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Aims Atrial fibrillation (AF) is sustained by re-entrant activation patterns. Ablation strategies have been proposed that
target regions of tissue that may support re-entrant activation patterns. We aimed to characterize the tissue prop-
erties associated with regions that tether re-entrant activation patterns in a validated virtual patient cohort.

...................................................................................................................................................................................................
Methods
and results

Atrial fibrillation patient-specific models (seven paroxysmal and three persistent) were generated and validated
against local activation time (LAT) measurements during an S1–S2 pacing protocol from the coronary sinus
and high right atrium, respectively. Atrial models were stimulated with burst pacing from three locations in
the proximity of each pulmonary vein to initiate re-entrant activation patterns. Five atria exhibited sustained
activation patterns for at least 80 s. Models with short maximum action potential durations (APDs) were as-
sociated with sustained activation. Phase singularities were mapped across the atria sustained activation
patterns. Regions with a low maximum conduction velocity (CV) were associated with tethering of phase sin-
gularities. A support vector machine (SVM) was trained on maximum local conduction velocity and action po-
tential duration to identify regions that tether phase singularities. The SVM identified regions of tissue that
could support tethering with 91% accuracy. This accuracy increased to 95% when the SVM was also trained
on surface area.

...................................................................................................................................................................................................
Conclusion In a virtual patient cohort, local tissue properties, that can be measured (CV) or estimated (APD; using effective

refractory period as a surrogate) clinically, identified regions of tissue that tether phase singularities. Combing CV
and APD with atrial surface area further improved the accuracy in identifying regions that tether phase singularities.
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Introduction

Atrial fibrillation (AF) is a supraventricular tachyarrhythmia, charac-
terized by unco-ordinated activation of the atria,1 deterioration of
mechanical function,2 and increased incidence of cardiovascular dis-
ease, stroke, and pre-mature death.3 In drug-refractory patients, AF is
commonly treated by radiofrequency catheter ablation (RFCA).4

Central to RFCA for AF is pulmonary vein isolation (PVI), where the
tissue surrounding the pulmonary veins that is prone to triggered
spontaneous electrical activation is electrically isolated. Pooled
single-procedure 12-month arrhythmia-free survival following PVI
only in paroxysmal and in persistent AF is 66.6% and 51.9%,5 respec-
tively. Ablation targets beyond PVI are likely needed to improve
RFCA success rates for AF patients. To improve success rates,
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additional lesion sets that aim to remove specific regions of tissue or
substrate that support AF have been proposed. An early, and initially
promising, approach for identifying AF sustaining tissue was targeting
complex fractionated atrial electrograms (CFAE).6 However, further
larger studies found that the addition of CFAE ablation did not im-
prove patient outcomes.7 Subsequent re-entrant activation substrate
ablation strategies have targeted focal or re-entrant activation pat-
terns identified with basket catheters8 or high frequency activation
regions,9 however, these approaches have yet to produce consistent
results.

Many of the proposed ablation targets require high spatial and
temporal resolution activation maps. While high-density catheter
mapping systems are available, they only map from one region of the
atria at a time. Catheters that map the whole atria are lower density
or rely on non-contact mapping, both approaches can lead to arte-
facts.10 This can make it hard to reliably identify ablation targets.
However, implicit in strategies that target tissue that support re-
entrant activation, is that a combination of material properties and/or
location leads to a specific region of tissue playing a critical role in sus-
taining the arrhythmia. We hypothesise that if re-entrant supporting
tissue has specific characteristics, then these can be identified by local
mapping of tissue properties.

Biophysical computer simulations of the atria provide a computa-
tional framework for linking cellular properties to emergent tissue
scale properties and provide high spatial and temporal resolution sig-
nals across the entire atria for identifying re-entrant activation pat-
terns and identifying the regions of tissue that support these activation
patterns. Workflows for creating and validating models of the atria
have been proposed based on CMR images or electro-anatomical
maps.11,12 These personalized models of the atria have developed to
a point where they are being used to guide therapies13 and virtual pa-
tient cohorts have been used to investigate patient-specific lesions, re-
sponse rates, and experimental ablation procedures.14,15

Virtual cohorts provide a testing environment for studying the
local tissue properties that support re-entrant activation
patterns. We aim to create a validated virtual cohort of patient-
specific atrial models that capture patient-specific electrical
heterogeneity to simulate AF and then use machine learning to
identify the tissue properties associated with sustained re-
entrant arrhythmias in the left atria.

Methods

In this article, we generate personalized computer models of the left
atrium of a cohort of 10 patients. The model was fitted to activation

measurements recorded across the atria at up to 16 sites, as described by
Corrado et al.12 To trigger AF, we applied a burst pacing protocol on 12
different locations in the proximity of the pulmonary veins. On simula-
tions that presented a self-sustaining (SS) AF, we evaluate the phase (PS)
singularity map to classify the tissue capable of tether PS. Finally, we
trained a SVM classifier on maximum local conduction velocity (CVmax),
and action potential duration (APDmax) to identify portions of tissue that
tether PS.

We provided a detailed description of the methods in Supplementary
material online.

Results

Virtual patient cohort
We recruited 40 patients; 10 patients with AF had sufficient evenly
spaced recording points in the left atria to allow us to create a model.
These included seven paroxysmal AF (PAF) and three persistent AF
(PsAF) cases. Table 1 summarizes patient characteristics.

Creating and validating the model
In this article, we generate personalized computer models of the left
atrium of a cohort of 10 patients. The model was fitted to activation
measurements recorded across the atria at 42–100 recording sites
per case, as described by Corrado et al.12

Patient specific, spatially varying model parameters were fitted us-
ing an S1–S2 pacing protocol applied through the coronary sinus.
Recordings were made at 14 ± 3 sites across the atria. Two model
parameters (the conductivity and sclose) were analytically mapped to
CVmax and APDmax allowing these parameters to be fitted directly to
functional measurements. The remaining cellular depolarization and
repolarization parameters (hmin, sopen, sin) were then fit to measured
local activation times and the effective refractory period.12 The pre-
dicted activation times across the whole atria, when using locally fit-
ted material properties, are compared against measured activation
times used to fit the model (Figure 1, top). The model was validated
by comparing predicted with clinically measured activation times dur-
ing an S1–S2 pacing protocol applied at the high right atrium (Figure 1,
bottom). The validation data were not used in training the models.
The distribution of the fitted parameters for each patient for each
parameter is presented in Supplementary material online, Figures S1–
S5.

Induction of atrial fibrillation and atrial
tachycardia
To systematically evaluate the capacity of each atria to sustain AF, we
applied a burst pacing protocol from one of 12 sites, 3 around each
pulmonary vein (Figure 2A), and measured the type (AF, meandering
rotor, or macro-re-entrant), frequency, and duration of sustained ac-
tivation. Sixty-six percent of simulations terminated within 1 s and
were classified as non-triggering, 8% terminated between 1 and 3 s,
9% terminated between 3 and 40 s, and 17% were classified as sus-
tained activation and remained in activation after 80 s (Figure 2B).
About 7.5%, 4.2%, and 5% of simulations that led to sustained AF
with a frequency of 6.05± 0.98 Hz, meandering rotor with a fre-
quency of 3.89 ± 0.23 Hz, or stable-re-entrant activation with a fre-
quency of 4.77 ± 0.4 Hz, respectively.

What’s new?

• Left atrial size and local measurements of conduction velocity
(CV) and effective refractory period (ERP) identify tissue that
can sustain phase singularities.

• An support vector machine classifier can be used to identify
tissue that can sustain phase singularities.

• Larger atrial size and local short action potential duration and
slow CV correlates with re-entrant activation patter tethering.
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Table 1 Summary of patient characteristics

Case Age (years) Sex AF duration

(years)

AF class LA diameter

(cm)

LVEF (%) Surface (cm2)

1 46 F 1 PAF 3.4 70 259.4

2 70 M 3 PAF 3.9 55 296.1

3 48 M 5 PAF 3.7 60 271.4

4 69 F 1 PAF 3.8 55 303.3

5 44 F 1 PAF 3.9 60 286.5

6 72 M 3 PsAF 5 60 271.9

7 71 M 3 PsAF 3.9 65 439.2

8 61 M 1 PAF 4.5 60 285.1

9 73 F 6 PAF 3.1 60 276.3

10 48 M 2 PsAF 3.2 53 299.9

60.2 ± 12.3 60% M 2.6 ± 1.8 70% PAF 3.84 ± 0.6 60 ± 5 298.9 ± 51.2

F, female; PAF, paroxysmal AF; LVEF, left ventricular ejection fraction; M, male; PsAF, persistent AF.

Figure 1 Measured vs. estimated LAT for the personalized model. Top: CS; bottom: HRA. Each colour represents a different S2 value. Each point
represents a measured vs. computed LAT at each electrode, fixed S2. The black line represents a perfect match of measured and estimated LAT. The
red line is the best linear fit to the measured and estimated LAT. CS, coronary sinus; HRA, high right atrium; LAT, local activation time.
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Transient changes in activation dynamics
Self-sustained activation in the model is initiated from a model of
sinus rhythm. There is likely to be a transitory period, where initial
conditions are still important, at the start of the simulation. Similarly,
there may be a change in frequency prior to termination of SS activa-
tion patterns. We measured the frequency of activation in 500 ms
windows. In non-terminating simulations, the activation pattern
reached the activation frequency achieved in the final 5 s of
simulation after a median of 303–341 ms in AF, meandering rotor
and macro re-entry cases. We saw no change in the activation
frequency in the window when activation terminated and the
prior window. The temporal evolution of the activation frequency
is plotted in Supplementary material online, Figures S11–S14, for
each patient and for each pacing site. For our analysis, we consider
activation times from 500 ms through to, whichever comes first
of, termination or 80 s.

Importance of pacing site on duration of
self-sustaining activation
Pacing from different veins caused different durations of activation
patterns, with pacing from the left superior PV leading to twice as
many sustained activations compared with the right infer pulmonary
vein (Figure 2C). The ability of an atria model to sustain AF cannot be
determined by simulating burst pacing to induce AF from a single site.
We consider all activation patterns initiated from all the pacing sites
in our analysis.

Distributions of phase singularities
To test if the type of SS activation pattern supported in each atrium
model was consistent, regardless of pacing location, we plotted the
phase singularity maps for each SS activation pattern. This identifies if
regions of tissue that tether re-entrant activation patterns were con-
sistent, regardless of pacing site. We plot the unwrapped phase sin-
gularity density maps, starting from 75 s after pacing to remove

potential transitory effects of moving rotors, for cases with sus-
tained activation patterns (Figure 3). In some cases (6 and 9), the
PS map is similar for different pacing sites, while for other cases
(7 and 8), the PS maps are different for different pacing sites.
Supplementary material online, Figure 15 plots the combined
phase singularity maps for each clinical case. There is not a
unique PS map for a given atrial anatomy and set of material
properties. We can only determine if a region has the potential
to support a PS, not that it will support PS.

Are specific parameter sets associated
with self-sustained activation?
We classified each case as self-sustaining if at least 1 of the 12 simula-
tions produced a self-sustained activation pattern for the full 80 s and
non-triggering or self-terminating (NTþST) otherwise. We com-
pared the distribution of fitted parameters between patients
(Supplementary material online, Figure S10) and when grouped
across patients (Figure 4A) for these two outcomes. CVmax, sin, hmin,
and sopen have considerable overlap in parameter distribution while
APDmax is shorter in atria with SS activation.

Are specific parameter sets associated
with phase singularities?
We classified as ‘tethering’ the portions of the tissue presenting a PS
density maps at 1SD above the mean of the PS16 and as ‘normal’ oth-
erwise. Figure 4B plots the value of the parameters that characterize
the substrate that support PS (red) compared with other tissue. The
CVmax value shows a separation between the two classes (median
values: 60 cm/s on the substrate with PS; 160 cm/s in the rest of the
tissue). Slower values of CVmax are associated with regions that an-
chor PS.

Figure 2 (A) Pacing regions used in numerical simulations and corresponding ID. (B) Duration sustained activations per vein. (C) Total number of
cases presenting sustained activations for each vein.

Machine learning to identify tissue supporting AF i15

https://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euaa386#supplementary-data
https://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euaa386#supplementary-data
https://academic.oup.com/europace/article-lookup/doi/10.1093/europace/euaa386#supplementary-data


How do APDmax and CVmax vary in each
patient?
Figure 4C plots the distribution of CVmax and APDmax for each clin-
ical case; we obtained each distribution by fitting a Gaussian
Kernel and choosing the empirical standard deviation as the band-
width. We see the high distribution of APDmax in four of the five
cases that exhibit SS activation patterns. The majority of cases has
a comparable distribution of CVmax regardless of their ability of
the case to support a SS activation pattern. The distribution of cell
model properties on all the 10 clinical cases are provided in
Supplementary material online.

Do tissue properties identify PS location?
We have demonstrated that APDmax and CVmax are correlated with
SS activation and determining the location of PS. To test how well
these two material properties support PS tethering, we trained a sup-
port vector machine (SVM) on the CVmax and APDmax values at every
point. The SVM was trained on material properties at 3 568 549 data
points, with 21 391 classified as tethering and 3 547 158 as normal.

The large data set (3 568 549 data points) and the complex corre-
lations between the local input features (CVmax and APDmax) and
global features (atrium size) that produce a PS are not readily ana-
lysed using classical statistics.

Figure 3 Phase singularity maps as a function of the pacing site. Each PV represents the sum of up to three maps. Grey maps indicate that no sus-
tained activation was achieved. PV, pulmonary vein.
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The best classifier achieves an accuracy of 91% (sensitivity = 0.96,
specificity = 0.91) indicating that APDmax and CVmax play an impor-
tant role in the location of PS tethering.

Does atrial size impact the importance of CVmax and APDmax on
PS Location?

We have previously shown that effective size, which combines an
APD surrogate (ERP), CV, and area values, predicts response to PVI
in persistent AF cases.17 To test if atrial size impacts the regions that
can support PS, we retrained the SVM including each patients atrial
size as an input feature. We added atrial size into the CVmax and
APDmax SVMs. When atrial surface area CVmax and APDmax are
taken into account, the classifier achieves an improved accuracy of
95% (sensitivity = 0.99, specificity = 0.95).

Discussion

We have created a validated virtual cohort of 10 (7 paroxysmal and
3 persistent) AF patients with heterogeneous material properties fit-
ted to each individual patient’s electrophysiology measurements.

We show that the capacity to initiate an arrhythmia is dependent on
the pacing site, after a transitory phase the activation rates remain
stable, termination can still occur up to 40 s after initiation, PS maps
are not unique for a given atrium anatomy and material properties,
shorter APDmax is associated with self-sustained activations, the
CVmax is associated with locations that support PS, that a combina-
tion of APDmax and CVmax can identify PS tethering locations
with 91% accuracy and that accounting for atria size improves the
identification of PS tethering locations to 95%.

Initiating and analysing simulated atrial
fibrillation
To reduce computational cost, atrial arrhythmia simulations have
also adopted relatively short simulation durations, often as low as
5 s13 for identifying sustained arrhythmia. Here we show that 9% of
self-terminations occur after 3 s and self-terminations can still occur
even 40 s after initiation, motivating the use of longer simulations
for clinically meaningful durations. However, 80 s is a long time to
perform a simulation. For the 120 simulations that we performed,

Figure 4 (A) Box plot of the parameters for cases presenting self-sustaining AF/AT (red) and either self-termination or non-triggering. (B) Box plot
of the model parameters for a substrate with PS (red) and the other tissue (blue). Circles represent outliers. (C) Distribution of CVmax (cm2/s) and
APDmax (ms) for each clinical case. Red colour scale identifies cases with self-sustaining activation pattern; blue colour scale identifies cases with self-
terminating/not triggering pattern. AF, atrial fibrillation; AT, activation time.
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only one case would have been misclassified as self-sustained if we
had adopted a 30 s simulation duration, in line with the duration used
for defining an episode of AF,18 and this may represent a reasonable
balance of clinical relevance and computational tractability.

We considered that the activation patterns may organise or slow
down prior to termination. However, consistent with clinical stud-
ies,19,20 we found that there was no change in frequency in the mod-
els prior to terminations. We did, however, observe a transitory
period following initialization of AF of �330 ms. This may be an un-
derestimate of the transition period in clinical studies and simulations
studies using complex models, where slower changes in ionic
homoeostasis, which are not accounted for in the mMS model, may
cause a longer transitory period.

Re-entrant and ectopically sustained
activation
Consistent with clinical observations that ectopic activations start
from the left superior pulmonary veins,21 we find that pacing from
the left superior pulmonary veins leads to more sustained activation
patterns. In our models, only 50% of the virtual cohort cases could
support a self-sustained activation pattern. We did not account for
sustained ectopic events following the initial burst pacing in the mod-
els, as we aimed to only simulate the effect of the electrophysiological
substrate to support re-entrant activation patterns. In many cases,
particularly in paroxysmal atria, AF is initiated and potentially driven
by ectopic beats, often originating in the ostium of the pulmonary
veins.21 The inability of our atrium models to sustain AF may repre-
sent cases where their clinical AF was supported by ectopic beats
and not an arrhythmogenic substrate. These patients may represent
cases where PVI is more likely to be effective.

At the same time, the ability to sustain AF may be highly dependent
on attributes not included in the models such as endocardial and epi-
cardial dissociation, fibrosis, or the right atrium. We did not have ac-
cess to AF induction studies in these cases, the location of ablation
lesions delivered, or ablation outcome. The addition of both more
sophisticated models and additional therapy and outcome data from
patients would allow us to test what factors contribute to simulated
sustained activation and if cases that cannot sustain activation have
AF driven by pulmonary vein ectopic beats.

Local tissue properties that support
phase singularities
Previously re-entrant activation patterns have been associated local
fibrotic regions measured using MRI in simulation22,23 and clinical24

studies, however, others found no link between re-entrant activation
and fibrosis.25 Alternately, other groups have suggested regions with
low voltage and CV,26 or regions with CFAE27 could support re-
entrant activation. In this paper, we assumed the effects of fibrosis
would be captured in electrical measurements28 and consequently
be encoded in the fitted cell models. The classifier identified tissue as-
sociated with tethered PS with 91% accuracy and comparable F1
score. Experimental noise may impact the SVM classifier. As we
trained and tested the SVM classifier using model parameters fitted
to experimental data that were subject to noise, it is not expected
that the accuracy of the SVM will degrade when applied to measure-
ments with a similar level of noise. To estimate how increased noise

may impact the classifier, we added a 10% white Gaussian noise into
testing data set. This elevated level of noise, beyond what is seen clini-
cally caused the accuracy of the classifier to decrease from 95% to
93%.

We also showed how patient attributes beyond tissue properties
can be used to improve identification of PS tethering locations. The
addition of patient atrial size further increased the ability of the SVM
to identify PS tethering sites to 95% accuracy. This is consistent with
many previous imaging studies that have identified atrial size or shape
as potential contributors; these are used as indexes of risk, although
not as a factor in guiding therapy.

Model critique
We have created a model that reflects the complexity of the available
clinical data, we have aimed to capture the data that are available in
the catheter lab. This represents a trade-off between model person-
alization and sophistication. In our simulations, we have not
attempted to model fibre distribution, biophysical cellular physiology,
endo–epicardial dissociation, fibrosis, the right atria, or wall thickness.
We have assumed that the effects of tissue change due to fibrosis,
remodelling, or physiological heterogeneity will be captured by the
measured activation times and will be encoded within the spatially
varying cell model parameter values. We have not included the right
atria as the source of AF is predominantly found in the left atria and
the right atria is not routinely mapped during ablation procedures.
While we recognise that many of the attributes we have not included
in the model may play a role in AF, we were able to train and validate
our model on an independent data set and did not find any evidence
that we needed to include these extra attributes to replicate the clini-
cal observations. This approach represents an alternate strategy for
patient-specific atrial models from purely image-based approaches,
where cellular properties are assumed common between patients
and are based on MRI image intensity values.

We created and validated our model using a systematic S1–S2 pac-
ing protocol. We did not validate the model against patient-specific
electrical recordings of AF data. We do not have AF recordings for
these patients. Validating patient-specific simulations of AF is chal-
lenging. Boyle et al.13 have indirectly validated their model by showing
that in 10 cases the model can identify critical ablation sites.
Comparison of simulated PS maps with clinical measurements is chal-
lenging due to disagreement on the number of PS locations that
should be identified,9,29 recording devices have limited coverage and
the use of open and proprietary PS identification tools. We do not
see one standard PS distribution in our simulations. We see high den-
sities of PS, consistent with29 (Case 2), meandering rotors, consistent
with30 (Cases 7 and 9), and stable rotors consistent with8 (Cases 6
and 8). In this paper, we presented a limited number of cases as each
personalized model requires a high-quality data set. Increasing the
number of cases modelled, in particular for persistent AF or cases
with a sustained AF, may provide a promising approach for identifying
the mechanisms underpinning these different re-entrant activation
patterns.

Limitations
We modelled the atria as a shell with homogenous thickness. Some
of the impacts of heterogeneous wall thickness on local conduction
velocity will be captured by regional variations in conductivity in the
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model. However, the model we have does not capture three
potentially important impacts of wall thickness on atrial electro-
physiology modelling. First, gradients in wall thickness will
lead thicker tissue activating thinner tissue, or vice versa, depend-
ing on the wave direction. This will lead to direction-dependent
electronic loading differences that will have activation wave
direction-dependent effects on the conduction velocity that
cannot be captured by our proposed modelling framework.
Experiments in sheep indicated that gradients in wall thickness
may impact the tethering of re-entrant activation patterns.31

However, simulations in human left atrium, including wall thick-
ness, did not find an impact of wall thickness gradients on
re-entrant activation tethering in the left atrium.23 Second, wall
thickness raises the potential for distinct activation patterns to
occur on the endocardium and epicardium, this would explain in-
creased complex fractionated electrograms in thicker tissue.32

Different activation waves on endocardial and epicardial tissue
may lead to measurement artefacts that compromise the fitted
model parameters. Third, our model cannot capture transmural
differences in fibrosis, which simulation studies have shown could
play a role in AF activation patterns.33

Conclusions

We have created a virtual patient cohort encoding patient-specific
electrophysiology heterogeneity. We have used the models
combined with machine learning to show that combining local CV
and APD with left atrial size can be used to identify tissue that can
sustain phase singularities. Using a mathematical model that captures
patient-specific dynamic atrial electrophysiology response we found
that larger left atrium atrial size and local short APD and slow CV
were correlated with re-entrant activation patter tethering. This is
consistent with previous studies, supporting the critical mass hypoth-
esis for sustain AF, that have correlated left atrium size and measures
of left atrium wave length and ERP with AF.17,34,35 Importantly our
study indicates that it is not only the average but also the local CV
and APD within the context of atrial size that determines the ability
of an atria to tether re-entrant activation patterns. This may provide
an alternate method for identifying ablation targets or guiding
anti-arrhythmic drug therapies that adapt CV and APD, to remove
these regions.

Supplementary material

Supplementary material is available at Europace online.
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