that mobile devices frequently upload large volumes. This
means that building CC algorithms tailored to sending from
mobile devices has become a key research challenge.
Variability of Channel Capacity. A key difference between
a wireless link and a wired link is the variability of its link
capacity for the user. The available wireless capacity depends
on many conditions (e.g., user’s competition, radio signal path
loss, channel interference, noise, MCS scheme) [23]. Some
link/physical layer technologies such as Carrier Aggregation
in 4G and 5G Network, Frame Aggregation in Wi-Fi also
affect how the user’s bandwidth changes. Human-designed
decisions to increase/decrease the congestion window (such as
AIMD [2], cubic function [1]) in hard-coded CC algorithms
find it hard to match such changes in fluctuating and variable
wireless link capacity.
Noisy Congestion Signals. Hard-coded CC algorithms usu-
ally rely on signals (e.g., packet loss [1], delay delta/gradient
[20], [24]) or estimates of underlying network conditions
(e.g., max btlbw [7]). However, these signals and estimates
could be inaccurate due to unreliable link quality and variable
settings. For example, in the Unacknowledged Mode (UM) of
LTE, the fail recovery by HARQ only recovers a small part
of random loss packets, resulting in a significant throughput
degradation for loss-based CC [25]. While in Acknowledged
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Fig. 1: Overhead and Performance for LSTM vs Tree on
Typical Flagship, Mid-range and Low-end Mobile Phones

Mode (AM), the mechanism of reordering in the Radio Link
Control (RLC) layer leads to head-of-line blocking. Then
the delay jitter and the burst delivery of packets result in
overestimated estimations of bandwidth [25]–[27].

B. Advantages of Learning-based CC

Compared with hard-coded CC, learning-based CC has
advantages in the following aspects. First, using more signals
as an indicator may provide a less biased estimate of network
states. The increased number of signals makes algorithm
design more cumbersome for human developers, but is easy
for learning-based models. Second, the decision-making of
a learning model is more fine-grained and can better match
changes in various network conditions (such as changes in
link capacity in different degrees). Finally, statistical learning
can better reveal the relationship between the states observed at
end-points and the actual congestion states inside the network.
We can also train models to better identify signals (from the
noise). Several prior results [12], [14] have confirmed that
learning-based approaches outperform hard-coded algorithms.

C. Learning-based CCs are Impractical on Mobile Devices

Despite better performance, learning-based congestion con-
trol algorithms are not always suitable for low cost mobile
devices due to limited hardware resources.
Setup. To test these limitations, we reproduce Indigo’s learn-
ing framework and train an LSTM model with 2 layers of 256
units [19] and a decision tree with 500 leaf nodes. We use
the same input/output space but training in an environment
composed of the networks of which parameters are drawn
from the ranges defined in Table II. In this paper, we abstract
the network and environment from the end-point perspective,
where a network is a series of data packet delivery behaviors
tied to a flow transmission task and a (network) environment is
a group of these networks. More details about constructing the
environment is in Section III-D. As a learning goal, we train
the models to estimate link BDP (i.e., the optimal congestion
window) in real-time.
Overheads of Heavyweight Model on Mobile Devices To
test the resource overhead, we run these models on three
typical flagship, mid-range and low-end mobile phones (with
Qualcomm 865, Qualcomm 845 and Helio S60, respectively).
We measure the CPU utilization by executing the models with
the different invocation frequencies. Figure 1a shows the result
of the LSTM. For mid-range devices, the CPU usage increases
from 15% to 100% as the invocation interval goes from 100ms



down to 10ms. Typically, the congestion window should be
updated every ACK, or a fixed interval related to RTT (e.g.,,
10ms [14]). For a typical 10ms invocation interval, this means
the model consumes a remarkable 45% of CPU usage, even
on flagship SoCs. In contrast, for the decision tree, the CPU
utilization is less than 1% even with a 1ms invocation interval
on the low-end SoCs (not shown in the figure).
Inefficacy of One-size-fits-all Lightweight Model. Next we
see how well the models learn in environments with differing
complexity. We train LSTM models and decision trees in
several environments. The ranges of delay parameter of these
environments are set to different upper bounds and the others
are the same as Table II. A larger range means that the
environment is more complex.

For each environment, we run 1K tests for each model and
compute their F1-Scores. As shown in Figure 1b, the score
of the decision tree continues to decrease as the delay range
widens, but the LSTM remains at the same level. When the
environment becomes more complex, the gap between the
decision tree and the LSTM becomes larger. For this reason,
training a one-size-fit-all lightweight model is not feasible
because it is not sufficiently expressive to capture all networks.

D. Implications on Design

To summarize, learning-based models have superior per-
formance than hard-coded algorithms in mobile networks.
Heavyweight models suffer from high resource overheads,
while lightweight ones yield sub-optimal performance. To
mitigate this, our key idea is to generate targeted lightweight
models that are specialized for particular sub-environments.
A device can then dynamically select the most appropriate
model on a per-flow basis. To achieve this, there are two
remaining challenges: (i) How to determine the scope of a
sub-environment and train the corresponding decision trees.
(ii) How to dynamically match the correct model for each
flow.

III. DESIGN OF Muses

A. Primer on Muses

We first provide a high-level primer on Muses, which oper-
ates in three stages (see Figure 2). An introduction of Muses
framework is presented in Section III-B. First, we train a
heavyweight LSTM (Section III-C) model within an emulated
network environment (Section III-D). Using Imitation Learn-
ing (IL) [28], the goal is to build a comprehensive “global”
CC model that can mimic the optimal congestion window in
a wide range of network scenarios. Second, we decompose
the CC policy (i.e., a mapping from observed state to action
used to adjust the congestion window) learned by the LSTM
into a series of lightweight decision trees (Section III-E) that
can easily execute on low cost mobile devices. Each decision
tree is capable of imitating the LSTM’s decision behavior
in a specific sub-environment. Third, each flow dynamically
selects the decision tree that best match its own environment
(Section III-F).
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Fig. 2: Framework of Muses

B. Framework of Muses

The framework of Muses is shown in Figure 2. In stage
1, an IL task is launched for training a universal LSTM to
learn the best policy in a comprehensive global environment
(Section III-C). To construct this environment, the environment
constructor generates a large number of emulated networks
by configuring a wide range of network parameter settings
(Section III-D).

In stage 2, Muses extracts the learned policy in the LSTM
and decomposes it into different sub-policies to train decision
trees (Section III-E). To this end, it first runs a sender to do
flow transmissions in many networks drawn from the global
environment, using the LSTM as its CC algorithm. Through
this, it can gather the set of state-action sequences, which
contain the global knowledge of the LSTM’s policy. To de-
compose this policy, the sequences are clustered into multiple
clusters by a K-means clustering method [29], which uses the
information of the state-action distribution of sequence. For
each cluster, all state-action tuples of sequences in this cluster
are added into a subset. Each subset represents a sub-policy
that is suitable for a sub-environment, which is consisted
of those networks from which the corresponding state-action
tuples are collected. For each subset of state-action tuples, a
decision tree is trained.

In stage 3, Muses stores all the trained decision trees on
a mobile device. During runtime, when launching a flow
transmission, it selects the most appropriate decision tree
by comparing the state-action distribution of the online flow
against the cluster centers (a cluster center is regarded as
a weight distribution of those sequences in that cluster). In
particular, it can switch to a new decision tree when the current
distribution changes, usually because of underlying network
change, e.g., access type switch, handover (Section III-F). The
rest of this section details the three stages of Muses.



C. Stage 1: Training the Global LSTM

We treat the LSTM as a classification model. Once trained,
an inference is performed using the LSTM upon every con-
gestion control interval (ci, usually 10ms). This is triggered
by ACK or an RTT-based timer. The goal is to take a state
s ∈ S, observed on the end-point as an input and then output
an action, a ∈ A, to set the current congestion window. Thus,
the learning task is to train a model to fit the best policy
π∗ : S → A for a specific network environment.
Learning Process. The learning process of the LSTM is run
over a series of iterations in a global environment constructed
by the environment constructor (Section III-D). The config-
urations of this environment are in Table II. Each iteration
includes two steps: model evaluation and model training. In
the evaluation step, a sender performs a flow transmission in a
random emulated network drawn from the global environment,
using the LSTM as its CC algorithm. During transmission, the
LSTM model periodically performs inference with an input
state, st, at the time point qt, until it repeats L times (default
is 1000). Given the qt, the best action bt of each st is calculated
by the Oracle interface of the environment constructor. After
the transmission finishes, a flow data sequence (..., (st, bt), ..)
is added as a sample to a training set D. This step is repeated in
many different emulated networks until the LSTM converges,
so that the training is exposed to a diverse set of scenarios.

In the training step, Tensorflow is used as the training
platform. AdamOptimizer [30] is used as the optimization
process to reduce the average cross entropy loss over D. This
optimization process is executed dozens of epochs at each
training step. After that, a retained LSTM will be launched
for the next iteration’s evaluation. The termination condition
is when the ratio of average loss is below a small value, ε
(default is 5-e3), for a number of iterations (e.g., 100). The
ratio of average loss is defined as the changing rate of the
mean average loss of all optimization epochs between current
iteration and the previous 10 iterations.
Input and Output. The input state is composed of serval raw
congestion signals, such as RTTs and packet loss. These are
normalized by an Exponentially-Weighted Moving Average
(EWMA) or max-min filter. All signals used in Muses are
listed in Table I.

Each time a congestion event is detected, the state is
updated. The action, a, is taken from a predefined ac-
tion space A = {/Mn, ..., /M1,+0.0, ∗M1, ∗Mn}, where
Mn ∈ (1, 2] and Mn−1 < Mn. Each action is an op-
eration that determines how to expand or reduce the con-
gestion window. In this paper, the action space is set to
A = {/2.0, /1.2, /1.05,+0.0, ∗1.05, ∗1.2, ∗2.0}. Note that
this space can be tuned by system designers, and our approach
is not tied to any specific action space.
D. Emulated Network Environment Construction

Stage 1 relies on a global environment that contains various
emulated networks to support to train a universal LSTM.
we design an environment constructor to construct such an
environment. The environment constructor creates an emulated

TABLE I: Model Input State

Signal Description
sRTT The RTT smoothed by EWMA since last control interval (ci).
qdelay The queuing delay ratio smoothed by EWMA since the last

ci. Delay ratio is queuing delay divided by minimum RTT.
minRTT The minimum RTT since connection establishment.
srate The sending rate smoothed by EWMA since the last ci.
drate The delivery rate smoothed by EWMA since the last ci.
loss An estimated loss rate, defined as 1 minus the ratio of bytes

received and bytes sent during the last ci.
cwnd The congestion window at the end of last ci.

network by seeding random parameters from a given range.
We parameterize the emulated networks using two factors:
(i) network-layer conditions, e.g., packet loss; and (ii) wireless
channel conditions, e.g., noise.

Emulating Network-layer Conditions We use Mahimahi [31]
as the emulator to emulate a network. The emulated network
contains two paths: the data path and the ACK path. The data
path is configured using a tuple (trace, delay, loss, buffer),
where trace is a trace of underlying wireless channel condi-
tions, delay is one-way delay, loss is a random loss rate, and
buffer is the max queuing size. For simplicity, we assume
that the bandwidth bottleneck link is always in the data path
since ACKs are much smaller than data packets.

Emulating Wireless Channel Conditions. Mahimahi relies on
wireless channel traces to model the arrival times of packets.
We obtain these traces from two sources: (i) Existing LTE/3G
traces, bundled with Mahimahi [32]; and (ii) Newly simulated
traces generated in Mininet-wifi [33]. The former are collected
from different cellular networks (LTE, UMTS and EVDO) of
several ISPs (AT&T, Verizon and T-Mobile). We generate the
latter from an emulated Wi-Fi link in a two-hop topology
from a mobile client → access point → Server. We run
Saturator [12] to record the packet arrival times as the wireless
link trace. Such a trace is defined by a four-tuple configuration:
(ple, variance, location, speed). The path loss exponent ple
and Gaussian noises level variance are two parameters of the
Log-Normal Shadowing Propagation Loss Model [23]. The
latter two are used in a random waypoint mobility model: a
client moves in a straight line at a random speed speed from a
random starting point location (e.g., the distance to the access
point) and moves to another random endpoint. When it reaches
the endpoint, it selects a new random point to move to.

With the above model, the environment constructor ran-
domly selects parameter values in the ranges defined in Table
II which cover typical real environments to generate a trace
and create an emulated network for each evaluation step.
It is worth noting that constructing this global environment
does not ensure that it includes all the networks in the real
environment, but it is complex enough to be used to verify
the effectiveness of Muses that decomposing the complex
environment could improve performance.

Calculation of Optimal Congestion Window To generate
data samples for LSTM training, we require ground truth
knowledge of the optimal congestion window. Thus, the envi-
ronment constructor creates an Oracle interface that computes
the optimal congestion window. It does this as follows.



TABLE II: Environment Configurations for LSTM Training

Parameter Range
Wi-Fi LTE/3G

trace

ple 4-6

ATT and TMobilevariance (dB) 0-20
location (m) 0-500
speed (m/s) 0-10

one-way delay (ms) 5-150
loss 0-5%

buffer (KBytes) 1.5-3000

By ensuring that the ACK path is not congested and
ignoring queuing and processing delay, an un-congested data
path should see an ACK returned exactly one propagation RTT
after a packet is sent. With this assumption, we compute the
path BDP as the volume of data sent on the data link in the last
RTT. To alleviate the bias of the assumption, a configurable
scaling factor, α, is used such that the estimated BDP is
α∗BDP . It will achieve higher throughput if 1 ≤ α < 2, and
lower latency in the case of α < 1.1 We set α to 1.2 in this
paper to achieve high throughput.

The calculation of the optimal cwnd at time t (denoted as
owt), is shown in Eq. 1. Here, f(x) refers to the bandwidth
(bytes/s) at time x and it can be deduced using trace. delay
is the one-way delay of the data path, m is the packet size,
and α is the configurable scaling factor. The optimal action,
bt, is the action to operates current cwnd (denoted as cwt) that
make it closest to owt. The definition of bt is in Eq 2.

owt =
α

m
·
∫ t

t−2·delay
f(x) dx (1)

bt = argmin
a∈A

|owt − op(cwt, a)| (2)

E. Stage 2: Extracting Lightweight Decision Trees from LSTM

We have seen in Section II-C that the decision tree achieves
similar performance to the LSTM model in simple environ-
ments. Therefore, we extract the LSTM’s policy to train a
series of decision trees, where each tree corresponds to a sub-
environment that is much simpler than the global one.
Policy Extraction From LSTM We first extract the LSTM
policy as many state-action demonstration sequences. To this
end, Muses runs thousands of flow transmissions using the
LSTM (from Stage 1) as the CC algorithm in the global
environment. Specifically, at round i, a flow sequences fi =
(..., (st, at), ...) is added into a set DE , where st is the input
state of LSTM and the at is the output action performed
by the LSTM. DE includes the global knowledge of LSTM
about how to act (i.e., adjust congestion window) for various
situations in the global environment. In our current setup, the
total number of rounds is 5000 and DE contains 5 million
state-action examples.

Here we use the action at of LSTM instead of the bt
provided by Oracle is because the LSTM has learned the
generalization knowledge in the global environment, which
is helpful to alleviate the over-fitting of the decision tree:
a decision tree trained only with the Oracle actions for the

1The upper bound of 2 borrows from the design of BBR [34], which limits
the algorithm to injecting more than twice the BDP in-flight packets.

corresponding sub-environment gets poor performance when
working in another unmatched sub-environment. The situation
is possible to happen when the network conditions suddenly
change before switching to a new decision tree. However,
the action of LSTM is a trade-off that takes into account the
performance loss of other sub-environments. Hence, using at
makes the decision tree become more robust. Note, this step of
generating at is inspired by the policy extraction in Metis [35].

Policy Decomposition by Clustering. It is next necessary to
divide DE into multiple disjointed subsets for training decision
trees. Each subset has the state-action tuples collected from
a group of networks. Thus, it reflects the sub-policy for a
sub-environment composed of these networks. The sub-policy
contains partial knowledge of the LSTM about how to act in
this sub-environment.

We use a clustering method to separate DE to these subsets.
The number of subsets, K, is defined in advance and the state-
action tuples of each f ∈ DE are assigned to one of the
subsets. The state-action distribution of f is used to capture the
characteristics of its underlying network. Those tuples in flows
which have similar state-action distributions are grouped into
the same subset, which indicates their corresponding networks
are similar. Specifically, we use a distribution feature vector
P (f) derived from the original state-action distribution as the
data point for the clustering algorithm. P (f) is computed as
follows.

First, the space of the input state is reduced to a feature
space X of n (3 by default) dimensions through Principal
Component Analysis (PCA). Each state-action tuple (s, a) in
f is transformed to a feature-action tuple (x, a). Second, for
each f , the discrete state-action distribution Pf (Xi, A) of
each dimension Xi is calculated and these distributions are
concatenated to obtain P (f) = Pf (X1, A) ◦ ... ◦ Pf (Xn, A).
In order to calculate Pf (Xi, A), the range of Xi’s value
is separated into l (default is 10) segments, and then the
frequency of each action in each segment is counted based on
the tuples in f . Using P (f) instead of the original state-action
distribution is to reduce the dimensionality. The dimension
of P (f) is n · l · |A|, while the dimension of the original
state-action distribution is ldim(S) · |A|, where dim(S) is the
dimension of state space, |A| the size of action set. The
latter increases with the power of l, which is infeasible for
clustering. When we group the data that has similar state-
action distributions to the same subset, we actually obtain
a lower conditional entropy H(A|S) on all tuples in DE

compared with no division or random division. H(A|S) can be
interpreted as the uncertainty about A when S is known. The
lower the uncertainty of the dataset, the simpler the training
of the model.

After computing P (f) for each f ∈ DE , we perform
clustering on the set {P (f)|f ∈ DE}. We use the K-means
method [29] in Sklearn for this purpose. To get the best number
of clusters, K, we run K-means by configuring K from 2
to 100 to measure the Silhouette Score [36] of clustering
results. We find K = 15 is the most suitable value. When



the clustering is complete, we group each (s, a) ∈ f to the
corresponding data subset Dj

E , j ∈ [1,K], where j is the
output label of P (f) in clustering.
Training Decision Trees. Once we have decomposed DE

into K sub-datasets, we train a decision tree for each Dj
E .

Each tree will learn the local policy for the corresponding
sub-environment. Collectively, these decision trees contain the
knowledge of the LSTM, but in a far lighter form. We use
CART [37] to train the decision tree, and use information
entropy as the measure of node impurity, since there is only
2% difference between information entropy and Gini index
across many cases [38]. When training a decision tree, the
splitting criterion is to select the feature component that max-
imizes the information gain for division. The hyper-parameters
of decision tree are set as follows: the max leaf nodes is
set to 500 to avoid over-fitting and use grid searching to
decide the best setting for parameters of min samples split
and min impurity decrease. Other parameters are defaults.

F. Stage 3: Selecting Decision Trees Per-Flow

Whereas stage 1 and 2 take place centrally, stage 3 is
executed in-the-wild on the end device. At runtime, a flow
selects the most appropriate decision tree model for its own
environment. Note, for long flows, the model can be switched
multiple times.
Online Selection. All decision trees along with the corre-
sponding cluster centers (i.e., the mean of all P (f) in the
same cluster) are stored locally in a mobile device. During a
flow transmission, Muses selects the decision tree of which
the corresponding center is closest to the distribution feature
vector P (f ′) of the online flow f ′. To calculate P (f ′), the
state sample st is collected every ci. It collects Tl time samples
to estimate P (f ′). We set ci to 10ms and set Tl to 10s by
default. At the beginning of a flow transmission, the decision
tree that was selected in the previous transmission is used.
State Distribution Transformation. Note that the online
samples only contain states and no LSTM’s actions, which
makes it impossible to calculate P (f ′) directly (Running the
LSTM locally for labeling is expensive, and uploading the
samples requires a lot of traffic overhead).

In order to address this problem, we use a matrix Q to trans-
form Ps(f) to P (f), where Ps(f) = Pf (X1) ◦ ... ◦ Pf (Xn).
It includes the state margin distribution Pf (Xi) instead of
the state-action joint distribution Pf (Xi, A). To get Q, we
define a matrix Qf = [P (f1)

ᵀ, P (f2)
ᵀ, ...] and a matrix

Qs
f = [Ps(f1)

ᵀ, Ps(f2)
ᵀ, ...] based on DE , and then solve

the linear equation Qf = Q · Qs
f . After estimating Ps(f

′)
based on the online state samples, the estimation of feature
vector is calculated: P̂ (f ′) = (Q·Ps(f

′)ᵀ)ᵀ. It is worth noting
that P̂ (f ′) is not exactly equal to P (f ′), even for the f in
DE , since Qs

f usually is not a non-singular square matrix.
Nevertheless, we find through evaluations that this bias is
acceptable. Specifically, for all f in DE with K = 15, the
proportion that the nearest cluster center of P̂ (f) is not in the
first two nearest centers of P (f) is less than 3%.

IV. EVALUATION

In this section, we first evaluate that Muses can attain supe-
rior performance to existing hard-coded and learning-based
CC algorithms. We then show that using the decision tree
can reduce the overhead of running learning-based models,
enabling practical deployment on low cost mobile devices. To
further confirm this, we present a use case implementation of
Muses in WebRTC to improve video chat QoE.
A. Performance in Emulated Networks

Setup. We use the environment constructor as introduced in
Section III-D to build a set of emulated networks to test
Muses. We experiment with three typical environments, as
shown in Table III. The first two are generated from Wi-Fi
scenarios and the last is composed of Verizon LTE traces taken
from [32]. The two Wi-Fi parameter configurations are de-
signed to emulate both static and high-mobility environments.
For each emulated environment, we perform tests by randomly
selecting parameters from the ranges defined in Table III. In
total, the number of test cases is 1,000, and each test runs
a flow transmission for 100 seconds for each algorithm. It is
worth noting that the traces used for evaluation in this section
have not been used for model training.

As a basline, we compare against existing off-the-shelf
learning-based algorithms (Indigo, RemyCC, Vivace, Orca),
hard-coded ones (BBR, Cubic, Verus, Sprout).2 We capture
three evaluative metrics: bandwidth utilization, the 95th one-
way delay, and packet loss rate. We also compare against a
decision tree (denoted as TreeG) which is trained in the global
environment in the same fashion as the LSTM, i.e., without
breaking down the environment into subsets.
Bandwidth Utilization & Delay. Figure 3a-3c report the
bandwidth utilization vs. 95th percentile one-way delay for
each environment. We use the performance results of all test
cases to draw a 2D Gaussian distribution. The width and
height of the ellipse area are one standard deviations for
each independent direction. Superior performance (in terms
of bandwidth utilization and lower delay) is indicated by
placement on the upper left corner of the graph.

In comparison with TreeG, Muses improves both the band-
width utilization and delay significantly. Furthermore, Muses
attain high throughput (average bandwidth utilization is >
90% in all three environments) while maintaining low latency
compared to the other algorithms. For example, Muses reaches
99.7% and 97.8% utilization in the static and high-mobility
Wi-Fi environments respectively, while reducing delay by over
2×, compared to Cubic. In the LTE environment, Muses
on average achieves 1.26× higher bandwidth utilization and
1.29× lower delay, compared to Verus (an algorithm designed
for cellular network). Finally, with similar delay as in Indigo,
Muses achieves 1.1× higher average bandwidth utilization in
all three environments.

2For BBR, Cubic and Orca, we use the version implemented in Linux 4.13.1
with the Orca patch. Other algorithms are cloned from Pantheon [18]. Note
that RemyCC is trained in the 100× range of link rates environment described
in [39], and the RL model of Orca is provided in [40].



We next inspect how these results are close to the optimal
ones. Thus, we randomly select 100 test cases from the high-
mobility Wi-Fi environment. Figure 4 presents the scatter-plot
comparing the real-time link BDP vs. the in-flight packets
for each algorithm. The dashed line represents the optimal
performance, indicating that the link BDP and the in-flight
packets are equal. We see that the BDP varies a lot during
the experiments, as channel conditions change. The scattered
points of Muses show a strong positive correlation, with the
majority of window sizes clustered around the optimal line. To
measure how close an algorithm is to the optimal we compute
the RMSE between the link BDP and the real in-flight packets.

Muses attains 3.17×, 1.78× and 2.25× lower RMSE com-
pared to BBR, TreeG and RemyCC, respectively. BBR is
consistently the most aggressive, with more in-flight packets
than the BDP can accommodate. This is because BBR allows
2×BDP (estimated). However, in a wireless network, the BDP
is particularly hard to estimate. Besides, compared with the
Muses, both TreeG and RemyCC have a far wider range of
window sizes. Note that RemyCC is trained for the general
environment, where its simple tree structure and insufficient
input state space (4–5 states) may not be sufficient to capture
the dynamics of wireless networks. Instead, Muses performs
better since each decision tree is trained for a particular sub-
environment.

Consistency. Figure 3a-3c also show that Muses attains
more consistent performance across different networks, due
to its ability to dynamically switch policies for the target
environment. To measure consistency, we use the ellipse area
(smaller is better). Visually, one can see that Muses has
substantially smaller variation compared to other algorithms.
For example, Muses obtains 0.95× (in steady Wi-Fi), 0.62×
(in fluctuating Wi-Fi), and 0.93× (in LTE) the ellipse area of
the second best algorithm in each environment. Importantly,
while other algorithms are excellent in individual environments
(e.g., Vivace in Steady Wi-Fi), they fall behind in alternates
(e.g., Vivace in Verizon LTE). In contrast, Muses performs
consistently well across all, as it dynamically switches to the
most appropriate model based on observed conditions.

Packet Loss. As well as bandwidth utilization and delay, we
inspect the average packet loss rate (PLR) across the 1,000 test
cases for each environment. Figure 3d shows the average PLR
for each algorithm. Compared to the other algorithms, Muses
has very low loss rates (< 0.3% in all three environments).
For example, Muses attains < 0.09% loss rate but achieves
1.66× higher throughput than Sprout in the steady Wi-Fi
environment. Muses achieves almost the same packet loss rate
as Indigo. The other two learning-based algorithms (RemyCC
and Vivace) get fairly high loss rates though (> 2% in
all environments). Curiously, we also observe that RemyCC
makes unreasonable decisions at certain points: it generates
sporadic bursts, which results in a large number of in-flight
packets, triggering loss. In contrast, we do not observe these
sudden bursts for Muses.

TABLE III: Environment Configurations for Evaluation

Parameter Range
Steady Wi-Fi Fluctuating Wi-Fi LTE

trace

ple 4-6 4-6

Verizon LTEvariance (dB) 3 10
location (m) 5 20
speed (m/s) 0 1.2

one-way delay (ms) 20-30 20-50 20-50
loss 0 0.1% 0

buffer (KBytes) 300 300 300

B. Performance In-the-Wild

Setup. We next evaluate Muses in-the-wild. We test two
different access networks (Wi-Fi and LTE, both are routed
through to the same ISP) at location A communicating with
a remote private server located at B. The mobile client
acts as the sender and the server acts as the receiver.
The geographical distance between these two locations is
1300km. The min/avg/max/std RTT on the Wi-Fi path are
44.73ms/50.02ms/143.50ms/9.49ms and on the LTE path are
53.96ms/59.55ms/95.274ms/5.41ms. We again compare Muses
with BBR, Cubic, Verus, TreeG and Vivace. In total, we run
100 tests, where each test consists of 60 seconds of data
transmission from the client to the remote server.
Throughput & Delay. The results are shown in Figure 5.
We plot the throughput vs. 95th percentile RTT distribution
for Wi-Fi (left) and LTE (right), as we did in the emulated
experiments. The results show that Muses achieves both higher
throughput and lower delay compared to TreeG, which further
confirms the effectiveness of our method. It also has superior
performance compared with other algorithms. Specifically,
in the Wi-Fi network, Muses achieves 1.68× lower delay
compared to Cubic, while only decreasing throughput by
4.1%. Vivace achieves the lowest delay (about 1.49× lower
than Muses), but its throughput is only 15.6% of Muses. In
the LTE network, Muses attains 1.09× lower delay than Verus,
and 1.75× higher throughput. The above results confirm that
the performance of Muses in real networks are consistent with
the emulated networks.

C. Overhead

A key design goal is ensuring Muses is sufficiently light to
run on low cost mobile devices.
Setup. To evaluate the resource overhead, we first train several
decision tree models on the global environment of different
complexities (referred as TreeGx, of which x indicates the
setting of max leaf nodes). We use the LSTM in Section III-C
as a heavyweight comparison and RemyCC as a lightweight
comparison. We test these algorithms on an Android device
with Snapdragon 845 Soc.
Inference Time Results. We estimate the inference time by
measuring the execution time of querying the model. For the
LSTM and decision tree, we measure the inference time as
the time required to execute the query function. The query
function is invoked with 20ms intervals. For RemyCC, we
measure the execution time of an ACK-driven function which
is used to search the tree to find operations on congestion
window and sending intervals. We run them on a local
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Fig. 6: Resource Overhead of LSTM and Decision Tree

loopback link for data transmission. For each algorithm, we
run 20 tests and each test contains 1,000 queries.

Figure 6a shows the average inference time for each model.
The average inference time for the LSTM is 16.3ms, which is
much larger than all TreeGx models and RemyCC. The long
inference times negatively impact congestion window scaling,
which then reduces performance. Further, the long inference
time blocks all other protocol logic in single thread mode like
sending packets and timers. The decision tree models are much
faster, e.g., TreeG500 takes 4.2us for inference, which is a
3 order of magnitude improvement compared to the LSTM.
Even the most complex model, TreeG50k, takes just 9.8us.
These results speak to the benefits of building lightweight
models for each environment.
Memory Usage Results. We also compute the runtime mem-
ory difference before and after the model file is loaded.
Figure 6b presents the memory usage for each model. The
LSTM requires 83.4MB of memory, which is heavier than
all the decision tree models combined. This is particularly
expensive in cases where applications rely on their own user-
space congestion control (e.g., QUIC). The TreeG500 takes
only 61KB, which is 3 orders of magnitude less than the
LSTM. This is a significant improvement, especially in low
cost mobile devices and IoT instruments

Fig. 7: Fair Convergence of Muses
TABLE IV: Jain’s Fairness Index Comparison

Scenario 3 Flows 5 Flows 10 Flows 15 Flows 20 Flows
Muses 0.999 0.999 0.988 0.988 0.965
Cubic 0.994 0.989 0.980 0.982 0.960

D. Fairness

Setup. To test fairness, we initiate three flows in a emualted
network. These run in a staggered fashion, with 20 second
intervals, over a shared 36Mbps link. Each flow lasts for 80
seconds.
Results. Figure 7 presents the throughput of the three flows
achieved by Muses. We see that, when Flow 2 starts, the
throughput of Flow 1 decreases rapidly until the two reach
an equilibrium. When Flow 3 starts, Flow 1 and 2 have the
same reaction and reduce their sending rates. When Flow 1
completes, we then see that Flows 2 and 3 rapidly detect the
new capacity and increase their sending rates to achieve the
third equilibrium. This experiment demonstrates the reactivity
of Muses when competing for traffic.

In order to verify that this holds when the number of flows
is larger, we test different conditions of 3-20 flows on Muses
and Cubic. The experiment setup is the same as previous. We
use Jain’s fairness index [41] as a fairness metric, which is in
the range of 0 to 1 (The best case is 1).

Table IV presents the fairness scores. We see that Muses
exhibit the same fairness as Cubic in multi-flows scenarios,
confirming that Muses does not undermine the fairness re-
quirements of traditional CC algorithms.
E. Use Case: WebRTC

To verify the effectiveness of Muses for real applications,
we integrate it into the WebRTC framework (a widely used
real time video chat application [21]).
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Fig. 8: QoE in WebRTC: Muses vs GCC

Implementation in WebRTC. We implement a new WebRTC
CC module. This incorporates the decision trees and other nec-
essary information generated by previous two stage of Muses.
In the WebRTC CC framework, a callback function will be
scheduled when the sender sends the RTCP packets or receives
the RTCP feedback packets. In the callback function, a hook
function can be used to update the sending rate and congestion
window for the sending engine and encoder. In Muses, the
calculation sub-module of input state is implemented in both
packet sent and packet received callback functions. The model
inference and model selection sub-modules are implemented
in the packet received function. Every 10ms the hook function
is triggered when the packet received function is scheduled by
the event of receiving RTCP feedback packets.
Setup. To test our implementation, we use a setup containing
two Android mobile phones that are connected to Wi-Fi
access points (both 802.11ac, 5GHz). The two access points
are connected to an emulated network, implemented using
OVS. We use Linux TC to configure the internal emulated
network with 3Mbps bandwidth and 30ms one-way delay.
Cross traffic is injected into the network using a stepped
pattern ranging from 0kbps to 2500kbps. Each step increases
or decreases the bandwidth by 500kbps for 10s. We run
this experiment to highlight the practicality of Muses in low
resource environments.
Results The results are shown in Figure 8 as a time series.
We compare the Muses congestion control with the default
congestion control algorithm used by WebRTC: GCC [22]. We
present both the bitrate and frames per second (FPS) across
time; note that Figure 8a also presents the cross traffic bitrate.

The two algorithms perform almost the same in terms of
FPS, at around 30 frames. For bit rate, Muses substantially
outperforms GCC and achieves 1.34× on average vs. GCC.
When cross traffic suddenly drops, Muses quickly occupies the
free bandwidth to support higher-quality frame transmission.
This is driven by Muses’ ability to more rapidly and accurately
react to congestion signals. We also note that the average
inference time of Muses is just 4us. This is comparable with
GCC and reasonable on mobile devices.

V. RELATED WORK

We roughly divide end-to-end congestion control algorithms
into hard-coded and learning-based algorithms.
Hard-coded Algorithms. Perhaps the most well known algo-
rithm, Reno [42], proposed the key components of CC. This
includes the use of congestion signals, slow start, congestion
avoidance, response to congestion signals, and recovery. Many
TCP variants are aimed at specific networks and improve

these parts. For example, Vegas [3] uses RTT as a signal of
congestion to improve performance in networks with stable
delay; Cubic [1] uses a cubic function to increase its window
during the congestion avoidance phase; Verus [20] calculates
a window-delay profile based on historical observations and
relies on the signal of delta delay to select a target delay
and window; BBR [7] estimates the maximum bottleneck
bandwidth and propagation delay to control sending rate
and inflight packets. Naturally, these algorithms rely on the
accuracy of congestion signals or estimations, and the impact
of noise in these measurements is significant. Similarly, when
deployed in scenarios that violate their assumptions, the above
algorithms tend to perform poorly [10], [11], [43].
Learning-Based Algorithm. To overcome these limitations,
several learning-based algorithms have emerged. Vivace [17]
and PCC [13] adjust the sending rate in real time, and
determine the size of the change according to a performance
utility function gradient. However, this estimation of utility
relies on the stability and predictability of the underlying
network, which does not always hold in dynamic wireless
conditions. RemyCC [12] iteratively searches for a state-action
mapping table to maximize an objective function. As discussed
above, this mapping table is based on a tree structure that we
have shown is too simple to support more complex wireless
environments. Indigo [14] uses an LSTM model to train across
a wide range of scenarios, guided by reaching the optimal
operating point of the network. However, this has significant
resource requirements, making is infeasible for the low cost
mobile devices supported by Muses. Orca [16] combines a
learning model and hard-coded algorithm to ensure recovery
from the wrong equilibrium. Yet, for mobile devices, the
invocation frequency in its deep learning agent is still too high
to scale (about every 20ms).

VI. CONCLUSION

This paper has presented Muses, a multi-stage learning
scheme for generating multiple lightweight congestion con-
trol models, suitable for different network sub-environments.
Muses first trains an LSTM model in a global network environ-
ment, and then extracts decision trees from this comprehensive
model. Each flow then dynamically selects the best decision
tree for its own environment. This combines the expressiveness
of heavyweight models with the low overheads of lightweight
models, making it ideal for deployment on low cost mobile
devices. We show through extensive experiments that Muses
can attain superior performance to prior learning-based ap-
proaches. Vitally, we demonstrate the viability of Muses on
real devices and applications (e.g., WebRTC), substantially
lowering the resource consumption of prior techniques.
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