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Abstract

Many imaging problems require solving a high-dimensional inverse problem that is

ill-conditioned or ill-posed. Imaging methods typically address this difficulty by reg-

ularising the estimation problem to make it well-posed. This often requires setting

the value of the so-called regularisation parameters that control the amount of reg-

ularisation enforced. These parameters are notoriously difficult to set a priori and

can have a dramatic impact on the recovered estimates. In this thesis, we propose

a general empirical Bayesian method for setting regularisation parameters in imag-

ing problems that are convex w.r.t. the unknown image. Our method calibrates

regularisation parameters directly from the observed data by maximum marginal

likelihood estimation, and can simultaneously estimate multiple regularisation pa-

rameters. A main novelty is that this maximum marginal likelihood estimation

problem is efficiently solved by using a stochastic proximal gradient algorithm that

is driven by two proximal Markov chain Monte Carlo samplers, thus intimately com-

bining modern high-dimensional optimisation and stochastic sampling techniques.

Furthermore, the proposed algorithm uses the same basic operators as proximal op-

timisation algorithms, namely gradient and proximal operators, and it is therefore

straightforward to apply to problems that are currently solved by using proximal op-

timisation techniques. We also present a detailed theoretical analysis of the proposed

methodology, and demonstrate it with a range of experiments and comparisons with

alternative approaches from the literature. The considered experiments include im-

age denoising, non-blind image deconvolution, and hyperspectral unmixing, using

synthesis and analysis priors involving the `1, total-variation, total-variation and

`1, and total-generalised-variation pseudo-norms. Moreover, we explore some other

applications of the proposed method including maximum marginal likelihood esti-

mation in Bayesian logistic regression and audio compressed sensing, as well as an

application to model selection based on residuals.
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Chapter 1

Introduction

1.1 Inverse Problems in Imaging Applications

Mathematical imaging is at the core of modern data science, with important appli-

cations in medicine, biology, defence, agriculture and environmental sciences. Many

of the problems arising in these disciplines involve the estimation of an unobserved

image x ∈ Cd, from measurements y ∈ Cdy that are noisy, incomplete and resolution-

limited. Canonical examples include, for instance, image denoising [89], image de-

blurring [39, 80], compressed sensing [53, 115], super-resolution [100, 145], tomo-

graphic reconstruction [40], image inpainting [62, 125], source separation [15, 44],

fusion [90, 126], and phase retrieval [26, 76].

For example, in many applications the observed vector y can be modelled as the

output of a system A such that y = A(x)+w, where A is an operator that describes

how the underlying image x gives rise to y, and w is some observation noise.

Figure 1.1 – In a forward problem, the transformation A is applied to an input image
x. The inverse problem aims to obtain an estimate of x from the noisy observation y.

1



Chapter 1: Introduction

The operatorA can be expressed in different ways (differential equations, integral

equations or other mathematical mappings) and it can represent transformations

such as the blur introduced by the lens of an imaging device, a random sampling

operator or an inpainting degradation mask modelling lost pixels [92].

Given an input x and an operator A, determining the output y represents the

forward problem. Finding the input x for a given output y represents the inverse

problem (see Figure 1.1).

Solving such inverse problems can be a substantially difficult task. The properties

of the mapping A can make the recovery of x from y very challenging, often leading

to problems that are ill-posed or ill-conditioned. A problem is ill-posed if it is

not well-posed in the sense of Hadamard [67], i.e. if there is no unique solution that

continuously depends on the observed data y. Even when the problem is well-posed,

it can still be ill-conditioned if small perturbations in y result in large perturbations

in the estimated x, making the problem very sensitive to noise.

In many imaging problems A has a non-trivial nullspace, either because it is

rank-deficient or because dy is smaller than d, leading to ill-posed problems that

do not have a unique solution. For example, consider the inpainting problem in

Figure 1.2, were the observed image y has some missing or occluded parts, and the

goal is to use the information in y to estimate the values of the unobserved pixels of

x. Since the unobserved pixels do not directly affect the observed pixels, there is an

infinite number of possible images x that are compatible with a given observation

y.

(a) Original image x (b) Masked observation y (c) Estimated x

Figure 1.2 – Inpainting of Monet’s Water Lilies from a masked observation (b), using
a Mathematica implementation of the texture synthesis method proposed in [70].

Likewise, the spectral properties of the mapping A can sometimes make the re-

2



Chapter 1: Introduction

covery of x very unstable: when the quotient between the maximal and the minimal

singular values of A is too large, the problem is ill-conditioned and even mild obser-

vational noise can lead to extremely noisy estimates. This is often the case with, for

instance, deblurring problems as the one illustrated in Figure 1.3 (unstable solution

shown on the left).

In spite of all these difficulties, joint research efforts over the last decades have

led to impressive advances in methods, models and algorithms for imaging inverse

problems [92, 99, 108, 125].

1.2 Regularisation in a Bayesian Framework

There are many different mathematical frameworks available to address such imaging

problems [4, 78, 92]. Despite the broad range of models and applications, most imag-

ing methods adopt a similar strategy for approaching these ill-posed/ill-conditioned

problems: they render them well-posed by augmenting the information in the ob-

servation using additional knowledge about the signal to be recovered. This process

is called regularisation and it can be attained in many different ways.

In this thesis, we adopt a Bayesian statistical framework where regularisation

arises from the use of informative prior distributions that promote solutions with

expected structural or regularity properties (e.g., smoothness, piecewise-regularity,

sparsity, etc.). More precisely, we focus on problems where the observation y is

related to x by a statistical model with likelihood function

p(y|x) ∝ e−fy(x) , (1.1)

where fy is convex and continuously differentiable with Ly-Lipschitz gradient, i.e.

for any u, v ∈ Rd, ‖∇fy(u)−∇fy(v)‖ 6 Ly‖u− v‖ where Ly > 0. This class includes

important observation models, in particular Gaussian linear models of the form

y = Ax + w where A ∈ Cdy×d, w ∼ N (0, σ2 Idy) with σ > 0, and fy(x) = ‖y−Ax‖22
2σ2 .

We want to stress at this point that this work assumes that fy(x) is known, which

implies that the noise variance σ2 is also known.

Let Θ ⊂ (0,+∞)dΘ be a convex compact set. Following a Bayesian approach, we

model our prior knowledge about x using a prior distribution given for any θ ∈ Θ

3



Chapter 1: Introduction

by

p(x|θ) = e−
∑dΘ
i=1 θigi(x)

Z(θ) = e−θTg(x)

Z(θ) , (1.2)

for some convex and Lipschitz continuous vector of statistics g : Rd → RdΘ and where

we recall that the normalising constant of the prior distribution p(x|θ) is given by

Z(θ) =
∫

Rd
e−θTg(x̃)dx̃ . (1.3)

Note that θ is a multivariate regularisation parameter that controls the amount of

regularity enforced. The function g is allowed to be non-differentiable in order to

include popular models such as g(x) = ‖Bx‖† for some dictionary B ∈ Rd1×d with

d1 ∈ N and norm ‖ · ‖†, as well as constraints on the solution space such as pixel-

positivity. One could also consider more complex priors, such as plug-and-play priors

defined via denoising algorithms [135], but then the theoretical guarantees that we

establish in Appendix C might not hold.

Although rarely mentioned in the literature, these widely used prior distributions

regularise the estimation problem by promoting solutions for which g(x) is close

to the expected value ḡθ =
∫

Rd g(x̃)p(x̃|θ) dx̃, which depends on θ. Formally, by

differentiating (1.3) and using Leibniz integral rule [107] we obtain that for any

θ ∈ Θ

ḡθ =
∫

Rd
g(x̃)p(x̃|θ) dx̃ = −∇θ log Z(θ). (1.4)

Additionally, because the prior distribution x 7→ p(x|θ) is log-concave, using [16,

Theorem 1.2] we have that for any ε ∈ [0, 2]

∫

Cθ,ε

p(x̃|θ)dx̃ 6 3 exp
[
−ε2d/16

]
, (1.5)

with Cθ,ε = {x̃ ∈ Rd : d−1|θT(g(x̃)− ḡθ)| > ε}. This result establishes that the prior

distribution x 7→ p(x|θ) strongly concentrates the probability mass on solutions for

which g(x) ≈ −∇θ log Z(θ) with high probability when d is large. In other words,

when the dimension of x is high, the prior distribution promotes values of x for which

g(x) is very close to its expectation ḡθ, and the value of ḡθ is directly determined by

θ through (1.4).

Once the likelihood and prior p(y|x) and p(x|θ) are specified, we use Bayes’

4



Chapter 1: Introduction

theorem [118] to derive the posterior for any θ ∈ Θ and x ∈ Rd

p(x|y, θ) = p(y|x)p(x|θ)/p(y|θ) = exp[−fy(x)− θTg(x)]
/∫

Rd
exp[−fy(x̃)− θTg(x̃)]dx̃ .

(1.6)

This posterior distribution underpins all inferences about the image x given observed

data y, and it can be used in different ways to obtain estimates of x. In particular,

imaging methods often use the maximum-a-posteriori (MAP) estimator, given for

any θ ∈ Θ by

x̂θ,MAP ∈ argmin
x̃∈Rd

{fy(x̃) + θTg(x̃)} . (1.7)

This Bayesian estimator has a number of favourable theoretical and computa-

tional properties (see [104] for a recent theoretical analysis of this estimator). From

a computation viewpoint, since the posterior x 7→ p(x|y, θ) is log-concave, the com-

putation of x̂θ,MAP is a convex optimisation problem that can usually be efficiently

solved using modern optimisation algorithms, see [36]. Imaging MAP algorithms

typically adopt a proximal splitting approach [42] involving the gradient ∇fy and

the proximal operator of g, proxλg : Rd → RdΘ , see [13, Definition 12.23]. This

operator is defined for any λ > 0 and x ∈ Rd by

proxλg (x) = argmin
x̃∈Rd

{g(x̃) + ‖x̃− x‖2
2 /(2λ)} , (1.8)

The smoothness parameter λ > 0 controls the regularity properties of the proximal

operator.

It is worth noting that the posterior (1.6) can also be used to compute other

estimators of x. For example, one can compute the maximiser of the posterior

marginals (MPM) [95] or perform minimum mean squared error (MMSE) estimation

[118] by computing the posterior mean

x̂MMSE =
∫

Rd
x p(x|y, θ) dx. (1.9)

Unlike MAP estimation, which is predominantly computed by using optimisation

algorithms, the MMSE estimator and other Bayesian estimators are generally not

available as optimisation problems and need to be calculated with other methods.

There is a wide range of alternative computational techniques, see [63, 66, 108].

5



Chapter 1: Introduction

As mentioned previously, the regularisation parameter θ ∈ Θ controls the region

where the prior probability mass is concentrated, and this can significantly impact

inferences about the unknown image x ∈ Rd, especially in problems that are ill-posed

or ill-conditioned.

1.3 Setting regularisation parameters

A main difficulty that arises when using most regularisation techniques is deciding

how much regularisation is appropriate. Different imaging modalities, instrumental

setups, scenes, and noise conditions often require using very different amounts of

regularisation. As previously explained, the amount of regularisation is usually con-

trolled by the regularisation parameter θ, and setting its value can be very difficult

(see [49, 98, 105]).

In Figure 1.3, we illustrate the dramatic effect that the value of θ ∈ Θ may have

on the recovered image for a deconvolution problem with a total-variation prior.

As expected, when θ is too small the estimated image is very noisy due to lack of

regularisation, and when θ is too large the resulting image is over-regularised.

We want to mention at this point that this difficulty is not inherent to Bayesian

approaches. Other regularisation techniques used with different mathematical frame-

works face the same challenge when it comes to setting regularisation parameters (in

Section 1.6 we introduce some of these alternative approaches and discuss connec-

tions to the Bayesian framework). As a result, there is significant interest in methods

for setting regularisation parameters in an automatic, robust, and adaptive way, and

this will be the main focus of this thesis.

Indeed, the developments of methods to automatically set regularisation param-

eters is a long-standing research topic in imaging sciences. Some methods such as

generalised cross-validation [65], the L-curve [23, 69, 88], the discrepancy principle

[14, 101] and residual whiteness measures [3, 87] operate by analysing the residual

between the observed data and a prediction derived from the observation model.

Such methods can perform well in certain imaging problems, but they are mainly

limited to cases involving a single scalar regularisation parameter. Alternatively,

methods based on Stein’s unbiased risk estimator (SURE) have also received a lot

6



Chapter 1: Introduction

(a) Original

(b) Degraded

(c)

(d)

(e)

(f)

Figure 1.3 – Deblurring of the boat image with total-variation prior: (a) True image
x, (b) blurred (9× 9 uniform blur) and noisy observation y (SNR=40 dB), and (c-f)
maximum-a-posteriori estimators for different values of θ > 0 illustrating the effect of
regularisation (increasing from (c) to (f)).

of attention recently [49, 57, 64]. These methods seek to select the value of the regu-

larisation parameters by minimising SURE-based surrogates of the estimation mean

squared error [57, 64, 110]. SURE methods can perform remarkably well in mildly

ill-posed or ill-conditioned problems, but they generally struggle with problems that

are more severely ill-conditioned or ill-posed [93]. Some recent works also consider

learning regularisation parameters from a training dataset of clean images [131], or

adopting a bilevel optimisation strategy [22, 83].

Lastly, the Bayesian statistical framework provides two main strategies for ad-

dressing unknown regularisation parameters: the hierarchical and the empirical

[98, 118]. So far, imaging methods have mainly adopted the hierarchical strat-

egy, where the unknown regularisation parameters are incorporated into the model

to define an augmented posterior, and subsequently removed from the model by

marginalisation or estimated jointly with the unknown image [105, 108]. This is

the strategy that is adopted by most Markov chain Monte Carlo and variational

7



Chapter 1: Introduction

Bayesian approaches reported in the literature (see e.g., [10, 106]). In contrast, the

empirical Bayesian approach has been studied relatively little because it involves

solving an intractable maximum marginal likelihood estimation (MMLE) problem

(see Section 2.3.2).

In this thesis we propose to adopt an empirical Bayesian approach to estimate

the regularisation parameters directly from the observed data in a fully automatic

and unsupervised way. The main contributions are summarised below.

1.4 Contributions

The main contributions of this thesis are:

1. A new method for setting regularisation parameters: we propose an

empirical Bayesian method to estimate the regularisation parameters directly

from the observed data by maximum marginal likelihood estimation. A main

novelty is that this maximum marginal likelihood estimation problem is solved

by using a stochastic proximal gradient algorithm that is driven by two prox-

imal Markov chain Monte Carlo samplers, thus intimately combining modern

high-dimensional optimisation and stochastic sampling techniques.

The algorithm is very general, computationally efficient and easy to implement

(it only requires knowing gradient and proximal operators so it is straightfor-

ward to apply to problems that are currently solved by proximal optimisa-

tion). Moreover, it can be used to estimate multiple parameters simultane-

ously (most alternative approaches from the literature are for scalar param-

eters). We propose two main versions of the methodology: one for problems

with tractable partition functions or homogeneous regularisers, which requires

a single Markov kernel targeting the posterior distribution of x, and one for

all other cases, which employs two different Markov kernels targeting both the

posterior and the prior distributions of x and thus requires the prior to be

proper.

2. Detailed practical guidelines: bridging the gap between theory and prac-

tice has been one of the core goals of this thesis. Although similar ideas to

the ones proposed in this thesis have been studied in recent works [6, 60], they

8
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have mostly focused on the theory rather than the practical aspects. Hence it

is very difficult for practitioners to, for example, check if the random samplers

they use verify the necessary conditions for convergence. Moreover, in some

cases those methods require incrementing the number of random samples used

at each iteration, which is not always feasible in practice (our proposed method

works with only one random sample per iteration). One of the most important

contributions of this work is that the proposed method has been designed to be

practical from the practitioner’s point of view, and that we provide very com-

prehensive implementation guidelines that cover every aspect needed to get

this method running (how to test the sampler, how to set up every parameter,

how to troubleshoot, etc.).

3. Theoretical analysis: we present a detailed theoretical analysis of the pro-

posed methodology, including asymptotic and non-asymptotic convergence re-

sults with easily verifiable conditions, and explicit bounds on the convergence

rates. The work of this thesis has been carried out in close collaboration with

applied probability experts Valentin De Bortoli and Alain Durmus, who had

a leading role in this theoretical analysis.

4. Numerical experiments: we demonstrate the proposed methodology with

a broad range of severely ill-posed imaging problems as well as some other

statistical problems such as logistic regression or audio compressive sensing.

The method is very robust to noise and delivers remarkably accurate solutions,

usually outperforming other alternative approaches.

5. Noise variance estimation: As mentioned earlier, throughout this work we

assume that the noise variance σ2 is known. This is a standard assumption

in the literature (see, e.g., [49, 105]) that is sometimes difficult to verify in

practice. To mitigate this issue, in Section 4.1.2 we study a possible way to

incorporate the estimation of σ2 into the proposed scheme.

6. Model selection: using the proposed empirical Bayesian method, we intro-

duce a fast heuristic for comparing Bayesian models to solve inverse problems

where no ground truth is available. The proposed heuristic is very computa-

tionally efficient and does not require the estimation of the model evidence.

We illustrate this approach for model selection with a total-variation image

9



Chapter 1: Introduction

deblurring experiment, where it performs remarkably well.

1.5 Outline

The thesis is organised as follows:

In the remainder of Chapter 1 we discuss the context of our contributions. We

briefly introduce other approaches and frameworks for solving ill-posed inverse prob-

lems and we make connections to the contributions of this work. In particular, we

explain why the proposed methodology can also be used for setting regularisation

parameters in other non-Bayesian approaches and we end by reviewing current per-

spectives and limitations of the existing approaches to solving inverse problems.

Chapter 2 provides an overview of the available methods for selecting the regular-

isation parameters and discusses the connections between empirical and hierarchical

Bayesian approaches.

Chapter 3 presents the proposed empirical Bayesian method to calibrate regular-

isation parameters. The algorithm is presented in three different versions depending

on the properties of the regulariser and the tractability of the partition function. We

use a synthetic image denoising problem to study the behaviour of the algorithm in

depth and we provide detailed implementation and troubleshooting guidelines. We

also discuss connections to the expectation-maximisation algorithm.

In Chapter 4 we demonstrate the proposed methodology on a broad range of

ill-posed and ill-conditioned imaging inverse problems. We first consider different

non-blind image deblurring problems involving scalar-valued regularisation param-

eters, including an experiment where we also estimate the noise variance. This

is followed by a challenging sparse hyperspectral image unmixing with the SUn-

SAL model [75], which involves two different regularisation parameters. Finally, we

consider a more challenging denoising problem with a Total Generalised Variation

regulariser [18] that requires setting vector-valued regularisation parameters that

have strong dependencies, making the estimation problem particularly difficult. We

report comparisons with several alternative approaches from the literature, includ-

ing the discrepancy principle [101], the SURE-based SUGAR method [49], and the

hierarchical Bayesian method from [105].

10
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In Chapter 5 we show the scope of the proposed methodology for estimating

other kinds of parameters in other types of non-imaging inverse problems. We

first present a generalised version of the proposed method that can be applied to

a broader range of intractable maximum likelihood estimation problems and then

illustrate its performance with an audio compressive sensing problem and with two

Bayesian logistic regression problems with and without random effects.

In Chapter 6, we introduce a different application of the proposed methodology:

we propose a fast heuristic for comparing Bayesian models under no ground truth.

The proposed model selection method is illustrated with a total-variation image

deblurring experiment, where it performs remarkably well.

Conclusions and perspectives for future work are finally reported in Chapter 7.

Appendix C presents a detailed analysis of the theoretical properties of the

proposed methodology, including easily verifiable conditions for convergence and

quantitative convergence rates.

1.6 Connections to other approaches and frame-

works

We now provide a brief overview of the main approaches to address ill-posed imag-

ing problems and discuss how the proposed methodology could be used for setting

regularisation parameters in some of these non-Bayesian approaches. Figure 1.4

MAIN
APPROACHES

ANALYTIC

DATA-DRIVEN

DETERMINISTIC

STOCHASTIC
BAYESIAN

FUNCTIONAL 
ANALYTICAL

OTHER OPTIMISATION METHODS

Variational methods

Approximate analytic inversion

FREQUENTIST         Penalised maximum likelihood estimation

Iterative methods with early stopping

Discretisation as regularisation

Figure 1.4 – Different approaches to solving inverse problems.

sketches out the main families of approaches. One of the defining features at the

core of an approach is the way in which the forward problem is modelled. While

analytical techniques define an explicit forward model, for instance by defining

an operator A, data-driven techniques [92] can learn the relations between the

11
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underlying image and the observations without the need to define a detailed forward

model. In this case, the structure is learnt from data rather than specified analyti-

cally. The most common way of attaining this, is by using (deep) neural networks

to minimise some cost functional ‖x− gΦ(y)‖, where gΦ tries to approximately in-

vert the forward model and the noise, and Φ represents the set of neural network

parameters. These parameters are learnt from data by training the neural network

with the available ground truth (i.e. a large set of (x, y) pairs).

Both analytical and data-driven approaches have some inherent limitations.

Data-driven techniques do not offer a straight-forward way of incorporating such

prior knowledge and tend to be limited by what can be learnt from the data. For

instance, if a parameter in the system of interest changes (e.g. a microscope lens),

data-driven approaches typically have to re-learn the whole model instead of tuning

a specific model parameter. On the other hand, it is often hard to obtain realistic

regularisers or prior distributions that can be written down as a simple mathematical

expression. In most high-dimensional problems the unknown signals are typically

concentrated on lower dimensional subspaces of Rd. Capturing the exact structure

of these subspaces is a very challenging problem which often exceeds the capabilities

of analytic methods.

To overcome these limitations, recent works [4] have started to explore the fusion

between analytic and data-driven models. In particular, a popular approach is the

one of Plug-and-Play priors [122, 135], where a learnt denoiser is used instead of a

proximal operator in optimisation schemes such as the ones used to compute (1.7).

In this case one could try to estimate the parameters of such PnP priors using the

proposed methodology. We have not tested this in this thesis, but it is part of the

perspectives for future work. We expect that our method would work in some cases

but that it will be very difficult to develop theoretical guarantees with these learnt

priors.

Within the analytic models, deterministic approaches usually formulate the

inverse recovery as an optimisation problem which they regularise by adding a

penalty term to the target cost to promote solutions with desired properties. In

particular, variational approaches1 follow this strategy in a continuous space:
1Variational approaches are just one of four main regularisation strategies within the functional

analytic framework. For more details see [4].
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adopting a functional analytic framework, they model images as functions rather

than a finite-dimensional vector of pixels, and then compute point estimates for

the unknown image as minimisers of a cost functional with both data-fidelity and

regularisation terms, that is,

x̂f = argmin
xf∈X

Vf (Af (xf ), yf ) + θT gf (xf ) (1.10)

where xf is a continuous image function defined in a Banach space X , and Vf is a cost

function that plays a similar role to the likelihood in a statistical model: it measures

the deviation between what one observes from data and what the forward model

predicts (data fidelity term). One of the great advantages of working in a Banach

space, is that the resulting methods are discretisation invariant and well-posed in

the infinite-dimensional case. The minimisation problem (1.10) can be solved with

standard optimisation techniques. Notice that from an algorithmic point of view,

this is very similar to the computation of the MAP estimator as defined in (1.7).

In fact, many of the Bayesian models that are frequently used in practice, can

also be conceived from a variational perspective. In this light, the techniques that

we establish in the thesis could be useful for variational models, particularly for

problems where the variational formulation admits an interpretation from the lens

of MAP estimation (e.g. denoising or deconvolution problems).

Finally, we want to discuss statistical approaches, which arise when at least

one element in the inverse problem is modelled as stochastic. Frequentist ap-

proaches restrain the stochasticity to the elements that are perceived as intrinsi-

cally random, such as the noise, and then use traditional statistical tools to estimate

the unknown parameters. Bayesian methods stem from a deeper level of abstrac-

tion: they conceive the inverse problem as a “statistical quest for information” [78],

where all unknowns are treated as stochastic quantities, and then all available in-

formation is used to update the current state of knowledge about each quantity

of interest. In this way, from a Bayesian point of view, the solution of an inverse

problem is a posterior probability distribution, and not a single point estimate. If a

point estimate is wanted, it can then be obtained from the posterior distribution by

using decision theory [118]. In this context, the prior distributions used in Bayesian
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models, play the same role as the frequentist penalty added in penalised maximum

likelihood estimation (PMLE). Therefore, if we accept that the PMLE can be inter-

preted as a form of MAP estimation, then the proposed methodology can also be

used for setting parameters in frequentist models.
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1.7 Limitations of the existing approaches

Despite the breakthroughs in estimation accuracy and computing time, the exist-

ing methods for solving inverse problems are far from meeting the current needs

and demands of the scientific community. While most modern mathematical imag-

ing methods produce impressive point estimation results, they are generally unable

to support the complex statistical analyses that are inherent to modern scientific

reasoning.

First of all, most optimisation-only techniques struggle to deal with models when

some of its parameters have unknown values. In particular, setting the regularisation

parameters is notoriously difficult and this is the main area of contribution of this

work. Although there are several general methods for setting regularisation param-

eters (see Chapter 2) most of them are limited to scalar regularisation parameters

[3, 69, 101] or can only be applied to moderately ill-posed problems [93]. There are

also many application-specific methods, which work well for particular problems but

are hard to generalise [102, 129, 130]. Hence, the development of more general and

robust tools for setting regularisation parameters remains an active research area

[3, 49, 64, 105, 130], and is of great interest to the scientific imaging community

[21, 32, 37, 38, 109].

Moreover, in applications related to quantitative imaging, where it is necessary

to analyse images as high-dimensional physical measurements and not as pictures,

obtaining point estimates alone is not enough. In these applications, it is essential

to have an estimate of the uncertainty in the magnitudes of interest. Although

most state-of-the-art methods do not quantify the uncertainty in the solutions they

deliver, some recent works [20, 116] have adopted a Bayesian approach to address

uncertainty quantification in imaging problems.

Modern scientific inquiry also requires advanced tools for selecting and comparing

alternative mathematical models. Although there are some available methods for

doing this when ground truth is available, intrinsic comparisons under no ground

truth still remains a challenge. The heuristic for intrinsic model selection that we

propose in this work is a contribution to this open problem.

Furthermore, many modern disciplines use images as a mean for making de-

cisions, which have associated costs. In this context, narrowing down the imaging
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problems to the computation of a point estimate of the original image can sometimes

leave out valuable information that would affect the final decision.

While none of the current approaches has yet managed to fully meet all these

requirements, the Bayesian framework holds an enormous potential for supporting all

these advanced statistical inquiries. When working under high-uncertainty scenarios

this framework provides one of the most flexible and natural ways of integrating all

sources of information and uncertainty under a single cohesive model.

Although pure Bayesian stochastic simulation for high-dimensional settings is

sometimes too computationally expensive, recent works like [105], [56] and [109],

show that there is a great potential for synergy between Bayesian and other non-

statistical techniques.

Both neural networks and complex optimisation schemes can be plugged into

a Bayesian backbone to create a new class of hybrid algorithms that are highly

efficient, highly adaptive and still capable of performing sophisticated statistical

inferences that are way beyond the scope of purely deterministic methods.

Figure 1.5 – Bayesian hybrid methods for solving high-dimensional ill-posed should
combine all available information (inputs) and output a summary of the current state
of knowledge (the posterior distribution). This posterior information along with an op-
tional cost function can be used to perform advanced statistical analysis underpinned
by Bayesian Decision Theory.

Figure 1.5 shows a diagram illustrating the underlying structure of such Bayesian

schemes. Here, for instance, data-driven techniques could be used to extract use-

ful knowledge from the available ground truth. This knowledge could be combined

with standard prior knowledge about x to construct a suitable regulariser. The

observation y and all prior knowledge could be used to estimate the missing in-

formation about the forward model by, for example, using efficient optimisation

schemes to compute point estimates of the unknown model parameters. All of this
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combined, could then lead to some representation of the posterior knowledge about

x, whether it is through an approximated surrogate model, or through simulated

samples. Finally, this posterior knowledge about x could be used to carry out ad-

vanced statistical analysis.

On this account Bayesian techniques and, in particular, hybrid Bayesian method-

ology will probably be at the core of the next generation of computational imaging

tools.

1.8 Publications

Different parts of this thesis have been accepted or are under review for publication

in imaging and statistics journals:

• [136] A. F. Vidal, V. De Bortoli, M. Pereyra, and A. Durmus Maximum likeli-

hood estimation of regularisation parameters in high-dimensional inverse prob-

lems: an empirical Bayesian approach. Part I: Methodology and Experiments,

to appear in SIAM Journal on Imaging Sciences (2020). Arxiv pre-print [137].

• [45] V. De Bortoli, D. Alain, M. Pereyra, and A. F. Vidal, Maximum likelihood

estimation of regularisation parameters in high-dimensional inverse problems:

an empirical Bayesian approach. Part II: Theoretical Analysis, to appear in

SIAM Journal on Imaging Sciences (2020). Arxiv pre-print [47].

• V. De Bortoli, A. Durmus, M. Pereyra, and A. F. Vidal, Efficient stochastic

optimisation by unadjusted Langevin Monte Carlo. Application to maximum

marginal likelihood and empirical Bayesian estimation, submitted to Statistics

and Computing Springer Journal, currently under minor revision. Arxiv pre-

print [46].

• A. F. Vidal, M. Pereyra, Giovannelli J.-F., Fast model selection with empirical

Bayesian priors, in preparation.

Part of this work has also been presented at the 25th IEEE International Conference

on Image Processing (ICIP) [138].
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1.9 Other research activities

• Invited to give a talk Maximum likelihood estimation of regularisation param-

eters in high-dimensional inverse problems: an empirical Bayesian approach

at the Probability in the North-East (PiNE) Meeting, ICMS, Edinburgh, UK,

Jan. 2020.

• Selected for oral presentation of Maximum likelihood estimation of regularisa-

tion parameters: an empirical Bayesian approach at the 2nd IMA Conference

on Inverse Problems From Theory To Application, University College London,

London, UK, Sep. 2019.

• Won best poster award presenting Maximum likelihood estimation of regular-

isation parameters in imaging problems - an empirical Bayesian approach at

Annual PhD Poster Session, School of Mathematical and Computer Sciences,

Heriot-Watt University, Edinburgh, UK, Jun. 2019.

• Selected to go to Paris for three months to participate in the special semester

The Mathematics of Imaging that took place at Institut Henri Poincaré, Paris,

France, from Jan.2019 to Apr. 2019. During these months I presented my work

and collaborated with other researchers in France. In particular, I was invited

to present my work at Neurospin and to collaborate with the Inria Parietal

team to adapt my method to specific applications they work with.

• Attended The Mathematics of Imaging - Winter school and presented my

work Maximum likelihood estimation of regularisation parameters in imaging

problems, at Centre International de Rencontres Mathématiques, Marseille,

France, Jan. 2019.

• Selected for oral presentation of Maximum likelihood estimation of regulari-

sation parameters at the Statistical Signal Processing (SSP) Workshop 2018,

STOR-i Centre for Doctoral Training, Lancaster University, Lancaster, UK,

Apr. 2018.

• Gave a seminar Maximum likelihood estimation of regularisation parameters in

imaging inverse problems as a part of the Actuarial Mathematics and Statis-

tics Seminars, School of Mathematical and Computer Sciences, Heriot-Watt

University, Edinburgh, UK, Apr. 2018.
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Chapter 2

Overview of existing methods for

selecting regularisation parameters

In the following chapter we provide a brief overview of other existing methodologies

for selecting regularisation parameters with a particular focus on strategies that are

general enough to be applicable to a broad spectrum of problems. There are some

specific techniques designed to work with particular models [9, 48], but we do not

discuss them here.

2.1 Methods based on residual analysis

Cross-validation Cross-validation is a classic method for selecting regularisation

parameters by analysing the residual r(θ) = ‖y − Ax̂θ‖, where x̂θ is the solution to

(1.7). This is a data-driven approach that proceeds as follows: i) split the pixels into

ng groups gi (they may overlap) ii) for every pixel group gi compute an estimate x̂θ
without using that group, iii) compute the pixel group residual ri(θ) = ‖gi− ĝi(θ)‖,

where ĝi(θ) is given by extracting the same groups from Ax̂θ and iv) choose θCV
that minimises the cross-validatory function CV (θ) =

∑
∀i ri(θ) [128].

It is also possible to minimise a related function called the generalised cross-

validatory function [65], GCV (θ), which does not differ much from the regular

cross-validatory function, but has more desirable mathematical properties [69]: un-

like θCV , the parameter θGCV that minimises GCV (θ), is invariant to orthogonal

transformations and permutations of y. The GCV function can sometimes be quite

19



Chapter 2: Overview of existing methods for selecting regularisation parameters

flat around the minimum resulting in numerical complications for finding its mini-

mum [133].

Notice that both CV and GCV require solving the problem ng times for ev-

ery tested value of θ, and this is too computationally expensive for most imaging

problems.

The L-curve The L-curve method is a popular alternative to CV and GCV that

is more computationally efficient [69, 88]. The rationale behind this method is that

when choosing the regularisation parameter, one should not only consider the norm

of the residual, but also the norm of the regularisation term. To balance these two

terms one can plot the L-curve, a parametric curve given by lc(θ) = (log ‖r(θ)‖2 , log ‖g(x̂θ)‖2),

and then select the parameter θ located at the corner of this curve (see Figure 2.1).

This is supposed to be the point that better balances the different types of errors

(coming from over-regularising or under-regularising).

Figure 2.1 – Generic L-curve using Tikhonov regularisation. Example taken from
[68].

As stated in [69], the performance of this method is close to the one of GCV,

and it is not always a suitable option for imaging problems.

To illustrate some of the possible limitations, we show in Figure 2.2 an exam-

ple of the L-curve for an image deblurring problem with a Total-Variation prior

(as specified in Section 4.1.1). As it may be seen, the point that minimises the

estimation mean squared error (MSE) does not necessarily fall in the corner of the

L-curve. Moreover, the sharp corner seen on Figure 2.1 is not always present in

many imaging problems. For higher SNR values the curve tends to flatten out mak-

ing the estimation of the exact position of the corner more difficult and unstable.

Finally, even if the optimal point is relatively close to the corner, we show that the
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Figure 2.2 – Deblurring of the barbara image with total-variation prior. L-curve for
two different SNR values. Optimal point that minimises the reconstruction MSE in
blue.

MSE is very sensitive to the exact position in the curve around the corner and using

the L-curve criteria can lead to poor results.

Discrepancy principle The discrepancy principle is another popular approach

that is often used in imaging problems [101]. Given a reliable estimate ε of the norm

‖y − Ax‖ for the true value of x, this method proposes to tune the regularisation

parameter such that r(θ) = ‖y−Ax̂θ‖ is close to ε. This is based on the intuitive no-

tion that when the computed solution is sufficiently regularised, the residual should

be primarily constituted of noise.

For models where y ∈ Cdy is given by Ax+w with w ∼ N (0, σ2 Idy), the norm of

the noise ‖w‖2
2 follows a σ2χ2(dy) distribution with mean µχ2 = σ2dy and variance

σ2
χ2 = 2 dy σ4. A common choice for ε is therefore ε = µχ2 or ε = µχ2 +2σχ2 (when dy

is large the difference is not very significant). Given this bound, θ can be obtained

by either finding θDP such that r(θDP ) = ε, or alternatively θDP = argmax
θ∈Θ

r(θ) s.t.

r(θ) 6 ε.

A main limitation of this approach is that it can only be applied when θ is

scalar, and that it requires having a good estimate of the noise level (which is not

always available). Furthermore, it tends to overestimate the regularisation parame-

ter leading to solutions that are over-smoothed, especially in cases of low signal to

noise ratio (SNR) [69]. This phenomenon can be observed in some of the numeri-

cal experiments presented in section 4.1. This approach is also sensitive to model

misspecification, as it heavily relies on the likelihood to set θ.
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Residual whiteness measures A more recent method within this group is

the one proposed in [3], where they set the regularisation parameter in a blind

deconvolution problem by minimising the autocorrelation of the residual. Although

this is an interesting alternative for this kind of problem, it is not optimal for non-

blind problems where information about the operator A is available.

Residual based methods have been mostly superseded by newer approaches such

as the ones we discuss in the following two subsections [49, 105]. Since the discrep-

ancy principle is still frequently used in imaging inverse problems [1, 31], we will

compare it with the proposed method in the cases where it is possible (when θ is

scalar).

2.2 Methods based on surrogates of the MSE

If we could compute the estimation error (MSE) for each value of θ, we could choose

the value of θ that minimises this error. This is of course not possible because we do

not have access to the true image. However, it is sometimes possible to construct an

estimator of this estimation error that does not depend on the unknown underlying

image, and then minimise this estimator instead.

This is the approach adopted in the Stein’s Unbiased Risk Estimator (SURE)

[127] methods, which have recently received a lot of attention [49, 57, 64, 110, 114].

Although SURE was originally conceived for denoising problems with white additive

Gaussian noise, works like [57] have extended the results for more general inverse

problems (not only denoising) and for a wider class of noise distributions within

the exponential family. This generalised SURE (GSURE) however, is not enough

to tackle the cases where the operator A has a non-trivial null space. GSURE

uses an estimator of ‖x− x̂θ‖2
2 which can be computed provided A>A is invertible.

When A>A is not invertible, there is a significant difference between minimizing the

estimation risk E{‖x− x̂θ‖2
2} and the prediction risk E{‖Ax− Ax̂θ‖2

2}. In [64] they

propose the alternative Projected-GSURE, which uses an estimate of the projection

risk which considers the error computed only on the projection of x − x̂θ onto the

range of A>. In this way only the components of x that can be “observed” through

A are taken into account, making the projection risk a better approximation of the
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estimation risk for general ill-posed problems.

Traditionally, SURE-based methods were carried out by exhaustive search, trying

out different values for θ. More advanced methods such as SUGAR [49] find an

asymptotically unbiased estimate of the gradient of SURE, and then use this to find

θ with an optimisation scheme.

Despite of the attempts to extend the SURE-based methodology for more ill-

posed inverse problems, it still faces some major limitations when it comes to severely

ill-posed problems [93]. Most of the published works [28, 49, 64, 142] that pro-

mote the use of this technique for parameter selection actually considered only very

“mildly ill-posed” problems. A very recent work [93] has studied the limitations

of SURE-methods in depth and argues that these techniques do not constitute a

reliable approach for general ill-posed problems. In this Section 4.1.1 we compare

our method to the one proposed in [49] and we observe the same behaviour reported

in [93], namely that the regularisation parameter is underestimated.

2.3 Bayesian methods

As we mentioned earlier, the Bayesian framework provides two main paradigms to

select θ automatically: the empirical (discussed in section 2.3.2) and the hierarchi-

cal [96] (discussed in section 2.3.1).

2.3.1 Hierarchical Bayesian estimation

In the hierarchical paradigm, θ is modelled as an additional unknown quantity and

it is assigned a prior distribution p(θ). This leads to an augmented posterior given

by

p(x, θ|y) = p(y|x, θ)p(x|θ)p(θ)
p(y) . (2.1)

There are two main ways of employing this augmented posterior. One possibility

is to estimate x and θ jointly from y [97]. For example, one can perform maximum-

a-posteriori estimation jointly on x and θ, i.e.

(x̂?, θ̂?) = argmax
x∈Rd, θ∈Θ

p(x, θ|y) . (2.2)
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Although this approach has been successfully applied in specific problems such as

[146], obtaining a general implementation is difficult because maximising p(x, θ|y)

requires knowing Z(θ), the normalising constant of p(x|θ) defined in (1.3). As

mentioned earlier, in most models of interest (1.3) is intractable, so developing a

general algorithm to compute (2.2) can be very challenging.

Alternatively, given that in imaging problems the main goal is to recover x and

the actual value of θ is not relevant, the most popular approach is to remove θ

from the model by marginalisation followed by inference on x|y with the marginal

posterior given by

p(x|y) =
∫

Θ
p(x, θ|y)dθ . (2.3)

The marginal posterior is then often used to perform minimum mean squared error

(MMSE) estimation by computing

x̂MMSE =
∫

Rd
x̃ p(x̃|y) dx̃. (2.4)

This can be achieved with a standard MCMC algorithm when Z(θ) is tractable, e.g.

Gibbs sampling, or with specialised algorithms that allow to circumvent the evalu-

ation of Z(θ) at the expense of significant additional computational cost (see [106]

for details). For some specific models it is also possible to compute an approximate

marginal MMSE solution by using a deterministic variational Bayesian algorithm

(e.g., see [9, 94]), but such algorithms have not yet been widely adopted because

their implementation and performance remains very problem-specific. Alternatively,

one can also compute the marginal MAP estimator

x̂MAP ∈ argmin
x̃∈Rd

p(x̃|y), (2.5)

which, unlike the MMSE estimator and other Bayesian estimators, can be computed

with optimisation algorithms.

In particular, for log-concave posteriors, both (2.5) and (2.2) can be obtained

using the efficient majorisation-minimisation algorithms proposed in [105]. This

recent work introduces an ingenious way of using the exact normalising constant

Z(θ), even when it is not available in an explicit form: the authors show that for a
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α-homogeneous regulariser1 g(x) and a scalar θ, the normalising constant is always

of the form

Z(θ) = c θ−n/α (2.6)

where c is a constant that does not depend on θ. Based on this insight, [105] proposes

specific algorithms to compute (x̂?, θ̂?) and x̂MAP for models with homogeneous

regularisers and using the prior distribution

p(θ) = ba

Γ(a)θ
a−1e−bθ1R+(θ), (2.7)

with a ∈ R+ and b ∈ R+.

Since the algorithms proposed in [105] are suitable for some of the high dimen-

sional imaging problems we consider in this thesis, we use it as benchmark in some

experiments. Although the hierarchical paradigm is theoretically compatible with

multivariate regularisation parameters, the implementation offered in [105] is mainly

useful for scalar parameters and homogeneous regularisers, and can only be applied

to a multivariate θ for very specific cases where either the prior distribution is mul-

tiplicatively separable (see remark 3.1.2) or the normalising constant of the prior,

Z(θ), is known.

Lastly, it is worth mentioning that the hierarchical strategy has been studied in

detail in [24, 25] in the context of hierarchical Bayesian sparse regularisation models.

More precisely, these works cleverly exploit the conditional structure of certain hier-

archical Gaussian models with random prior covariance matrices to propose a simple

iterative alternating scheme to compute the joint MAP estimator of x and the prior

covariance. This kind of scheme yields good results for the class of imaging mod-

els in those works, both in terms of accuracy and computational complexity. The

generalisation of the ideas of [24, 25] to other imaging models, particularly the class

of models considered in this thesis, is very interesting but highly non-trivial as the

approach they use to analytically decompose the marginal likelihood relies heavily

on the Gaussian nature of the model and cannot be generalised in a straightforward

way.
1g is a α-homogeneous function if there exists α ∈ R+ such that g(λx) = λαg(x)∀x ∈ Rd,∀λ > 0
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2.3.2 Empirical Bayes estimation

Under an empirical Bayesian paradigm, the regularisation parameter θ ∈ Θ is es-

timated directly from the observed data y. The term empirical refers to the fact

that part of the prior distribution (in this case the hyperparameter θ) is estimated

from the observation instead of being fully specified a priori. In this thesis we adopt

this approach and, in particular, we compute θ? by maximum marginal likelihood

estimation, that is,

θ? ∈ argmax
θ∈Θ

p(y|θ) , (2.8)

where we recall that the marginal likelihood p(y|θ) is given by

p(y|θ) =
∫

Rd
p(y|x̃)p(x̃|θ)dx̃ . (2.9)

Given θ?, empirical Bayesian approaches base inferences on the pseudo-posterior

x 7→ p(x|y, θ?) [30] given by

p(x|y, θ?) = exp[−fy(x)− θ?g(x)]
/∫

Rd
exp[−fy(x̃)− θ?g(x̃)]dx̃ . (2.10)

Observe that this strategy is equivalent to Bayesian model selection on a continuous

class of models parametrised by θ, where θ? produces the model with the best fit-to-

data (under some additional assumptions, p(y|θ?) provides the best approximation

of the true distribution of y in a Kullback–Leibler divergence sense [143]).

Empirical Bayesian approaches were first considered in the statistical methodol-

ogy community (see e.g. [30, 117]), which stimulated developments in computational

statistics [6, 7, 119] to enable empirical Bayesian inference for general statistical

models. This was recently followed by important theoretical works on the validity

of the empirical approach and connections to the hierarchical Bayesian paradigm

(see e.g. [82, 111, 123]).

Unfortunately, this powerful inference strategy is difficult to apply in imaging

problems [124] because the marginal likelihood θ 7→ p(y|θ) is computationally in-

tractable as it involves two d-dimensional integrals, namely (1.3) and (2.9), thus

making the optimisation problem (2.8) very challenging. As mentioned previously,

the aim of this thesis is to enable empirical Bayesian inference in imaging inverse
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problems, with a focus on automatic selection of regularisation parameters for convex

problems that would be typically solved by using proximal optimisation techniques.

More precisely, inspired by [6, 7], we propose a stochastic gradient MCMC algo-

rithm to efficiently solve (2.8) for imaging models of the general form (1.6), where

two main novelties are that we use state-of-the-art proximal MCMC methods [56] to

construct a stochastic optimisation scheme that scales efficiently to high dimensions,

and that we provide easily verifiable theoretical conditions ensuring convergence.

The maximum likelihood estimation problem (2.8) raises natural questions about

the uniqueness of θ?, and about the log-concavity of the marginal likelihood θ 7→

p(y|θ), which are important for the convergence of iterative algorithms to compute

θ?. In particular, p(y|θ) could potentially admit more than one maximiser. How-

ever, we have not observed this in practice in any imaging problem. Indeed, because

in our experiments dy � dΘ, we suspect that the marginal likelihood θ 7→ p(y|θ)

concentrates sharply around a single maximiser θ?, and is strongly log-concave w.r.t.

θ in the neighbourhood of θ?. These favourable properties can be formally derived

under simplifying assumptions (e.g. that p(y|θ) is fully separable on y [132]). Ex-

tending conditions for uniqueness of (2.8) to more general imaging problems is an

important perspective for future work.

Lastly, we note that empirical Bayesian methods have found many applica-

tions in machine learning, for example in the context of feature selection (see, e.g.,

[102, 129, 130]). In this field, the challenges related to high-dimensionality have

been mainly addressed by using conditional Gaussian models for which the high-

dimensional integrals (1.3) and (2.9) become tractable, thus enabling the use of

specialised strategies to solve the optimisation problem (2.8).

2.3.3 Connections between both Bayesian approaches

As we mentioned earlier, the Bayesian framework provides two main paradigms

to select θ automatically: the empirical and the hierarchical, which is currently

the predominant Bayesian approach in data science (see [105, 106] for examples in

imaging sciences). We now discuss connections between the two paradigms and

stress advantages and disadvantages.

In order to understand the connection between this hierarchical Bayesian ap-
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proach and the empirical Bayesian strategy used in this thesis it is useful to express

p(x|y) as follows

p(x|y) =
∫

Θ
p(x|y, θ̃)p(θ̃|y)dθ̃ , (2.11)

where we observe that x 7→ p(x|y) is effectively a weighted average of all the pos-

teriors x 7→ p(x|y, θ) parametrised by θ ∈ RdΘ , with weights given by the marginal

posterior p(θ|y), which represents the uncertainty in θ given the observed data y. If

instead of p(θ|y) we perform the integration of θ 7→ p(x|y, θ) with respect to the Dirac

distribution δθ? , we obtain the empirical Bayesian pseudo-posterior x 7→ p(x|y, θ?)

considered in this manuscript.

Note that in imaging problems the marginal posterior p(θ|y) ∝ p(y|θ)p(θ) will

be dominated by the marginal likelihood p(y|θ) because of the dimensionality of y.

Therefore most of the mass of p(θ|y) will be close to θ?. As a result, we expect

that both the hierarchical and the empirical approaches will deliver broadly simi-

lar results. For models that are correctly specified both strategies should perform

well, and hierarchical Bayes should moderately outperform empirical Bayes as it is

decision-theoretically optimal [118].

However, most imaging models are over-simplistic and hence somewhat misspec-

ified. Our experiments suggest that in this case the empirical Bayesian approach

can outperform the hierarchical one. More precisely, what we observe in practice

is that the marginal posterior p(θ|y) typically has its maximum at a good value

for θ, but struggles to concentrate and spreads its mass across a much wider range

of values of θ. Consequently, θ 7→ p(θ|y) fails to sufficiently penalise poor models,

which are given too much weight in x 7→ p(x|y) as a result. In this situation, the

pseudo-posterior x 7→ p(x|y, θ?) often delivers better inferences than the marginal

posterior x 7→ p(x|y). In the context of inverse problems, this phenomenon is partic-

ularly clear in problems that are poorly conditioned and where the misspecification

of the prior has a stronger effect on the inferences. This behaviour is observed in

all the imaging problems reported in Section 6.4, and is particularly clear in the

hyperspectral unmixing problem.
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Proposed methodology

In this chapter, we present our new empirical Bayesian method for setting regular-

isation parameters in problems where the posterior distribution is log-concave, i.e.

where maximum-a-posteriori estimation is a convex optimisation problem. We es-

timate the regularisation parameters directly from the observed data by maximum

marginal likelihood estimation. To maximise the intractable marginal likelihood,

we use a stochastic proximal gradient algorithm that is driven by non-homogeneous

Markov chain samplers.

We start the chapter by introducing three alternative algorithms: the first two

use a single Markov kernel and can be used in problems with homogeneous regu-

larisers, or where the log-prior has tractable derivatives, as this allows evaluating

the required prior expectations explicitly. The third algorithm is more general, as

it does not require the explicit evaluation of derivatives of the log-prior but rather

approximates the required prior expectations by using an additional Markov kernel

targeting the prior distribution of x. In Section 3.1.4, we provide details about the

Markov kernels used to drive the stochastic gradient algorithm and in Section 3.1.5

we discuss connections between the proposed methodology and the expectation-

maximisation algorithm.

In Section 3.2, we illustrate the method by considering a simple image denoising

problem, where we work with synthetic test images for which the exact generative

statistical model is known. This allows assessing the performance of the method in

a case where the regularisation parameter has a true value, and where there is no

model misspecification. We use this example to i) show the role of different model
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parameters, ii) study the statistical behaviour of the method under both Gaussian

and Laplace noise, iii) test the performance under extreme noise conditions and iv)

explore the robustness of the method towards mild likelihood misspecification (e.g.,

when there is a mismatch in the statistical properties of the noise).

In Section 3.3 we provide very comprehensive implementation guidelines, where

we explain how to set all the algorithm parameters and include other implementation

and troubleshooting recommendations.

3.1 Proposed algorithm

We now present the proposed empirical Bayesian method to solve the marginal

maximum likelihood estimation problem (2.8) and set regularisation parameters.

As mentioned previously, the main difficulty in solving (2.8) is that the marginal

likelihood function θ 7→ p(y|θ) is computationally intractable.

Suppose for now that θ 7→ p(y|θ) was tractable and that we had access to the

gradient mapping θ 7→ ∇θ log p(y|θ). Recalling that Θ is a convex compact set, we

could seek to iteratively solve (2.8) by using the projected gradient algorithm [42]

which is given by (θn)n∈N with θ0 ∈ Θ and associated with the following recursion

for any n ∈ N

θn+1 = ΠΘ [θn + δn+1∇θ log p(y|θn)] , (3.1)

where ΠΘ is the projection onto Θ and (δn)n∈N is a sequence of non-increasing step-

sizes. As mentioned previously, because in imaging problems dy � dΘ, the marginal

likelihood θ 7→ p(y|θ) typically exhibits a single maximiser θ? and is strongly log-

concave w.r.t. θ in the neighbourhood of θ?. Therefore we expect that (3.1) would

quickly converge.

Since θ 7→ ∇θ log p(y|θ) is not tractable, we cannot directly use (3.1) to compute

θ?. However, we can replace θ 7→ ∇θ log p(y|θ) with a noisy estimate and consider

a stochastic variant of the projected gradient algorithm. In particular, under mild

assumptions using Fisher’s identity (see Proposition 1 in Appendix A) and the fact

that for any x ∈ Rd, y ∈ Rdy and θ ∈ Θ, p(x, y|θ) = p(y|x)p(x|θ), we have for any
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θ ∈ Θ

∇θ log p(y|θ) =
∫

Rd
p(x̃|y, θ)∇θ log p(x̃, y|θ)dx̃ = −

∫

Rd
g(x̃)p(x̃|y, θ)dx̃−∇θ log(Z(θ)) .

(3.2)

Hence, we can use Monte Carlo Markov chain methods to approximate θ 7→ ∇θ log p(y|θ)

for any θ ∈ Θ. We now consider a stochastic approximation proximal gradient al-

gorithm (SAPG), see [60], where the expectation
∫

Rd g(x̃)p(x̃|y, θ)dx̃ is replaced by

a Monte Carlo estimator leading to the following gradient estimate for any θ ∈ Θ

∆m,θ = 1
m

m∑

k=1

∇θ log p(Xk, y|θ) = −∇θ log Z(θ)− 1
m

m∑

k=1

g(Xk) , (3.3)

where (Xk)k∈{0,...,m} is a sample of size m ∈ N∗ generated by using a Markov Chain

targeting p(x|y, θ) = p(x, y|θ)/p(y|θ), or a regularised approximation of this density.

Therefore, to compute θ?, we can build a new sequence (θn)n∈N associated with the

following recursion for any n ∈ N

θn+1 = ΠΘ[θn + δn+1∆mn,θn ] , ∆mn,θn = −∇θ log Z(θn)− 1
mn

mn∑

k=1

g(Xn
k ) , (3.4)

starting from some θ0 ∈ Θ, and where (mn)n∈N is a sequence of non-decreasing sam-

ple sizes. Under some assumptions on (mn)n∈N, (δn)n∈N and on the Markov kernels

(see Theorem 6 in Appendix C), the errors in the gradient estimates asymptotically

average out and the algorithm converges to a maximiser of θ 7→ p(y|θ). More pre-

cisely, given N ∈ N, a sequence of non-increasing weights (ωn)n∈N, and a sequence

(θn)N−1
n=0 generated using (3.4), an approximate solution of (2.8) can be obtained by

calculating, for example, the weighted average1

θ̄N =
N−1∑

n=0

ωnθn

/
N−1∑

n=0

ωn , (3.5)

which converges asymptotically to a solution of (2.8) as N →∞ (see [7] for details).

Applying this strategy to imaging problems is highly non-trivial because it re-

quires generating very high-dimensional Markov chains {(Xn
k )k∈{0,...,mn} : n ∈ N} in

1Averaging iterates is standard in stochastic approximation algorithms. Most known conver-
gence results concern the almost sure convergence of (p(y|θ̄N ))N∈N towards minθ∈Θ p(y|θ), or
alternatively a weaker convergence in expectation (see, e.g., [7, 11, 113]).
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a way that is computationally efficient and that satisfies a number of complex tech-

nical conditions on the associated Markov kernels (see Theorem 6 in Appendix C).

In this work, we address this major difficulty by constructing an SAPG scheme

with state-of-the-art unadjusted proximal Markov kernels {Rγ,λ,θ : γ ∈ (0, γ̄] , λ ∈

R+, θ ∈ Θ} that automatically satisfy the required theoretical conditions. Here γ

and λ are kernel parameters that control a trade-off between accuracy and com-

putational efficiency (we provide more details about the kernels in Section 3.1.4).

More importantly, we show both theoretically and empirically that a single sample

(mn = 1) per iteration is enough to guarantee the convergence of the proposed SAPG

scheme. This allows delivering accurate estimates of regularisation parameters in a

computationally scalable way and with theoretical guarantees.

Lastly, observe that in order to use (3.4) it is necessary to evaluate θ 7→ ∇θ log Z(θ).

For most models of interest, θ 7→ ∇θ log Z(θ) cannot be computed exactly and needs

to be approximated. Hence, we propose three different strategies to address this

calculation depending on whether g is a homogeneous function or not.

3.1.1 Scalar-valued θ with homogeneous regulariser

Let g be a homogeneous regulariser of degree α ∈ R\{0}, i.e. for any x ∈ Rd and

t > 0, g(tx) = tαg(x), then for scalar-valued θ, i.e. dΘ = 1, (3.2) is given by

d
dθ log p(y|θ) = −

∫

Rd
g(x̃)p(x̃|y, θ) dx̃ − d

dθ log Z(θ) . (3.6)

Recalling that Θ ⊂ (0,+∞) we have for any θ ∈ Θ

Z(θ) =
∫

Rd
e−θg(x̃)dx̃ =

∫

Rd
e−g(θ1/αx̃)dx̃ = θ−d/α

∫

Rd
e−g(x̃)dx̃ , (3.7)

and therefore
d
dθ log Z(θ) = −d/(αθ) . (3.8)

Hence, (3.6) becomes for any θ ∈ Θ

d
dθ log p(y|θ) = d/(αθ)−

∫

Rd
g(x̃)p(x̃|y, θ)dx̃ , (3.9)
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which leads to Algorithm 1 below. We want to point out that many commonly

used regularisers are positively homogeneous. For example, all norms such as `1, `2,

total variation (TV), nuclear or compositions of norms with linear operators (e.g.,

analysis terms of the form ‖Ψx‖1, where Ψ ∈ Rd1 ×Rd with d1 ∈ N) are 1 positively

homogeneous. Moreover, powers of norms with exponent q > 0 are q positively

homogeneous, and all linear combinations of positively homogeneous functions with

the same homogeneity constant α, are also α positively homogeneous. Notice that

Algorithm 1 does not require sampling from the prior distribution, so it admits the

use of improper priors [118, Section 1.5] such as total-variation.

Algorithm 1 SAPG algorithm - Scalar θ and α positively homogeneous regulariser
g

1: Input: initial {θ0, X
0
0}, (δn, ωn,mn)n∈N, Θ, kernel parameters γ, λ, iterations

N .
2: for n = 0 to N − 1 do
3: if n > 0 then
4: Set Xn

0 = Xn−1
mn−1 ,

5: end if
6: for k = 0 to mn − 1 do
7: Sample Xn

k+1 ∼ Rγ,λ,θn(Xn
k , ·),

8: end for
9: Set θn+1 = ΠΘ

[
θn + δn+1

mn

∑mn
k=1

{
d
αθn
− g(Xn

k )
}]

.
10: end for
11: Output: θ̄N computed with (3.5).

In Section 3.1.5, we draw connections between the proposed method and the

expectation-maximisation algorithm, and then use those connections to propose

a variant of Algorithm 1 and Algorithm 2 where the gradient step ( Line 9 in

Algorithm 1 and Line 5 in Algorithm 2) is replaced by a full maximisation in closed

form.

3.1.2 Separably homogeneous regulariser

For the special case of separably homogeneous regularisers, Algorithm 1 can be

adapted for multivariate θ. This is because in this class of regulariser, each compo-

nent of θ affects independent subsets of the components of x. More precisely, assume

that g is separably homogeneous in the following sense: there exist (g̃i)i∈{1,...,dΘ},

(Ai)i∈{1,...,dΘ} pairwise disjoint subsets of {1, . . . , d} and (αi)i∈{1,...,dΘ} such that for
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any i ∈ {1, . . . , dΘ}, g̃i : Rdi → R is αi-positively homogeneous with αi > 0 and for

any x ∈ Rd, g(x) = (g̃i(x[Ai]))i∈{1,...dΘ} where for any A = {i1, . . . , i`} ⊂ {1, . . . , d},

x[A] = (xi1 , . . . , xi`). In this case we have for any θ ∈ Θ

Z(θ) =
∫

Rd
exp[−θ>g(x̃)]dx̃ =

∫

Rd
exp

[
−

dΘ∑

i=1

θig̃i(x̃[Ai])
]

dx̃ (3.10)

=
dΘ∏

i=1

∫

R|Ai|
exp[−θig̃i(x̃[Ai])]dx̃ . (3.11)

Therefore, for any i ∈ {1, . . . , dΘ} and θ ∈ Θ we get that

[∂ log Z/∂θi](θ) = − |Ai| /(αiθi).

Using this property we obtain Algorithm 2, where for any i ∈ {1, . . . , dΘ}, θi ∈ Θi ⊂ (0,+∞)

and ΠΘi is the projection onto Θi.

Algorithm 2 SAPG algorithm - Multivariate θ and separably homogeneous regu-
lariser

1: Input: initial {θ0, X
0
0}, (δn, ωn,mn)n∈N, Θ, kernel parameters γ, λ, iterations

N .
2: for n = 0 to N − 1 do
3: if n > 0 then
4: Set Xn

0 = Xn−1
mn−1 ,

5: end if
6: for k = 0 to mn − 1 do
7: Sample Xn

k+1 ∼ Rγ,λ,θn(Xn
k , ·),

8: end for
9: for i = 1 to dΘ do

10: Set θin+1 = ΠΘi
[
θin + δn+1

mn

∑mn
k=1

{
|Ai|
αiθin
− g̃i

(
Xn
k [Ai]

)}]
.

11: end for
12: end for
13: Output: θ̄N computed with (3.5).

For example, many works in the imaging literature adopt a so-called synthesis

formulation where x represents the unknown image on some orthonormal wavelet

basis Ψ ∈ Rd×d with J ∈ N levels2, and consider level-adapted `1 regularisations of
2In synthesis formulations x ∈ Rd represents the unknown image on some basis Ψ ∈ Rd×d; the

solution in the pixel domain is given by Ψ>x.
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the form

θ>g(x) =
J∑

j=1

θj‖x[Aj ]‖1

where x[Aj ] are the elements of x associated with the Jth level and θ ∈ RJ . Here,

g is a separably homogeneous functional as it can be expressed as g = (g̃1, . . . , g̃J)

where, for any j ∈ {1, . . . , J}, g̃j is 1-positively homogeneous and dj = |Aj|. Notice

that the domain in which x is represented is not relevant here; Algorithm 2 can be

directly applied to any model where g is homogenous separable via a change of basis

because the same expression for Z(θ) holds.

3.1.3 General case: inhomogeneous regulariser

When g is neither homogeneous nor separably homogeneous, we address the evalua-

tion of θ 7→ ∇θ log Z(θ) numerically by stochastic simulation. More precisely, using

identity (1.4) we can express the intractable term −∇θ log Z(θ) as an expectation
∫

Rd g(x̃)p(x̃|θ) dx̃, which we can also replace with a Monte Carlo estimate by using

an additional Markov kernel that samples from the prior p(x|θ). In this way, using

that y is conditionally independent of θ given x, we can rewrite θ 7→ ∇θ log p(y|θ)

as the difference between two expectations, i.e. for any θ ∈ Θ

∇θ log p(y|θ) =
∫

Rd
g(x̃)p(x̃|θ) dx̃−

∫

Rd
g(x̃)p(x̃|y, θ) dx̃ , (3.12)

and then use two families of Markov kernels {Rγ,λ,θ, R̄γ′,λ′,θ : γ, γ′ ∈ (0, γ̄] , λ, λ′ ∈ R+,

θ ∈ Θ} that respectively target the posterior p(x|y, θ) and the prior p(x|θ) within

the SAPG Algorithm 3 below.

3.1.4 MCMC Kernels

Given the high dimensionality involved, it is fundamental to carefully choose the

families of Markov kernels {Rγ,λ,θ, R̄γ′,λ′,θ : γ, γ′ ∈ (0, γ̄] , λ, λ′ ∈ R+, θ ∈ Θ}

driving the SAPG. Here we use the Moreau-Yosida Unadjusted Langevin Algo-

rithm (MYULA) Markov kernel recently proposed in [56], which is a state-of-the-

art proximal Markov chain Monte Carlo (MCMC) method specifically designed for

high-dimensional inverse problems that are convex but not smooth. This particu-
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Algorithm 3 SAPG algorithm - General form
1: Input: initial {θ0, X

0
0 , X̄

0
0}, (δn, ωn,mn)n∈N, Θ, γ, γ′, λ, λ′, iterations N .

2: for n = 0 to N − 1 do
3: if n > 0 then
4: Set Xn

0 = Xn−1
mn−1 ,

5: Set X̄n
0 = X̄n−1

mn−1 ,
6: end if
7: for k = 0 to mn − 1 do
8: Sample Xn

k+1 ∼ Rγ,λ,θn(Xn
k , ·),

9: Sample X̄n
k+1 ∼ R̄γ′,λ′,θn(X̄n

k , ·),
10: end for
11: Set θn+1 = ΠΘ

[
θn + δn+1

mn

∑mn
k=1
{
g(X̄n

k )− g(Xn
k )
}]

.
12: end for
13: Output: θ̄N computed with (3.5).

lar MCMC method is derived from the discretisation of an over-damped Langevin

diffusion, (X̄t)t>0, satisfying the following stochastic differential equation

dXt = −∇xF (Xt)dt+
√

2dBt , (3.13)

where F : Rd 7→ R is a continuously differentiable potential and (Bt)t>0 is a stan-

dard d-dimensional Brownian motion. Under mild assumptions, this equation has

a unique strong solution [74, Chapter 4, Theorem 2.3]. Accordingly, the law of

(Xt)t>0 converges as t → ∞ to the diffusion’s unique invariant distribution, with

probability density given by π(x) ∝ e−F (x) for all x ∈ Rd [121, Theorem 2.2]. Hence,

to use (3.13) as a Monte Carlo method to sample from the posterior p(x|y, θ), we

set F (x) = − log p(x|y, θ) and thus specify the desired target density. Similarly, to

sample from the prior we set F (x) = − log p(x|θ).

However, sampling directly from (3.13) is usually not computationally feasible.

Instead, we usually resort to a discrete-time Euler-Maruyama approximation3 [55]

of (3.13) that leads to the following Markov chain (Xk)k∈N with X0 ∈ Rd, given for

any k ∈ N by

Xk+1 = Xk − γ∇xF (Xk) +
√

2γZk+1, (3.14)

where γ > 0 is a discretisation step-size and (Zk)k∈N∗ is a sequence of i.i.d. d-

dimensional zero-mean Gaussian random variables with an identity covariance ma-
3The Euler-Maruyama approximation is a generalisation of the forward Euler method for ordi-

nary differential equations to stochastic differential equations.
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trix. This Markov chain is commonly known as the Unadjusted Langevin Algorithm

(ULA) [121]. Under some additional assumptions on F , namely Lipschitz continuity

of ∇xF , the ULA chain inherits the convergence properties of (3.13) and converges

to a stationary distribution that is close to the target π, with γ controlling a trade-off

between accuracy and convergence speed [56].

In this form, the ULA algorithm is limited to distributions where F is a Lipschitz

continuously differentiable function. In the problems of interest this is very often

not the case; when we sample from the posterior distribution p(x|y, θ) then for any

x ∈ Rd, F (x) = fy(x) + θ>g(x) and when we sample from the prior distribution

x 7→ p(x|θ), for any x ∈ Rd, F (x) = θ>g(x). In both cases, if g is not smooth

then ULA is no longer applicable. The MYULA kernel was designed precisely to

overcome this limitation.

Suppose that the target potential admits a decomposition F = U+V where U is

Lipschitz differentiable and V is not. In MYULA, the differentiable part is handled

via the gradient ∇xU in a manner to ULA, whereas the non-differentiable part is

replaced by a smooth approximation V λ(x) given by the Moreau-Yosida envelope of

V (x), see [13, Definition 12.20], defined for any x ∈ Rd and λ > 0 by

V λ(x) = min
x̃∈Rd

{
V (x̃) + (1/2λ) ‖x− x̃‖2

2
}
, (3.15)

where one can make V λ(x) arbitrarily close to V (x) by reducing the smoothing

parameter λ (see [56] for details). For any λ > 0, the Moreau-Yosida envelope V λ

is continuously differentiable with gradient given for any x ∈ Rd by

∇V λ(x) = (x− proxλV (x))/λ , (3.16)

(see, e.g., [13, Proposition 16.44]). Using this approximation we obtain the MYULA

kernel associated with (Xk)k∈N given by X0 ∈ Rd and the following recursion for any

k ∈ N

MYULA : Xk+1 = Xk − γ∇xU(Xk)− γ∇xV
λ(Xk) +

√
2γZk+1 . (3.17)

Returning to the problem of interest, if we define the splitting such that U = fy and
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V = θ>g, we can define the MYULA families of Markov kernels {Rγ,λ,θ, R̄γ′,λ′,θ :

γ, γ′ ∈ (0, γ̄] , λ, λ′ ∈ R+, θ ∈ Θ} that we use in Algorithm 1, Algorithm 2 and

Algorithm 3. For any θ ∈ Θ, γ > 0 and λ > 0, the kernel Rγ,λ,θ associated with

(Xk)k∈N starting from X0 ∈ Rd, is given by the following recursion for any k ∈ N

Xk+1 = Xk − γ∇xfy(Xk)− γ
{
Xk − proxλθ>g(Xk)

}
/λ+

√
2γZk+1 . (3.18)

For any θ ∈ Θ and γ′ > 0 and λ′ > 0, the kernel R̄γ′,λ′,θ associated with (Xk)k∈N

starting from X0 ∈ Rd, is given by the following recursion for any k ∈ N

X̄k+1 = X̄k − γ′
{
X̄k − proxλ′θ>g(X̄k)

}
/λ′ +

√
2γ′Zk+1 , (3.19)

where we recall that λ and λ′ are the smoothing parameters associated with θ>gλ; γ

and γ′ are the discretisation steps and (Zk)k∈N∗ is a sequence of i.i.d. d-dimensional

zero-mean Gaussian random variables with an identity covariance matrix.

Alternative implementations of MYULA We want to point out that this

is not the only possible way of splitting fy + θ>g into U and V . If some of the

functions gi are differentiable, it might be convenient to group those with fy under

U and leave only the non-differentiable terms in V . Moreover, doing the particular

splitting we show in (3.18) requires computing the proximal operator of the global

function θ>g. In some cases it might be easier to use the proximal operators of

each individual gi independently. In this case, it is possible to replace each gi

with its smoothed version gλi instead of doing it globally. Which choice is better

will mostly depend on which tools are available to the practitioner. Note that most

convex optimisation algorithms for MAP estimation (1.7) also use the operators ∇fy
and either proxλ

θ>g or proxλθigi [42, 66], making the implementation of the proposed

methodology straightforward for problems that are currently solved with such tools.

Estimation bias We note at this point that the MYULA kernels (3.18) and (3.19),

do not target the posterior or prior distributions exactly but rather an approximation

of these distributions. This is mainly due to two facts: 1) we are not able to

use the exact Langevin diffusion (3.13), so we resort to a discrete approximation

38



Chapter 3: Proposed methodology

instead; and 2) we replace the non-differentiable terms with their Moreau-Yosida

envelopes. As a result of these approximation errors, Algorithm 3 will exhibit some

asymptotic estimation bias. This error is controlled by λ, λ′, γ and γ′, and can be

made arbitrarily small at the expense of additional computing time (see Theorem

7 in Appendix C). The bias can also be completely removed by combining (3.18)-

(3.19) with Metropolis-Hastings steps, as discussed in detail in [103]. However,

doing this is not straightforward as calibrating the acceptance rate of a Metropolis-

Hastings correction within a high-dimensional SAPG scheme can be very difficult

(both automatically or manually). The reason for this is that the target density

Rγ,λ,θn changes at each iteration of the SAPG scheme, and every time the target

density changes the parameters that control the acceptance rate of the Metropolis-

Hastings steps need to be re-calibrated. If the acceptance rate is too low, too many

samples might end up being discarded and this can significantly deteriorate the

non-asymptotic convergence properties thus increasing the computing times [56].

For this reason we do not explore this any further.

3.1.5 Connections to the expectation-maximisation algorithm

Estimation problems of the form (2.8) can often be solved using the expectation-

maximisation (EM) algorithm [51] or stochastic variations of it. More precisely,

given an initial estimate of the parameter θ0 ∈ Θ, the EM algorithm would solve

(2.8) by iteratively repeating these two steps until convergence:

E-step: Q(θ|θn) =
∫

Rd
log p(x, y|θ)p(x|y, θn) dx

M-step: θn+1 =argmax
θ∈Θ

Q(θ|θn).
(3.20)

The main difficulty in using the EM algorithm to compute (2.8) is that the E-step is

intractable for most problems of interest. Several works have attempted to replace

the E-step with different stochastic approximations [33, 50, 141]. In [6] they explain

how SAPG schemes like the ones proposed in this thesis can be interpreted as an

“approximate” stochastic EM algorithm where both the E and the M steps are only

implemented approximately. To understand this connection, we can first rewrite
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(3.20) replacing the M-step with a gradient step instead of the full maximisation

[85]:

E-step: Q(θ|θn) =
∫

Rd
log p(x, y|θ)p(x|y, θn) dx

gradient-M-step: θn+1 =θn + δ ∇θQ(θn|θn)

=θn + δ

∫

Rd
∇θ log p(x, y|θn)p(x|y, θn) dx.

(3.21)

In our proposed method, we replace the expectation
∫

Rd∇θ log p(x, y|θn)p(x|y, θn) dx

in (3.21) with a Monte Carlo estimate 1
mn

∑mn
k=1∇θ log p(Xn

k+1, y|θn), where Xn
k+1 ∼

Rγ,λ,θn(Xn
k , ·) as detailed in (3.3). In this way, we can interpret Algorithm 1, Al-

gorithm 2 and Algorithm 3 as generalised stochastic EM algorithms, where the

expectation is approximated with a Monte Carlo estimate and the full maximisa-

tion is replaced by a gradient step.

This interpretation opens the door to an alternative variation of Algorithm 1

and Algorithm 2 where instead of using a gradient-M-step we can use a full M-

step as the exact maximisation can be attained in closed form. For example, when

mn = 1 the gradient estimate in Algorithm 1 is given by
(
d
αθ
− g(Xn+1)

)
which is

zero for θ = d/(αg(Xn+1)). Therefore, we can use this to propose a modified scheme

(see Algorithm 4 below) where the maximisation is performed exactly by setting

θn+1 = ΠΘ [d/(αg(Xn+1))].

Algorithm 4 Variation of Algorithm 1 with exact maximisation step
1: Input: initial {θ0, X0}, (ωn)n∈N, Θ, kernel parameters γ, λ, iterations N .
2: for n = 0 to N − 1 do
3: Sample Xn+1 ∼ Rγ,λ,θn(Xn, ·),
4: Set θn+1 = ΠΘ [d/(αg(Xn+1))].
5: end for
6: Output: θ̄N computed with (3.5).

This approach can also be extended to Algorithm 2 by applying the same idea

to each separable component, thus leading to Algorithm 5 below. Our preliminary

tests suggest that using the exact maximisation step can increase convergence speed

(see Figure 4.12 in the hyperspectral unmixing experiment in Section 4.2 for a com-

parison between the evolution of the iterate θn using Algorithm 2 and Algorithm 5).
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However, this might not always be the case, especially when the limiting factor in

the convergence speed is the sample correlation. Therefore more research is needed

before we can draw stronger conclusions.

Algorithm 5 Variation of Algorithm 2 with exact maximisation step
1: Input: initial {θ0, X0}, (ωn)n∈N, Θ, kernel parameters γ, λ, iterations N .
2: for n = 0 to N − 1 do
3: Sample Xn+1 ∼ Rγ,λ,θn(Xn, ·),
4: for i = 1 to dΘ do
5: Set θin+1 = ΠΘi

[
|Ai|/

(
αig̃i

(
Xn+1[Ai]

))]
.

6: end for
7: end for
8: Output: θ̄N computed with (3.5).

3.2 Example on synthetic data

In this section we demonstrate the performance of the algorithm on a very simple

image denoising problem, where we work with synthetic test images to have access

to the true value of the regularisation parameter. The goal is to study the statistical

behaviour of the algorithm as well as illustrate the role that each parameter plays

in the algorithm. We also use this experiment to explore the robustness of the

method towards mild likelihood misspecification (e.g., when there is a mismatch in

the statistical properties of the noise).

We consider a wavelet-based image denoising under a synthesis formulation where

we assume that the coefficients x of the true image in an orthogonal 4-level Haar

basis Ψ follow a Laplace distribution. That is the model (1.6) is given for any x ∈ Rd

by fy(x) = ‖y −Ψx‖2
2 /(2σ2) and g(x) = ‖x‖1. In our experiments, y has dimension

dy = 256× 256 pixels, and we set θ = 1 to generate the synthetic test images. The

variance of the added noise σ2 is chosen for every case such that the signal-to-noise-

ratio (SNR) is 10 dB, 20 dB, 30 dB, or 40 dB. In all cases we compute the empirical

Bayes estimator θ̄N by implementing Algorithm 1 using the MYULA kernel (3.18).

3.2.1 Estimation variance and bias

To study the statistical behaviour of the method, we repeat each experiment 500

times by generating 500 random observations y, each one coming from a different
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random x; then, for every observation y, we estimate θ̄N .
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Figure 3.1 – Denoising with synthesis-`1 prior. Histograms of the estimated θ̄N for
500 repetitions for different SNR values, using λmax = 2.
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Figure 3.2 – Denoising with synthesis-`1 prior. Evolution of the iterates (θn)n∈N for
different SNR values, using λmax = 2.

Figure 3.1 shows the histograms obtained from the 500 estimated θ̄N values

for each experiment (10 dB, 20 dB, 30 dB, and 40 dB). For completeness, we also

present in Figure 3.2 one example of a generated sequence of iterates (θn)n∈N for

different experiments, where we see that the algorithm converges in approximately

15 iterations. Observe that the estimation error is close to Gaussian and, for

the higher SNR values (SNR>20 dB), the error is close to the true value of the

regularisation parameter, as expected for a maximum likelihood estimator.

For the lowest SNR (10 dB), we see that the estimates exhibit a larger bias.

The fact that the bias increases as the SNR decreases is a consequence of the way

in which we set the algorithm parameters: we set γ and λ following the guidelines

provided in Section 3.3.1, i.e. we set γ = 0.98(Ly + 1/λ)−1 and λ = min(5L−1
y , λmax)

with λmax = 2. In this way we use larger values of γ and λ for lower SNR values
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and this improves the convergence speed. However, this rule of thumb is not always

good enough for extremely low SNR values. One way of reducing the bias for low

SNR setups is by using a smaller λmax at the expense of a slower convergence rate.

In Figure 3.3 we show the results obtained by repeating the same experiment

from Figure 3.1 but using λmax = 0.0019604 (which is the value previously used

for the 30 dB experiment). Additionally, we also compute results for an extreme

noise case (SNR=0 dB). We do not show the results for SNR=40 dB as they are

practically identical to the ones shown in Figure 3.1.

As it may be seen, when using a smaller value of λmax the bias is effectively

reduced: it significantly decreases for SNR=10 dB, and it almost disappears for

SNR=20 dB. Even for the extreme noise case, the bias is relatively small (of the

order of 0.2%) while the variance is much larger than for the other SNR values. If

needed, the bias could be further reduced by decreasing λmax or by using a smaller

γ at the expense of a slower convergence.

The reduction of the convergence speed can be appreciated in Figure 3.4, where

we see that the algorithm converges in around 10000 iterations for SNR=0 dB, and

400 for SNR=10 dB.
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Figure 3.3 – Denoising with synthesis-`1 prior. Histograms of the estimated θ̄N for
500 repetitions for different SNR values, using λmax = 0.0019604.

3.2.2 Laplace noise and likelihood misspecification

To explore the behaviour of the method with other noise distributions, we repeat

the previous experiment using Laplace noise instead of Gaussian noise. Since the

Laplace distribution involves a non-smooth `1 term, we adopt a proximal MCMC
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Figure 3.4 – Denoising with synthesis-`1 prior. Evolution of the iterates (θn)n∈N for
different SNR values, using λmax = 0.0019604.

approach and implement the algorithms using the gradient of its λ-Moreau-Yosida

envelope.
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Figure 3.5 – Denoising with synthesis-`1 prior with Laplace noise. Histograms of the
estimated θ̄N for 500 repetitions of the empirical Bayes algorithm using (a) correct
Laplace noise model and (b) incorrect Gaussian noise model. Results for SNR of
20 dB, 30 dB and 40 dB.

The results are reported in Figure 3.5(a), where we observe that the method

also performs well with Laplace noise.

Lastly, to explore the robustness of the method towards mild misspecification
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of the likelihood, we have also repeated the same experiment with Laplace noise

but using an incorrectly specified Gaussian noise model (i.e. we generated the

observation using Laplace noise but assumed the noise to be Gaussian in the model

used to estimate θ). These results are reported in Figure 3.5 (b), where we see

that the method is robust to mild likelihood misspecification, as the differences

between using a correctly specified likelihood or an incorrectly Gaussian likelihood

only become noticeable for the lowest SNR of 20 dB.

3.2.3 Role of the algorithm parameters

In this subsection we focus on individual executions of the algorithm and study

the effect that different parameters have on the resulting behaviour of the proposed

scheme.

Initial θ0 From a theoretical point of view, the choice of the initial θ0 ∈ Θ is

asymptotically irrelevant. This is exemplified in Figure 3.6, where we see that re-

gardless of the initialisation the algorithm converges to the same point. Nevertheless,

in some cases a very bad initialisation can prevent the algorithm from converging,

e.g., by introducing large numerical errors in the computation of proximal operators.

(see Section 3.3.1).
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Figure 3.6 – Denoising with synthesis-`1 prior. Evolution of the sequence of iterates
(θn)n∈N for different initial values θ0 for SNR=20 dB. All executions converge to the
same value regardless of the initialisation.
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Step-size γ for the Markov kernels As mentioned previously, γ controls the

discretisation step-size of the continuous time Langevin diffusion. We know from

[56] that γ should take values in the range (0, 2γmax) with γmax = 1/(Ly + λ−1), to

guarantee the stability of the Euler-Maruyama discretisation.
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Figure 3.7 – Denoising with synthesis-`1 prior. Evolution of the sequence of iterates
(θn)n∈N for different initial values γ for SNR=20 dB. All executions converge to the
same value regardless of the initialisation.

In Figure 3.7 we illustrate the behaviour of the algorithm for different values of γ

(we express the values relative to γmax). Notice that when γ > 2γmax the algorithm

does not converge and the iterates θn saturate the bounds defined by Θ. We observe

that, in general, smaller values of γ lead to a smaller asymptotic bias, although

for the smallest value of γ = 0.01γmax the bias seems to be larger. This is only

because we show the first 30 iterations of the algorithm and if more iterations were

considered, this bias would slowly decrease too. Overall, we see that as long as the

value of γ is within the admissible range, the algorithm converges, and a very small

γ can deteriorate the convergence speed. This is because a very small γ defines a

very small discretisation step-size in the MYULA sampler, which in turn leads to

very correlated samples, thus slowing down the convergence of the SAPG scheme.

Smoothing parameter λ for the Markov kernels As explained in Section 3.1.4,

this parameter controls the smoothing of the approximation gλ(x) in the MYULA

kernels and gλ(x) can be brought arbitrarily close to g(x) by reducing λ. Since λ−1

limits the value of γmax, it is usually good to select λ−1 ≈ Ly (we discuss this in
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more detail in Section 3.3.1). In Figure 3.8 we show the effect of using different

values of λ and for clarity we express the values in terms of Ly. As expected, we

observe that larger values of λ lead to a larger estimation bias.
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Figure 3.8 – Denoising with synthesis-`1 prior. Evolution of the sequence of iterates
(θn)n∈N for different values of λ for SNR=20 dB. The estimation bias increases with
λ.

Step-size δn for the gradient step used to update θn We consider δn =

c0n
−0.8, which is a standard empirical choice in the literature4 [17], and illustrate in

Figure 3.9 the results obtained for different values of c0. As it may be seen, when

c0 is too large the iterate θn oscillates for a long transient regime before converging.

However, if c0 is too small, the convergence is significantly slowed.

3.3 Implementation guidelines

We now discuss suitable ranges and recommended values for the parameters of Al-

gorithm 1, Algorithm 2 and Algorithm 3. Rather than optimal values for specific

models, our recommendations seek to provide general rules that are simple and ro-

bust. We also discuss some other considerations related to the implementation and

troubleshooting of the methods.
4We discuss the choice of δn and c0 further in Section 3.3.1
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Figure 3.9 – Denoising with synthesis-`1 prior. Evolution of the sequence of iterates
(θn)n∈N for different values of the scale c0 in δn for SNR=20 dB.

3.3.1 Setting the algorithm parameters

Selecting γ In our theoretical convergence analysis (in Appendix C), Theorem 7

requires setting 0 < γ < (Ly+1/λ)−1; this is related to the numerical stability of the

Markov chains and stems from the fact that Ly + 1/λ bounds the Lipschitz constant

of ∇fy +
(
x− proxλ

θ>g(x)
)
/λ. Within this stability range, γ controls a trade-off

between computational efficiency and accuracy, with larger values of γ leading to

higher efficiency but also to a larger asymptotic bias. Given the dimensionality

involved, and that in our experiments we did not observe any significant bias issues,

we recommend using a large γ, e.g., γ = 0.98(Ly + 1/λ)−1.

Selecting λ This parameter controls the regularity of the smooth approximation

of g within MYULA and hence another trade-off between bias and convergence speed

[56]. We have empirically observed that, to prevent a significant bias, it is necessary

to set λ ∈ (0, λmax), where for SNR>20 dB it is enough to set λmax = 2, and for very

low SNR values λmax needs to be one or two orders of magnitude smaller (otherwise

the estimation bias is too large, as shown in Section 3.2.1). Within this range, we

prefer larger values of λ to improve convergence speed, at the expense of some bias.

We recommend using λ = min(L−1
y , λmax), as setting λ � L−1

y increases asymptotic

bias without improving convergence speed because of the effect of Ly on γ.

Selecting γ′ and λ′ Since Ly does not affect the kernel R̄γ′,λ′,θ targeting the prior,

the stability range for γ′ is 0 < γ′ < λ′. In our experiments we set γ′ = 0.98λ′, but
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any value of γ′ that is close to but smaller than λ′ will give similar results. We usually

set λ′ = λ to have the same level of smoothing in both chains, however one can also

use λ′ � λ if R̄γ′,λ′,θ is much slower (i.e. the samples are more correlated) than

Rγ′,λ′,θ. It is important to highlight that the relative speed of both Markov kernels

should be similar in order to improve the non-asymptotic convergence properties,

especially when working with mn = 1. If one kernel produces samples that are much

more correlated than the ones coming from the other kernel, then some thinning is

required (subsampling) in the slower kernel to help balance out the relative speeds.

For further discussion of practical considerations regarding the relative speeds of the

kernels see Section 3.3.5 and Section 3.3.7.

Selecting (δn,mn)n∈N For simplicity and computational efficiency, we recommend

using a single (mn = 1) Monte Carlo sample per iteration. A single sample is

sufficient to construct a convergent SAPG scheme (shown in Appendix C) provided

that the sequence of gradient step-sizes (δn)n∈N verifies

∑

n∈N

δn = +∞ and
∑

n∈N

δ2
n < +∞ . (3.22)

The first condition ensures that the gradient updates are large enough to asymp-

totically drive the iterates to a minimiser, and the second provides robustness w.r.t.

the errors in the stochastic gradient estimates (see, e.g., [84]).

We recommend setting δn = c0n
−p with p ∈ [0.6, 0.9], and use δn = c0 n

−0.8

in our experiments. This is a standard empirical choice in the literature [17] that

verifies the requirements (3.22). For c0 we recommend, for the case where θ is scalar,

starting with c0 = (θ0d)−1 and then adjust if necessary. Although the choice of c0

is asymptotically irrelevant (see Figure 3.9), if the initial step-size is too large the

iterate θn will be bouncing on the limits of the interval for a long transient regime,

whereas convergence will be slow if c0 is too small. For this reason, we recommend

adjusting c0 so that the step-size is of the order of the projection interval Θ. When

θ is not scalar, one can use different scales for each component of θ. More details

are provided in the Section 3.3.6.
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Selecting (ωn)n∈N and N While it is possible to construct other estimates, we

recommend using the average θ̄N =
∑N−1

n=0 ωnθn

/∑N−1
n=0 ωn , with (ωn)n∈N given by

ωn =





0 , if n < N0 ,

1 , if N0 6 n 6 N1 ,

δn otherwise ,

(3.23)

where N0, N1 ∈ N, N0 < N1. This choice of (ωn)n∈N, defines three distinct phases:

i) a burn-in phase where the first N0 iterations of the algorithm are discarded to

reduce the non-asymptotic bias (this is particularly important when using a small

number of iterations); ii) a uniform averaging phase N0 6 n 6 N1 where the smooth-

ing effect associated with averaging improves convergence speed and reduces esti-

mation variance; iii) a refinement phase where we use decreasing weights to improve

the precision of the estimator (see Appendix C for accuracy guarantees).

We have empirically observed that imaging problems do not usually require

highly accurate estimates of θ. Therefore, in the interest of computational efficiency,

in our experiments we omit the third phase and stop whenN1 = N . Moreover, rather

than using the theoretical accuracy guarantees of Appendix C to set N , we monitor

|θ̄N+1 − θ̄N |/θ̄N and stop the algorithms when |θ̄N+1 − θ̄N |/θ̄N < τ for a prescribed

tolerance τ > 0 (e.g., τ = 10−3).

Selecting Θ When selecting the projection interval, the lower bound should be

as small as necessary but not zero, as this may render the algorithm unstable (the

gradient depends on θ−1 and diverges as θn → 0). If possible, use tight bounds to

improve convergence speed. The choice of these bounds is empirical, depending on

each particular problem.

Selecting θ0 The choice of θ0 ∈ Θ is theoretically asymptotically irrelevant (see,

e.g., Figure 3.6). However, in some cases a very bad initialisation can prevent

the algorithm from converging, e.g., by introducing large numerical errors in the

computation of proximal operators. We observed this in the total generalised vari-

ation denoising experiment in Section 4.3: when using the extreme initialisation

θ1
0 = θ2

0 = 100 the algorithm did not converge due to numerical errors in the com-
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putation of the proximal operator.

3.3.2 Other implementation considerations

We now provide some additional guidelines regarding the implementation and trou-

bleshooting of the proposed methodology.

Implementation in logarithmic scale The proposed algorithms to estimate θ

often exhibit better numerical convergence properties when they are implemented

in a logarithmic scale, which is a standard strategy for scale parameters [6]. Ac-

cordingly, we introduce the change of variables η = log(θ), obtain an estimate η̂ by

using one of the proposed algorithms to maximise the marginal likelihood p(y|η),

and then set θ̂ = eη̂. This is equivalent to maximising p(y|θ) because of the in-

variance to re-parametrisation property of the maximum likelihood estimator. This

change of variables requires a minor modification in the computation of the gra-

dients, which have to be multiplied by eηn to satisfy the chain rule. For example,

step 9 in Algorithm 1 becomes ηn+1 = ΠΘη
[
ηn + eηn δn+1

mn

∑mn
k=1

{
de−ηn
α
− g(Xn

k )
}]

,

where Θη = {log(θ) : θ ∈ Θ} denotes the range of admissible values of η tak-

ing the logarithm component-wise. Similarly, step 11 of Algorithm 3 becomes

ηn+1 = ΠΘη
[
ηn + eηn δn+1

mn

∑mn
k=1
{
g(X̄n

k )− g(Xn
k )
}]

.

Initialisation of the Markov kernels We strongly recommend warm-starting

the Markov chains by running T0 ∈ N iterations with fixed θ = θ0 before starting

to update the value of θ; an appropriate value for T0 can be easily determined

by monitoring the log-probability and running warm-up iterations until it becomes

stable, see Section 3.3.3 for details.

3.3.3 Testing the MCMC sampler

Before trying to adjust the value of θ ∈ Θ with the algorithm, we strongly recom-

mend starting by testing the MCMC sampler with a fixed value of θ. A simple way

to if see whether the Markov chain is working as expected, is to plot something

proportional to the value of the log-probability of the samples; we typically plot

−fy(Xn
k )− θTg(Xn

k ) for the posterior distribution and −θTg(Xn
k ) for the prior.
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As mentioned in Section 1.2, there is a useful concentration phenomenon studied

in [16, Theorem 1.2] which implies that for high-dimensional log-concave densities

π, a Markov chain targeting π eventually starts generating samples Xn
k for which

log π(Xn
k ) is approximately constant (and close to the entropy). Therefore, if the

MCMC sampling is successful the log-probability stabilises after some iterations and

remains more or less constant.

(a) TV-deblurring (b) TGV-denoising

Figure 3.10 – Evolution of (log p(Xn
1 |y, θ))n∈N with (Xn

1 )n∈N sampled using MYULA
and targeting p(·|y, θ). Results for (a) TV-deblurring with SNR = 40dB and (b) TGV-
denoising with SNR = 8dB.

Conversely, if plots show that the chain is divergent or very unstable, then there

might be a problem with the sampler. A common cause for divergence is setting a

discretisation step-size that is too large. We would advise not to proceed with the

estimation of θ until the sampler shows a stable behaviour similar to the ones shown

on Figure 3.10.

3.3.4 Monitoring convergence in Algorithm 1, Algorithm 2

and Algorithm 3

Lack of convergence due to bound saturation If one observes that the iterate

θn saturates the limits of the projection interval Θ, one should first verify that the

Markov kernels are working properly (see recommendations in 3.3.3). If they are,

then the problem might be that the solution lies outside Θ. If θ is multivariate

and only some components are saturating the bounds, then check the scale and

projection bounds for those specific components.

Verifying proper convergence As the algorithm converges, the iterates θn get

closer to a maximiser of p(y|θ) and the gradient estimates ∆mn,θn vanish in ex-

pectation. Hence, the residual ‖∆mn,θn‖ should become small (on average) as n
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increases, i.e., g(Xn
k ) will become close to d/(αθn) in Algorithm 1, or close to g(X̄n

k )

in Algorithm 35. It is therefore useful to plot the traces of (g(Xn
k=k0

))n∈N together

with (g(X̄n
k=k0

))n∈N or (d/(αθn))n∈N as appropriate, to check that the algorithm is

converging. The trace can be plotted for a fixed value of k = k0 as this is enough

to monitor the convergence. This is illustrated for Algorithm 3 in Figure 3.11 be-

low, where we observe how these terms become closer as the number of iterations

increases.

0 200 400 600 800
Iteration (n)

2

3

4

5

6
10 6

Figure 3.11 – Evolution of the iterates (g(Xn
1 ))n∈N and (g(X̄n

1 ))n∈N for the proposed
method in a deblurring experiment with a TV prior and SNR = 40dB.

If ‖∆mn,θn‖ does not vanish as n increases this could indicate a problem with

the choice of δn or that the two MCMC kernels have very different speed (See

Section 3.3.5).

3.3.5 Working with two MCMC chains in Algorithm 3

Using two MCMC kernels simultaneously can be problematic if their convergence

speed, or effective sample size per iteration, is very dissimilar as this will deteriorate

the convergence properties of the SAPG algorithm.

This kind of imbalance can be detected by plotting the sample autocorrelation

for each chain using g as a summary statistic. If the autocorrelation plots decay

at significantly different rates, it is necessary to reduce the correlation within the

slower chain by either introducing some thinning (which essentially amounts to

concatenating several iterations of the kernel to improve its convergence speed) or

by increasing the step-size γ (see Section 3.3.7).

5For Algorithm 2 use a component-wise comparison between |Ai|
αiθi

n
and g̃i

(
Xn
k [Ai]

)
for every

i ∈ {1, . . . , dΘ}
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Notice that it is especially important to pay attention to the relative speeds of

the kernels if one of the MYULA kernels was replaced by, for instance, a perfect

sampling method.

3.3.6 Working with multivariate θ

When θ is multivariate each component of the solution might have a different order

of magnitude. In this case, we recommend using different step-size scales for each

component of θ. For example, we can compute θn = ΠΘ [θn +D δn∆mn,θn ], where

D ∈ RdΘ×dΘ is a diagonal matrix, and each element of the diagonal scales one

component of θ. It is also helpful to remember that one can run the algorithm

with some components of θ fixed. This allows isolating components and verifying

convergence for subsets of θ.

The possibility of using second order methods for the update of θ is not explored

in this these but it is a perspective for future work, especially for problems with

multivariate θ with strong dependencies between the different components.

3.3.7 Convergence speed

The bottleneck in convergence speed is the correlation between the samples gen-

erated by the MCMC kernels. To increase the convergence speed, one has two

main alternatives: a) to reduce the correlation between samples, or b) to reduce the

computational cost of each iteration in order to afford more iterations.

Reducing sample correlation To reduce the correlation between samples, the

step-size γ must be as large as possible. If running the algorithm with two chains,

and the kernel sampling from the prior distribution is the limiting factor, one can

consider increasing the smoothing parameter λ′ of this particular kernel, in order to

be able to increase the value of the discretisation step-size γ′.

In more general cases where the limiting factor for γ is Ly there are a few strate-

gies that might help overcome this difficulty. The first strategy is to use precondition-

ing (see the hyperspectral unmixing experiment in Section 4.2) to reduce gradient

anisotropy and improve the condition number of the problem. This is a standard

practice which consists of re-scaling the problem to improve its condition number,
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i.e. to make the problem more “isotropic”. Let P = (A>A)−1 and let P 1/2 be the

matrix square root of P , then the MYULA kernel can be written as

x(t+1) = x(t)−γP∇fy
(
x(t))−γP

(
x(t) − proxλ

θ>g

(
x(t)))

λ
+P 1/2√2γm z(t+1), (3.24)

If the matrix P is not available, it can be learnt online using the technique from [5].

For cases where the problem is severely ill-posed an alternative strategy is to use

the tamed unadjusted Langevin algorithm proposed in [19]. This requires replacing

the gradient ∇fy by one of the two possible “tamed” versions. Either the gradient

is replaced by its globally tamed version

∇fy(x)
1 + γ ‖∇fy(x)‖2

, (3.25)

or it is replaced by its component-tamed version

(
∂ify(x)

1 + γ ‖∂ify(x)‖2

)

i∈{1,...,n}
, (3.26)

which tends to give better results. It is worth noting that this approach may intro-

duce a small additional bias, as explained in [19].

Speeding up each iteration The most computationally heavy step in a MYULA

iteration is usually the evaluation of the proximal operator. If the proximal operator

is being approximated by an iterative solver, it is worth trying to improve efficiency

by either using better solver, by warm starting iterations, or by using a weaker

convergence criterion.

3.3.8 Estimation Bias

If the algorithm converges but towards a poor value of θ ∈ Θ it might be due to

the bias in the MCMC kernels. As mentioned previously, there are many levels of

approximation and the bias is mostly affected by the discretisation step γ and the

smoothing parameter λ. However, based on what we have observed in practice,

the limiting factor tends to be λ. If there is a bias issue, we recommend trying to

reduce λ to obtain a better approximation of the target distribution, at the expense
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of some deterioration in convergence speed. When convergence is slowed down,

special attention has to be paid in the case of the double MCMC chain algorithm.

If the effective sample size of the two chains becomes too dissimilar, the algorithm

might have difficulty converging. In this case, it is possible to do some thinning

(subsampling) in the slower chain, as suggested in Section 3.3.5.

Alternatively, if the bias cannot be removed without a severe deterioration of

the computing times, other approaches could be considered to approximate the

expectations in (3.12). For instance, one could first use a variational approximation

[77] of each distribution and sample from these surrogate distributions instead. We

do not explore this in this thesis, but it is an interesting perspective for future work.
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Numerical experiments on

imaging problems
In this section we validate the proposed methodology with a range of imaging inverse

problems, which we have selected to illustrate a variety of observation models and

regularisation functions. In Section 4.1, we demonstrate the method by estimating

a scalar-valued regularisation parameter in a non-blind (and non-myopic) image de-

convolution model with different kinds of prior distributions, such as total variation

and `1-wavelet priors. This allows comparing our method to some state-of-the-art

approaches that are limited to scalar-valued regularisation parameters. We also use

one of these experiments to explain how to address problems in which the noise vari-

ance is unknown by jointly estimating θ and the variance of the noise by marginal

MLE.

This is then followed by two challenging problems involving multivariate regu-

larisation parameters. In particular, in Section 4.2 we apply our method to a sparse

hyperspectral unmixing problem combining an `1 and a total variation regulari-

sation, and where we report comparisons with the hierarchical Bayesian approach

of [105]. Lastly, in Section 4.3 we apply our method to a total generalised vari-

ation denoising model that has two unknown regularisation parameters exhibiting

strong dependencies, and which requires using Algorithm 3 with two parallel Markov

chains.

In all the experiments we first compute θ̄N , see (3.5), and then calculate a MAP

estimator using the empirical Bayesian posterior x 7→ p(x|y, θ̄N) by convex opti-
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misation (solver details are provided in each experiment)1 . In all experiments, θ

was estimated on a logarithmic scale by using the change of variables discussed in

Section 3.3.2. All experiments were conducted on an Intel i9-8950HK@2.90GHz

running MATLAB R2018a.

4.1 Non-blind natural image deconvolution

We now illustrate the proposed methodology with an application to image deblur-

ring using two different kinds of prior distributions: the total variation (TV) prior

and a wavelet-based synthesis-`1 prior. For comparison, we also report the results

obtained with SUGAR [49] (only when using a TV prior), joint MAP estimation

[105], discrepancy principle [58, 101], and by using the oracle value θ† that minimises

the estimation mean squared error (MSE), i.e.

θ† = arg min
θ∈Θ

{∥∥∥∥x0 − arg max
x∈Rd

p(x|y, θ)
∥∥∥∥

2

}
, (4.1)

where x0 is the ground-truth. We want to highlight that carrying out such a compar-

ison is not a trivial task because some algorithms are solver-dependent while some

others are completely independent of the solver used to compute the MAP estima-

tor. For this reason the comparison was done with extreme care, and we include a

detailed explanation of how we compare the results in Appendix B.

In non-blind image deblurring, the aim is to recover an unknown image x ∈ Rd

from a blurred and noisy observation y = Ax+w, where A ∈ Rd×Rd is a blur matrix,

and w is a d-dimensional Gaussian random variable with zero mean and covariance

matrix σ Id with σ > 0. In our experiments, x and y are of size d = 512×512 pixels,

A implements a known circulant uniform blur of size 9× 9 pixels, and σ2 is chosen

such that the blurred signal-to-noise-ratio (SNR) is 20 dB, 30 dB, or 40 dB. We

define the blurred SNR (in dB) as

SNR = 10 log10

∥∥Ax− Āx
∥∥2

2
d σ2 , (4.2)

1We compute the MAP estimator as this is a standard practice for the experiments we consider
and many of the convex optimisation solvers we use have been specifically designed for MAP
estimation. However other estimators such as the MMSE could also be considered.
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where Āx is obtained taking the average value of all pixels in Ax. We perform all

experiments on ten standard test images (barbara, boat, bridge, flintstones,

goldhill, lake, lena, man, mandrill and wheel).

For each image, noise level, and θ selection method, we first obtain an estimate for

θ and then use it to compute the MAP estimator x̂MAP (given by (1.7)). In the case of

the joint MAP method [105], we carry out joint MAP estimation of θ and x̂MAP. We

compute the MAP estimator by using a highly efficient proximal convex optimisation

algorithm, SALSA [2], which is an instance of Alternative Direction Method of

Multipliers (ADMM). We then assess the resulting performance by computing the

MSE between the MAP estimator and the ground truth.

4.1.1 Deconvolution with total variation prior

In this experiment we use model (1.6) where for any x ∈ Rd we have fy(x) = ‖y−Ax‖22
2σ2 ,

g(x) = TV(x), and follow the previously explained procedure. Here TV(x) is the

isotropic total variation pseudo-norm given by TV(x) =
∑

i

√
(∆h

i x)2 + (∆v
i x)2

where ∆v
i and ∆h

i denote horizontal and vertical first-order local difference oper-

ators. To compute θ̄N we use Algorithm 1. The prior associated with the total

variation pseudonorm is not proper [118, Section 1.5] (i.e.,
∫
p(x|θ)dx = ∞). This

is because TV(x) does not depend on the average value of the pixels and only de-

pends on the differences between them. This means that if we add a constant value

to all pixels the total variation pseudonorm remains the same and therefore the

effective dimension is d−1. We evaluated the proximal operator of TV(x) using the

primal-dual algorithm from [35] with 25 iterations.

The algorithm parameters are chosen following the recommendations provided

in Section 3.3.1; we consider 300 warm-up iterations and set θ0 = 0.01, X0
0 = y,

mn = 1, δn = 10×n−0.8/d for any n ∈ N∗, we set λ = min
(
5L−1

y , λmax
)

with λmax = 2

and Ly = (0.99/σ)2, and γ = 0.98× (Ly + 1/λ)−1. As suggested in Section 3.3.1, we

set (ωn)n∈N to have N0 = 25 burn-in iterations and compute θ̄N using (3.5).

In addition, instead of setting a fixed number of iterations, we stop the algorithm

when the relative change |θ̄N+1 − θ̄N | is smaller than 10−3. It would be possible to

use a tolerance of 10−5 and get a slight improvement of the MSE (< 0.02 dB), but

this would lead to computing times that are five times longer. We use SALSA with
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the following parameters: inneriters = 1, outeriters = 500, tol = 10−5 and mu

= θ̄N/10.

(a) Degraded (b) EB

Figure 4.1 – Deblurring with TV prior for man and goldhill test images: (a) blurred
and noisy (SNR=30 dB) observation y, (b) MAP estimator obtained using θ̄N com-
puted with empirical Bayes.

For illustration, Figure 4.1 shows the results obtained for two of the test images

(man and goldhill) using the proposed method. The displayed images correspond

to the 30 dB SNR setup. In Figure 4.2 we compare the MAP estimates obtained by

using each of the considered methods. In this case we display a close-up on man and

goldhill selecting a region that contains fine details and sharp edges. In Figure 4.3

and Figure 4.4 we provide further details for the same two images, showing a plot

of the MSE obtained with each method and the evolution of the iterates (θn)n∈N for

the empirical Bayesian method.

Observe in Figure 4.3 that the proposed empirical Bayesian algorithm yields
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(a) Original (b) Degraded (c) EB (d) HB (e) DP (f) SUGAR

Figure 4.2 – Deblurring with TV prior. Close-up on man and goldhill test images:
(a) True image x, (b) blurred and noisy (SNR=30 dB) observation y, (c)-(f) MAP
estimators obtained through empirical Bayes, hierarchical Bayes, discrepancy principle
and SUGAR methods, respectively.
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(b) goldhill

Figure 4.3 – Deblurring with TV prior. Mean squared error (MSE) obtained for
(a) man and (b) goldhill for different values of θ. We compare the values obtained
with empirical Bayes, discrepancy principle, hierarchical Bayes, SUGAR, and the
optimal value θ† that minimises the MSE.
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Figure 4.4 – Deblurring with TV prior. Evolution of the sequence of iterates (θn)n∈N

for the proposed method for man and goldhill test images (SNR=30 dB).
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close-to-optimal results, for both high and low SNR values. The method based on

the discrepancy principle and the hierarchical Bayesian method overestimate the

amount of regularisation required. Conversely, SUGAR underestimates θ (this can

also be observed in the recovered image in Figure 4.2 (f), where the MAP estimate

presents some ringing artefacts due to high-frequency noise amplification); this is in

agreement with the results reported in [93].

Table 4.1 reports the average MSE values and average computing times obtained

for each method. We can see that the proposed method performs close to the oracle

performance (obtained by using the oracle value θ† as defined in (4.1)), generally

outperforming the other approaches from the state of the art with very competi-

tive computing times. In particular, observe that the proposed method performs

remarkably for all SNR values. At high SNR values (40 dB) discrepancy principle

and joint MAP [105] perform similarly, whereas for low SNR values (20 dB) discrep-

ancy principle outperforms joint MAP. Also, SUGAR performs well for low SNR,

but fails to find good values of θ when the SNR is higher. This might be due to the

fact that SUGAR minimises a surrogate of the MSE that works well for denoising

but degrades in problems that are ill-posed or ill-conditioned (see Appendix B for

details about the comparison with SUGAR).

We emphasise at this point that the exact computing times of each algorithm

depend on the specific stopping criteria and implementation details, so rather than

claiming that one method is faster than the others, what we wish to illustrate is

that the computing times are all within the same order of magnitude, with SUGAR

being moderately slower for this particular experiment. As we mentioned before,

if we had selected a tolerance of 10−5 to stop our algorithm, the computing times

would have increased with almost negligible changes in the MSE. Also note that we

compute the optimal θ for the discrepancy principle method by continuation, but

one could also use a different proximal splitting strategy (see [42] for instance).

4.1.2 Deconvolution with Total Variation prior and unknown

noise variance

In this section we consider the same experiment as in Section 4.1.1, but we now

suppose that the noise variance is unknown and explain how to modify our method-
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Method SNR=20 dB SNR=30 dB SNR=40 dB
MSE Time MSE Time MSE Time

θ† 23.29 21.39 19.06
EB 23.50 0.84 21.45 0.85 19.24 0.85
DP 23.73 0.70 21.87 1.52 19.78 3.92
HB 25.07 0.58 22.84 1.27 19.84 3.27

SUGAR 23.66 3.64 23.16 5.00 23.05 5.63

(a)

X

X

X

◆

◆

◆

X

◆ D.P.

H.B.

SUG.

SNR=20dB SNR=30dB SNR=40dB

16

18

20

22

24

26

28

30
Avg. MSE

θ† 
E.B.

(b)

Table 4.1 – Deblurring with TV prior. (a) Table with average mean squared error
(MSE) obtained for ten images with different algorithms (results with lowest MSE
highlighted in bold). Average execution times expressed in minutes. In (b) we sum-
marise the content of the table and show the standard deviation with error bars.

ology to estimate this quantity jointly with θ by marginal MLE. This is beyond the

scope of the theoretical results we present in Appendix C. However, we believe that

the theory could be generalised to provide some (albeit weaker) guarantees for this

case and other blind and semi-blind problems, and this is an important perspective

for future work. Alternatively, the noise variance could also be pre-estimated with

some other method such as the mean absolute derivative rule proposed in [52].

More precisely, we can use the proposed scheme to compute

(θ?, σ2
?) ∈ argmax

θ∈Θ, σ2∈[σ2
min,σ

2
max]

p(y|θ, σ2) , (4.3)

where 0 < σ2
min < σ2

max < ∞ define a minimum and maximum admissible variance

values. To obtain an estimate of d
dσ2 log p(y|θ, σ2) in Algorithm 1 we differentiate

log p(x, y|θ, σ2) w.r.t. σ2 and obtain

d
dσ2 log p(x, y|θ, σ2) = ‖y − Ax‖2

2
2(σ2)2 − d

2σ2 . (4.4)

We summarise the resulting scheme for jointly estimating θ and σ2 in Algorithm 6

below.

One of the complications that stems from working with an unknown noise vari-

ance is that the Lipschitz constant Ly is unknown. This is a problem because Ly

affects the maximum step-size γ that we can use in the Markov kernels while ensur-

ing convergence; Ly is usually also used to set λ. To overcome this, we propose to

initialise the algorithm by assuming the worst-case scenario, i.e. σ2 = σ2
min, which
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Algorithm 6 SAPG algorithm - Scalar θ and unknown noise variance σ2

1: Input: initial {θ0, X
0
0}, (δn, δ′n, ωn,mn)n∈N, Θ, kernel parameters γ, λ, iterations

N .
2: for n = 0 to N − 1 do
3: if n > 0 then
4: Set Xn

0 = Xn−1
mn−1 ,

5: end if
6: for k = 0 to mn − 1 do
7: Sample Xn

k+1 ∼ Rγ,λ,θn,σ2
n
(Xn

k , ·),
8: end for
9: Set θn+1 = ΠΘ

[
θn + δn+1

mn

∑mn
k=1

{
d
αθn
− g(Xn

k )
}]

.

10: Set σ2
n+1 = Π[σ2

min,σ
2
max]

[
σ2
n + δ′n+1

mn

∑mn
k=1
{
‖y − AXn

k ‖
2
2/2(σ2

n)2)− d/(2σ2
n)
}]

.
11: end for
12: Output: θ̄N =

∑N−1
n=0 ωnθn

/∑N−1
n=0 ωn and σ̄2

N =
∑N−1

n=0 ωnσ
2
n

/∑N−1
n=0 ωn .

will lead to the largest L̂y = (0.99/σmin)2, and in turn lead to the smallest pos-

sible step-size γ and a small λ. Since this value is usually very conservative, one

can run some iterations of the algorithm until the value of σ2
n begins to stabilise,

then refine L̂y to update the algorithm parameters γ and λ, and continue iterations

with those updated values. Here we adopt this approach and run the algorithm

in three stages, where we update γ and λ at the end of each stage by using the

estimates of σ̄2
N available at that point to refine L̂y. In accordance with the guide-

lines provided in Section 3.3.1, we set λ = min
(

5L̂−1
y , λmax

)
with λmax = 2 and

γ = 0.98 × (L̂y + 1/λ)−1. We have set σ2
min and σ2

max by assuming prior knowledge

that the SNR is between 15 dB and 45 dB, but other values could be used with-

out significantly impacting results. In each stage we use 300 warm-up iterations,

set θ0 = 0.01, σ2
0 = (σ2

min + σ2
max)/2, X0

0 = y, mn = 1, δn = 10 × n−0.8/d, and

δ′n = 10× n−0.8/d for any n ∈ N∗. At each stage, we use the same stopping criteria

as in Section 4.1.1, with a tolerance of 10−3 for both θn and σn (the algorithm

progresses to the next stage (or is stopped) when both iterates meet the criteria).

For illustration, Figure 4.5 shows the results obtained with Algorithm 6 for the

man test image. For comparison, we also show the results of Section 4.1.1 obtained

by using the true value of σ. The displayed images correspond to the 30 dB SNR

setup. Observe there is very little difference between the recovered image using the

true value of σ2 and the marginal MLE estimate σ̄2
N obtained with Algorithm 6.

Table 4.2 presents a detailed comparison of the results obtained with Algo-
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(a) Degraded (b) EB with known σ (c) EB with unknown σ

Figure 4.5 – Deblurring with TV prior for man: (a) blurred and noisy (SNR=30 dB)
observation y, (b-c) MAP estimator with θ̄N computed with empirical Bayes using
(b) true and (c) estimated σ.

Method SNR=20 dB SNR=30 dB SNR=40 dB
MSE Time (min) MSE Time (min) MSE Time (min)

θ† 23.29 21.39 19.06
EB with known σ 23.50 0.84 21.45 0.85 19.24 0.85

EB with unknown σ 23.53 1.02 21.52 1.35 19.27 1.77

Table 4.2 – Deblurring with TV prior and unknown σ. Table with average mean
squared error obtained for ten images for the experiment where σ is estimated jointly
with θ. For reference we also include the results obtained with empirical Bayes when
σ is known and using the oracle value θ† that minimises the MSE.

rithm 6. Again, observe that the quality of the restored images obtained with the

marginal MLE estimate σ̄2
N is comparable to that of the images obtained with the

true value of σ2, with a moderate overhead in the computing times when the three-

stage approach is used. This additional computing time is due to the fact that since

Ly is not known, we start the algorithm with a very small step-size γ that, as ex-

plained, we iteratively increase. In general, using a smaller step-size leads to longer

computing times (slower convergence). This is also reflected in the fact that in this

and most other experiments, the computing times increase with SNR. The reason

for this is that a larger noise variance σ leads to a smaller Ly which, in turn, tends

to result in a larger step-size γ (unless λ is the limiting factor).

We conclude by presenting in Figure 4.6 the evolution of the iterates (θn)n∈N

and (σ2
n)n∈N for the last stage of the algorithm (the first two stages are discarded).

Observe that the algorithm converges very quickly, similarly to the case when σ2 is

known.
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Figure 4.6 – Deblurring with TV prior and unknown noise variance σ2. Evolution
of the sequence of iterates (θn)n∈N and (σ2

n)n∈N during the last stage of the proposed
method for the man test image (SNR=30 dB).

4.1.3 Wavelet deconvolution with synthesis prior

We now consider image deblurring under a wavelet synthesis formulation, where

we assume that x ∈ Rd represents the unknown image in a redundant 4-level Haar

wavelet representation Ψ, with dimension d = 10 × dy = 10 × 512 × 512 coeffi-

cients. We assume a Laplace prior (i.e., p(x|θ) ∝ e−θ‖x‖1) on the elements of x

with unknown parameter θ. Accordingly, the posterior is of the form (1.6) with

fy(x) = ‖y − AΨx‖2
2 /(2σ2), g(x) = ‖x‖1. To obtain solutions we map x to pixel

domain by computing Ψ>x.

To compute θ̄N we use Algorithm 1. The algorithm parameters are chosen follow-

ing the recommendations provided in Section 3.3.1; we do not consider any warm-up

iterations, and set θ0 = 0.01, X0
0 = y, for any n ∈ N∗, mn = 1, δn = 10 × n−0.8/d,

λ = min (5L−1, λmax) with λmax = 2 and L = (0.98/σ)2. We use the same stopping

criteria as in the previous experiment and we consider two different tolerance levels:

i) we stop the algorithm when the relative change |θN+1 − θN | is smaller than 10−4,

and ii) when the relative change is smaller than 10−3. As in the previous exper-

iment, we set (ωn)n∈N to have N0 = 20 burn-in iterations and compute θ̄N using

(3.5). To compute the MAP estimate we use SALSA with the following parameters:

inneriters = 1, outeriters = 1000, tol = 10−5 and mu = θ̄N .

In Figure 4.7 we show the results obtained for two of the test images (boat

and mandrill) using the proposed method. The displayed images correspond to

the 20 dB SNR setup. In Figure 4.8 we provide further details for the boat image,

showing the evolution of the iterates (θn)n∈N and the relative differences on its
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(a) Degraded (b) EB (c) Degraded d) EB

Figure 4.7 – Wavelet deconvolution with synthesis-`1 prior for boat and mandrill
test images: (a),(c) blurred and noisy (SNR=20 dB) observation y, (b),(d) MAP
estimator obtained with empirical Bayes.

running average value (θ̄N)N∈N throughout iterations.
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Figure 4.8 – Wavelet deconvolution with synthesis-`1 prior for boat image
(SNR=20 dB). Evolution of (a) the iterates (θn)n∈N in log-scale and (b) the rela-
tive change in (θ̄N )N∈N for the proposed method.

In Figure 4.9 we compare the results obtained by using each of the considered

methods, showing a close-up on an image region that contains fine details and sharp

edges. Figure 4.10 shows a plot of the MSE obtained with each method for the

same two test images.

Table 4.3 shows the average MSE values and average computing times ob-

tained for each method. We observe once again that the empirical Bayesian method

achieves the best results for all SNR values and is very close to the oracle perfor-

mance. Reducing the tolerance leads to a small improvement in MSE, at the expense

of a higher computing time. The discrepancy principle consistently overestimates

the parameter leading to over-smoothed solutions.

For high SNR values, both Bayesian methods attain similar values of MSE, but
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(a) Original (b) Degraded (c) EB tol 10−4 (d) EB tol 10−3 (e) HB (f) DP

Figure 4.9 – Wavelet deconvolution with synthesis-`1 prior. Close-up on boat and
mandrill images: (a) True image, (b) blurred and noisy (SNR=20 dB) observation
y, (c)-(f) MAP estimators obtained with Empirical Bayes (tol. 10−4 and 10−3), hier-
archical Bayes and discrepancy principle, respectively.
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Figure 4.10 – Wavelet deconvolution with synthesis-`1 prior - Mean squared error
(MSE) obtained for (a) boat and (b) mandrill for different values of θ. We compare
the values obtained with empirical Bayes with tolerance 10−4, discrepancy principle,
hierarchical Bayes, and the optimal value θ†.

Method SNR=20 dB SNR=30 dB SNR=40 dB
MSE Time MSE Time MSE Time

θ† 24.23 22.70 20.56
tol 10−4 EB 24.40 4.48 22.80 3.59 20.70 2.44
tol 10−3 EB 24.70 0.36 22.90 0.25 20.80 0.09

DP 25.09 13.93 23.57 28.64 21.38 61.03
HB 25.01 11.61 23.23 23.87 20.89 50.86
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Table 4.3 – Wavelet deconvolution with synthesis-`1 prior. (a) Table with average
mean squared error (MSE) obtained for ten images with different algorithms (results
with lowest MSE in bold). Average execution times expressed in minutes. In (b) we
summarise the content of the table and show the standard deviation with error bars.
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the proposed empirical Bayes methodology is five times faster. We want to point

out that these general conclusions depend a lot on the parameters used for the solver

of the MAP estimation problem (in this case SALSA [2]). We included a detailed

analysis of this in Appendix B.

4.2 Hyperspectral Unmixing with TV-SUnSAL

Hyperspectral sensors acquire hundreds of narrow band spectral images in different

frequency bands. These images are collected in a three-dimensional hyperspectral

data cube for processing and analysis. Although the spectral resolution is high, the

spatial resolution is usually low, leading to the existence of “mixed” spectra in the

acquired image pixels [75]. Hyperspectral unmixing is a source separation problem

that aims at decomposing each mixed pixel into its constituent spectra (the so-called

end-members) and their corresponding fractional abundances or proportions. This

is normally done under the assumption of a linear mixing model [126]. In particular,

linear unmixing techniques assume the availability of a library of spectral signatures

and use the following model:

y = Ax+ w (4.5)

where y ∈ Rdf×dp is the hyperspectral image with df frequency channels and dp

pixels; x ∈ Rdm×dp is the fractional abundance matrix; A ∈ Rdf×dm is a dictionary

of pure spectral signatures for dm different materials; and w is a df × dp Gaussian

random variables with zero mean and covariance matrix σ Idy and σ > 0. In [75],

the unmixing problem is solved by using the regulariser g given for any x ∈ Rdm×Rdp

by

g(x) = (TV(x), ‖x‖1) s.t. x > 0 , (4.6)

which is associated with a two-dimensional regularisation parameter θ = (θTV, θ1) ∈

R2. θTV ∈ R controls the spatial cohesion of the objects, and θ1 ∈ R enforces sparsity

on x. In this experiment, TV is the vectorial isotropic total variation pseudo-norm

given for any x ∈ Rdm × Rdp by

TV(x) =
dp∑

i=1

∑

j∈Vi

‖xi − xj‖1 , (4.7)
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where for any i ∈ {1, . . . , dp}, xi ∈ Rdm denotes the i-th image pixel and Vi its vertical

and horizontal neighbour pixels (the first-order neighbourhood).

Although this regulariser is not separable and we would therefore have to use

Algorithm 3 with two MCMC chains, our empirical results suggest that it is possible

to use a pseudo-likelihood approximation estimate θ using a single MCMC chain

together with the expression of ∇θ log Z(θ) for the homogeneous case. The reason

for doing this is twofold. First, with this approximation we can compare our results

with the hierarchical Bayesian method from [105], which we would otherwise not

be able to apply to this problem. Second, using Algorithm 3 with this particular

application is very difficult due tu numerical instabilities stemming from the way in

which we implement the proximal operator with the SUnSAL solver [75]. Sampling

from the prior becomes very difficult as the SUnSAL solver has not been designed

to receive negative values in its input (which is often the situation given that we add

Gaussian noise to the samples at every step) and this leads to numerical instabilities

in the Markov chain sampling from the prior. For these reasons we have chosen to

work under this approximation and use Algorithm 2.

More precisely, we consider [∂ log Z/∂θ1](θ) = d/θ1 and [∂ log Z/∂θTV ](θ) =

d/θTV . Although x 7→ TV(x) and x 7→ ‖x‖1 are not acting on independent sub-

sets of x, we have empirically observed that this provides a good approximation

and delivers excellent results. Notice that the dimension of each pseudo-separable

component is set to d (i.e. d1 = d and dTV = d). In standard cases, when using

Algorithm 2, each separable component has a dimension smaller than d and acts on

different components of x (this is explained in Section 3.1.2). In this experiment the

regulariser is not truly separable due to the positivity constraint, so each regulariser

term depends on the full vector x.

We consider the experiment A-Simulated Data Sets case 1) Simulated Data Cube

1 presented in [75, Section 4], particularly the case where w is a white Gaussian

noise. In this experiment a synthetic hyperspectral image is generated by using five

randomly selected spectral signatures. The image has dp = 75 × 75 = 5625 pixels

and df = 224 frequency bands per pixel. For full details see [75]. We follow the

exact same procedure as presented there, except for a modification in the spectral

signature dictionary A. In [75] they consider a dictionary A ∈ R224×240, which
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is a library generated from a random selection of 240 materials from the USGS

library2. Here we consider a simplified version where we only select dm = 12 random

materials, thus having A ∈ R224×12. Out of these 12 materials, only 5 are present

in the synthetic image. The synthetic fractional abundances x0 are displayed in the

first row of Figure 4.11 (only the 5 present end-members are shown)

We use the proposed algorithm to estimate θTV and θ1 for this setup using

Algorithm 2 under three different noise levels: we consider a SNR of 20 dB, 30 dB

and 40 dB. For comparison, we also report the results obtained with the joint MAP

method from [105] and by using the oracle value θ† that maximises the estimation

signal-to-reconstruction-error (SRE) given by ‖x0‖2
2/‖x0 − x̂MAP‖2

2.

We evaluated the proximal operator of x 7→ θTVTV(x) + θ1 ‖x‖1 using SUnSAL

solver from [75] with 20 iterations. We address the positivity constraint separately

by using its Moreau-Yosida envelope (3.15), leading to the additional term x 7→

(x−Π+(x))/λ where Π+ is the projection operator onto [0,+∞)dm × [0,+∞)dp , and

λ is the same smoothing parameter used for the other proximal operators.

To speed up the convergence, we use a gradient preconditioning technique ex-

plained in Section 3.3.7. Since we use the preconditioned gradient of fy instead of

the gradient of fy, the Lipschitz constant becomes L = 1/σ2. The algorithm param-

eters are chosen following the recommendations provided in Section 3.3.1; we set

θ1
0 = 10, θTV

0 = 10, we initialised X0
0 using the pseudo-inverse of A and projecting

on the space of positive matrices. In addition, we perform 200 warm-up iterations

and set for any n ∈ N∗, mn = 1, δn = n−0.8/(dpdm).

Special care was taken when setting γ > 0 and λ > 0 due to the preconditioning.

We set γ = 1/(L + 2/λ) for any n ∈ N and λ = 0.9× λA/L, where λA is the largest

eigenvalue of (ATA)−1. We run the algorithm for 50 iterations and compute (θ̄)N∈N

as defined in (3.5) with (ωn)n∈N set to have N0 = 30 burn-in iterations.

In Figure 4.11 we display the MAP recovery of the synthetic fractional abun-

dances using the estimated values of θTV and θ1 with the SUnSAL solver for SNR=30

dB.

Figure 4.12 (a) shows the evolution of the iterates (θ1
n)n∈N and (θTV

n )n∈N and Fig-

ure 4.12 (c) shows the relative change in the running averages (|θ̄N+1− θ̄N |/θ̄N)N∈N

2Available online: http://speclab.cr.usgs.gov/spectral.lib06
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Figure 4.11 – Hyperspectral Unmixing - Synthetic fractional abundances for 5 end-
members. Original and MAP estimates for SNR=30 dB using the empirical Bayes
posterior (2.10).

throughout iterations for SNR=30 dB. Observe the excellent convergence proper-

ties of the proposed scheme, which stabilises in as little as 25 iterations. Moreover,

Figure 4.12 (b) shows the evolution of the iterates (θ1
n)n∈N and (θTV

n )n∈N obtained

using Algorithm 5 instead of Algorithm 2 for the same experiment. We can see that

the convergence is even faster for Algorithm 5 (where the exact maximisation step

is used) and that both algorithms converge to the same estimates (see discussion in

Section 3.1.5).
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Figure 4.12 – Hyperspectral Unmixing with SNR=30 dB - Evolution of the iterates
(θ1
n)n∈N and (θTV

n )n∈N using (a) Algorithm 2 and (b) Algorithm 5. In (c) we show
the relative successive differences (|θ̄N+1 − θ̄N |/θ̄N )N∈N for Algorithm 2, where the
relative change is computed after 25 burn-in iterations.

The obtained results are reported in Table 4.4 and summarised in Figure 4.13,

which shows the signal to reconstruction error (SRE) surfaces for different values of

the regularisation parameters. Observe that the empirical Bayesian method yields

good results for all SNR values, and clearly outperforms the hierarchical Bayesian
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method for low SNR values. For high SNR values the hierarchical method achieved

slightly better results. As discussed in Section 2.3.3, we believe that this is due to

the fact that, at high SNR values, the likelihood x 7→ p(y|x) dominates the posterior

and mitigates errors related to the misspecification of the prior. More precisely, if

the hyperprior that we set on θ assigns a high weight to values of θ that lead to

10 0 10 -1

10

10 0
10 1

15

L1TV

10 1

S
R

E

10 2

20

10 2

10 3

25

30

(a) SNR=20 dB

0

10 0

10 0

10

10 1

TV L1

10 2
10 2

20

S
R

E

10 3

30

10 410 4

40

(b) SNR=30 dB

0

10 1

10 0

10

10 2

L1TV

20

10 2
10 3

S
R

E

10 4

30

10 4

10 5

40

(c) SNR=40 dB

Figure 4.13 – Hyperspectral Unmixing - Signal to reconstruction error (SRE) sur-
faces for different SNR values expressed in dB. Comparison between parameters esti-
mated with our empirical Bayesian algorithm (EB) and with the hierarchical Bayesian
method (HB) from [105].

Method SNR=20 dB SNR=30 dB SNR=40 dB
Stop criteria SRE Time (s) SRE Time (s) SRE Time (s)

θ† (Oracle) – 29.38 – 38.61 – 47.64 –
EB 50 iters. 27.46 36 38.42 37 45.68 42

HB [105] 15 iters. 18.33 76 31.72 77 47.36 76

Table 4.4 – Hyperspectral unmixing - Signal to reconstruction error (SRE) obtained
for different SNR values along with computing times expressed in seconds.

bad models, i.e. a misspecified prior x 7→ p(x|θ), the impact of this misspecification

on the recovered estimates depends on the degree of concentration of the likelihood.

At high SNR, the likelihood dominates the posterior thus concealing the possible

prior misspecification and leading to good results. Conversely, at low SNR values,

the performance of the hierarchical model is degraded by model misspecification.

Also note in Table 4.4 that the computing times for the empirical Bayesian

method are approximately two times faster than the ones for the hierarchical method.
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4.3 Denoising with a total generalised variation

prior

In this last experiment, we apply the proposed methodology to a challenging prob-

lem that is beyond the scope of the considered class of models and our theoretical

guarantees. We consider an image denoising problem where y ∼ N (x, σ2 Idy) with

σ2 > 0 and where we use the following prior

p(x|θ1, θ2) = 1
Z(θ1, θ2) exp{−TGV2

θ1,θ2(x)− ε‖x‖2
2} ,

where ε > 0 and where TGV2
θ1,θ2(x) is a second-order generalisation of the con-

ventional total variation regulariser, given, for any (θ1, θ2) ∈ [0,+∞)2 and x ∈ Rd,

by

TGV2
θ1,θ2(x) = min

r∈R2d
{θ1 ‖r‖1,2 + θ2 ‖J(∆x− r)‖1,Frob.} . (4.8)

where ∆ = (∆v,∆h) is the discrete image-gradient operator that computes the

first-order vertical and horizontal pixel differences, and J computes the Jacobian

matrix of the image-gradient vector field to capture second-order information (i.e.,

(J∆)(x) is a discrete image-Hessian operator) [43]. This generalisation was first

considered in [34] and further studied in [18] as a means of incorporating second-

order derivative information to eliminate the common staircasing artifacts associated

with the conventional TV regulariser.

A main difficulty associated with using the TGV regulariser is the need to cor-

rectly set the parameters θ1 and θ2, which control the strength as well as the charac-

teristics of the regularisation enforced (as explained in [43], the TGV regularisation

behaves like the standard TV regularisation for large θ2 values, whereas for small

values it behaves like the `1-Frobenius norm of the discrete image-Hessian). Fig-

ure 4.14 below illustrates the dramatic effect that these two parameters have on

the quality of the recovered MAP estimate. Observe the strong coupling between

θ1 and θ2, which makes setting their values particularly challenging.

However, this prior is not in the exponential family because θ1 and θ2 play a role

in the definition of the statistic TGV2
θ1,θ2(x). Therefore, our methodology and theory

do not directly apply. Also note that the additional regularisation ε‖x‖2
2 with ε > 0
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Figure 4.14 – Denoising with TGV prior. MAP estimates for different values of θ1

and θ2 for parrot image with SNR= 5.6 dB (left). PSNR for different values of θ1

and θ2 (right). The 9 black points on the right plot show the location of the parameter
combinations used to compute the MAP estimates on the left.

is necessary to guarantee that the prior distribution is proper3, which is potentially

important in order to apply the proposed methodology with two Markov chains

(otherwise the auxiliary chain targeting p(x) would not be ergodic - two chains are

required because (4.8) is not separable and homogeneous). We use ε = 10−10.

In order to apply the proposed methodology to the estimation of θ1 and θ2 we

use an approximation of the gradient ∇θ log p(x|θ1, θ2). More precisely, we express

p(x) as follows for any x ∈ Rd and θ1, θ2 > 0

p(x|θ1, θ2) = 1
Z(θ1, θ2) exp

[
−θ1g1(x, θ1, θ2)− θ2g2(x, θ1, θ2)− ε‖x‖2

2
]
,

with

g1(x, θ1, θ2) =
∥∥r(x, θ1, θ2)

∥∥
1,2 ,

g2(x, θ1, θ2) =
∥∥J(∆x− r(x, θ1, θ2))

∥∥
1,Frob. ,

r(x, θ1, θ2) = argmin
s∈R2d

{θ1 ‖s‖1,2 + θ2 ‖J(∆x− s)‖1,Frob.} ,

3This additional regularisation was not necessary in the total variation experiment in Sec-
tion 4.1.1 as Algorithm 1 does not require sampling from the prior distribution, so improper
priors can be used.
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and approximate the partial derivatives ∂
∂θ1 log p(x|θ1, θ2) and ∂

∂θ2 log p(x|θ1, θ2) by

∂

∂θ1 log p(x|θ1, θ2) ≈ Ex|θ1,θ2 [g1(x, θ1, θ2)]− g1(x, θ1, θ2) ,

∂

∂θ2 log p(x|θ1, θ2) ≈ Ex|θ1,θ2 [g2(x, θ1, θ2)]− g2(x, θ1, θ2) .

This approximation of the gradient arises from omitting the terms

Ex|θ1,θ2

[
θ1 ∂

∂θ1 g1(x, θ1, θ2) + θ2 ∂

∂θ1 g2(x, θ1, θ2)
]
−θ1 ∂

∂θ1 g1(x, θ1, θ2)−θ2 ∂

∂θ1 g2(x, θ1, θ2)

and

Ex|θ1,θ2

[
θ1 ∂

∂θ2 g1(x, θ1, θ2) + θ2 ∂

∂θ2 g2(x, θ1, θ2)
]
−θ1 ∂

∂θ2 g1(x, θ1, θ2)−θ2 ∂

∂θ2 g2(x, θ1, θ2)

in the calculation of the partial derivatives ∂
∂θ1 log p(x|θ1, θ2) and ∂

∂θ2 log p(x|θ1, θ2).

The omission of these terms is necessary because they are not directly available and

would require being separately estimated at every iteration (in contrast, the terms

that we do include in the gradient approximation, g1 and g2, can be obtained as

a by-product of the proximal operator evaluation). Although this approximation

introduces an additional bias in the stochastic gradients driving Algorithm 34, the

numerical experiments reported below suggest that the algorithm is robust to this

additional bias, in the sense that we empirically observe good convergence to useful

estimates of θ1 and θ2.

In our experiments, we implement Algorithm 3 with this approximate gradient

and follow the recommendations provided in Section 3.3.1 to set the algorithm

parameters; we perform 25 warm-up iterations and set θ1
0 = θ2

0 = 10, X0
0 = X̄0

0 = y,

for any n ∈ N∗, mn = 1, δn = 20 × n−0.8/d, and we set λ = min (5L−1, λmax) with

λmax = 2 and L = (0.95/σ)2. To stop the algorithm we consider three different

cases: we stop the algorithm i) after N = 2000 fixed iterations ii) when the relative

change in θ̄N is ‖θ̄N+1 − θ̄N‖∞ 6 10−4 and iii) ‖θ̄N+1 − θ̄N‖∞ 6 10−3. Again, we

compute θ̄N using (3.5), setting (ωn)n∈N to have N0 = 20 burn-in iterations.

We also considered a thinning of 6 iterations in the chain associated with the
4A rigorous analysis of this bias should also consider the points where TGV2

θ1,θ2(x) is not
differentiable w.r.t. θ1 and θ2. This can be achieved by using similar techniques to [46].
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prior as its samples were roughly 6 times more correlated than those coming from

the chain targeting the posterior (i.e., we discard 5 every 6 samples as explained in

Section 3.3.5). To compute the TGV2
θ1,θ2 norm and proximal operator, we use the

iterative primal-dual algorithm [43].

Applying Algorithm 3 to the entire image is too computationally expensive be-

cause of the complexity associated with evaluating the proximal operator of the

TGV regulariser. Therefore, in this experiment we estimate θ̄N from a representa-

tive patch of size 255 × 255 pixels, and then use the estimated θ1 and θ2 values to

compute the MAP estimate of the entire image5. We consider the same ten test

images used in Section 4.1 and we set the noise variance σ2, such that the signal-to-

noise-ratio (SNR) is 8 dB, 12 dB, or 20 dB. For each image and noise level, we first

obtain an estimate for θ1 and θ2 and then use them to compute the MAP estimator

x̂MAP (given by (1.7)) using the same solver [43] we use for the proximal operator.

We measure estimation performance by computing the peak-signal-to-noise-ratio

(PSNR) given by PSNR(x, x̂MAP) = −10 log10 ‖x− x̂MAP‖2
2/d. All the PSNR plots

shown in Figure 4.17, Figure 4.18 and Figure 4.21 were computed with the entire

images instead of the cropped patches.

Table 4.5 below summarises the average PSNR values and average computing

times obtained for each SNR value for the three different stopping criteria. We

observe that the proposed empirical Bayesian method achieves very good results for

all SNR values and is very close to the oracle performance. Crucially, the stopping

criteria has a strong impact on the computing times but not on the resulting PSNR

values. Therefore, although convergence can take close to one hour with a strict

convergence criterion, good results can be obtained in the order of a minute by

using a weaker convergence criterion.

For illustration, Figure 4.15 depicts the original image, the noisy observation

and the recovered MAP estimates for the boat and lake test images for the case

with SNR = 8 dB. In the boat image we can see some denoising artefacts in the

sky. This is mostly due to the choice of prior distribution and not to incorrectly

tuned regularisation parameters (see Figure 4.17). In fact, the reconstructions
5For homogeneous regularisers, θ is asymptotically independent of the dimension of x when d

is large [105], suggesting that it is possible to estimate its value from a representative image patch.
Our empirical results suggest that this might hold for other models as well.
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Method SNR=8 dB SNR=12 dB SNR=20 dB
PSNR Time PSNR Time PSNR Time (min)

θ† (Oracle) 27.80 ± 2.35 30.21 ± 2.12 35.60 ± 1.77
2000 iter EB 27.11 ± 2.81 131.10 29.69 ± 2.33 96.41 35.48 ± 1.81 95.06
tol 10−4 EB 27.09 ± 2.84 24.61 29.72 ± 2.33 23.27 35.47 ± 1.81 44.70
tol 10−3 EB 27.00 ± 2.96 3.04 29.50 ± 2.71 2.18 35.57 ± 1.79 5.03

Table 4.5 – Denoising with TGV prior. Average mean squared error ± standard
deviation obtained for ten different images. We show results for different stopping
criteria, either with a fixed number of iterations or with a maximum tolerance for the
relative change in the mean θ1 and θ2 estimates.

obtained with the optimal value θ† that maximises the PSNR preserve more fine

details but display even more pronounced artefacts as shown in Figure 4.16. For

better reconstructions a different prior distribution should be used.

(a) Original (b) Degraded (c) Empirical Bayes

Figure 4.15 – Denoising with TGV prior for boat and lake test images: (a) True
image, (b) noisy observation y (SNR=8 dB), (c) MAP estimators obtained with EB.
We show the full image (not the patches).

More interestingly, Figure 4.17 shows the landscape of the PSNR as a function

of θ1 and θ2 for the two test images, with the obtained solutions highlighted as a blue

dot. Observe that the estimated solutions are extremely close to the optimal ones,

which is remarkable given the difficulty of the problem and the fact that solutions

are derived directly from statistical inference principles, without any form of ground
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Figure 4.16 – Denoising with TGV prior for boat and lake test images: MAP
estimators obtained with the optimal value θ† that maximises the PSNR.

truth.

Figure 4.17 – Denoising with TGV prior on boat and lake images (SNR=8 dB).
PSNR for different values of θ1 and θ2. Blue marker shows the location of θ̄N estimated
with empirical Bayes using 2000 iterations. Associated images shown in Figure 4.15.

The PSNR surfaces in Figure 4.17, Figure 4.18 and Figure 4.21, were computed

by evaluating the solver in multiple points (shown as a grid of grey dots on each

plot) and then interpolating to show the full surface. For this reason the level-set

curves (plotted as grey curves on the surface) are simple numerical approximations

to the real level-sets and the sharp peaks or abrupt changes observed in them are

just a product of the numerical approximation. In Figure 4.17 both images seem to

present two modes in the PSNR surface. This multi-modality was observed in most

of the considered images for all SNR levels, see for example Figure 4.18.

Following on from this, Figure 4.19 and Figure 4.20 show respectively the evo-

lution of the iterates and the relative change in the estimated values of θ1 and θ2, for
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Figure 4.18 – Denoising with TGV prior for 6 test images (SNR=12 dB). PSNR for
different values of θ1 and θ2. Blue marker shows the location of θ̄N estimated with
empirical Bayes using tol = 10−4 as a stopping criterion.

the lake test image, and for SNR = 8 dB, = 12 dB, and = 20 dB. Observe that the

algorithm converges very quickly and can deliver a useful solution in approximately

50 iterations if the weaker convergence criterion is used, or in approximately 500

iterations if one uses a stricter convergence criterion.

0 1000 2000
Iteration n
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20
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(a) SNR 8dB

0 1000 2000
Iteration n
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(b) SNR 12dB

0 1000 2000
Iteration n

10

20

30

(c) SNR 20dB

Figure 4.19 – Denoising with TGV prior. Evolution of the iterates (θ1
n)n∈N and

(θ2
n)n∈N for the lake test image for different SNR values.

Lastly, Figure 4.21 below explores the robustness to different initialisations by

showing the evolution of the iterates on the landscape of PSNR values for the

flintstones image with SNR = 12 dB. We consider three different initialisations,

highlighted in colours red, green, and blue, and observe that in the three cases the

algorithm quickly converges to values for the parameters θ1 and θ2 that are close-to-

optimal in terms of the resulting PSNR. In Figure 4.22 we show the MAP estimates
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Figure 4.20 – Denoising with TGV prior. Relative successive differences |θ̄iN −
θ̄iN+1|/θ̄iN with i = 1, 2 for the proposed method with the lake test image for different
SNR values.

computed with each one of the three estimated θ̄N from Figure 4.21. As it may be

seen, the perceptual difference between the MAP estimates is negligible.

𝜃1

𝜃2

𝑃𝑆𝑁𝑅

𝜃0
1 = 𝜃0

2 =10

𝜃0
1 = 𝜃0

2 =0.1

𝜃0
1 = 𝜃0

2 =40

Figure 4.21 – Denoising with TGV prior on the flintstones image (SNR=12 dB).
Evolution of the iterates (θ1

n)n∈N and (θ2
n)n∈N for different initial values θ1

0 and θ2
0.

When initialising with θ1
0 = θ2

0 = 40 (red) the algorithm converges to a different point
with a similar PSNR.

Nevertheless, the algorithm is not fully robust to bad initialisation because of

the non-convexity and the approximations involved. For example, initialising the

algorithm in the corner of the PSNR landscape (e.g., θ1
0 = θ2

0 = 100) does not

lead to a satisfactory solution, indicating that a careful initialisation is required.

Alternatively, one could also initialise the algorithm by performing a certain number

of updates on θ1 with θ2 fixed to a small value - e.g. θ2 = 1 - to keep the model
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(a) θ1
0 = θ2

0 = 40 (b) θ1
0 = θ2

0 = 40 (c) θ1
0 = θ2

0 = 40

Figure 4.22 – Denoising with TGV prior for flintstones test image with
SNR=12 dB: MAP estimators obtained with three different estimations of θ̄N ob-
tained by running the EB algorithm with three different initial values θ1

0 and θ2
0.

close to the conventional total variation regulariser, and then update both θ1 with

θ2 until the convergence criterion is satisfied.

To conclude, we note that there are several other generalisations of the total

variation regularisation (see [18]). We have chosen to perform our experiments

with (4.8) because of the availability of the efficient MATLAB implementation [43].

However, we expect that Algorithm 3 will also perform well for other generalisations

of the total variation norm, particularly the second-order generalisation proposed in

[18] that is very similar to (4.8).

82



Chapter 5

Beyond imaging applications

In the previous chapter, we focused on the problem of estimating regularisation

parameters in imaging problems. In this chapter we want to show the scope of the

proposed methodology for estimating other kinds of parameters in other types of

inverse problems.

First, in Section 5.1, we re-introduce the algorithm in more general terms so that

it can be applied to a broader range of maximum likelihood estimation problems

involving intractable likelihood functions.

We then demonstrate the generalised methodology with three experiments that

involve a variety of unknown model parameters. Section 5.2 presents an application

to empirical Bayesian logistic regression, where the goal is to estimate a hyperpa-

rameter from the prior distribution of the regression coefficients. In Section 5.3

we consider a challenging application related to audio compressed sensing analysis,

where we use the proposed methodology to estimate a regularisation parameter that

controls the degree of sparsity enforced. Finally, Section 5.4 presents an application

to a high-dimensional empirical Bayesian logistic regression with random effects for

which the optimisation problem (5.2) is not convex. All experiments were carried

out on an Intel i9-8950HK@2.90GHz workstation running MATLAB R2018a.

5.1 Generalised SAPG algorithm

In Chapter 3 we considered imaging models of the form p(x, y|θ) ∝ exp[−fy(x) −

θTg(x)] and used Fisher’s identity to write the intractable gradient of the marginal likeli-
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hood log p(y|θ) in terms of an expectation ∇θ log p(y|θ) = Ex|y,θ{∇θ log p(x, y|θ)} . This

enabled us to obtain a Monte Carlo estimate of ∇θ log p(y|θ) by computing

∆m,θ = 1
m

m∑

k=1
∇θ log p(Xk, y|θ) = − 1

m

m∑

k=1
g(Xk)−∇θ log Z(θ) , (5.1)

where (Xk)k∈{0,...,m} was a sample of size m ∈ N∗ generated by using a Markov Chain

targeting p(x|y, θ) = p(x, y|θ)/p(y|θ), or a regularised approximation of this density.

In this chapter we focus on more general models of the form p(x, y|θ) ∝ exp[−f(x, y, θ)]

where f is convex w.r.t. x and the gradient ∇θ log p(x, y|θ) is not necessarily given by

−g(x)−∇θ log Z(θ). Moreover, we also consider a more general version of Equation (2.8)

where the maximum likelihood estimator is given by

θ? ∈ arg max
θ∈Θ

log p(y|θ)− ϕ(θ) , (5.2)

allowing the use of a penalty function ϕ : Θ → R, or set ϕ = 0 to recover the standard

maximum likelihood estimator. We can then consider the following recursion for any n ∈ N

θn+1 = ΠΘ[θn + δn+1 {∆mn,θn −∇θϕ(θn)}] , ∆mn,θn = 1
mn

mn∑

k=1
∇θ log p(Xn

k , y|θn) ,

(5.3)

which leads to Algorithm 7 below.

Algorithm 7 SAPG algorithm - General form
1: Input: initial {θ0, X

0
0}, (δn, ωn,mn)n∈N, Θ, kernel parameters γ, λ, iterations

N .
2: for n = 0 to N − 1 do
3: if n > 0 then
4: Set Xn

0 = Xn−1
mn−1 ,

5: end if
6: for k = 0 to mn − 1 do
7: Sample Xn

k+1 ∼ Rγ,λ,θn(Xn
k , ·),

8: end for
9: Set ∆mn,θn = 1

mn

∑mn
k=1∇θ log p(Xn

k , y|θn)
10: Set θn+1 = ΠΘ [θn + δn+1 {∆mn,θn −∇θϕ(θn)}].
11: end for
12: Output: θ̄N computed with (3.5).

Having defined Algorithm 7 in this general form, we can now demonstrate the proposed

methodology with a broader range of estimation problems. A detailed theoretical analysis

of this generalised version of the algorithm for smooth cases (i.e. when f is continuously
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differentiable) is available in [46].

We want to point out that some of the implementation guidelines provided in Sec-

tion 3.3 might not directly apply to Algorithm 7. In particular, notice that the ∆m,θ

is no longer given by − 1
m

∑m
k=1 g(Xk) − ∇θ log Z(θ), so it needs to be carefully derived

for each problem. More importantly, in most experiment in Chapter 4 the Lipschitz

constant of ∇x log p(x|y, θ) was upper bounded by 1/(Ly + λ−1), so we suggested setting

γ = 0.98(Ly + 1/λ)−1. This no longer applies to Algorithm 7 as ∇x log p(x|y, θ) can

have different forms and is not necessarily upper bounded by 1/(Ly + λ−1). Therefore

the step-size γ needs to be set to be smaller than the inverse of the Lipschitz constant

of ∇x log p(x|y, θ), and this Lipschitz constant needs to be calculated (or at least upper

bounded) for each particular problem.

5.2 Bayesian Logistic Regression

In this first experiment we illustrate the proposed methodology with an empirical Bayesian

logistic regression problem [112, 139]. We observe a set of covariates {vi}
dy
i=1 ∈ Rd, and

binary responses {yi}
dy
i=1 ∈ {0, 1}, which we assume to be conditionally independent re-

alisations of a logistic regression model: for any i ∈ {1, . . . , dy}, yi given β and vi has

distribution Ber(s(vT
i β)), where β ∈ Rd is the regression coefficient, Ber(α) denotes the

Bernoulli distribution with parameter α ∈ [0, 1] and s(u) = eu/(1 + eu) is the cumulative

distribution function of the standard logistic distribution. The prior for β is set to be

N(θ1d, σ2 Id), the d-dimensional Gaussian distribution with mean θ1d and covariance ma-

trix σ2 Id, where θ is the parameter we seek to estimate, 1d = (1, . . . , 1) ∈ Rd, σ2 = 5 and

Id is the d-dimensional identity matrix1. Following an empirical Bayesian approach, the

parameter θ is computed by maximum marginal likelihood estimation using Algorithm 7

with the marginal likelihood given by

p(y|θ) = (2πσ2)−d/2
∫

Rd





dy∏

i=1
s(vT

i β)yi(1− s(vT
i β))1−yi



 e−

‖β−θ1d‖2
2σ2 dβ . (5.4)

Lemma 7 in Appendix A of [46] shows that (5.4) is log-concave with respect to θ. We

use the proposed methodology to estimate θ? for the Wisconsin Diagnostic Breast Cancer
1The exact value of σ is not crucial as long as it is within a range where it can be considered

non-informative. As a rule of thumb, if changing the value of σ has a strong impact on the results,
then it is probably not large enough. Common ranges go from 5 to 100.
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dataset2, for which dy = 683 and d = 10, and where we normalise the covariates. In order

to assess the quality of our estimation results, we also calculate p(y|θ) over a grid of values

for θ by using a truncated harmonic mean estimator.

To implement Algorithm 7 we derive the log-likelihood function

log p(y|β, θ) =
dy∑

i=1

{
yiv

T
i β − log(1 + e(vT

i β))
}
, (5.5)

and obtain the following expressions for the gradients used in the MCMC steps (3.14) and

in the SA step on Line 10 in Algorithm 7, respectively

∇β log p(β|y, θ) =
dy∑

i=1

{
yivi − s(vT

i β)vi
}
− (β − θ1d)

σ2 , (5.6)

∇θ log p(β, y|θ) = 〈1d, β − θ1d〉 /σ2 . (5.7)

For the MCMC steps, we use a fixed step-size γ = 8.34×10−5, and batch size mn = 1,

for any n ∈ N. On the other hand we consider, for the SA steps, the sequence of step-sizes

δn = 60/n−0.8, ϕ(θ) = 0, Θ = [−100, 100] and θ0 = 0. Finally, we first run 100 iterations

with fixed θn = θ0 to warm-up the Markov chain, and then run N = 106 iterations of

Algorithm 7, setting (ωn)n∈N to have N0 = 50 burn-in iterations, and compute θ̄N using

(3.5).

Figure 5.1 (a) shows the evolution of the iterates θn during the first 100 iterations.

Observe that the sequence initially oscillates, and then stabilises close to θ? after approx-

imately 50 iterations. Figure 5.1 (b) presents the iterates θn for n = 105, . . . , 106. For

completeness, Figure 5.2 shows the histograms corresponding to the marginal posteriors

p(βj |y, v, θ̄N ), for j = 1, . . . , 10, obtained as a by-product of Algorithm 7. In order to

verify that the obtained estimate θ̄N is close to the true MLE θ? we use a truncated

harmonic mean estimator (THME) [120] to calculate the marginal likelihood p(y|θ) for a

range of values of θ. Although obtaining the THME is usually computationally expensive,

it is viable in this particular experiment as β is low-dimensional. More precisely, given n

samples (βi)i∈{1,...,n} from p(β|y, θ), we obtain an approximation of p(y|θ) by computing

p̂(y|θ) = nVol(A)
/(

n∑

k=1

1A(βk)
p(βk, y|θ)

)
, (5.8)

2Available online: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsin+(Diagnostic)
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Figure 5.1 – Bayesian logistic regression - Evolution of the iterates θ̄n and θn for the
proposed method during (a) burn-in phase and (b) convergence phase. An estimate
of θ?, the true maximiser of p(y|θ), is plotted as a reference.
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Figure 5.2 – Bayesian logistic regression - Normalised histograms of each component
of β obtained with 2× 106 Monte Carlo samples.

where A is a d-dimensional ball centred at the posterior mean β̄ = n−1∑n
k=1 βk, and with

radius set such that n−1∑n
i=1 1A(βi) ≈ 0.4. Using n = 6 × 105 samples, we obtain the

approximation shown in Figure 5.3 (a), where in addition to the estimated points we also

display a quadratic fit (corresponding to a Gaussian fit in linear scale), which we use to

obtain an estimate of θ?.

To empirically study the estimation error involved, we replicate the experiment 103

times. Figure 5.3 (b) shows the obtained histogram of {θ̄N,i}1000
i=1 , where we observe that

all these estimators are very close to the true maximiser θ?. Note that the distribution

of the estimation error is close to a Gaussian distribution, as expected for a maximum

likelihood estimator. There is a small estimation bias of the order of 3%, which can be
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attributed to the bias discussed in Section 3.1.4, and potentially to a small error in the

estimation of θ?.
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Figure 5.3 – Bayesian logistic regression - (a) Estimated points of the marginal log-
likelihood log p̂(y|θ) with quadratic fit (corresponding to a Gaussian fit in linear scale).
(b) Normalised histogram of θ̄N for 1000 repetitions of the experiment. An estimate
of θ?, the maximiser of p̂(y|θ), is plotted as a reference.

We conclude this experiment by using Algorithm 7 to perform a predictive empir-

ical Bayesian analysis on the binary responses. We split the original dataset into an

80% training set (ytrain, vtrain) of size dtrain = 546, and a 20% test set (ytest, vtest) of

size dtest = 137, and use Algorithm 7 to draw samples from the predictive distribution

p(ytest|ytrain, vtrain, vtest, θ̄N ). More precisely, we use Algorithm 7 to simultaneously calcu-

late θ̄N and obtain samples from p(β|ytrain, vtrain, θ̄N ), which in turn enables us to simulate

from p(ytest|β, ytrain, vtrain, vtest). We then estimate the maximum-a-posteriori predictive

response ŷtest, and measure prediction accuracy against the test dataset by computing the

error

ε = ‖ytest − ŷtest‖1/dtest =
dtest∑

i=1

∣∣ytest
i − ŷtest

i

∣∣ /dtest , (5.9)

and obtain ε = 2.2%.
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For comparison, Figure 5.4 below reports the error ε as a function of θ (the discon-

tinuities arise because of the highly non-linear nature of the model). Observe that the

estimated θ̄N produces a model that has a very good performance in this regard.

-500 0 500
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4

4.5

 (
%

)

Figure 5.4 – Bayesian logistic regression - Percentage of mislabelled binary observa-
tions in terms of θ. In blue we show the value of θ̄N obtained with Algorithm 7.

5.3 Audio compressed sensing

Compressed sensing techniques exploit sparsity properties in the data to estimate signals

from fewer samples than required by the Nyquist–Shannon sampling theorem [27, 29].

Many real-world data admit a sparse representation on some basis or dictionary. Formally,

consider an `-dimensional time-discrete signal z ∈ R` that is sparse in some dictionary Ψ ∈

R`×d, i.e, there exists a latent vector x ∈ Rd such that z = Ψx and ‖x‖0 =
∑d

i=1 1R∗(xi)�

`. This prior assumption can be modelled by using a Laplace distribution [91]

p(x|θ) ∝ e−θ‖x‖1 . (5.10)

Acquiring z directly would call for measuring ` univariate components. Instead, a care-

fully designed measurement matrix M ∈ Rp×`, with p � `, is used to directly observe

a “compressed” signal Mz, which only requires taking p measurements. In addition,

measurements are typically noisy which results in an observation y ∈ Rp modelled as

y = Mz +w where we assume that the noise w has distribution N(0, σ2 Ip), and therefore

the likelihood function is given by

p(y|x) ∝ exp
(
−‖y −MΨx‖22 /(2σ

2)
)
, (5.11)
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leading to the posterior distribution

p(x|y, θ) ∝ exp
(
−‖y −MΨx‖22 /(2σ

2)− θ ‖x‖1
)
. (5.12)

To recover z from y, we then compute the maximum-a-posteriori estimate

x̂MAP ∈ argmin
x∈Rd

{
‖y −MΨx‖22 /2σ

2 + θ ‖x‖1
}
, (5.13)

and set ẑMAP = Ψx̂MAP.

Following decades of active research, there are now many convex optimisation algo-

rithms that can be used to efficiently solve (5.13), even when d is very large [36, 99].

However, the selection of the value of θ in (5.13) remains a difficult open problem. This

parameter controls the degree of sparsity of x and has a strong impact on estimation

performance.

A common heuristic within the compressed sensing community is to set θcs = 0.1 ×

‖(MΨ)ᵀy‖∞ /σ2, where for any z ∈ R`, ‖z‖∞ = maxi∈{1,...,`} |zi|, as suggested in [81] and

[59]; however, better results can arguably be obtained by adopting a statistical approach

to estimate θ; for instance, one can use Algorithm 7 to compute the MLE θ?.

To illustrate this approach, we consider the audio experiment proposed in [12] for

the “Mary had a little lamb” song. The MIDI-generated audio file z has ` = 319, 725

samples, but we only have access to a noisy observation vector y with p = 456 random

time points of the audio signal, corrupted by additive white Gaussian noise with σ = 0.015.

The latent signal x has dimension d = 2, 900 and is related to z by a dictionary matrix

Ψ whose row vectors correspond to different piano notes lasting a quarter-second long
3. We used the heuristic θcs as the initial value for θ in our algorithm. To solve the

optimisation problem (5.13) we use the Gradient Projection for Sparse Reconstruction

(GPSR) algorithm proposed in [59]. We use this solver because it is the one used in the

online MATLAB demonstration of [12], however, more modern algorithms could be used

as well.

We implemented Algorithm 7 using a step-size γ = 6.9×10−6, a smoothing parameter

λ = 4 × 10−5, a fixed batch size mn = 1, δn = 20n−0.8/d = 0.0069n−0.8, ϕ(θ) = 0, and

setting (ωn)n∈N to have N0 = 100 burn-in iterations.

The algorithm converged in approximately 500 iterations, which were computed in only
3Each quarter-second sound can have one of 100 possible frequencies and be in 29 different

positions in time.
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325 milliseconds. Figure 5.5 (left), shows the first 250 iterations of the sequence θn and of

the weighted average θ̄n. Again, observe that the iterates oscillate for a few iterations and

then quickly stabilise. Finally, to assess the quality of the estimate θ̄N , Figure 5.5 (right)

presents the reconstruction mean squared error as a function of θ. The error is measured

with respect to the reconstructed signal and is given by MSE(x̂MAP) = ‖z?−Ψx̂MAP‖22/`,

where z? is the true audio signal. Observe that the estimated value θ̄N is very close to

the value that minimises the estimation error, and significantly outperforms the heuristic

value θcs commonly used by practitioners.

10 0 10 1 10 2 10 3 10 4 10 5

Iteration (n)

0

500

1000

1500

10 0 10 1 10 2 10 3 10 4 10 5

-32

-30

-28

-26

-24

-22

-20

-18

M
S

E

Figure 5.5 – Statistical audio compression - Evolution of the iterate θn with σ = 0.015
in log scale (left). Reconstruction mean squared error (MSE) in dB as a function of
the θ (right). For reference we show the oracle value θ† that minimises the MSE and
the frequently used heuristic θcs = 0.1× ‖(MΨ)ᵀy‖∞ /σ2.

Lastly, we want to mention that this approach could be useful for compressed sensing

in other domains such as imaging, e.g. [72, 73, 144].

5.4 Bayesian logistic regression with random ef-

fects

Following on from the Bayesian logistic regression in Section 5.2, where p(y|θ) is log-

concave and hence θ? unique, we now consider a significantly more challenging sparse

Bayesian logistic regression with random effects problem, which is beyond the scope of

the theoretical results presented in Appendix C. In this experiment p(y|θ) is no longer

log-concave, so Algorithm 7 can potentially get trapped in local maximisers. Furthermore,

the dimension of θ in this experiment is very large (dθ = 1001), making the MLE problem

even more challenging. This experiment was previously considered by [7] and we replicate

their setup.
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Chapter 5: Beyond imaging applications

Let {yi}
dy
i=1 ∈ {0, 1} be a vector of binary responses which can be modelled as dy

conditionally independent realisations of a random effect logistic regression model,

yi|x, β, σ ∼ Ber
(
s(vT

i β + σzT
i x)

)
, i ∈ {1, . . . , dy} , (5.14)

where vi ∈ Rp are the covariates, β ∈ Rp is the regression vector, zi ∈ Rd are (known)

loading vectors, x are random effects and σ > 0. In addition, recall that Ber(α) denotes the

Bernoulli distribution with parameter α ∈ [0, 1] and s(u) = eu/(1 + eu) is the cumulative

distribution function of the standard logistic distribution. The goal is to estimate the

unknown parameters θ = (β, σ) ∈ Rp × (0,+∞) directly from {yi}
dy
i=1, without knowing

the value of x, which we assume to follow a standard Gaussian distribution, i.e. p(x) =

exp{−‖x‖22 /2}/(2π)d/2. We estimate θ by MLE using Algorithm 7 to maximise (5.2),

with marginal likelihood given by

p(y|θ) = p(y|(β, σ)) =
∫

Rd

dy∏

i=1
s(vT

i β + σzT
i x)yi(1− s(vT

i β + σzT
i x))1−yip(x)dx , (5.15)

and we use the penalty function

ϕ(θ) = Λ
d∑

j=1
hΛδ(βj) , (5.16)

where hΛδ is the Huber function given for any u ∈ R by

hΛδ(u) =




u2/(Λδ2) if |u| 6 Λδ ,

(|u| − Λδ/2) otherwise .
(5.17)

We follow the procedure described in [7] to generate the observations {yi}
dy
i=1, with4

dy = 500, p = 1000 and d = 5. The vector of regressors βtrue is generated from the uniform

distribution on [1, 5] and 98% of its coefficients are randomly set to zero. The variance

σtrue of the random effect is set to 0.1, and the projection interval for the estimated σ is

[10−5,+∞). Finally, the parameter Λ in (5.16) is set to Λ = 30. We emphasise at this

point that θ is high-dimensional in this experiment (dΘ = 1001), making the estimation

problem particularly challenging.
4We renamed some symbols for notation consistency. What we denote by vi, x, dy and d, is denoted in [7] by

xi, U, N and q respectively.
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Chapter 5: Beyond imaging applications

The conditional log-likelihood function for this model is

log p(y|x, θ) =
dy∑

i=1

{
yi(vT

i β + σzT
i x)− log(1 + evT

i β+σzT
i x)
}
. (5.18)

To implement Algorithm 7 we use the gradients

∇x log p(x|y, θ) =
dy∑

i=1

{
σzi(yi − s(vT

i β + σzT
i x))

}
− x , (5.19)

∇θ log p(x, y|θ) =
dy∑

i=1



(yi − s(vT

i β + σzT
i x))


 vi

zT
i x





 . (5.20)

Finally, the gradient of the penalty function is given by

∂

∂βi
ϕ(θ) =




βi/δ |βi| 6 Λδ

Λ sign(βi), |βi| > Λδ
,

∂

∂σ
ϕ(θ) = 0 , (5.21)

where sign denotes the sign function, i.e. for any s ∈ R, sign(s) = |s|/s if s 6= 0, and

sign(s) = 0 otherwise.

We implement Algorithm 7 using γ = 0.01, δn = n−0.95/d = 0.2×n−0.95, a fixed batch

size mn = 1, and with β0 = 1p and σ0 = 1 as initial values. We also set the step-size δ

in (5.16) equal to the step-size δn in Algorithm 7 to be consistent with [7]. Moreover, we

perform 104 burn-in iterations with a fixed value of θ0 = (β0, σ0) to warm-up the Markov

chain, and we set (ωn)n∈N to have N0 = 600 burn-in iterations. Following on from this,

we run N = 5× 104 iterations of Algorithm 7 to compute θ̄N . Computing these estimates

required 25 seconds in total.

Figure 5.6 shows the evolution of the iterates throughout iterations, where we used

‖β̂n‖0 as a summary statistic to track the number of active components. Because the

Huber penalty (5.17) does not enforce exact sparsity on β, to estimate the number of

active components we only consider values that are larger than a threshold τ (we used

τ = 0.005).

From Figure 5.6 we observe that σ̂n converges to a value that is very close to σtrue, and

that the number of active components is also accurately estimated. Moreover, Figure 5.7

shows that most active components were correctly identified. We also observe that β̂n
stabilises after approximately 6300 iterations, which correspond to 6300 Monte Carlo

samples as mn=1. This is in close agreement with the results presented in [7, Figure
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Figure 5.6 – Sparse Bayesian logistic regression with random effects - Evolution of
the ‖β̂n‖0 and of the iterate σ̂n for the proposed method. The true values are plotted
in red as a reference.

5], where they observe stabilisation after a similar number of iterations of their highly

specialised Polya-Gamma sampler.

-0.5
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Figure 5.7 – Sparse Bayesian logistic regression with random effects - Support of the
estimated β̂N compared with the support of βtrue.

It is worth emphasising at this point that [7] considers the non-smooth penalty ϕ(θ) = Λ‖β‖1
instead of (5.16). Consequently, instead of using the gradient of ϕ, they resort to the so-

called proximal operator of ϕ [36] with parameter δn.
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Model selection

This chapter presents a fast heuristic for comparing Bayesian models to solve high-dimensional

inverse problems. We focus once again on problems that are convex w.r.t. the unknown

signal and where no ground truth is available. The proposed heuristic is very computation-

ally efficient and does not require the estimation of the model evidence. Instead, the model

evidence is used indirectly to set the regularisation parameters that define each competing

model by maximum marginal likelihood estimation, followed by a simple likelihood-based

or residual-based comparison of the models based on their empirical Bayesian maximum-a-

posteriori solutions. The proposed methodology is illustrated with a total-variation image

deblurring experiment, where it performs remarkably well.

6.1 Introduction

Many signal processing problems require solving a high-dimensional inverse problem that is

ill-conditioned or ill-posed. A key element in all reconstruction methods is the mathemati-

cal model that relates the observation to the unknown of interest. This model underpins all

inferences about the unknown signal and has a dramatic impact on the estimated results.

It is therefore essential to develop advanced tools for selecting and comparing alternative

mathematical models.

Indeed, the problem of model selection has received a lot of attention over the past

decades. Some of the existing methods, such as cross-validation, rely on the availability

of ground truth to compare models. Unfortunately, in many modern applications only a

single observation is available, and intrinsic model comparisons under no ground truth can

be notoriously difficult.

Bayesian inference offers a variety of approaches for comparing models in these settings
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(see [79, Section 1]). For instance, one can compare the posterior probabilities of the

models or use an information criterion such as the Widely Applicable BIC [140]. The

main difficulty arising in these Bayesian approaches is that the posterior distributions

employed in the calculations usually involve intractable integrals. Although many works

in the literature explore different strategies for approximating these integrals [41, 61] the

resulting methods tend to be either too problem-specific [71] or very computationally

expensive (for instance when computing stochastic approximations of the model evidence).

In this chapter we propose a fast heuristic for selecting models without reference to

ground truth. The proposed method makes use of the efficient algorithms we proposed

earlier in Chapter 3 and is therefore less computationally demanding than other Bayesian

approaches. This is mostly because as it does not require estimating the model evidence,

but rather uses it indirectly to set the regularisation parameters in each model, and then

resorts to a simple residual-based heuristic to compare the competing models.

The remainder of this chapter is organised as follows. Section 6.2 introduces notation

and the class of inverse problems considered. Section 6.3 presents the proposed empirical

model selection method. In Section 6.4, we illustrate the methodology by selecting one of

three possible blur kernels in an image deconvolution problem with a total-variation prior.

Conclusions and perspectives are finally reported in Section 6.5.

6.2 Bayesian model selection

We are interested in recovering some unknown signal x ∈ Rn from an observation y ∈ Rm.

As explained in Section 1.2, we follow a Bayesian approach and specify the posterior

distribution p(x|y) = p(x, y)/p(y) as defined in (1.6). In this chapter, however, we suppose

that there are several candidate models M1, . . . ,Mk available to perform inferences on

x|y. Precisely, we suppose that for any i ∈ {1, . . . , k}, Mi defines a parametric class of

log-concave posterior distributions

Mi = {θi ∈ Θi : pi(x|y, θi) = pi(y|x)pi(x|θi)/pi(y|θi)} (6.1)

parametrised by θi ∈ Θi ⊂ Rd, with likelihood function

pi(y|x) ∝ exp{−fyi(x)} , (6.2)
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where fyi is a convex and Li-Lipschitz differentiable function, and with prior distribution

given by

pi(x|θi) = exp{−θi gi(x)}/Zi(θi) , (6.3)

where gi is a convex, lower-semicontinuous and proper, but possibly non-smooth function.

Note that the marginal likelihood pi(y|θi) =
∫

Rn pi(y|x)pi(x|θi)dx is the so-called evidence

that measures goodness of fit to y.

For any specific modelMi and value of θi, a point estimation of x|y can be readily ob-

tained using proximal optimisation or sampling algorithms to compute the MAP solution

given by

x̂i(θi) ∈ argmin
x∈Rd

fyi(x) + θi gi(x) . (6.4)

This chapter is concerned with the efficient and objective selection of the best Bayesian

model Mi and regularisation parameter θi to recover x from y. From Bayesian de-

cision theory, one should assign a suitable prior to θi and select the model with the

largest marginal evidence pi(y) =
∫

Θi pi(y|θi)p(θi)dθi [41, 61]. Alternatively, the empirical

Bayesian paradigm proceeds by marginal maximum likelihood estimation and selects the

values (i, θi) ∈ {1, . . . , k} × Θi that maximise pi(y|θi). Unfortunately, both approaches

require the estimation of the evidence pi(y|θi), which is notoriously difficult in imaging

problems because of the high dimensionality involved.

We focus instead on a simple heuristic to perform model selection by comparing the

likelihoods pi(y|x̂i(θ?i )) for i ∈ {1, . . . , k}, where θ?i is the marginal likelihood estimator

θ?i = argmax
θi∈Θi

pi(y|θi) , (6.5)

In other words, for each i ∈ {1, . . . , k}, we identity the value θ?i that maximises the

model evidence pi(y|θi) withinMi, compute the corresponding (empirical Bayesian) MAP

solution x̂i(θ?i ), and then compare these based on the likelihoods pi(y|x̂i(θ?i )). This last step

is equivalent to comparing the residuals ri = ‖y−Aix̂i(θ)‖22 when fyi(x) = ‖y −Aix‖22/2σ2.

Notice that this heuristic is only as sensible as the strategy to choose θi, otherwise one

would select models that have a small ri because they overfit the data1.

Before presenting the method to calculate θ?i to implement our proposed heuristic, we

want to stress that this model selection procedure does not carry the rigorous statistical
1It is usually easy to adjust θ to obtain a small residual. In particular, removing the regularisa-

tion by setting θ = 0 leads to smaller residuals but very bad reconstructions x̂(θ). Therefore using
residuals for model selection is only reasonable if there is a theoretically underpinned strategy for
setting the regularisation parameters.
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guarantees of Bayesian model selection procedures. We expect that in some situations

it will significantly underperform selection models that compute the evidence pi(y|θi).

However, our preliminary numerical experiments suggest that for some problems it can

provide a good model selection criterion with a very low computational cost. Also notice

that our criterion does not assume that pi(y|θi) is finite, and hence allows using improper

priors such as total-variation.

6.3 Proposed model selection method

The first step in the proposed method, is to set the regularisation parameters of the k

models using the empirical Bayesian method introduced in Chapter 3.

Once the values θ?i for i ∈ {1, . . . , k} are estimated by using Algo. 1 or Algo. 3, the

proposed model selection heuristic is straight-forward: for each model we obtain the MAP

estimator x̂i(θ?i ) by solving (6.4) with a suitable convex optimisation algorithm, and then

calculate the likelihood pi(y|x̂i(θ?i )) (or residuals ri = ‖y − Aix̂i(θ?i )‖22) to compare the

competing models. The heuristic is summarised in Algo. 8 below:

Algorithm 8 Empirical model selection
1: for i ∈ {1, . . . , k} do
2: Calculate θ?i using Algorithm 1, Algorithm 2 or Algorithm 3.
3: Calculate x̂i(θ?i ) solving (6.4) by convex optimisation.
4: Calculate the likelihoods pi(y|x̂i(θ?i )) (or residual ri).
5: end for
6: Select model with the largest likelihood pi(y|x̂i(θ?i )) (or smallest residual ri)

6.4 Numerical experiments

We now illustrate the proposed methodology with a non-blind image deblurring problem

for which a series of candidate blur operators are compared to select the best one for

restoring a degraded image. We use a total-variation (improper) prior.

More specifically, we want to recover an unknown image x ∈ Rd from a blurred

and noisy observation y = Aix+ w, where Ai is a circulant blurring matrix, and w ∼

N (0, σ2 Idy). We consider three candidate statistical models M1, M2 and M3, each

defining a posterior distribution (6.1) with fyi(x) = ‖y −Aix‖22 /2σ2, and gi(x) = TV (x)

(the isotropic total-variation pseudo-norm) for i ∈ {1, 2, 3}. Here A1 implements a uni-

form blur of size 7 × 7 pixels, A2 implements a uniform blur of size 9 × 9 pixels and
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A3 a circular uniform blur with a 10 pixel diameter. Figure 6.1 shows the point spread

functions associated with these blur operators.

(a) M1 (b) M2 (c) M3

Figure 6.1 – Deblurring with TV prior - Point spread functions for each competing
model.

To test the proposed model selection method we proceed as follows. We consider

ten standard images of 512×512 pixels (barbara, boat, bridge, flintstones, hill,

lake, lena, man, mandrill and wheel) , and for each image we generate 9 different

observations y by using the three different blur operators and three different blurred-

signal-to-noise-ratios (SNR) (20 dB, 30 dB and 40 dB). This leads to a total of 90

blurred and noisy test images.

Next, we use the proposed method, as specified in Algorithm 8, to select a model

Mi for every test image. That is, for each test image, we run Algorithm 1 three

times to compute θ?i for i ∈ {1, 2, 3}. Then, for each model, we compute the MAP

estimator x̂i(θ?i ) given by (6.4) using the solver SALSA [2], which is an instance

of Alternative Direction Method of Multipliers (ADMM). Finally, we compute the

corresponding residuals ri and select the model with the smallest residual.

To assess the performance of the proposed method, we compare the selected

model to the model that gives the best reconstruction mean-squared-error (MSE),

which in this problem coincides with the true model. Table 6.1 summarises the

results for the 90 test images, organised by SNR value.

We observe from Table 6.1 that the proposed method performs extremely well

for medium and high SNR values, where it succeeds at identifying the correct model,

in almost every case. Conversely, performance is relatively poor at low SNR val-

ues, probably because the posterior distribution in that regime is less concentrated

around its mode and the likelihood pi(y|x̂i(θ?i )) is a poor surrogate for the marginal
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Table 6.1 – Confusion matrices obtained using 30 different observations (10 images
× 3 kernels) for each SNR value and with a TV prior. The best model is the one that
leads to the smallest MSE.

selected
M1 M2 M3

tr
ue

m
od

el M1 10 0 0

M2 0 10 0

M3 0 0 10

(a) SNR=40dB

selected
M1 M2 M3

tr
ue

m
od

el M1 10 0 0

M2 0 9 1

M3 0 0 10

(b) SNR=30dB

selected
M1 M2 M3

tr
ue

m
od

el M1 10 0 0

M2 5 5 0

M3 7 0 3

(c) SNR=20dB

likelihood pi(y|θ?i ) as a result.

For illustration, Figure 6.2 shows the results obtained for the hill and lake

images for the 30 dB SNR setup, when the best models areM3 andM2, respectively.

As it may be seen, the algorithm succeeded at selecting the best model, which is

remarkable given the proximity between x̂2(θ2) and x̂3(θ3) in both cases.

(a) y (b) x̂1(θ1) (c) x̂2(θ2) (d) x̂3(θ3)

Figure 6.2 – Deblurring with TV prior - Close-up on hill and lake: (a) Blurred
and noisy image y (using M3 for hill and M2 for lake, and SNR=30 dB), (b)-(d)
MAP estimators for M1, M2 and M3. Selected model in red.

In contrast, Figure 6.3 shows the results obtained for the lake image for the

20 dB SNR setup whereM3 is the true model, and in this case the proposed method

fails to select the best model (see Figure 6.5 for more details about the specific

values of the residuals in each case and the resulting MSE in the reconstructions).
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In Figure 6.4 we provide further details for the experiment with SNR=30 dB, where

we show the evolution of θ(n)
3 .

(a) y (b) x̂1(θ1) (c) x̂2(θ2) (d) x̂3(θ3)

Figure 6.3 – Deblurring with TV prior - Close-up on lake: (a) Blurred and noisy
image y (usingM3 and SNR=20 dB), (b)-(d) MAP estimators forM1,M2 andM3.
Selected model in red (example of a case where it failed to select the true model).
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Figure 6.4 – Deblurring with TV prior on hill: evolution of the iterate θ(n)
3 for

Algorithm 1 with SNR=30 dB and true model M3.

To further explore the usefulness of this method for model ranking (and not only

model selection) we show in Figure 6.5 nine different scatter plots of MSE against

residual ri = ‖y − Aix̂i(θ?i )‖2
2. The plots are organised in a grid where each column

corresponds to a different SNR value and each row corresponds to a different true

model (used to generate the observations). Each plot contains 30 points correspond-

ing to 30 different reconstructions x̂i(θ?i ) (10 observations × 3 candidate models).

The reconstructions corresponding to the same observation are connected with a

line for visual clarity.

In this experiment,M2 andM3 are very similar whileM1 is further away from

both other models. This can be seen in the plots, where squares and triangles (corre-

sponding to reconstructions obtained with M2 and M3, respectively) are generally

close.
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A careful inspection of the plots reveals that this approach is not always useful

for model ranking and that it depends on the particular models being compared.

For example, in the plot corresponding to SNR=40 dB and true M2, the recon-

structions with larger residuals also have larger MSE values. In contrast, in the plot

corresponding to SNR=40 dB and true M1, the residuals are useful for identifying

the best model but fail to rank the relative quality ofM2 andM3. Lastly, in some

cases the behaviour is mixed and depends on the particular observations, e.g. in

the plot corresponding to SNR=40 dB and true M3 the residuals only fail to rank

M1 and M2 for the observations corresponding to barbara, lena and mandril.

Overall, we can conclude that our method is useful for identifying the best model

for higher SNR values, but not always for ranking the quality of the suboptimal

models. Further research is required to understand what causes the method to fail

or succeed at ranking suboptimal models.

Finally, note that we implemented Algorithm 1 following the guidelines in Sec-

tion 3.3.1 with Θ = [0.001, 1], θ0 = 0.01, sequence of step-sizes δn = 0.1 n−0.8/d,

and setting (ωn)n∈N to have N0 = 20 burn-in iterations. We also start by run-

ning 300 warm-up iterations with fixed θ(n) = θ(0). For the MYULA kernel, we

selected γ and λ based on the Lipschitz constant Ly (which depends on σ), setting

λ = min
(
5L−1

y , λmax
)

with λmax = 2 and Ly = (0.99/σ)2, and γ = 0.98/(Ly + (1/λ)).

In every case, we stop the algorithm when the relative change in the average value of

the iterates θ(n)
i is smaller than 10−3. The average computing time for Algorithm 1

was 80 seconds per model 2.

6.5 Conclusions

This chapter presented a computationally efficient method to objectively compare

Bayesian models to solve inverse problems related to signal processing, and with

a focus on problems that are convex w.r.t. the unknown signal of interest. The

method proceeds by first setting the regularisation parameters for each competing

model by marginal maximum likelihood estimation by using a proximal MCMC

SAPG algorithm. Then, the MAP estimators for each model are retrieved, and the
2Intel i9-8950HK@2.90GHz workstation running MATLAB R2018a.
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resulting likelihoods or residuals w.r.t. the MAP solutions are used as goodness-of-

fit measure. The proposed heuristic was illustrated with an application to image

deconvolution, where it achieved excellent results in high and medium SNR levels,

and more poorly in the low SNR regime.

Perspectives for future work include refining and formalising the proposed heuris-

tic from the lens of the Laplace approximation method3, as well as performing ad-

ditional numerical experiments to assess its performance in other image restoration

tasks such as denoising and deblurring with different kinds of regularisers, inpaint-

ing, and myopic deconvolution.

3Recalling that pi(y|θi) is given by the prior expectation of the likelihood, then the use of
pi(y|x̂i(θ?i )) as a surrogate for pi(y|θi) could be analysed in terms of a Laplace approximation [8].
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Chapter 7

Conclusions and perspectives for

future work

This thesis considered the automatic selection of regularisation parameters in imag-

ing inverse problems, with a particular focus on problems that are convex w.r.t.

the unknown image and possibly non-smooth, and which would be typically solved

by maximum-a-posteriori estimation by using modern proximal optimisation tech-

niques.

In Chapter 3, we proposed a new computational method to efficiently and ac-

curately estimate regularisation parameters by maximum marginal likelihood esti-

mation, adopting an empirical Bayesian approach. The considered marginal like-

lihood function is computationally intractable and we addressed this difficulty by

using a stochastic proximal gradient optimisation algorithm that is driven by prox-

imal MCMC samplers, and which tightly combines the strengths of modern high-

dimensional optimisation and Monte Carlo sampling techniques. Furthermore, we

presented three different versions of the algorithm depending on the properties of

the regulariser and the tractability of the partition function. We also included a

synthetic image denoising problem to study the role of each algorithm parameters

and we provided detailed implementation guidelines.

Because the proposed method uses the same basic operators as proximal optimi-

sation algorithms, namely gradient and proximal operators, it is straightforward to

apply to problems that are currently solved by proximal optimisation. Moreover, it

is very general and can be used to simultaneously estimate multiple regularisation
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parameters, unlike some alternative approaches from the literature that can only

handle a single or scalar parameter. In addition to being highly computationally

efficient, the proposed methodology has a strong theoretical underpinning and easily

verifiable conditions for convergence (a detailed theoretical analysis of the method

is provided in Appendix C).

In Chapter 4, we demonstrated the methodology with a range of imaging prob-

lems and models. We first considered image denoising and non-blind deblurring

problems involving scalar regularisation parameters and showed that the method

achieved close-to-optimal performance in terms of MSE and outperformed alterna-

tive approaches from the literature. We also showed that it is possible to estimate

the noise variance jointly with θ at a small additional computational cost and with

no significant loss of performance in terms of MSE. We then successfully applied the

method to two challenging problems involving bivariate regularisation parameters:

a sparse hyperspectral unmixing problem with a total-variation plus sparsity prior,

and a challenging denoising problem using a second-order total generalised variation

regulariser. Again, the method delivered close-to-optimal results, as measured by

estimation MSE.

In Chapter 5 we showed that the proposed method is also useful for a broader

range of intractable maximum likelihood estimation problems. We successfully ap-

plied a generalised version of the proposed method to an audio compressive sensing

problem, and to two Bayesian logistic regressions with and without random effects.

In one of these experiments, we estimated the target marginal log-likelihood and

verified that the proposed method yields a very good estimate of its maximiser. We

also showed that the method can perform well for estimating more high-dimensional

parameters as is the case with one of the logistic regressions which involved an un-

known parameter with 1000 components.

In Chapter 6, we explored an application of the proposed methodology to Bayesian

model selection. We presented a computationally efficient method to objectively

compare Bayesian models which proceeds by i) setting the regularisation param-

eters for each competing model using the algorithm we propose in Chapter 3, ii)

computing the MAP estimators for each model, and iii) using the resulting likeli-

hoods or residuals w.r.t. the MAP solutions as a goodness-of-fit measure. The pro-
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posed heuristic was illustrated with an application to image deconvolution, where it

achieved excellent results in high and medium SNR levels, and more poorly in the

low SNR regime.

Future work will focus on relaxing the convexity assumptions to provide theoret-

ical convergence guarantees for non-convex problems, and on improving computa-

tional efficiency by using the recently proposed accelerated proximal Markov kernels

[134]. The application of the proposed methodology to challenging problems arising

in medical and astronomical imaging is currently under investigation. Another im-

portant perspective for future work is to extend this methodology to semi-blind and

blind imaging problems, as well as to problems involving space-varying regularisa-

tion parameters [86]. Lastly, perspectives for future work also include refining and

formalising the heuristic for model selection from the lens of the Laplace approx-

imation method, as well as performing additional numerical experiments to assess

its performance in other image restoration tasks.
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Appendix A

Fisher’s identity

Fisher’s identity is a standard result in the probability literature (e.g. see [54,

Proposition D.4]). We reproduce its proof here for completeness.

Proposition 1. For any θ ∈ Θ ∈ RdΘ and x̃ ∈ Rd, let (x, y) 7→ p(x, y|θ) and

y 7→ p(y|x̃) be positive probability density functions on Rd × Rdy and Rdy . Assume

that for any x ∈ Rd and θ ∈ int(Θ), θ 7→ p(y, x|θ) is differentiable. In addition,

assume that for any y ∈ Rdy and θ ∈ int(Θ), there exist ε > 0 and g̃ such that for

any θ̃ ∈ B(θ, ε) and x ∈ Rd, ‖∇θp(y, x|θ̃)‖ 6 g̃(x) with
∫

Rd g̃(x)p(y|x)dx < +∞.

Then, for any y ∈ Rdy , θ 7→ p(y|θ) is differentiable over int(Θ) and we have for any

y ∈ Rdy and θ ∈ int(Θ),

∇θ log p(y|θ) =
∫

Rd
p(x|y, θ)∇θ log p(y, x|θ)dx . (A.1)

Proof. Let y ∈ Rdy . It is clear using the Leibniz integral rule that θ 7→ p(y|θ) is

differentiable over int(Θ) and we have for any θ ∈ int(Θ)

∇θ log p(y|θ) =
∫

Rd
p(y|x)∇θp(y, x|θ)dx

/
p(y|θ) (A.2)

=
∫

Rd
p(y, x|θ)∇θ log p(y, x|θ)dx

/
p(y|θ) =

∫

Rd
p(x|y, θ)∇θ log p(y, x|θ)dx ,

(A.3)

which concludes the proof.
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Appendix B

Fair comparison of different

methods for setting θ

Comparing different techniques for selecting the value of the regularisation parame-

ter is not as simple as it might seem at first sight. Some algorithms such as SUGAR,

are solver dependent and try to find the best value of θ for a given solver, with a

given setup (number of iterations, parameters, etc.). Other algorithms, such as the

hierarchical one proposed in [105] depend on the solver, but do not seek to optimise

θ for that solver but rather for a general case. The algorithm we propose does not

depend directly on the solver.

When running statistics on our experiments we noticed an interesting phe-

nomenon. For the deblurring experiments, we use the solver SALSA [2], which

is an efficient implementation of the alternating direction method of multipliers

(ADMM) [36]. When running the hierarchical Bayesian algorithm, we implement

it with SALSA and set up the tolerance to 10−3 and 150 iterations which seemed

sufficient to render very good results. However, when we build the MSE(θ) curves

for Figure 4.10 (by sampling many points and interpolating), we use SALSA with

tolerance 10−5 and 1000 iterations as there were some pathological values of θ for

which SALSA did not converge well with tolerance 10−3. As it may be seen on

Figure B.1, the position of the minimum MSE changes for the two different SALSA

configurations. When computing the average results for 10 images, the parame-

ters obtained with the hierarchical method fell closer to the minimum of the red

curve, and the ones obtained with the proposed empirical method fell closer to the
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minimum of the blue curve. Running the hierarchical method again with tolerance

10−5, the estimated parameters do not change much but the computing times were

significantly increased.

The criterion we opted for was to use SALSA with the strictest tolerance and

highest number of iterations, because this configuration gives the overall best esti-

mations.

B.1 Comparing with solver-dependent methods

As mentioned previously, algorithms like SUGAR try to find the best value of θ for a

given solver, with a given number of iterations, and specific parameters. This means

that unless SUGAR is implemented with the exact same solver used to construct the

MSE(θ) curves as the ones in Figure B.1, the values of θ computed with SUGAR

might yield bad results according to the MSE(θ) curve but good results with the

specific solver used in SUGAR. For this reason, to achieve a fairer comparison, we

compute an equivalent θEQ in the following way. The SUGAR algorithm returns an

estimated θSUG and a corresponding MSESUG obtained with that θSUG. Given an

MSE(θ) curve, we define the equivalent θEQ as

θEQ = argmin
θ∈Θ

|θ − θSUG| s.t. MSE(θ) = MSESUG . (B.1)

This θEQ is what we plot in Figure 4.3. For the lowest SNR value, θEQ and θSUG did

not differ much in our experiments. However, for the other SNR values, the values

of θSUG were significantly smaller than θEQ. This might be related to the fact that

SUGAR performed best for the lowest SNR setup.

110



Appendix B: Fair comparison of different methods for setting θ

10 -6 10 -4 10 -2 10 0 10 2
20

30

40

50

60

70

80

M
S

E
(

)

Figure B.1 – MSE(θ) for wavelet synthesis-`1 deconvolution for SNR = 20dB with
boat test image. The curves are computed with different tolerance and maximum
iterations using SALSA solver.
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Appendix C

Analysis of the convergence

properties

In this appendix we include our article [47] that contains all the theoretical proofs of

convergence for the proposed methodology. These proofs have been peer reviewed

and will soon appear in the SIAM Journal on Imaging Sciences.
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Abstract
This paper presents a detailed theoretical analysis of the three stochastic approximation

proximal gradient algorithms proposed in our companion paper [49] to set regularization pa-
rameters by marginal maximum likelihood estimation. We prove the convergence of a more
general stochastic approximation scheme that includes the three algorithms of [49] as special
cases. This includes asymptotic and non-asymptotic convergence results with natural and
easily verifiable conditions, as well as explicit bounds on the convergence rates. Importantly,
the theory is also general in that it can be applied to other intractable optimisation prob-
lems. A main novelty of the work is that the stochastic gradient estimates of our scheme are
constructed from inexact proximal Markov chain Monte Carlo samplers. This allows the use
of samplers that scale efficiently to large problems and for which we have precise theoretical
guarantees.

1 Introduction
Numerous imaging problems require performing inferences on an unknown image of interest x ∈ Rd
from some observed data y. Canonical examples include image denoising [12, 28], compressive
sensing [18, 40], super-resolution [35, 51], tomographic reconstruction [13], image inpainting [24, 44],
source separation [9, 8], fusion [46, 31], and phase retrieval [10, 26]. Such imaging problems can
be formulated in a Bayesian statistical framework, where inferences are derived from the so-called
posterior distribution of x given y, which for the purpose of this paper we specify as follows

p(x|y, θ) = p(y|x)p(x|θ)/p(y|θ)

where p(y|x) = exp{−fy(x)} with fy ∈ C1(Rd,R) is the likelihood function, and the prior distri-
bution is p(x|θ) = exp{−θ>g(x)} with g : Rd → RdΘ and θ ∈ Θ ⊂ RdΘ . The function fy acts as a
data-fidelity term, g as a regulariser that promotes desired structural or regularity properties (e.g.,
smoothness, piecewise-regularity, or sparsity [11]), and θ is a regularisation parameter that con-
trols the amount of regularity enforced. Most Bayesian methods in the imaging literature consider
models for which fy and g are convex functions and report as solution the maximum-a-posteriori
(MAP) Bayesian estimator

argmin fy,θ , where fy,θ(x) = fy(x) + θ>g(x) for any x ∈ Rd . (1)
∗Email: debortoli@cmla.ens-cachan.fr
†Email: durmus@cmla.ens-cachan.fr
‡Email: m.pereyra@hw.ac.uk
§Email: af69@hw.ac.uk
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For example, many imaging works consider a linear observation model of the form y = Ax + w,
where A ∈ Rd × Rd is some problem-specific linear operator and the noise w has distribution
N(0, σ2Id) with variance σ2 > 0. Then, for any x ∈ Rd fy(x) = (2σ2)−1‖Ax − y‖2. With regards
to the prior, a common choice in imaging is to set Θ = R+ and g(x) = ‖Bx‖1 for some suitable
basis or dictionary B ∈ Rd′ × Rd, or g(x) = TV(x), where TV(x) is the isotropic total variation
pseudo-norm given by TV(x) =

∑
i

√
(∆h

i x)2 + (∆v
i x)2 where ∆v

i and ∆h
i denote horizontal and

vertical first-order local (pixel-wise) difference operators.
Importantly, when fy and g are convex, problem (1) is also convex and can usually be efficiently

solved by using modern proximal convex optimisation techniques [11], with remarkable guarantees
on the solutions delivered.

Setting the value of θ can be notoriously difficult, especially in problems that are ill-posed or
ill-conditioned where the regularisation has a dramatic impact on the recovered estimates. We
refer to [27] and [49, Section 1] for illustrations and a detailed review of the existing methods for
setting set θ.

In our companion paper [49], we present a new method to set regularisation parameters. More
precisely, in [49], we adopt an empirical Bayesian approach and set θ by maximum marginal
likelihood estimation, i.e.

θ? ∈ arg max
θ∈Θ

log p(y|θ) , where p(y|θ) =

∫

Rd
p(y, x|θ)dx , p(y, x|θ) ∝ exp[−fy,θ(x)] . (2)

To solve (2), we aim at using gradient based optimization methods. The gradient of θ 7→ log p(y|θ),
can be computed using Fisher’s identity, see [49, Proposition A.1], which implies under mild inte-
grability conditions on fy and g, for any θ ∈ Θ,

∇θ log p(y|θ) = −
∫

Rd
g(x̃)p(x̃|y, θ)dx̃+

∫

Rd
g(x̃)p(x̃|θ)dx̃ .

It follows that θ 7→ ∇θ log p(y|θ) can be written as a sum of two parametric integrals which are
untractable in most cases. Therefore, we propose to use a stochastic approximation (SA) scheme
and, in particular, we define three different algorithms to solve (2) [49, Algorithm 3.1, Algorithm
3.2, Algorithm 3.3]. These algorithms are extensively demonstrated in [49] through a range of
applications and comparisons with alternative approaches from the state-of-the-art.

In the present paper we theoretically analyse these three SA schemes and establish natural
and easily verifiable conditions for convergence. For generality, rather than presenting algorithm-
specific analyses, we establish detailed convergence results for a more general SA scheme that covers
the three algorithms of [49] as specific cases. Indeed, all these methods boil down to defining a
sequence (θn)n∈N satisfying a recursion of the form: for any n ∈ N,

θn+1 = ΠΘ

[
θn −

δn+1

mn

mn∑

k=1

{
g(Xn

k )− g(X̄n
k )
}
]
, (3)

where ΠΘ is the projection onto a convex closed set Θ, (Xn
k )k∈{1,...,mn} and (X̄n

k )k∈{1,...,mn} are
two independent stochastic processes targeting x 7→ p(x|y, θ) and x 7→ p(x|θ) respectively, (mn)n∈N
is a sequence of batch-sizes and (δn)n∈N∗ is a sequence of stepsizes. In this paper, we are interested
in establishing the convergence of the averaging of (θn)n∈N to a solution of (2) in this setting. SA
has been extensively studied during the past decades [41, 29, 38, 47, 33, 34, 7, 6, 48]. Recently,
quantitative results have been obtained in [45, 2, 39, 1, 43]. In contrast to [1], here we consider
the case where (Xn

k )k∈{1,...,mn} and (X̄n
k )k∈{1,...,mn} are inexact Markov chains which target x 7→

p(x|y, θ) and x 7→ p(x|θ) respectively and are based on some generalizations of the Unadjusted
Langevin Algorithm (ULA) [42]. In the recent years, ULA has attracted a lot of attention since
this algorithm exhibits favorable high-dimensional convergence properties in the case where the
target distribution admits a differentiable density, see [20, 22, 14, 15]. However, in most imaging
models, the penalty function g is not differentiable and therefore x 7→ p(x|y, θ) and x 7→ p(x|θ) are
not differentiable as well. Therefore, we consider proximal Langevin samplers which are specifically
design to overcome this issue: the Moreau-Yoshida Unadjusted Langevin Algorithm (MYULA),
see [23], and the Proximal Unadjusted Langevin Operator (PULA), see [21].

A similar approximation scheme to (3) is studied in [1]. More precisely [1, Theorem 3, Theorem
4] are similar to Theorem 6 and Theorem 7. Contrarily to that work, here we do not require the
Markov kernels we use to exactly target x 7→ p(x|θ) and x 7→ p(x|y, θ) but allow some bias
in the estimation which is accounted for in our convergence rates. This relaxation to biased
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estimates plays a central role in the capacity of the method to scale efficiently to large problems.
Moreover, the present paper is also a complement of [17] which establishes general conditions for
the convergence of inexact Markovian SA but only apply these results to ULA. In this study, we
do not consider a general Markov kernel but rather specialize the results of [17] to MYULA and
PULA Markov kernels. However, to apply results of [17], new quantitative geometric convergence
properties on MYULA and PULA have to be established.

The remainder of the paper is organized as follows. In Section 2, we recall our notations and
conventions. In Section 3, we define the class of optimisation problems considered and the SA
scheme (3). This setting includes the optimization problem presented in (2) and the three specific
algorithms introduced in [49]. Then, in Section 4, we present a detailed analysis of the theoretical
properties of the proposed methodology. First, we show new ergodicity results for the MYULA
and PULA samplers. In a second part, we provide easily verifiable conditions for convergence and
quantitative convergence rates for the averaging sequences designed from (3). The proofs of these
results are gathered in Section 5.

2 Notations and conventions
We denote by B(0, R) and B(0, R) the open ball, respectively the closed ball, with radius R in Rd.
Denote by B(Rd) the Borel σ-field of Rd, F(Rd) the set of all Borel measurable functions on Rd and
for f ∈ F(Rd), ‖f‖∞ = supx∈Rd |f(x)|. For µ a probability measure on (Rd,B(Rd)) and f ∈ F(Rd)
a µ-integrable function, denote by µ(f) the integral of f w.r.t. µ. For f ∈ F(Rd), the V -norm of
f is given by ‖f‖V = supx∈Rd |f(x)|/V (x). Let ξ be a finite signed measure on (Rd,B(Rd)). The
V -total variation norm of ξ is defined as

‖ξ‖V = sup
f∈F(Rd),‖f‖V 61

∣∣∣∣
∫

Rd
f(x)dξ(x)

∣∣∣∣ .

If V ≡ 1, then ‖ · ‖V is the total variation norm on measures denoted by ‖ · ‖TV.
Let U be an open set of Rd. We denote by Ck(U,RdΘ) the set of RdΘ -valued k-differentiable

functions, respectively the set of compactly supported RdΘ -valued k-differentiable functions. Ck(U)
stands Ck(U,R). Let f : U → R, we denote by ∇f , the gradient of f if it exists. f is said to be
m-convex with m > 0 if for all x, y ∈ Rd and t ∈ [0, 1],

f(tx+ (1− t)y) 6 tf(x) + (1− t)f(y)− (m/2)t(1− t) ‖x− y‖2 .

Let (Ω,F ,P) be a probability space. Denote by µ � ν if µ is absolutely continuous w.r.t. ν and
dµ/dν an associated density. Let µ, ν be two probability measures on (Rd,B(Rd)). Define the
Kullback-Leibler divergence of µ from ν by

KL (µ|ν) =

{∫
Rd

dµ
dν (x) log

(
dµ
dν (x)

)
dν(x) , if µ� ν ,

+∞ otherwise .

3 Proposed stochastic approximation proximal gradient op-
timisation methodology

3.1 Problem statement
Let Θ ⊂ RdΘ and f : Θ→ R. We consider the optimisation problem

θ? ∈ arg min
θ∈Θ

f(θ) , (4)

in scenarios where it is not possible to evaluate f nor ∇f because they are computationally in-
tractable. Problem (4) includes the marginal likelihood estimation problem (2) of our companion
paper [49] as the special case f = − log p(y|·). We make the following general assumptions on f
and Θ, which are in particular verified by the imaging models considered in [49].

A1. Θ is a convex compact set and Θ ⊂ B(0, RΘ) with RΘ > 0.

A2. There exist an open set U ⊂ Rp and Lf > 0 such that Θ ⊂ U, f ∈ C1(U,R) and for any
θ1, θ2 ∈ Θ

‖∇θf(θ1)−∇θf(θ2)‖ 6 Lf‖θ1 − θ2‖ .

3



A3. For any θ ∈ Θ, there exist Hθ, H̄θ : Rd → RdΘ and two probability distributions πθ, π̄θ on
(Rd,B(Rd)) satisfying for any θ ∈ Θ

∇θf(θ) =

∫

Rd
Hθ(x)dπθ(x) +

∫

Rd
H̄θ(x)dπ̄θ(x) .

In addition, (θ, x) 7→ Hθ(x) and (θ, x) 7→ H̄θ(x) are measurable.

Remark 1. Note that if f ∈ C2(Θ) then A2 is automatically satisfied under A1, since Θ is
compact. In every model considered in our companion paper [49], θ 7→ − log p(y|θ) is continuously
twice differentiable on each compact using the dominated convergence theorem and therefore A2
holds under A1.

Remark 2. Assumption A3 is verified in the three cases considered in our companion paper [49,
Algorithm 3.1, Algorithm 3.2, Algorithm 3.3]:

(a) if the regulariser g is α positively homogeneous with α > 0 and dΘ = 1, corresponding to [49,
Algorithm 3.1], then for any θ ∈ Θ, Hθ = g, H̄θ = −d/(αθ), πθ is the probability measure with
density w.r.t. the Lebesgue measure x 7→ p(x|y, θ) and π̄θ is any probability measure;

(b) if the regulariser g is separably positively homogeneous as in [49, Algorithm 3.2], then for any
θ ∈ Θ, Hθ = g, H̄θ = (− |Ai| /(αiθi))i∈{1,...,dΘ}, πθ is the probability measure with density w.r.t. the
Lebesgue measure x 7→ p(x|y, θ) and π̄θ is any probability measure;

(c) if the regulariser g is inhomogeneous, corresponding to [49, Algorithm 3.3], then for any θ ∈ Θ,
H̄θ = −g, Hθ = g, πθ and π̄θ are the probability measures associated with the posterior and the
prior, with density w.r.t. the Lebesgue measure x 7→ p(x|y, θ) and x 7→ p(x|θ) respectively.

We now present in Algorithm 1, the stochastic algorithm we consider in order to solve (4).
This method encompasses the schemes introduced in the companion paper [49, Algorithm 3.1,
Algorithm 3.2, Algorithm 3.3]. Starting from (X0

0 , X̄
0
0 ) ∈ Rd × Rd and θ0 ∈ Θ, we define on a

probability space (Ω,F ,P), the sequence ({(Xn
k , X̄

n
k ) : k ∈ {0, . . . ,mn}}, θn)n∈N by the following

recursion for n ∈ N and k ∈ {0, . . . ,mn − 1}

(Xn
k )k∈{0,...,mn} is a MC with kernel Kγn,θn and Xn

0 = Xn−1
mn−1

given Fn−1 ,

(X̄n
k )k∈{0,...,mn} is a MC with kernel K̄γ′n,θn and X̄n

0 = X̄n−1
mn−1

given Fn−1 ,

θn+1 = ΠΘ

[
θn −

δn+1

mn

mn∑

k=1

{
Hθn(Xn

k ) + H̄θn(X̄n
k )
}
]
,

(5)

where (X−1
m−1

, X̄−1
m−1

) = (X0
0 , X̄

0
0 ), {(Kγ,θ, K̄γ,θ) : γ > 0, θ ∈ Θ} is a family of Markov kernels on

Rd × B(Rd), (mn)n∈N ∈ (N∗)N, δn, γn, γ′n > 0 for any n ∈ N, ΠΘ is the projection onto Θ and Fn
is defined as follows for all n ∈ N ∪ {−1}

Fn = σ
(
θ0, {(X`

k, X̄
`
k)k∈{0,...,m`} : ` ∈ {0, . . . , n}}

)
, F−1 = σ(θ0, X

0
0 , X̄

0
0 ) .

Define for any N ∈ N,

θ̄N =

N−1∑

n=0

δnθn

/
N−1∑

n=0

δn .

In the sequel, we are interested in the convergence of (f(θ̄N ))N∈N to a minimum of f in the case
where the Markov kernels {(Kγ,θ, K̄γ,θ) : γ > 0, θ ∈ Θ}, used in Algorithm 1 are either the ones
associated with MYULA or PULA. We now present these two MCMC methods for which some
analysis is required in our study of (f(θ̄N ))N∈N.

3.2 Choice of MCMC kernels
Given the high dimensionality involved, it is fundamental to carefully choose the families of Markov
kernels {Kγ,θ, K̄γ,θ : γ > 0, θ ∈ Θ} driving Algorithm 1. In the experimental part of this work,
see [49, Section 4], we use the MYULA Markov kernel recently proposed in [23], which is a state-
of-the-art proximal Markov chain Monte Carlo (MCMC) method specifically designed for high-
dimensional models that are are log-concave but not smooth. The method is derived from the
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Algorithm 1 General algorithm
1: Input: initial {θ0, X

0
0 , X̄

0
0}, (δn, γn, γ

′
n,mn)n∈N, number of iterations N .

2: for n = 0 to N − 1 do
3: if n > 0 then
4: Set Xn

0 = Xn−1
mn−1

,
5: Set X̄n

0 = X̄n−1
mn−1

,
6: end if
7: for k = 0 to mn − 1 do
8: Sample Xn

k+1 ∼ Kγn,θn(Xn
k , ·),

9: Sample X̄n
k+1 ∼ K̄γ′n,θn(X̄n

k , ·),
10: end for
11: Set θn+1 = ΠΘ

[
θn − δn+1

mn

∑mn
k=1

{
Hθn(Xn

k ) + H̄θn(X̄n
k )
}]

.
12: end for
13: Output: θ̄N = {∑N−1

n=0 δn}−1
∑N−1
n=0 δnθn.

discretisation of an over-damped Langevin diffusion, (X̄t)t>0, satisfying the following stochastic
differential equation

dXt = −∇xF (Xt)dt+
√

2dBt , (6)

where F : Rd 7→ R is a continuously differentiable potential and (Bt)t>0 is a standard d-dimensional
Brownian motion. Under mild assumptions, this equation has a unique strong solution [25, Chapter
4, Theorem 2.3]. Accordingly, the law of (Xt)t>0 converges as t → ∞ to the diffusion’s unique
invariant distribution, with probability density given by π(x) ∝ e−F (x) for all x ∈ Rd [42, Theorem
2.2]. Hence, to use (6) as a Monte Carlo method to sample from the posterior p(x|y, θ), we set
F (x) = log p(x|y, θ) and thus specify the desired target density. Similarly, to sample from the prior
we set F (x) = −∇x log p(x|θ).

However, sampling directly from (6) is usually not computationally feasible. Instead, we usually
resort to a discrete-time Euler-Maruyama approximation of (6) that leads to the following Markov
chain (Xk)k∈N with X0 ∈ Rd, given for any k ∈ N by

ULA : Xk+1 = Xk − γ∇xF (Xk) +
√

2γZk+1,

where γ > 0 is a discretisation step-size and (Zk)k∈N∗ is a sequence of i.i.d d-dimensional zero-mean
Gaussian random variables with an identity covariance matrix. This Markov chain is commonly
known as the Unadjusted Langevin Algorithm (ULA) [42]. Under some additional assumptions
on F , namely Lipschitz continuity of ∇xF , the ULA chain inherits the convergence properties of
(6) and converges to a stationary distribution that is close to the target π, with γ controlling a
trade-off between accuracy and convergence speed [23].

Remark 3. In this form, the ULA algorithm is limited to distributions where F is a Lipschitz
continuously differentiable function. However, in the imaging problems of interest this is usually
not the case [49]. For example, to implement any of the algorithms presented in [49] it is necessary
to sample from the posterior distribution p(x|y, θ) (corresponding to πθ in Section 3.1), which
would require setting for any x ∈ Rd, F (x) = fy(x) + θ>g(x). Similarly, one of the algorithms
also requires sampling from the prior distribution x 7→ p(x|θ) (corresponding to π̄θ in Section 3.1),
which requires setting for any x ∈ Rd, F (x) = θ>g(x). In both cases, if g is not smooth then ULA
cannot be directly applied. The MYULA kernel was designed precisely to overcome this limitation.

3.2.1 Moreau-Yoshida Unadjusted Langevin Algorithm

Suppose that the target potential admits a decomposition F = V + U where V is Lipschitz
differentiable and U is not smooth but convex over Rd. In MYULA, the differentiable part is
handled via the gradient ∇xV in a manner akin to ULA, whereas the non-differentiable convex
part is replaced by a smooth approximation Uλ(x) given by the Moreau-Yosida envelope of U , see
[5, Definition 12.20], defined for any x ∈ Rd and λ > 0 by

Uλ(x) = min
x̃∈Rd

{
U(x̃) + (1/2λ) ‖x− x̃‖22

}
. (7)

Similarly, we define the proximal operator for any x ∈ Rd and λ > 0 by

proxλU (x) = arg min
x̃∈Rd

{
U(x̃) + (1/2λ) ‖x− x̃‖22

}
. (8)
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For any λ > 0, the Moreau-Yosida envelope Uλ is continuously differentiable with gradient given
for any x ∈ Rd by

∇Uλ(x) = (x− proxλU (x))/λ , (9)

(see, e.g., [5, Proposition 16.44]). Using this approximation we obtain the MYULA kernel associ-
ated with (Xk)k∈N given by X0 ∈ Rd and the following recursion for any k ∈ N

MYULA : Xk+1 = Xk − γ∇xV (Xk)− γ∇xUλ(Xk) +
√

2γZk+1 . (10)

Returning to the imaging problems of interest, we define the MYULA families of Markov kernels
{Rγ,θ, R̄γ,θ : γ > 0, θ ∈ Θ} that we use in Algorithm 1 to target πθ and π̄θ for θ ∈ Θ as follows.
By Remark 3, we set V = fy and U = θ>g, V̄ = 0 and Ū = θ>g. Then, for any θ ∈ Θ and γ > 0,
Rγ,θ associated with (Xk)k∈N is given by X0 ∈ Rd and the following recursion for any k ∈ N

Xk+1 = Xk − γ∇xfy(Xk)− γ
{
Xk − proxλθ>g(Xk)

}
/λ+

√
2γZk+1 . (11)

Similarly, for any θ ∈ Θ and γ′ > 0, R̄γ,θ associated with (Xk)k∈N is given by X0 ∈ Rd and the
following recursion for any k ∈ N

X̄k+1 = X̄k − γ′
{
X̄k − proxλ

′

θ>g(X̄k)
}
/λ′ +

√
2γZk+1 , (12)

where we recall that λ, λ′ > 0 are the smoothing parameters associated with θ>gλ, γ, γ′ > 0 are the
discretisation steps and (Zk)k∈N∗ is a sequence of i.i.d d-dimensional zero-mean Gaussian random
variables with an identity covariance matrix.

Notice that other ways of splitting the target potential F can be straightforwardly implemented.
For example, instead of a single non-smooth convex term U , one might choose a splitting involving
several non-smooth terms to simplify the computation of the proximal operators (each term would
be replaced by its Moreau-Yosida envelope in (6)). Similarly, although we usually to associate
V, V̄ and U, Ū to the log-likelihood and the log-prior, some cases might benefit from a different
splitting. Moreover, as illustrated in Section 3.2.2 below, other discrete approximations of the
Langevin diffusion could be considered too.

3.2.2 Proximal Unadjusted Langevin Algorithm

As an alternative to MYULA, one could also consider using the Proximal Unadjusted Langevin
Algorithm (PULA) introduced in [21], which replaces the (forward) gradient step of MYULA by
a composition of a backward and forward step. More precisely, PULA defines the Markov chain
(Xk)k∈N starting from X0 ∈ Rd by the following recursion: for any k ∈ N

PULA : Xk+1 = proxλU (Xk)− γ∇xU(proxλU (Xk)) +
√

2γZk+1 . (13)

To highlight the connection with MYULA we note that for any x ∈ Rd and λ > 0, ∇Uλ(x) =
(x− proxλU (x))/λ by [5, Proposition 12.30]. Therefore, if we set λ = γ we obtain that (13) can be
rewritten for any k ∈ N a

Xk+1 = Xk − γ∇xV (Xk)− γ∇xU(proxλU (Xk)) +
√

2γZk+1 ,

which corresponds to (10) with λ = γ, except that the term ∇xU(Xk) in (10) is replaced by
∇xU(proxλU (Xk)) in (10).

Going back to the imaging problems of interest, to define the PULA families of Markov kernels
{Sγ,θ, S̄γ,θ : γ > 0, θ ∈ Θ} that we use in Algorithm 1 to target πθ and π̄θ for θ ∈ Θ we proceed
as follows. We set V = fy and U = θ>g, V̄ = 0 and Ū = θ>g. Then, by Remark 3, for any θ ∈ Θ
and γ > 0, Sγ,θ associated with (Xk)k∈N is given by X0 ∈ Rd and the following recursion for any
k ∈ N

Xk+1 = proxλθ>g(Xk)− γ∇xfy(proxλθ>g(Xk)) +
√

2γZk+1 , (14)

Similarly, for any θ ∈ Θ and γ′ > 0, S̄γ,θ associated with (Xk)k∈N is given by X0 ∈ Rd and the
following recursion for any k ∈ N

X̄k+1 = proxλ
′

θ>g(X̄k) +
√

2γZk+1 . (15)

Recall that λ, λ′ > 0 are the smoothing parameters associated with θ>gλ, γ, γ′ > 0 are the
discretisation steps and (Zk)k∈N∗ is a sequence of i.i.d d-dimensional zero-mean Gaussian random
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variables with an identity covariance matrix. Again, one could use PULA with a different splitting
of F .

Finally, we note at this point that the MYULA and PULA kernels (11), (12), (14) and (15),
do not target the posterior or prior distributions exactly but rather an approximation of these
distributions. This is mainly due to two facts: 1) we are not able to use the exact Langevin diffusion
(6), so we resort to a discrete approximation instead; and 2) we replace the non-differentiable terms
with their Moreau-Yosida envelopes. As a result of these approximation errors, Algorithm 1 will
exhibit some asymptotic estimation bias. This error is controlled by λ, λ′, γ, γ′, and δ, and can be
made arbitrarily small at the expense of additional computing time, see Theorem 7 in Section 4.

4 Analysis of the convergence properties

4.1 Ergodicity properties of MYULA and PULA
Before establishing our main convergence results about Algorithm 1, see Section 4.1, we derive
ergodicity properties on the Markov chains given by (10) and (13). We consider the following
assumptions on πθ and π̄θ. These assumptions are satisfied for a large class of models in Bayesian
imaging sciences, and in particular by the models considered in our companion paper [49].

H1. For any θ ∈ Θ, there exist Vθ, V̄θ, Uθ, Ūθ : Rd → [0,+∞) convex functions satisfying the
following conditions.

(a) For any θ ∈ Θ and x ∈ Rd,

πθ(x) ∝ exp [−Vθ(x)− Uθ(x)] , π̄θ(x) ∝ exp
[
−V̄θ(x)− Ūθ(x)

]
,

and

min

(
inf
θ∈Θ

∫

Rd
exp[−Vθ(x̃)− Uθ(x̃)]dx̃, inf

θ∈Θ

∫

Rd
exp[−V̄θ(x̃)− Ūθ(x̃)]dx̃

)
> 0 . (16)

(b) For any θ ∈ Θ, Vθ and V̄θ are continuously differentiable and there exists L > 0 such that
for any θ ∈ Θ and x, y ∈ Rd

max
(
‖∇xVθ(x)−∇xVθ(y)‖ , ‖∇xV̄θ(x)−∇xV̄θ(y)‖

)
6 L ‖x− y‖ .

In addition, there exist RV,1, RV,2 > 0 such that for any θ ∈ Θ, there exist x?θ, x̄
?
θ ∈ Rd with

x?θ ∈ arg minRd Vθ, x̄?θ ∈ arg minRd V̄θ, x?θ, x̄
?
θ ∈ B(0, RV,1) and Vθ(x?θ), V̄θ(x̄

?
θ) ∈ B(0, RV,2).

(c) There exists M > 0 such that for any θ ∈ Θ and x, y ∈ Rd

max
(
‖Uθ(x)− Uθ(y)‖, ‖Ūθ(x)− Ūθ(y)‖

)
6 M ‖x− y‖ .

In addition, there exist RU,1, RU,2 > 0 such that for any θ ∈ Θ, there exist x]θ, x̄
]
θ ∈ Rd with

x]θ, x̄
]
θ ∈ B(0, RU,1) and Uθ(x

]
θ), Ūθ(x̄

]
θ) ∈ B(0, RU,2).

Note that (16) in H1-(a) is satisfied if Θ is compact and the functions θ 7→
∫
Rd exp[−Vθ(x̃) −

Uθ(x̃)]dx̃ and θ 7→
∫
Rd exp[−V̄θ(x̃) − Ūθ(x̃)]dx̃ are continuous. This latter condition can be

then easily verified using the Lebesgue dominated convergence theorem and some assumptions
on {Vθ, V̄θ, Uθ, Ūθ : θ ∈ Θ}. Note that if there exists V : Rd → [0,+∞) such that for any θ ∈ Θ,
Vθ = V and there exists x? ∈ Rd with x? ∈ arg minRd V then one can choose x?θ = x? for any
θ ∈ Θ in H1-(b). In this case, RV,2 = 0. Similarly if for any θ ∈ Θ, Uθ(0) = 0 then one can choose
x]θ = 0 in H1-(c) and in this case RU,1 = RU,2 = 0. These conditions are satisfied by all the models
studied in [49].

As emphasized in Section 3.1, we use a stochastic approximation proximal gradient approach
to minimize f and therefore we need to consider Monte Carlo estimators for ∇θf(θ) and θ ∈ Θ.
These estimators are derived from Markov chains targeting πθ and π̄θ respectively. We consider two
MCMC methodologies to construct the Markov chains. A first option, as proposed in Section 3.2.1,
is to use MYULA to sample from πθ and π̄θ. Let κ > 0 and {Rγ,θ : γ > 0, θ ∈ Θ} be the family
of kernels defined for any x ∈ Rd, γ > 0, θ ∈ Θ and A ∈ B(Rd) by

Rγ,θ(x,A) = (4πγ)−d/2
∫

A

exp
(∥∥y − x+ γ∇xVθ(x) + κ−1

{
x− proxγκUθ (x)

}∥∥2
/

(4γ)
)

dy . (17)
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Note that (17) is the Markov kernel associated with the recursion (10) with U ← Uθ, V ← Vθ and
λ ← κγ. For any γ, κ > 0 and θ ∈ Θ corresponds to Rγ,κγ,θ in [49]. Consider also the family of
Markov kernels {R̄γ,θ : γ > 0, θ ∈ Θ} such that for any γ > 0 and θ ∈ Θ, R̄γ,θ is the Markov
kernel defined by (17) but with Ūθ and V̄θ in place of Uθ and Vθ respectively. The coefficient κ is
related to λ in (11) by κ = λ/γ.

Moreover, although our companion paper [49] only considers the MYULA kernel, the theoretical
results we present in this paper also hold if the algorithms are implemented using PULA [21]. Define
the family {Sγ,θ : γ > 0, θ ∈ Θ}, for any x ∈ Rd, γ > 0, θ ∈ Θ and A ∈ B(Rd) by

Sγ,θ(x,A) = (4πγ)−d/2
∫

A

exp
(∥∥y − proxγκUθ (x) + γ∇xVθ(proxγκUθ (x))

∥∥2
/

(4γ)
)

dy . (18)

Note that (17) is the Markov kernel associated with the recursion (13) with U ← Uθ, V ← Vθ
and λ ← κγ. Consider also the family of Markov kernels {S̄γ,θ : γ > 0, θ ∈ Θ} such that for
any γ > 0 and θ ∈ Θ, S̄γ,θ is the Markov kernel defined by the recursion (18) but with Ūθ and
V̄θ in place of Uθ and Vθ respectively. We use the results derived in [17] to analyse the sequence
given by (5) with {(Kγ,θ, K̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ} = {(Rγ,θ, R̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ} or
{(Sγ,θ, S̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ}. To this end, we impose that for any γ ∈ (0, γ̄] and θ ∈ Θ,
the kernels Kγ,θ and K̄γ,θ admit an invariant probability distribution, denoted by πγ,θ and π̄γ,θ
respectively which are approximations of πθ and π̄θ defined in A3, and geometrically converge
towards them. More precisely, we show in Theorem 4 and Theorem 5 below, that MYULA and
PULA satisfy these conditions if at least one of the following assumptions is verified:

H2. There exists m > 0 such that for any θ ∈ Θ, Vθ and V̄θ are m-convex.

H3. There exist η > 0 and c > 0 such that for any θ ∈ Θ and x ∈ Rd, min(Uθ(x), Ūθ(x)) >
η ‖x‖ − c.

Note that if for any θ ∈ Θ, Uθ is convex on Rd and supθ∈Θ(
∫
Rd exp[−Uθ(x̃)]dx̃) < +∞, then H3

is automatically satisfied, as an immediate extension of [4, Lemma 2.2 (b)]. In [49], H3 is satisfied
as soon as the prior distribution x 7→ p(x|θ) is log-concave and proper for any θ ∈ Θ. In [49], if the
prior x 7→ p(x|θ) is improper for some θ ∈ Θ then we require H2 to be satisfied, i.e. for any y ∈ Cdy ,
there exists m > 0 such that for any θ ∈ Θ, x 7→ p(x|y, θ) is m-log-concave. Finally, we believe that
H3 could be relaxed to the following condition: there exist η > 0 and c > 0 such that for any θ ∈ Θ
and x ∈ Rd, min(Uθ(x)+Vθ(x), Ūθ(x)+V̄θ(x)) > η ‖x‖−c. In particular, this latter condition holds
in the case where x 7→ p(x|θ) = exp[−θ>TV(x)] and supθ∈Θ(

∫
Rd exp[−Uθ(x̃) + Vθ(x̃)]dx̃) < +∞.

Consider for any m ∈ N∗ and α > 0, the two functions Wm and Wα given for any x ∈ Rd by

Wm(x) = 1 + ‖x‖2m , Wα = exp

[
α

√
1 + ‖x‖2

]
. (19)

Theorem 4. Assume H1 and H2 or H3. Let κ̄ > 1 > κ > 1/2, γ̄ < min{(2− 1/κ)/L, 2/(m+ L)}
if H2 holds and γ̄ < min{(2− 1/κ)/L, η/(2ML)} if H3 holds. Then for any a ∈ (0, 1], there exist
Ā2,a > 0 and ρa ∈ (0, 1) such that for any θ ∈ Θ, κ ∈ [κ, κ̄], γ ∈ (0, γ̄], Rγ,θ and R̄γ,θ admit
invariant probability measures πγ,θ, respectively π̄γ,θ. In addition, for any x, y ∈ Rd and n ∈ N we
have

max
(
‖δxRn

γ,θ − πγ,θ‖Wa , ‖δxR̄n
γ,θ − π̄γ,θ‖Wa

)
6 Ā2,aρ̄

γn
a W a(x) ,

max
(
‖δxRn

γ,θ − δyRn
γ,θ‖Wa , ‖δxR̄n

γ,θ − δyR̄n
γ,θ‖Wa

)
6 Ā2,aρ̄

γn
a {W a(x) +W a(y)} ,

with W = Wm and m ∈ N∗ if H2 holds and W = Wα with α < min(κη/4, η/8) if H3 holds.

Proof. The proof is postponed to Section 5.2.

Theorem 5. Assume H1 and H2 or H3. Let Let κ̄ > 1 > κ > 1/2, γ̄ < 2/(m + L) if H2 holds
and γ̄ < 2/L if H3 holds. Then for any a ∈ (0, 1], there exist A2,a > 0 and ρa ∈ (0, 1) such that
for any θ ∈ Θ, κ ∈ [κ, κ̄], γ ∈ (0, γ̄], Sγ,θ and S̄γ,θ admit an invariant probability measure πγ,θ and
π̄γ,θ respectively. In addition, for any x, y ∈ Rd and n ∈ N we have

max
(
‖δxSnγ,θ − πγ,θ‖Wa , ‖δxS̄nγ,θ − π̄γ,θ‖Wa

)
6 A2,aρ

γn
a W a(x) ,

max
(
‖δxSnγ,θ − δySnγ,θ‖Wa , ‖δxS̄nγ,θ − δyS̄nγ,θ‖Wa

)
6 A2,aρ

γn
a {W a(x) +W a(y)} ,

with W = Wm and m ∈ N∗ if H2 holds and W = Wα with α < κη/4 if H3 holds.

Proof. The proof is postponed to Section 5.3.
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4.2 Main results
We now state our main results regarding the convergence of the sequence defined by (5) under the
following additional regularity assumption.

H4. There exist MΘ > 0 and fΘ ∈ C(R+,R+) such that for any θ1, θ2 ∈ Θ, x ∈ Rd,

max
(
‖∇xVθ1(x)−∇xVθ2(x)‖, ‖∇xV̄θ1(x)−∇xV̄θ2(x)‖

)
6 MΘ ‖θ1 − θ2‖ (1 + ‖x‖) ,

max
(
‖∇xU κ

θ1(x)−∇xU κ
θ2(x)‖, ‖∇xŪ κ

θ1(x)−∇xŪ κ
θ2(x)‖

)
6 fΘ(κ) ‖θ1 − θ2‖ (1 + ‖x‖) .

In Theorem 6, we give sufficient conditions on the parameters of the algorithm under which the
sequence (θn)n∈N converges a.s., and we give explicit convergence rates in Theorem 7.

Theorem 6. Assume A1, A2, A3 and that f is convex. Let κ ∈ [κ, κ̄] with κ̄ > 1 > κ > 1/2.
Assume H1 and one of the following conditions:

(a) H2 holds, γ̄ < min(2/(m + L), (2 − 1/κ)/L, L−1) and there exists m ∈ N∗ and Cm > 0 such
that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ 6 CmW

1/4
m (x) and ‖H̄θ(x)‖ 6 CmW

1/4
m (x).

(b) H3 holds, γ̄ < min((2 − 1/κ)/L, η/(2ML), L−1) and there exists 0 < α < η/4, Cα > 0 such
that for any θ ∈ Θ and x ∈ Rd, ‖Hθ(x)‖ 6 CαW

1/4
α (x) and ‖H̄θ(x)‖ 6 CαW

1/4
α (x).

Let (γn)n∈N, (δn)n∈N be sequences of non-increasing positive real numbers and (mn)n∈N be a se-
quence of non-decreasing positive integers satisfying δ0 < 1/Lf and γ0 < γ̄. Let ({(Xn

k , X̄
n
k ) : k ∈

{0, . . . ,mn}}, θn)n∈N be given by (5). In addition, assume that
∑+∞
n=0 δn+1 = +∞,

∑+∞
n=0 δn+1γ

1/2
n <

+∞ and that one of the following conditions holds:

(1)
∑+∞
n=0 δn+1/(mnγn) < +∞ ;

(2) mn = m0 ∈ N∗ for all n ∈ N, supn∈N |δn+1 − δn| δ−2
n < +∞, H 4 holds and we have∑+∞

n=0 δ
2
n+1γ

−2
n < +∞,

∑+∞
n=0 δn+1γ

−3
n+1(γn − γn+1) < +∞ .

Then (θn)n∈N converges a.s. to some θ? ∈ arg minΘ f . Furthermore, a.s. there exists C > 0 such
that for any n ∈ N∗

{
n∑

k=1

δkf(θk)

/
n∑

k=1

δk

}
−min

Θ
f 6 C

/(
n∑

k=1

δk

)
.

Proof. The proof is postponed to Section 5.6.

These results are similar to the ones identified in [17, Theorem 1, Theorem 5, Theorem 6] for
the Stochastic Optimization with Unadjusted Langevin (SOUL) algorithm. Note that in SOUL the
potential is assumed to be differentiable and the sampler is given by ULA, whereas in Theorem 6,
the results are stated for PULA and MYULA samplers.

Although rigorously establishing convexity of f is usually not possible for imaging models, we
expect that in many cases, for any of its minimizer θ?, f is convex in some neighborhood of θ?.
For example, this is the case if its Hessian is definite positive around this point.

Assume that δn ∼ n−a, γn ∼ n−b and mn ∼ n−c with a, b, c > 0. We now distinguish two cases
depending on if for all n ∈ N, mn = m0 ∈ N∗ (fixed batch size) or not (increasing size).

1) In the increasing batch size case, Theorem 6 ensures that (θn)n∈N converges if the following
inequalities are satisfied

a+ b/2 > 1 , a− b+ c > 1 , a 6 1 . (20)

Note in particular that c > 0, i.e. the number of Markov chain iterates required to compute the
estimator of the gradient increases at each step. However, for any a ∈ [0, 1] there exist b, c > 0
such that (20) is satisfied. In the special setting where a = 0 then for any ε2 > ε1 > 0 such that
b = 2 + ε1 and c = 3 + ε2 satisfy the results of (20) hold.

2) In the fixed batch size case, which implies that c = 0, Theorem 6 ensures that (θn)n∈N converges
if the following inequalities are satisfied

a+ b/2 > 1 , 2(a− b) > 1 , a+ b+ 1− 2b > 1 a 6 1 ,

which can be rewritten as

b ∈ (2(1− a),min(a− 1/2, a/2)) , a ∈ [0, 1] .

The interval (2(a− 1),min(a− 1/2, a/2)) is then not empty if and only if a ∈ (5/6, 1].
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Theorem 7. Assume A1, A2, A3 and that f is convex. Let κ ∈ [κ, κ̄] with κ̄ > 1 > κ > 1/2.
Assume H1 and that the condition (a) or (b) in Theorem 6 is satisfied. Let (γn)n∈N, (δn)n∈N be
sequences of non-increasing positive real numbers and (mn)n∈N be a sequence of non-decreasing
positive integers satisfying δ0 < 1/Lf and γ0 < γ̄. Let ({(Xn

k , X̄
n
k ) : k ∈ {0, . . . ,mn}}, θn)n∈N be

given by (5)

E

[{
n∑

k=1

δkf(θk)

/
n∑

k=1

δk

}
−min

Θ
f

]
6 En

/(
n∑

k=1

δk

)
,

where

(a)

En = C1

{
1 +

n−1∑

k=0

δk+1γ
1/2
k +

n−1∑

k=0

δk+1/(mkγk) +

n−1∑

k=0

δ2
k+1/(mkγk)2

}
. (21)

(b) or if mn = m0 for all n ∈ N, supn∈N |δn+1 − δn| δ−2
n < +∞ and H4 holds

En = C2

{
1 +

n−1∑

k=0

δk+1γ
1/2
k +

n−1∑

k=0

δ2
k+1/γk +

n−1∑

k=0

δk+1γ
−3
k+1(γk − γk+1)

}
. (22)

Proof. The proof is postponed to Section 5.7.

First, note that if the stepsize is fixed and recalling that κ = λ/γ then the condition γ < (2−
1/κ)/L can be rewritten as γ < 2/(L+λ−1). Assume that (δn)n∈N is non-increasing, limn→+∞ δn =
0, limn→+∞mn = +∞ and γn = γ0 > 0 for all n ∈ N. In addition, assume that

∑
n∈N∗ δn = +∞

then, by [37, Problem 80, Part I], it holds that
{

limn→+∞ [ (
∑n
k=1 δk/mk)/(

∑n
k=1 δk) ] = limn→+∞ 1/mn = 0 ;

limn→+∞
[(∑n

k=1 δ
2
k

)/
(
∑n
k=1 δk)

]
= limn→+∞ δn = 0 .

(23)

Therefore, using (21) we obtain that

lim sup
n→+∞

E

[{
n∑

k=1

δkf(θk)

/
n∑

k=1

δk

}
−min f

]
6 C1

√
γ0 .

Similarly, if the stepsize is fixed and the number of Markov chain iterates is fixed, i.e. for all n ∈ N,
γn = γ0 and mn = m0 with γ0 > 0 and m0 ∈ N∗, combining (22) and (23) we obtain that

lim sup
n→+∞

E

[{
n∑

k=1

δkf(θk)

/
n∑

k=1

δk

}
−min f

]
6 C2

√
γ0 .

5 Proof of the main results
In this section, we gather the proofs of Section 4. First, in Section 5.1 we derive some useful
technical lemmas. In Section 5.2, we prove Theorem 4, using minorisation and Foster-Lyapunov
drift conditions. Similarly, we prove Theorem 5 in Section 5.3. Next, we show Theorem 6 by
applying [17, Theorem 1, Theorem 3] and Theorem 7 by applying [17, Theorem 2, Theorem
4], which boils down to verifying that [17, H1, H2] are satisfied. In Section 5.4, we show that
[17, H1, H2] hold if the sequence is given by (5) where {(Kγ,θ, K̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ} =
{(Rγ,θ, R̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ} defined in (18), i.e. we consider PULA as a sampling scheme
in the optimization algorithm. In Section 5.5 we check that [17, H1, H2] are satisfied when
{(Kγ,θ, K̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ} = {(Sγ,θ, S̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ} defined in (17), i.e. when
considering MYULA as a sampling scheme. Finally, we prove Theorem 6 in Section 5.6 and
Theorem 7 in Section 5.7.
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5.1 Technical lemmas
We say that a Markov kernel R on Rd×B(Rd) satisfies a discrete Foster-Lyapunov drift condition
Dd(W,λ, b) if there exist λ ∈ (0, 1), b > 0 and a measurable function W : Rd → [1,+∞) such that
for all x ∈ Rd

RW (x) 6 λW (x) + b .

We will use the following result.

Lemma 8. Let R be a Markov kernel on Rd×B(Rd) which satisfies Dd(W,λγ , bγ) with λ ∈ (0, 1),
b > 0, γ > 0 and a measurable function W : Rd → [1,+∞). Then, we have for any x ∈ Rd

Rd1/γeW (x) 6 (1 + b log−1(1/λ)λ−γ̄)W (x) .

Proof. Using [17, Lemma 9] we have for any x ∈ Rd

Rd1/γeW (x) 6


λγd1/γe + bγ

d1/γe−1∑

k=0

λγk


W (x) 6 (1 + b log−1(1/λ)λ−γ̄)W (x) .

We continue this section by giving some results on proximal operators. Some of them are
well-known but their proof is given for completeness.

Lemma 9. Let κ > 0 and U : Rd → R convex. Assume that U is M -Lipschitz with M > 0, then
U κ is M -Lipschitz and for any x ∈ Rd, ‖x− proxκ

U (x)‖ 6 κM .

Proof. Let κ > 0. We have for any x, y ∈ Rd by (7) and (8)

U κ(x)− U κ(y)

= ‖x− proxκ
U (x)‖2 /(2κ) + U(proxκ

U (x))− ‖y − proxκ
U (y)‖2 /(2κ)− U(proxκ

U (y))

6 ‖y − proxκ
U (y)‖2/(2κ) + U(x− y + proxκ

U (y))− ‖y − proxκ
U (y)‖2/(2κ)− U(proxκ

U (y))

6M ‖x− y‖ .

Hence, U κ is M -Lipschitz. Since by [5, Proposition 12.30], U κ is continuously differentiable we
have for any x ∈ Rd, ‖∇U κ(x)‖ 6 M . Combining this result with the fact that for any x ∈ Rd,
∇U κ(x) = (x− proxκ

U (x))/κ by [5, Proposition 12.30] concludes the proof.

Lemma 10. Let U : Rd → [0,+∞) be a convex and M -Lipschitz function with M > 0 . Then for
any κ > 0 and z, z′ ∈ Rd,

〈proxκ
U (z)− z, z〉 6 −κU(z) + κ2M2 + κ {U(z′) +M ‖z′‖} .

Proof. κ > 0 and z, z′ ∈ Rd. Since (z − proxκ
U (z))/κ ∈ ∂U(proxκ

U (z)) [5, Proposition 16.44], we
have

κ {U(z′)− U(proxκ
U (z))} > 〈z − proxκ

U (z), z′ − proxκ
U (z)〉

> 〈z − proxκ
U (z), z′ − z〉+ ‖z − proxκ

U (z)‖2

> 〈z − proxκ
U (z), z′ − z〉 .

Combining this result, the fact that U is M -Lipschitz and Lemma 9 we get that

〈proxκ
U (z)− z, z〉 6 κU(z′)− κU(z) + κM ‖z − proxκ

U (z)‖+ ‖z′‖ ‖z − proxκ
U (z)‖

6 −κU(z) + κ2M2 + κ {U(z′) +M ‖z′‖} ,

which concludes the proof

Lemma 11. Let κ1, κ2 > 0 and U : Rd → R convex and lower semi-continuous. For any x ∈ Rd
we have

‖proxκ1

U (x)− proxκ2

U (x)‖2 6 2(κ1 − κ2)(U(proxκ2

U (x))− U(proxκ1

U (x))) .

If in addition, U is M-Lipschitz with M > 0 then

‖proxκ1

U (x)− proxκ2

U (x)‖ 6 2M |κ1 − κ2| .

11



Proof. Let x ∈ Rd. By definition of proxκ1

U (x) we have

2κ1U(proxκ1

U (x)) + ‖x− proxκ1

U (x)‖2 6 2κ1U(proxκ2

U (x)) + ‖x− proxκ2

U (x)‖2 .

Combining this result and the fact that (x− proxκ2

U (x))/κ2 ∈ ∂U(proxκ2

U (x)) we have

‖proxκ1

U (x)− proxκ1

U (x)‖2

6 2κ1 {U(proxκ2

U (x))− U(proxκ1

U (x))}+ 2〈x− proxκ2

U (x),proxκ1

U (x)− proxκ2

U (x)〉
6 2κ1 {U(proxκ2

U (x))− U(proxκ1

U (x))}+ 2κ2 {U(proxκ1

U (x))− U(proxκ2

U (x))}
6 2(κ1 − κ2)(U(proxκ2

U (x))− U(proxκ1

U (x))) ,

which concludes the proof.

Lemma 12. Let V : Rd → R m-convex and continuously differentiable with m > 0. Assume that
there exists M > 0 such that for any x, y ∈ Rd

‖∇V (x)−∇V (y)‖ 6M ‖x− y‖ .

Assume that there exists x? ∈ arg minRd V , then for any γ ∈ (0, γ̄] with γ̄ < 2/(M + m) and x ∈ Rd

‖x− γ∇V (x)‖2 6 (1− γ$) ‖x‖2 + γ{(2/(m +M)− γ̄)−1 + 4$} ‖x?‖2 ,

with $ = mM/(m +M).

Proof. Let x ∈ Rd, γ ∈ (0, γ̄] and γ̄ < 2/(m+M). Using [36, Theorem 2.1.11] and the fact that for
any a, b, ε > 0, εa2 + b2/ε > 2ab we have

‖x− γ∇V (x)‖2

6 ‖x‖2 − 2γ〈∇V (x)−∇V (x?), x− x?〉+ γγ̄ ‖∇V (x)−∇V (x?)‖2

+ 2γ ‖x?‖ ‖∇V (x)−∇V (x?)‖
6 ‖x‖2 − 2γ$ ‖x− x?‖2 − γ(2/(m +M)− γ̄) ‖∇V (x)−∇V (x?)‖2

+ 2γ ‖x?‖ ‖∇V (x)−∇V (x?)‖
6 ‖x‖2 − 2γ$ ‖x− x?‖2 − γ(2/(m +M)− γ̄) ‖∇V (x)−∇V (x?)‖2

+ γ(2/(m +M)− γ̄) ‖∇V (x)−∇V (x?)‖2 + γ/(2/(m +M)− γ̄) ‖x?‖2

6 (1− 2γ$) ‖x‖2 + 4γ$ ‖x?‖ ‖x‖+ γ/(2/(m +M)− γ̄) ‖x?‖2

6 (1− γ$) ‖x‖2 + γ
{

(2/(m +M)− γ̄)−1 + 4$
}
‖x?‖2 .

Lemma 13. Assume H1 and H2. Then for any κ > 0, θ ∈ Θ, γ ∈ (0, γ̄] with γ̄ < 2/(m + L) and
x ∈ Rd, we have

∥∥proxγκUθ (x)− γ∇xVθ(proxγκUθ (x))
∥∥2

6 (1− γ$/2) ‖x‖2 + γ
[
γ̄κ2M2 +

{
(2/(m + L)− γ̄)−1 + 4$

}
R2
V,1 +2κ2M2$−1

]
,

with $ = mL/(m + L).

Proof. Let κ > 0, θ ∈ Θ, γ ∈ (0, γ̄] and x ∈ Rd. Using H1, H2, Lemma 9, Lemma 12, the
Cauchy-Schwarz inequality and that for any α, β > 0, maxt∈R(−αt2 + 2βt) = β2/α, we have
∥∥proxγκUθ (x)− γ∇xVθ(proxγκUθ (x))

∥∥2

6 (1− γ$)
∥∥proxγκUθ (x)

∥∥2
+ γ

{
(2/(m + L)− γ̄)−1 + 4$

}
‖x?θ‖2

6 (1− γ$)
∥∥x− proxγκUθ (x)− x

∥∥2
+ γ

{
(2/(m + L)− γ̄)−1 + 4$

}
R2
V,1

6 (1− γ$) ‖x‖2 + γ2κ2M2 + 2γκM ‖x‖+ γ
{

(2/(m + L)− γ̄)−1 + 4$
}
R2
V,1

6 (1− γ$/2) ‖x‖2 + γ2κ2M2 + γ
{

(2/(m + L)− γ̄)−1 + 4$
}
R2
V,1 + 2γκM ‖x‖ − γ$ ‖x‖2 /2

6 (1− γ$/2) ‖x‖2 + γγ̄κ2M2 + γ
{

(2/(m + L)− γ̄)−1 + 4$
}
R2
V,1 + 2γκ2M2$−1 .
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Lemma 14. Assume H1 and H3. Then for any κ > 0, θ ∈ Θ, γ ∈ (0, γ̄] with γ̄ < 2/L and
x ∈ Rd, we have

∥∥proxγκUθ (x)− γ∇xVθ(proxγκUθ (x))
∥∥2 6 ‖x‖2 + γ

[
3γ̄κ2M2 + 2κc + 2κ(RU,2 + MRU,1)

+(2/L− γ̄)−1R2
V,1 − 2κη ‖x‖

]
.

Proof. Let κ > 0, θ ∈ Θ, γ ∈ (0, γ̄] and x ∈ Rd. Using H1, H3, Lemma 9 and Lemma 10 and
Lemma 12 we have

∥∥proxγκUθ (x)− γ∇xVθ(proxγκUθ (x))
∥∥2 6 ‖proxγκUθ (x)‖2 + γ/(2/L− γ̄)R2

V,1

6 ‖x‖2 + γ2κ2M2 + 2〈proxγκUθ (x)− x, x〉+ γ/(2/L− γ̄)R2
V,1

6 ‖x‖2 + 3γ2κ2M2 − 2γκU(x) + 2γκ(U(x]θ) + M‖x]θ‖) + γ/(2/L− γ̄)R2
V,1

6 ‖x‖2 + 3γ2κ2M2 − 2γκη ‖x‖+ 2γκc

+ 2γκ(U(x]θ) + M‖x]θ‖) + γ/(2/L− γ̄)R2
V,1

6 ‖x‖2 + γ
[
3γ̄κ2M2 + 2κc + 2κ(RU,2 + MRU,1) + (2/L− γ̄)−1R2

V,1 − 2κη ‖x‖
]
.

Lemma 15. Assume H1 and H2. Then for any κ > 0, θ ∈ Θ, γ ∈ (0, γ̄] with γ̄ < 2/(m + L) and
x ∈ Rd, we have

‖x− γ∇xVθ(x)− γ∇xUγκθ (x)‖2 6 (1− γ$/2) ‖x‖2

+ γ
{

(2/(m + L)− γ̄)−1 + 4$
}
R2
V,1 + 2γ2MLRV,1 + γ2M2 + 2γM2(1 + γ̄L)2$−1 ,

with $ = mL/(2m + 2L).

Proof. Let κ > 0, θ ∈ Θ, γ ∈ (0, γ̄] and x ∈ Rd. Using H1, H2, Lemma 9, Lemma 12 and that for
any α, β > 0, max(−αt2 + 2βt) = β2/α we have

‖x− γ∇xVθ(x)− γ∇xUγκθ (x)‖2

6 ‖x− γ∇xVθ(x)‖2 + 2γM ‖x− γ{∇xVθ(x)−∇xVθ(x?θ)}‖+ γ2M2

6 (1− γ$) ‖x‖2 + γ
{

(2/(m + L)− γ̄)−1 + 4$
}
‖x?θ‖2

+ 2γM ‖x‖+ 2γ2M ‖∇xVθ(x)−∇xVθ(x?θ)‖+ γ2M2

6 (1− γ$) ‖x‖2 + γ
{

(2/(m + L)− γ̄)−1 + 4$
}
‖x?θ‖2

+ 2γM ‖x‖+ 2γ2ML ‖x‖+ 2γ2ML ‖x?θ‖+ γ2M2

6 (1− γ$/2) ‖x‖2 + γ
{

(2/(m + L)− γ̄)−1 + 4$
}
R2
V,1

+ 2γ2MLRV,1 + γ2M2 + 2γM(1 + γ̄L) ‖x‖ − γ$ ‖x‖2 /2
6 (1− γ$/2) ‖x‖2 + γ

{
(2/(m + L)− γ̄)−1 + 4$

}
R2
V,1

+ 2γ2MLRV,1 + γ2M2 + 2γM2(1 + γ̄L)2$−1 .

Lemma 16. Assume H1 and H3. Then for any κ > 0, θ ∈ Θ, x ∈ Rd and γ ∈ (0, γ̄] with
γ̄ < min(2/L, η/(2ML)), we have

‖x− γ∇xVθ(x)− γ∇xUγκθ (x)‖2

6 ‖x‖2 + γ
[
(2/L− γ̄)−1R2

V,1 + 3γ̄M2 + 2c + 2(MRU,1 +RU,2) + 2γ̄MLRV,2 − η ‖x‖
]
.

Proof. Let κ > 0, θ ∈ Θ, γ ∈ (0, γ̄] and x ∈ Rd. Using H1, H3, (7), Lemma 9 and Lemma 10 we
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have

‖x− γ∇xVθ(x)− γ∇xUγκθ (x)‖2

6 ‖x− γ∇xVθ(x)‖2 − 2γ〈x− γ∇xVθ(x),∇xUγκθ (x)〉+ γ2M2

6 ‖x− γ∇xVθ(x)‖2 − 2κ−1〈x− γ∇xVθ(x), x− proxγκUθ (x)〉+ γ2M2

6 ‖x− γ∇xVθ(x)‖2 − 2κ−1〈x, x− proxγκUθ (x)〉+ 2κ−1γ ‖∇xVθ(x)‖ ‖x− proxγκUθ (x)‖+ γ2M2

6 ‖x− γ∇xVθ(x)‖2 + 3γ2M2 − 2γη ‖x‖+ 2γc + 2γ(M‖x]θ‖+ U(x]θ)) + 2γγ̄M ‖∇xVθ(x)‖
6 ‖x− γ∇xVθ(x)‖2 + 3γγ̄M2 − 2γη ‖x‖

+ 2γc + 2γ(MRU,1 +RU,2) + 2γγ̄ML ‖x‖+ 2γγ̄ML ‖x?θ‖
6 ‖x− γ∇xVθ(x)‖2 + 3γγ̄M2 − γη ‖x‖+ 2γc + 2γ(MRU,1 +RU,2) + 2γγ̄ML ‖x?θ‖ ,

where we have used for the last inequality that γ̄ < η/(2ML). Then, we can conclude using H1 and
Lemma 12 that

‖x− γ∇xVθ(x)− γ∇xUγκθ (x)‖2

6 ‖x‖2 + γ/(2/L− γ̄)R2
V,1 + 3γγ̄M2 − γη ‖x‖+ 2γc + 2γ(MRU,1 +RU,2) + 2γγ̄MLRV,1

6 ‖x‖2 + γ
[
(2/L− γ̄)−1R2

V,1 + 3γ̄M2 + 2c + 2(MRU,1 +RU,2) + 2γ̄MLRV,2 − η ‖x‖
]
.

For υ ∈ Rd and σ > 0, denote Υυ,σ the d-dimensional Gaussian distribution with mean υ and
covariance matrix σ2 Id.

Lemma 17. For any σ1, σ2 > 0 and υ1, υ2 ∈ Rd, we have

KL (Υυ1,σ1 Id|Υυ2,σ2 Id) = ‖υ1 − υ2‖2 /(2σ2
2) + (d/2)

{
− log(σ2

1/σ2
2)− 1 + σ2

1/σ2
2

}
.

In addition, if σ1 > σ2

KL (Υυ1,σ1 Id|Υυ2,σ2 Id) 6 ‖υ1 − υ2‖2 /(2σ2
2) + (d/2)(1− σ2

1/σ2
2)2 .

Proof. Let X be a d-dimensional Gaussian random variable with mean υ1 and covariance matrix
σ2

1 Id. We have that

KL (Υυ1,σ1 Id|Υυ2,σ2 Id) = E
[
log
{

(σ2
2/σ2

1)d/2 exp
[
−‖X − υ1‖2 /(2σ2

1) + ‖X − υ2‖2 /(2σ2
2)
]}]

= −(d/2) log(σ2
1/σ2

2) + E
[
−‖X − υ1‖2 /(2σ2

1) + ‖X − υ2‖2 /(2σ2
2)
]

= −(d/2) log(σ2
1/σ2

2) + (1/2)(σ−2
2 − σ−2

1 )E
[
−‖X − υ1‖2

]
+
∥∥υ2

1 − υ2
2

∥∥ /(2σ2
2)

= −(d/2) log(σ2
1/σ2

2) + (d/2)(σ2
1/σ2

2 − 1) +
∥∥υ2

1 − υ2
2

∥∥ /(2σ2
2)

= ‖υ1 − υ2‖2 /(2σ2
2) + (d/2)

{
− log(σ2

1/σ2
2)− 1 + σ2

1/σ2
2

}
.

In the case where σ1 > σ2, let s = σ2
1/σ2

2 − 1. Since s > 0 we have log(1 + s) > s− s2. Therefore,
we get that

− log(σ2
1/σ2

2)− 1 + σ2
1/σ2

2 = − log(1 + s) + s 6 s2 ,

which concludes the proof.

5.2 Proof of Theorem 4
We show that under H 2 or H 3, Foster-Lyapunov drifts hold for MYULA in Lemma 18 and
Lemma 19. Combining these Foster-Lyapunov drifts with an appropriate minorisation condition
Lemma 20, we obtain the geometric ergodicity of the underlying Markov chain in Theorem 21.

Lemma 18. Assume H1 and H2. Then for any θ ∈ Θ, κ ∈ [κ, κ̄] and γ ∈ (0, γ̄] with κ̄ > 1 >
κ > 1/2, γ̄ < 2/(m + L) , Rγ,θ and R̄γ,θ satisfy Dd(W1, λ

γ
2 , b2γ) with

λ2 = exp [−$/2] ,

b2 =
{

(2/(m + L)− γ̄)−1 + 4$
}
R2
V,1 + 2γ̄MLRV,1 + γ̄M2 + 2d+ 2M2(1 + γ̄L)2$−1 +$/2 ,

$ = mL/(m + L) ,
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where for any x ∈ Rd, W2(x) = 1 + ‖x‖2. In addition, for any m ∈ N∗, there exist λm ∈ (0, 1),
bm > 0 such that for any θ ∈ Θ, κ ∈ [κ, κ̄], γ ∈ (0, γ̄] with κ̄ > 1 > κ > 1/2, γ̄ < 2/(m + L), Rγ,θ

and R̄γ,θ satisfy Dd(Wm, λ
γ
m, bmγ), where Wm is given in (19).

Proof. We show the property for Rγ,θ only as the proof for R̄γ,θ is identical. Let θ ∈ Θ, κ ∈ [κ, κ̄],
γ ∈ (0, γ̄] and x ∈ Rd. Let Z be a d-dimensional Gaussian random variable with zero mean and
identity covariance matrix. Using Lemma 15 we have

∫

Rd
‖y‖2 Rγ,θ(x, dy) = E

[∥∥∥x− γ∇xVθ(x)− γ∇xUγκθ (x) +
√

2γZ
∥∥∥

2
]

= ‖x− γ∇xVθ(x)− γ∇xUγκθ (x)‖+ 2γd

6 (1− γ$/2) ‖x‖2 + γ
[{

(2/(m + L)− γ̄)−1 + 4$
}
R2
V,1

+2γ̄MLRV,1 + γ̄M2 + 2d+ 2M2(1 + γ̄L)2$−1
]
.

Therefore, we get

∫

Rd
(1 + ‖y‖2)Rγ,θ(x,dy) 6 (1− γ$/2)(1 + ‖x‖2) + γ

[{
(2/(m + L)− γ̄)−1 + 4$

}
R2
V,1

+2γ̄MLRV,1 + γ̄M2 + 2d+ 2M2(1 + γ̄L)2$−1 +$/2
]
,

which concludes the first part of the proof. Let Tγ,θ(x) = x − γ∇xVθ(x) − γ∇xUγκθ (x). In the
sequel, for any k ∈ {1, . . . ,m}, b, b̃k > 0 and λ, λ̃k ∈ [0, 1) are constants independent of γ which
may take different values at each appearance. Note that using Lemma 15, for any k ∈ {1, . . . , 2m}
there exist λ̃k ∈ (0, 1) and b̃k > 0 such that

‖Tγ,θ(x)‖k 6 {λ̃γk ‖x‖+ γb̃k}k (24)

6 λ̃γkk ‖x‖
k

+ γ2k max(b̃k, 1)k max(γ̄, 1)2k−1
{

1 + ‖x‖k−1
}

6 λ̃γk ‖x‖
k

+ b̃kγ
{

1 + ‖x‖k−1
}
6 (1 + ‖x‖k)(1 + b̃kγ) .

Therefore, combining (24) and the Cauchy-Schwarz inequality we obtain
∫

Rd
(1 + ‖y‖2)Rγ,θ(x, dy) = 1 + E

[
(‖Tγ,θ(x)‖2 + 2

√
2γ〈Tγ,θ(x), Z〉+ 2γ ‖Z‖2)m

]

= 1 +
m∑

k=0

k∑

`=0

(
m

k

)(
k

`

)
‖Tγ,θ(x)‖2(m−k)

2(3k−`)/2γ(k+`)/2E
[
〈Tγ,θ(x), Z〉k−` ‖Z‖2`

]

6 1 + ‖Tγ,θ(x)‖2m

+ 23m/2
m∑

k=1

k∑

`=0

(
m

k

)(
k

`

)
‖Tγ,θ(x)‖2(m−k)

γ(k+`)/2E
[
〈Tγ,θ(x), Z〉k−` ‖Z‖2`

]
1{(1,0)}c(k, `)

6 1 + ‖Tγ,θ(x)‖2m

+ γ23m/2
m∑

k=1

k∑

`=0

(
m

k

)(
k

`

)
‖Tγ,θ(x)‖2m−k−` γ̄(k+`)/2−1E

[
‖Z‖k+`

]
1{(1,0)}c(k, `)

6 1 + λγ2m ‖x‖2m + b2mγ
{

1 + ‖x‖2m−1
}

+ γ23m/222m max(γ̄, 1)2m sup
k∈{1,...,m}

{
(1 + b̃kγ̄)E

[
‖Z‖k

]}
(1 + ‖x‖2m−1

)

6 1 + λγ ‖x‖2m + γb(1 + ‖x‖2m−1
)

6 λγ/2(1 + ‖x‖2m) + γb(1 + ‖x‖2m−1
) + λγ(1 + ‖x‖2m)− λγ/2(1 + ‖x‖2m) .

Using that λγ − λγ/2 6 − log(1/λ)γλγ/2/2, concludes the proof.

Lemma 19. Assume H1 and H3. Then for any θ ∈ Θ, κ ∈ [κ, κ̄] and γ ∈ (0, γ̄] with κ̄ > 1 >
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κ > 1/2, γ̄ < min(2/L, η/(2ML)), Rγ,θ and R̄γ,θ satisfy Dd(W,λγ , bγ) with

λ = e−α
2

,

be = (4/L− 2γ̄)−1R2
V,1 + (3/2)γ̄M2 + c + MRU,1 +RU,2 + γ̄MLRV,2 + d+ 2α ,

b = αbee
αγ̄beW (R) ,

W = Wα , α < η/8 ,

Rη = max (2be/(η − 8α), 1) ,

(25)

where Wα is given in (19).

Proof. We show the property for Rγ,θ only as the proof for R̄γ,θ is identical. Let θ ∈ Θ, κ ∈ [κ, κ̄]
γ ∈ (0, γ̄], x ∈ Rd and Z be a d-dimensional Gaussian random variable with zero mean and identity
covariance matrix. Using Lemma 16 we have
∫

Rd
‖y‖2 Rγ,θ(x, dy) = ‖x− γ∇xVθ(x)− γ∇xUγκθ ‖

2
+ 2γd

6 ‖x‖2 + γ
[
(2/L− γ̄)−1R2

V,1 + 3γ̄M2 + 2c + 2(MRU,1 +RU,2) + 2γ̄MLRV,2 + 2d− η ‖x‖
]
.

Using the log-Sobolev inequality [3, Proposition 5.4.1] and Jensen’s inequality we get that

Rγ,θW (x) 6 exp
[
αRγ,θφ(x) + α2γ

]
(26)

6 exp

[
α

(
1 +

∫

Rd
‖y‖2 Rγ,θ(x,dy)

)1/2

+ α2γ

]
.

We now distinguish two cases:

(a) If ‖x‖ > Rη, recalling that Rη is given in (25), then

(2/L− γ̄)−1R2
V,1 + 3γ̄M2 + 2c + 2(MRU,1 +RU,2) + 2γ̄MLRV,2 + 2d− η ‖x‖ 6 −8α ‖x‖ .

In this case using that φ−1(x) ‖x‖ > 1/2 and that for any t > 0,
√

1 + t 6 1 + t/2 we have

(
1 +

∫

Rd
‖y‖2 Rγ,θ(x, dy)

)1/2

− φ(x) 6

6 γφ−1(x)
(
(2/L− γ̄)−1R2

V,1 + 3γ̄M2 + 2c + 2(MRU,1 +RU,2) + 2γ̄MLRV,2 + 2d− η ‖x‖
)/

2

6 −4αγφ−1(x) ‖x‖ 6 −2αγ .

Hence,

Rγ,θW (x) 6
[
α

(
1 +

∫

Rd
‖y‖2 Rγ,θ(x, dy)

)1/2

+ α2γ

]
6 e−α

2γW (x) .

(b) If ‖x‖ 6 Rη then using that for any t > 0,
√

1 + t 6 1 + t/2 we have

(
1 +

∫

Rd
‖y‖2 Rγ,θ(x, dy)

)1/2

− φ(x)

6 γ((4/L− 2γ̄)−1R2
V,1 + (3/2)γ̄M2 + c + MRU,1 +RU,2 + γ̄MLRV,2 + d) .

Therefore, using (26), we get

Rγ,θW (x)

6 exp
[
αγ
{

(4/L− 2γ̄)−1R2
V,1 + (3/2)γ̄M2 + c + MRU,1 +RU,2 + γ̄MLRV,2 + d+ α

}]
W (x) .

Since for all a > b, ea − eb 6 (a− b)ea we obtain that

Rγ,θW (x) 6 λγW (x) + γαbee
αγ̄beW (Rη) ,

which concludes the proof.
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Lemma 20. Assume H 1. For any κ ∈ [κ, κ̄], θ ∈ Θ, γ ∈ (0, γ̄] with κ̄ > 1 > κ > 1/2,
γ̄ < (2− 1/κ)/L and x, y ∈ Rd

max
(
‖δxR

d1/γe
γ,θ − δyR

d1/γe
γ,θ ‖TV, ‖δxR̄

d1/γe
γ,θ − δyR̄

d1/γe
γ,θ ‖TV

)
6 1− 2Φ

{
−‖x− y‖ /(2

√
2)
}
,

where Φ is the cumulative distribution function of the standard normal distribution on R.

Proof. We only show that for any θ ∈ Θ, κ ∈ [κ, κ̄], γ ∈ (0, γ̄] with κ̄ > 1 > κ > 1/2, γ̄ < (2−1/κ)/L

and x, y ∈ Rd, we have ‖δxR
d1/γe
γ,θ − δyR

d1/γe
γ,θ ‖TV 6 1− 2Φ

{
−‖x− y‖ /(2

√
2)
}
as the proof of for

R̄γ,θ is similar. Let κ ∈ [κ, κ̄], θ ∈ Θ, γ ∈ (0, γ̄]. We have that x 7→ Vθ(x) + Uγκθ (x) is convex,
continuously differentiable and satisfies for any x, y ∈ Rd

‖∇xVθ(x) +∇xUγκθ (x)−∇xVθ(y)−∇xUγκθ (y)‖ 6 {L + 1/(γκ)} ‖x− y‖ ,

Combining this result with [36, Theorem 2.1.5, Equation (2.1.8)] and the fact that γ 6 2/{L +
1/(γκ)} since γ̄ 6 (2− 1/κ)/L, we have for any x, y ∈ Rd

‖x− γ∇xVθ(x)− γ∇xUγκθ (x)− y + γ∇xVθ(y) + γ∇xUγκθ (y)‖ 6 ‖x− y‖ .

The proof is then an application of [16, Proposition 3b] with ` ← 1, for any x ∈ Rd, Tγ,θ(x) ←
x− γ∇xVθ(x)− γ∇x∇Uγκθ (x) and Π← Id.

Theorem 21. Assume H1 and H2 or H3. Let κ̄ > 1 > κ > 1/2, γ̄ < min{(2−1/κ)/L, 2/(m+L)}
if H2 holds and γ̄ < min{(2− 1/κ)/L, η/(2ML)} if H3 holds. Then for any a ∈ (0, 1], there exist
A2,a > 0 and ρa ∈ (0, 1) such that for any θ ∈ Θ, κ ∈ [κ, κ̄], γ ∈ (0, γ̄], Rγ,θ and R̄γ,θ admit
invariant probability measures πγ,θ, respectively π̄γ,θ, and for any x, y ∈ Rd and n ∈ N we have

max
(
‖δxRn

γ,θ − πγ,θ‖Wa , ‖δxR̄n
γ,θ − π̄γ,θ‖Wa

)
6 A2,aρ

γn
a W a(x) ,

max
(
‖δxRn

γ,θ − δyRn
γ,θ‖Wa , ‖δxR̄n

γ,θ − δyR̄n
γ,θ‖Wa

)
6 A2,aρ

γn
a {W a(x) +W a(y)} ,

with W = Wm and m ∈ N∗ if H2 holds and W = Wα with α < min(κη/4, η/8) if H3 holds, see
(19).

Proof. We only show that for any a ∈ (0, 1], there exist A2,a > 0 and ρa ∈ (0, 1) such that for
any θ ∈ Θ, κ ∈ [κ, κ̄] and γ ∈ (0, γ̄] we have ‖δxRn

γ,θ − πγ,θ‖Wa 6 A2,aρ
γn
a W a(x) and ‖δxRn

γ,θ −
δyRn

γ,θ‖Wa 6 A2,aρ
γn
a {W a(x) +W a(y)}, since the proof for R̄γ,θ is similar . Let a ∈ [0, 1]. First,

using Jensen’s inequality and Lemma 18 if H2 holds or Lemma 19 if H3 holds, we get that there
exist λa and ba such that for any θ ∈ Θ, κ ∈ [κ, κ̄], γ ∈ (0, γ̄], Rγ,θ and R̄γ,θ satisfy Dd(W a, λγa, baγ).
Combining [16, Theorem 6], Lemma 20 and Dd(W a, λγa, baγ), we get that there exist Ā2,a > 0 and
ρa ∈ (0, 1) such that for any θ ∈ Θ, κ ∈ [κ, κ̄], γ ∈ (0, γ̄], x, y ∈ Rd and n ∈ N, Rγ,θ and R̄γ,θ admit
invariant probability measures πγ,θ and π̄γ,θ respectively and

max
{
‖δxRn

γ,θ − δyRn
γ,θ‖Wa , ‖δxR̄n

γ,θ − δyR̄n
γ,θ‖Wa

}
6 Ā2,aρ

γn
a {W a(x) +W a(y)} . (27)

Using that for any θ ∈ Θ, κ ∈ [κ, κ̄] and γ ∈ (0, γ̄] , Rγ,θ and R̄γ,θ satisfy Dd(W a, λγa, baγ) and [17,
Lemma S2] we have

πγ,θ(W
a) 6 baγ/(1− λγa) 6 baλ

−γ̄
a / log(1/λa) . (28)

Hence, combining (27) and (28), we have for any θ ∈ Θ, κ ∈ [κ, κ̄], γ ∈ (0, γ̄] and n ∈ N

max
{
‖δxRn

γ,θ − πγ,θ‖W , ‖δxR̄n
γ,θ − π̄γ,θ‖W

}
6 Ā2,aρ

γn
a (1 + baλ

−γ̄
a / log(1/λa))W a(x) .

We conclude upon letting A2,a = Ā2,a(1 + baλ
−γ̄
a / log(1/λa)).

5.3 Proof of Theorem 5
We show that under H2 or H3, Foster-Lyapunov drifts hold for PULA in Lemma 22 and Lemma 23.
Combining these Foster-Lyapunov drifts with an appropriate minorisation condition Lemma 24,
we obtain the geometric ergodicity of the underlying Markov chain in Theorem 25.
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Lemma 22. Assume H1 and H2. Then for any θ ∈ Θ, κ ∈ [κ, κ̄] and γ ∈ (0, γ̄] with κ̄ > 1 >
κ > 1/2 and γ̄ < 2/(m + L), Sγ,θ and S̄γ,θ satisfy Dd(W1, λ

γ
2 , b2γ) with

λ2 = exp [−$/2] ,

b2 = γ̄κ̄2M2 +
{

(2/(m + L)− γ̄)−1 + 4$
}
R2
V,2 + 2d+ 2κ̄2M2$−1 +$/2 ,

$ = mL/(m + L) ,

where for any x ∈ Rd, W1(x) = 1 + ‖x‖2. In addition, for any m ∈ N∗, there exist λm ∈ (0, 1),
bm > 0 such that for any θ ∈ Θ, κ ∈ [κ, κ̄] and γ ∈ (0, γ̄] with κ̄ > 1 > κ > 1/2 and γ̄ < 2/(m+ L),
Sγ,θ and S̄γ,θ satisfy Dd(Wm, λ

γ
m, bmγ), where Wm is given in (19).

Proof. We show the property for Sγ,θ only as the proof for S̄γ,θ is identical. Let θ ∈ Θ, κ ∈ [κ, κ̄],
γ ∈ (0, γ̄] and x ∈ Rd. Let Z be a d-dimensional Gaussian random variable with zero mean and
identity covariance matrix. Using Lemma 13 we have
∫

Rd
‖y‖2 Sγ,θ(x, dy) = E

[∥∥∥proxγκUθ (x)− γ∇xVθ(proxγκUθ (x)) +
√

2γZ
∥∥∥

2
]

6 (1− γ$/2) ‖x‖2 + γ
[
γ̄κ2M2 +

{
(2/(m + L)− γ̄)−1 + 4$

}
R2
V,1 +2κ2M2$−1

]
+ 2γd .

Therefore, we get
∫

Rd
(1 + ‖y‖2)Sγ,θ(x, dy) 6 (1− γ$/2)(1 + ‖x‖2) + γ

[
γ̄κ2M2

+
{

(2/(m + L)− γ̄)−1 + 4$
}
R2
V,1 + 2d+ 2κ2M2$−1 +$/2

]
,

which concludes the first part of the proof using that for any t > 0, 1− t 6 e−t. The proof of the
result for W = Wm with m ∈ N∗ is a straightforward adaptation of the one of Lemma 18 and is
left to the reader.

Lemma 23. Assume H1 and H3. Then for any θ ∈ Θ, κ ∈ [κ, κ̄] and γ ∈ (0, γ̄] with κ̄ > 1 >
κ > 1/2 and γ̄ < 2/L, Sγ,θ and S̄γ,θ satisfy Dd(W,λγ , bγ) with

λ = e−α
2

,

be = (3/2)γ̄κ̄2M2 + κ̄c + κ̄(RU,2 + MRU,1) + (4/L− 2γ̄)−1R2
V,1 + d+ 2α

b = αbee
αγ̄beW (R) ,

W = Wα , 0 < α < κη/4 ,

Rη = max (be/(κη − 4α), 1) ,

and where Wα is given in (19).

Proof. We show the property for Sγ,θ only as the proof for S̄γ,θ is identical. Let θ ∈ Θ, κ ∈ [κ, κ̄],
γ ∈ (0, γ̄], x ∈ Rd, and Z be a d-dimensional Gaussian random variable with zero mean and
identity covariance matrix. Using Lemma 14 we have
∫

Rd
‖y‖2 Sγ,θ(x,dy) 6

∥∥proxγκUθ (x)− γ∇xVθ(proxγκUθ (x))
∥∥2

+ 2γd

6 ‖x‖2 + γ
[
3γ̄κ2M2 + 2κc + 2κ(RU,2 + MRU,1) + (2/L− γ̄)−1R2

V,1 + 2d− 2κη ‖x‖
]
.

Using the log-Sobolev inequality [3, Proposition 5.4.1] and Jensen’s inequality we get that

Sγ,θW (x) 6 exp
[
α Sγ,θφ(x) + α2γ

]
(29)

6 exp

[
α

(
1 +

∫

Rd
‖y‖2 Sγ,θ(x, dy)

)1/2

+ α2γ

]
.

We now distinguish two cases.

(a) If ‖x‖ > Rη then φ−1(x) ‖x‖ > 1/2 and 3γ̄κ2M2 + 2κc+ 2κ(RU,2 +MRU,1) + (2/L− γ̄)−1R2
V,1 +

2d− 2κη ‖x‖ 6 −8α ‖x‖. In this case using that for any t > 0,
√

1 + t− 1 6 t/2 we get
(

1 +

∫

Rd
‖y‖2 Sγ,θ(x, dy)

)1/2

− φ(x)

6 γφ−1(x)
[
3γ̄κ2M2 + 2κc + 2κ(RU,2 + MRU,1) + (2/L− γ̄)−1R2

V,1 + 2d− 2κη ‖x‖
]
/2

6 −4αγφ−1(x) ‖x‖ 6 −2αγ .
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Hence,

Sγ,θW (x) 6 exp

[
α

(
1 +

∫

Rd
‖y‖2 Sγ,θ(x,dy)

)1/2

+ α2γ

]
6 e−α

2γW (x) .

(b) If ‖x‖ 6 Rη then using that for any t > 0,
√

1 + t− 1 6 t/2

(
1 +

∫

Rd
‖y‖2 Sγ,θ(x, dy)

)1/2

− φ(x)

6 γ
[
(3/2)γ̄κ2M2 + κc + κ(RU,2 + MRU,1) + (4/L− 2γ̄)−1R2

V,1 + d
]
.

Therefore we get using (29)

Sγ,θW (x)/W (x)

6 exp
[
αγ
{

(3/2)γ̄κ2M2 + κc + κ(RU,2 + MRU,1) + (4/L− 2γ̄)−1R2
V,1 + d+ α

}]
6 eαbeγ .

Since for all a > b, ea − eb 6 (a− b)ea we obtain that

Sγ,θW (x) 6 λγW (x) + γαbee
αγ̄beW (Rη) ,

which concludes the proof.

Lemma 24. Assume H1. For any θ ∈ Θ, κ ∈ [κ, κ̄] and γ ∈ (0, γ̄] with κ̄ > 1 > κ > 1/2, γ̄ < 2/L
and x, y ∈ Rd

max
(
‖δxS

d1/γe
γ,θ − δyS

d1/γe
γ,θ ‖TV, ‖δxS̄

d1/γe
γ,θ − δyS̄

d1/γe
γ,θ ‖TV

)
6 1− 2Φ

{
−‖x− y‖ /(2

√
2)
}
,

where Φ is the cumulative distribution function of the standard normal distribution on R.

Proof. We only show that for any θ ∈ Θ, κ ∈ [κ, κ̄], γ ∈ (0, γ̄] with γ̄ < 2/L, and x, y ∈ Rd,
‖δxS

d1/γe
γ,θ − δyS

d1/γe
γ,θ ‖TV 6 1 − 2Φ

{
−‖x− y‖ /(2

√
2)
}

since the proof for S̄γ,θ is similar. Let
θ ∈ Θ, κ ∈ [κ, κ̄], γ ∈ (0, γ̄]. Using [36, Theorem 2.1.5, Equation (2.1.8)] and that the proximal
operator is non-expansive [5, Proposition 12.28], we have for any x, y ∈ Rd

∥∥proxγκUθ (x)− proxγκUθ (y)− γ(∇xVθ(proxγκUθ (x))−∇xVθ(proxγκUθ (y)))
∥∥

6
∥∥proxγκUθ (x)− proxγκUθ (y)

∥∥ 6 ‖x− y‖ .

The proof is then an application of [16, Proposition 3b] with ` ← 1, for any x ∈ Rd, Tγ,θ(x) ←
proxγκUθ (x)− γ∇xVθ(proxγκUθ (x)) and Π← Id.

Theorem 25. Assume H1 and H2 or H3. Let κ̄ > 1 > κ > 1/2. Let γ̄ < 2/(m + L) if H2 holds
and γ̄ < 2/L if H3 holds. Then for any a ∈ (0, 1], there exist A2,a > 0 and ρa ∈ (0, 1) such that
for any θ ∈ Θ, κ ∈ [κ, κ̄], γ ∈ (0, γ̄], Sγ,θ and S̄γ,θ admit an invariant probability measure πγ,θ and
π̄γ,θ respectively, and for any x, y ∈ Rd and n ∈ N we have

max
(
‖δxSnγ,θ − πγ,θ‖Wa , ‖δxS̄nγ,θ − π̄γ,θ‖Wa

)
6 A2,aρ

γn
a W a(x) ,

max
(
‖δxSnγ,θ − δySnγ,θ‖Wa , ‖δxS̄nγ,θ − δyS̄nγ,θ‖Wa

)
6 A2,aρ

γn
a {W a(x) +W a(y)} ,

with W = Wm and m ∈ N∗ if H2 holds and W = Wα with α < κη/4 if H3 holds, see (19).

Proof. The proof is similar to the one of Theorem 21.

5.4 Checking [17, H1, H2] for PULA
Lemma 26 implies that [17, H1a] holds. The geometric ergodicity proved in Theorem 25 implies
[17, H1b]. Then, we show that the distance between the invariant probability distribution of the
Markov chain and the target distribution is controlled in Corollary 31 and therefore [17, H1c] is
satisfied. Finally, we show that [17, H2] is satisfied in Proposition 32.
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Lemma 26. Assume H 1, H 2 or H 3, and let (Xn
k , X̄

n
k )n∈N,k∈{0,...,mn} be given by (5) with

{(Kγ,θ, K̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ} = {(Sγ,θ, S̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ} and κ ∈ [κ, κ̄] with
κ̄ > 1 > κ > 1/2. Then there exists A1 > 1 such that for any n, p ∈ N and k ∈ {0, . . . ,mn}

E
[
Spγn,θnW (Xn

k )
∣∣X0

0

]
6 A1W (X0

0 ) ,

E
[
S̄pγn,θnW (X̄n

k )
∣∣X̄0

0

]
6 A1W (X̄0

0 ) ,

E
[
W (X0

0 )
]
< +∞ , E

[
W (X̄0

0 )
]
< +∞ ,

with W = Wm with m ∈ N∗ and γ̄ < 2/(m + L) if H2 holds and W = Wα with α < κη/4 and
γ̄ < 2/L if H3 holds, see (19).

Proof. Combining [17, Lemma S15] and Lemma 22 if H2 holds or Lemma 23 if H3 holds conclude
the proof.

Lemma 27. Assume H1 and H2 or H3. We have supθ∈Θ{πθ(W )+π̄θ(W )} < +∞, withW = Wm

with m ∈ N∗ if H2 holds and W = Wα with α < η if H3 holds, see (19).

Proof. We only show that supθ πθ(W ) < +∞ since the proof for π̄θ is similar. Let m ∈ N∗, α < η
and θ ∈ Θ The proof is divided into two parts.

(a) If H2 holds then using H1-(b) we have
∫

Rd
(1 + ‖x‖2m) exp [−Uθ(x)− Vθ(x)] dx 6

∫

Rd
(1 + ‖x‖2m) exp [−Vθ(x)] dx

6
∫

Rd
(1 + ‖x‖2m) exp

[
−Vθ(x?θ)− m ‖x− x?θ‖2 /2

]
dx

6 exp
[
RV,3 + mR2

V,1/2
] ∫

Rd
(1 + ‖x‖2m) exp

[
mRV,1 ‖x‖ − m ‖x‖2 /2

]
dx .

Hence using H1-(a) we have

sup
θ∈Θ

πθ(W ) 6 exp
[
RV,3 + mR2

V,1/2
] ∫

Rd
(1 + ‖x‖2m) exp

[
mRV,1 ‖x‖ − m ‖x‖2 /2

]
dx

/
inf
θ∈Θ

{∫

Rd
exp [−Uθ(x)− Vθ(x)] dx

}
< +∞ .

(b) if H3 holds then we have
∫

Rd
exp [αφ(x)] exp [−Uθ(x)− Vθ(x)] dx 6

∫

Rd
exp [αφ(x)] exp [−Uθ(x)] dx

6 ec
∫

Rd
exp [α(1 + ‖x‖)] exp [−η ‖x‖] dx .

Since α < η we have using H1-(a)

sup
θ∈Θ

πθ(W ) 6 ec
∫

Rd
exp [α(1 + ‖x‖)] exp [−η ‖x‖] dx

/
inf
θ∈Θ

{∫

Rd
exp [−Uθ(x)− Vθ(x)] dx

}
< +∞ ,

which concludes the proof.

Theorem 28. Assume H1 and H2 or H3. Let κ̄ > 1 > κ > 1/2. Let γ̄ < 2/(m + L) if H2 holds
and γ̄ < 2/L if H3 holds. Then for any θ ∈ Θ, κ ∈ [κ, κ̄] and γ ∈ (0, γ̄] we have

max
(
‖π]γ,θ − πθ‖W 1/2 , ‖π̄]γ,θ − π̄θ‖W 1/2

)
6 Ψ̃(γ) ,

where for any θ ∈ Θ and γ ∈ (0, γ̄], π]γ,θ, respectively π̄
]
γ,θ, is the invariant probability measure of

Sγ,θ, respectively S̄γ,θ, given by (18) and associated with κ = 1. In addition, for any γ ∈ (0, γ̄]

Ψ̃(γ) =
√

2{bλ−γ̄/ log(1/λ) + sup
θ∈Θ

πθ(W ) + sup
θ∈Θ

π̄θ(W )}1/2(Ld+ M2)1/2√γ ,

and where W = Wm with m ∈ N∗ and γ̄, λ, b are given in Lemma 22 if H2 holds and W = Wα

with α < min(κη/4, η) and γ̄, λ, b are given in Lemma 23 if H3 holds, see (19).
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Proof. We only show that for any θ ∈ Θ, κ ∈ [κ, κ̄] and γ ∈ (0, γ̄], ‖π]γ,θ − πθ‖W 1/2 6 Ψ̃(γ), since
the proof of ‖π̃]γ,θ − π̃θ‖W 1/2 6 Ψ̃(γ) is similar. Let θ ∈ Θ, κ ∈ [κ, κ̄], γ ∈ (0, γ̄] and x ∈ Rd Using
Theorem 25 we obtain that (δxSnγ,θ)n∈N, with κ = 1, is weakly convergent towards π]γ,θ. Using that
µ 7→ KL (µ|πθ) is lower semi-continuous for any θ ∈ Θ, see [19, Lemma 1.4.3b], and [21, Corollary
18] we get that

KL
(
π]γ,θ|πθ

)
6 lim inf

n→+∞
KL

(
n−1

n∑

k=1

δxSkγ,θ

∣∣∣∣∣πθ
)

6 γ(Ld+ M2) .

Using a generalized Pinsker inequality, see [22, Lemma 24], Lemma 27 and Lemma 22 if H2 holds
or Lemma 23 if H3 holds, we get that

‖π]γ,θ − πθ‖W 1/2 6
√

2(π]γ,θ(W ) + πθ(W ))1/2KL
(
π]γ,θ|πθ

)1/2

6
√

2{bλ−γ̄/ log(1/λ) + sup
θ∈Θ

πθ(W )}1/2(Ld+ M2)1/2γ1/2 ,

which concludes the proof.

Lemma 29. Assume H1 and H2 or H3. Let κ̄ > 1 > κ > 1/2. Let γ̄ < 2/(m + L) if H2 holds
and γ̄ < 2/L if H3 holds. Then there exists B̄3 > 0 such that for any θ ∈ Θ, γ ∈ (0, γ̄], x ∈ Rd
and κi ∈ [κ, κ̄] with i ∈ {1, 2} we have

max
(
‖δxS

d1/γe
1,γ,θ − δxS

d1/γe
2,γ,θ ‖W 1/2 , ‖δxS̄

d1/γe
1,γ,θ − δxS̄

d1/γe
2,γ,θ ‖W 1/2

)
6 B̄3γ |κ1 − κ2|W 1/2(x) .

where for any i ∈ {1, 2}, θ ∈ Θ and γ ∈ (0, γ̄], Si,γ,θ is given by (18) and associated with κ← κi,
and W = Wm with m ∈ N∗ if H2 holds. In addition, W = Wα with α < min(κη/4, η) if H3
holds, see (19).

Proof. We only show that for any θ ∈ Θ, γ ∈ (0, γ̄], x ∈ Rd and κi ∈ [κ, κ̄] with i ∈ {1, 2} we have
‖δxS

d1/γe
1,γ,θ − δxS

d1/γe
2,γ,θ ‖W 1/2 6 B̄3γ|κ1 − κ2|W 1/2(x) since the proof for S̄1,γ,θ and S̄2,γ,θ is similar.

Let θ ∈ Θ, γ ∈ (0, γ̄], x ∈ Rd and κi ∈ [κ, κ̄] with i ∈ {1, 2}. Using a generalized Pinsker inequality,
see [22, Lemma 24], we have

‖δxS
d1/γe
1,γ,θ − δxS

d1/γe
2,γ,θ ‖W 1/2

6
√

2(S
d1/γe
1,γ,θ W (x) + S

d1/γe
2,γ,θ W (x))1/2KL

(
δxS
d1/γe
1,γ,θ |δxS

d1/γe
2,γ,θ

)1/2

. (30)

Using [30, Lemma 4.1] we get that KL
(

δxS
d1/γe
1,γ,θ |δxS

d1/γe
2,γ,θ

)
6 KL (µ̃1|µ̃2) where setting T =

γ d1/γe, µ̃i, i ∈ {1, 2}, is the probability measure over B(C([0, T ],Rd)) which is defined for any
A ∈ B(C([0, T ],Rd)) by µ̃i(A) = P((Xi

t)t∈[0,T ] ∈ A), i ∈ {1, 2} and for any t ∈ [0, T ]

dXi
t = bi(t, (X

i
s)s∈[0,T ])dt+

√
2dBt , Xi

0 = x ,

with for any (ωs)s∈[0,T ] ∈ C([0, T ] ,Rd) and t ∈ [0, T ]

bi(t, (ωs)s∈[0,T ]) =
∑

p∈N
1[pγ,(p+1)γ)(t)T (proxγκiUθ

(ωpγ)) ,

where for any y ∈ Rd, Tγ,θ(y) = y − γ∇xVθ(y). Since (Xi
t)t∈[0,T ] ∈ C([0, T ] ,Rd), bi and b are

continuous for any i ∈ {1, 2}, [32, Theorem 7.19] applies and we obtain that µ̃1 � µ̃2 and

dµ̃1

dµ̃2
((X1

t )t∈[0,T ]) = exp

{
(1/4)

∫ T

0

∥∥b1(t, (X1
s )s∈[0,T ])− b2(t, (X1

s )s∈[0,T ])
∥∥2

dt

+(1/2)

∫ T

0

〈b1(t, (X1
s )s∈[0,T ])− b2(t, (X1

s )s∈[0,T ]),dX
1
t 〉
}
,

where the equality holds almost surely. As a consequence we obtain that

KL (µ̃1|µ̃2) = (1/4)E

[∫ T

0

∥∥b1(t, (X1
s )s∈[0,T ])− b2(t, (X1

s )s∈[0,T ])
∥∥2

ds

]
. (31)
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In addition, using Lemma 11, we have for any (ωs)s∈[0,T ] ∈ C([0, T ] ,Rd) and t ∈ [0, T ]

∥∥b1(t, (ωs)s∈[0,T ])− b2(t, (ωs)s∈[0,T ])
∥∥2

=
∥∥Tγ,θ(proxγκ1

Uθ
(ωγbt/γc))− Tγ,θ(proxγκ2

Uθ
(ωγbt/γc))

∥∥2

6
∥∥proxγκ1

Uθ
(ωγbt/γc)− proxγκ2

Uθ
(ωγbt/γc)

∥∥2 6 4γ2(κ1 − κ2)2M2 . (32)

Combining this result and (31) we get that

KL
(

δxS
d1/γe
1,γ,θ |δxS

d1/γe
2,γ,θ

)
6 (1 + γ̄)M2γ2 |κ1 − κ2|2 . (33)

Combining (33) and (30) we get that

‖δxS
d1/γe
1,γ,θ − δxS

d1/γe
2,γ,θ ‖W 1/2

6 21/2(1 + γ̄)1/2M(S
d1/γe
1,γ,θ W (x) + S

d1/γe
2,γ,θ W (x))1/2γ |κ1 − κ2| .

We conclude the proof upon using Lemma 8, and Lemma 22 if H2 holds, or Lemma 23 if H3
holds.

Proposition 30. Assume H1 and H2 or H3. Let κ̄ > 1 > κ > 1/2. Let γ̄ < 2/(m + L) if H2
holds and γ̄ < 2/L if H3 holds. Then there exists B3 > 0 such that for any θ ∈ Θ, γ ∈ (0, γ̄] and
κi ∈ [κ, κ̄] with i ∈ {1, 2} we have

max
(
‖π1

γ,θ − π2
γ,θ‖W 1/2 , ‖π̄1

γ,θ − π̄2
γ,θ‖W 1/2

)
6 B3γ |κ1 − κ2| ,

where for any i ∈ {1, 2}, θ ∈ Θ and γ ∈ (0, γ̄], πiγ,θ, respectively π̄
i
γ,θ, is the invariant probability

measure of Si,γ,θ, respectively S̄i,γ,θ, given by (18) and associated with κ ← κi. In addition,
W = Wm with m ∈ N∗ if H2 holds and W = Wα with α < min(κη/4, η) if H3 holds, see (19).

Proof. We only show that for any θ ∈ Θ, γ ∈ (0, γ̄] and κi ∈ [κ, κ̄] with i ∈ {1, 2}, ‖π1
γ,θ −

π2
γ,θ‖W 1/2 6 B3γ|κ2 − κ1| since the proof for π̄1

γ,θ and π̄2
γ,θ are similar. Let θ ∈ Θ, γ ∈ (0, γ̄],

x ∈ Rd and κi > 1/2. Using Theorem 25 we have

lim
n→+∞

‖δxSn1,γ,θ − δxSn2,γ,θ‖W 1/2 = ‖π1,γ,θ − π2,γ,θ‖W 1/2 .

Let n = q d1/γe. Using Theorem 25 with a = 1/2, that W 1/2(x) 6 W (x) for any x ∈ Rd,
Lemma 29, Lemma 8 and Lemma 22 if H2 holds or Lemma 23 if H3 holds, we have

‖δxSn1,γ,θ − δxSn2,γ,θ‖W 1/2 6
q−1∑

k=0

‖δxS
(k+1)d1/γe
1,γ,θ S

(q−k−1)d1/γe
2,γ,θ − δxS

kd1/γe
1,γ,θ S

(q−k)d1/γe
2,γ,θ ‖W 1/2

6
q−1∑

k=0

A2,1/2ρ
q−k−1
1/2

∥∥∥δxS
kd1/γe
1,γ,θ

{
S
d1/γe
1,γ,θ − S

d1/γe
2,γ,θ

}∥∥∥
W 1/2

6 A2,1/2

q−1∑

k=0

ρq−k−1
1/2 B̄3γ |κ1 − κ2| δxS

kd1/γe
1,γ,θ W (x)

6 A2,1/2

q−1∑

k=0

ρq−k−1
1/2 B̄3γ |κ1 − κ2| (1 + bλ−γ̄/ log(1/λ))W (x)

6 A2,1/2B̄3(1 + bλ−γ̄/ log(1/λ))/(1− ρ1/2) |κ1 − κ2| γW (x) ,

which concludes the proof with B3 = 2A2,1/2B̄3(1 + bλ−γ̄/ log(1/λ))/(1 − ρ1/2)κ upon setting
x = 0.

Corollary 31. Assume H1 and H2 or H3. Let κ̄ > 1 > κ > 1/2. Let γ̄ < 2/(m+ L) if H2 holds
and γ̄ < 2/L if H3 holds. Then for any κ ∈ [κ, κ̄], θ ∈ Θ and γ ∈ (0, γ̄], we have

max (‖πγ,θ − πθ‖W 1/2 , ‖π̄γ,θ − π̄θ‖W 1/2) 6 Ψ(γ) ,

where for any γ ∈ (0, γ̄], πγ,θ is the invariant probability measure of Sγ,θ given by (18). In addition,
Ψ(γ) = Ψ̃(γ)+B3γ|κ−1|, where Ψ̃ is given in Theorem 28 and B3 in Proposition 30, andW = Wm

with m ∈ N∗ if H2 holds and W = Wα with α < min(κη/4, η) if H3 holds, see (19).
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Proof. We only show that for any θ ∈ Θ and γ ∈ (0, γ̄] we have ‖πγ,θ − πθ‖W 1/2 6 Ψ(γ) since the
proof for π̄γ,θ and π̄θ are similar. Let κ ∈ [κ, κ̄], θ ∈ Θ, γ ∈ (0, γ̄]. The proof is a direct application
of Theorem 28 and Proposition 30 upon noticing that

‖πγ,θ − πθ‖W 1/2 6 ‖πγ,θ − π]γ,θ‖W 1/2 + ‖π]γ,θ − πθ‖W 1/2 ,

where π]γ,θ is the invariant probability measure of Sγ,θ given by (18) and associated with κ = 1.

Proposition 32. Assume H1 and H2 or H3. Let κ̄ > 1 > κ > 1/2. Let γ̄ < 2/(m + L) if H2
holds and γ̄ < 2/L if H3 holds. Then there exists A4 > 0 such that for any κ ∈ [κ, κ̄], θ1, θ2 ∈ Θ,
γ1, γ2 ∈ (0, γ̄] with γ2 < γ1, a ∈ [1/4, 1/2] and x ∈ Rd

max
(
‖δxSγ1,θ1 − δxSγ2,θ2‖Wa , ‖δxS̄γ1,θ1 − δxS̄γ2,θ2‖Wa

)

6 (Λ(γ1, γ2) + Λ(γ1, γ2) ‖θ1 − θ2‖)W 2a(x) ,

with
Λ1(γ1, γ2) = A4(γ1/γ2 − 1) , Λ2(γ1, γ2) = A4γ

1/2
2 ,

and where W = Wm with m ∈ N and m > 2 if H2 is satisfied and W = Wα with α < min(κη/4, η)
if H3 is satisfied, see (19).

Proof. We only show that for any κ ∈ [κ, κ̄], θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄] with γ2 < γ1, a ∈ [1/4, 1/2]
and x ∈ Rd we have ‖δxSγ1,θ1 − δxSγ2,θ2‖Wa 6 (Λ(γ1, γ2) + Λ(γ1, γ2) ‖θ1 − θ2‖)W 2a(x) since the
proof for S̄γ1,θ1 and S̄γ2,θ2 is similar. Let a ∈ [1/4, 1/2], κ ∈ [κ, κ̄], θ1, θ2 ∈ Θ, γ1, γ2 ∈ (0, γ̄] with
γ2 < γ1. Using a generalized Pinsker inequality, see [22, Lemma 24], we have

‖δxSγ1,θ1 − δxSγ2,θ2‖Wa

6
√

2(δxSγ1,θ1W
2a(x) + δxSγ2,θ2W

2a(x))1/2KL (δxSγ1,θ1 |δxSγ2,θ2)
1/2

.

Combining this result, Jensen’s inequality and Lemma 22 if H2 holds and Lemma 23 if H3 holds,
we obtain that

‖Sγ1,θ1 − Sγ2,θ2‖Wa 6 2(1 + bγ̄)1/2 {KL (δxSγ1,θ1 |δxSγ2,θ2)}1/2W a(x) .

Denote for υ ∈ Rd and σ > 0, Υυ,σ the d-dimensional Gaussian distribution with mean υ and
covariance matrix σ2 Id. Using Lemma 17 and the fact that γ1 > γ2 we have

KL (δxSγ1,θ1 |δxSγ2,θ2) (34)

6 d(γ1/γ2 − 1)2/2 +
∥∥∥Tγ1,θ1(proxγ1κ

Uθ1
(x))− Tγ2,θ2(proxγ2κ

Uθ1
(x))

∥∥∥
2
/

(4γ2) ,

with Tγ,θ(z) = z − γ∇xVθ(z) for any θ ∈ Θ, γ ∈ (0, γ̄] and x ∈ Rd. We have

(1/4)
∥∥∥Tγ1,θ1(proxγ1κ

Uθ1
(x))− Tγ2,θ2(proxγ2κ

Uθ2
(x))

∥∥∥
2

(35)

6
∥∥∥Tγ1,θ1(proxγ1κ

Uθ1
(x))− Tγ1,θ1(proxγ2κ

Uθ1
(x))

∥∥∥
2

+
∥∥∥Tγ1,θ1(proxγ2κ

Uθ1
(x))− Tγ1,θ1(proxγ2κ

Uθ2
(x))

∥∥∥
2

+
∥∥∥Tγ1,θ1(proxγ2κ

Uθ2
(x))− Tγ2,θ1(proxγ2κ

Uθ2
(x))

∥∥∥
2

+
∥∥∥Tγ2,θ1(proxγ2κ

Uθ2
(x))− Tγ2,θ2(proxγ2κ

Uθ2
(x))

∥∥∥
2

.

First using H1, [36, Theorem 2.1.5, Equation (2.1.8)] and Lemma 11 we have
∥∥∥Tγ1,θ1(proxγ1κ

Uθ1
(x))− Tγ1,θ1(proxγ2κ

Uθ1
(x))

∥∥∥ (36)

6
∥∥∥proxγ1κ

Uθ1
(x)− proxγ2κ

Uθ1
(x)
∥∥∥ 6 2M |γ1κ− γ2κ| .

Second, we have using (9), H1, [36, Theorem 2.1.5, Equation (2.1.8)] and H4
∥∥∥Tγ1,θ1(proxγ2κ

Uθ1
(x))− Tγ1,θ1(proxγ2κ

Uθ2
(x))

∥∥∥ (37)

6 γ2κ
∥∥∇xUγ2κ

θ1
(x)−∇xUγ2κ

θ2
(x)
∥∥ 6 sup

t∈[0,γ̄κ]

{fθ(t)}γ2κ ‖θ1 − θ2‖ (1 + ‖x‖) .
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Third using H1 and Lemma 9 we have that
∥∥∥Tγ1,θ1(proxγ2κ

Uθ2
(x))− Tγ2,θ1(proxγ2κ

Uθ2
(x))

∥∥∥ 6 (γ1 − γ2)
∥∥∥∇xVθ1(proxγ2κ

Uθ2
(x))

∥∥∥ (38)

6 (γ1 − γ2)L
∥∥∥proxγ2κ

Uθ2
(x)− x?θ1

∥∥∥
6 (γ1 − γ2)L(RV,1 + γ̄κM + ‖x‖) .

Finally using H1, H4 and Lemma 9 we have that
∥∥∥Tγ2,θ1(proxγ2κ

Uθ2
(x))− Tγ2,θ2(proxγ2κ

Uθ2
(x))

∥∥∥ (39)

6 γ2

∥∥∥∇xVθ1(proxγ2κ
Uθ2

(x))−∇xVθ2(proxγ2κ
Uθ2

(x))
∥∥∥

6 γ2MΘ ‖θ1 − θ2‖ (1 + ‖ proxγ2κ
Uθ2

(x)‖) 6 γ2MΘ ‖θ1 − θ2‖ (1 + γ̄κM + ‖x‖) .

Therefore, combining (36), (37), (38) and (39) in (35), there exists A4,1 > 0 such that for any
γ1, γ2 > 0 with γ2 < γ1 and θ1, θ2 ∈ Θ

∥∥∥Tγ1,θ1(proxγ1κ
Uθ1

(x))− Tγ2,θ2(proxγ2κ
Uθ2

(x))
∥∥∥

2

6 A4,1

[
(γ1 − γ2)2 + γ2

2 ‖θ1 − θ2‖2
]
W 2a(x) .

Using this result in (34), there exists A4,2 > 0 such that

KL (δxSγ1,θ1 |δxSγ2,θ2) 6 A4,2

[
(γ1/γ2 − 1)2 + γ2 ‖θ1 − θ2‖2

]
W 2a(x) ,

which implies the announced result upon setting A4 = 2
√
A4,2(1 + bγ̄)1/2 and using that for any

u, v > 0,
√
u+ v 6 √u+

√
v.

5.5 Checking [17, H1, H2] for MYULA
In this section, similarly to Section 5.5 for PULA, we show that [17, H1, H2] hold for MYULA.

Lemma 33. Assume H 1, H 2 or H 3, and let (Xn
k , X̄

n
k )n∈N,k∈{0,...,mn} be given by (5) with

{(Kγ,θ, K̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ} = {(Rγ,θ, R̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ} and κ ∈ [κ, κ̄] with
κ̄ > 1 > κ > 1/2. Then there exists Ā1 > 1 such that for any n, p ∈ N and k ∈ {0, . . . ,mn}

E
[
Rp
γn,θn

W (Xn
k )
∣∣X0

0

]
6 Ā1W (X0

0 ) ,

E
[
R̄p
γn,θn

W (X̄n
k )
∣∣X̄0

0

]
6 Ā1W (X̄0

0 ) ,

E
[
W (X0

0 )
]
< +∞ , E

[
W (X̄0

0 )
]
< +∞ .

with W = Wm with m ∈ N∗ and γ̄ < 2/(m+ L) if H2 holds and W = Wα with α < min(κη/4, η/8)
and γ̄ < min{2/L, η/(2ML)} if H3 holds, see (19).

Proposition 34. Assume H 1 and H 2 or H 3. Let κ̄ > 1 > κ > 1/2. Let γ̄ < min{(2 −
1/κ)/L, 2/(m+ L)} if H2 holds and γ̄ < min{(2− 1/κ)/L, η/(2ML)} if H3 holds. Then there exists
B̄3,1 > 0 such that for any θ ∈ Θ, κi ∈ [κ, κ̄], γ ∈ (0, γ̄]

max
(
‖π1

γ,θ − π2
γ,θ‖W 1/2 , ‖π̄1

γ,θ − π̄2
γ,θ‖W 1/2

)
6 B̄3,1γ ,

where for any i ∈ {1, 2}, θ ∈ Θ and γ ∈ (0, γ̄], πiγ,θ, respectively π̄
i
γ,θ, is the invariant probability

measure of Ri,γ,θ, respectively R̄i,γ,θ, given by (17) and associated with κ ← κi. In addition,
W = Wm with m ∈ N∗ if H2 holds and W = Wα with α < min(κη/4, η/8) if H3 holds, see (19).

Proof. The proof is similar to the one of Proposition 30 upon setting for any i ∈ {1, 2} and
(ωs)s∈[0,T ] ∈ C([0, T ] ,Rd) with T = γ d1/γe

bi(t, (ωs)s∈[0,T ]) = ωbt/γcγ − γ∇xVθ(ωbt/γcγ)− γ∇xUγκi(γ)
θ (ωbt/γcγ) ,

and replacing (32) in Lemma 29 by

∥∥b1(t, (ωs)s∈[0,T ])− b2(t, (ωs)s∈[0,T ])
∥∥2

=
∥∥−γ∇xUγκ1

θ (ωbt/γcγ) + γ∇xUγκ2

θ (ωbt/γcγ)
∥∥2 6 4γ2M2 .
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Proposition 35. Assume H 1 and H 2 or H 3. Let κ̄ > 1 > κ > 1/2. Let γ̄ < min{(2 −
1/κ)/L, 2/(m + L), L−1} if H2 holds and γ̄ < min{(2 − 1/κ)/L, η/(2ML), L−1} if H3 holds. Then
there exists B̄3,2 > 0 such that for any θ ∈ Θ, γ ∈ (0, γ̄] and κi ∈ [κ, κ̄] with i ∈ {1, 2} we have

max
(
‖π[γ,θ − π]γ,θ‖W 1/2 , ‖π̄[γ,θ − π̄]γ,θ‖W 1/2

)
6 B̄3,2γ

2 ,

where for any θ ∈ Θ and γ ∈ (0, γ̄], π[γ,θ, respectively π̄
[
γ,θ, is the invariant probability measure of

Rγ,θ, respectively R̄γ,θ, given by (17) and associated with κ = 1 and π]γ,θ, respectively π̄
]
γ,θ, is the

invariant probability measure of Sγ,θ, respectively S̄γ,θ, given by (18) and associated with κ = 1. In
addition, W = Wm with m ∈ N∗ if H2 holds and W = Wα with α < min(κη/4, η/8) if H3 holds,
see (19).

Proof. The proof is similar to the one of Proposition 30 upon setting for any (ωs)s∈[0,T ] ∈ C([0, T ] ,Rd)
with T = γ d1/γe

b1(t, (ωs)s∈[0,T ]) = proxγUθ (ωbt/γcγ)− γ∇xVθ(proxγUθ (ωbt/γcγ)) ,

b2(t, (ωs)s∈[0,T ]) = ωbt/γcγ − γ∇xVθ(ωbt/γcγ)− γ∇xUγθ (ωbt/γcγ) ,

and replacing (32) in Lemma 29 and using (9) and Lemma 9 we get
∥∥b1(t, (ωs)s∈[0,T ])− b2(t, (ωs)s∈[0,T ])

∥∥2

= ‖proxγUθ (ωbt/γcγ))− γ∇xVθ(proxγUθ (ωbt/γcγ))− ωbt/γcγ
+ γ∇xVθ(ωbt/γcγ)) + γ(ωbt/γcγ − proxγUθ (ωbt/γcγ))/γ‖2

= γ2
∥∥∇xVθ(proxγUθ (ωbt/γcγ)))−∇xVθ(ωbt/γcγ))

∥∥2 6 L2M2γ4 .

Proposition 36. Assume H 1 and H 2 or H 3. Let κ̄ > 1 > κ > 1/2. Let γ̄ < min{(2 −
1/κ)/L, 2/(m + L), L−1} if H2 holds and γ̄ < min{(2 − 1/κ)/L, η/(2ML), L−1} if H3 holds. Then
for any θ ∈ Θ, κ ∈ [κ, κ̄] and γ ∈ (0, γ̄], we have

max (‖πγ,θ − πθ‖W 1/2 , ‖π̄γ,θ − π̄θ‖W 1/2) 6 Ψ̄(γ) ,

where for any i ∈ {1, 2}, θ ∈ Θ and γ ∈ (0, γ̄], πiγ,θ, respectively π̄
i
γ,θ, is the invariant probability

measure of Ri,γ,θ, respectively R̄i,γ,θ, given by (17) and associated with κ ← κi. In addition,
Ψ̄(γ) = Ψ̃(γ) + B̄3,1γ + B̄3,2γ

2, where Ψ̃ is given in Theorem 28 and B3 in Proposition 30, and
W = Wm with m ∈ N∗ if H2 holds and W = Wα with α < min(κη/4, η/8) if H3 holds, see (19).

Proof. We only show that for any θ ∈ Θ and γ ∈ (0, γ̄], ‖πγ,θ − πθ‖W 1/2 6 Ψ̄(γ) as the proof for
π̄γ,θ and π̄θ is similar. First note that for any θ ∈ Θ, κ ∈ [κ, κ̄] and γ ∈ (0, γ̄] we have

‖πγ,θ − πθ‖W 1/2 6 ‖πγ,θ − π[γ,θ‖W 1/2 + ‖π[γ,θ − π]γ,θ‖W 1/2 + ‖π]γ,θ − πθ‖W 1/2 ,

where for any θ ∈ Θ and γ ∈ (0, γ̄], π[γ,θ is the invariant probability measure of Rγ,θ given by (17)
and associated with κ = 1 and π]γ,θ is the invariant probability measure of Sγ,θ and associated with
κ = 1. We conclude the proof upon combining Proposition 34, Proposition 35 and Theorem 28.

Proposition 37. Assume H 1 and H 2 or H 3. Let κ̄ > 1 > κ > 1/2. Let γ̄ < min{(2 −
1/κ)/L, 2/(m+ L)} if H2 holds and γ̄ < min{(2− 1/κ)/L, η/(2ML)} if H3 holds. Then there exists
Ā4 > 0 such that for any θ1, θ2 ∈ Θ, κ ∈ [κ, κ̄], γ1, γ2 ∈ (0, γ̄] with γ2 < γ1, a ∈ [1/4, 1/2] and
x ∈ Rd

max
(
‖δxRγ1,θ1 − δxRγ2,θ2‖Wa , ‖δxR̄γ1,θ1 − δxR̄γ2,θ2‖Wa

)

6 (Λ̄1(γ1, γ2) + Λ̄2(γ1, γ2) ‖θ1 − θ2‖)W 2a(x) ,

with
Λ̄1(γ1, γ2) = Ā4(γ1/γ2 − 1) , Λ̄2(γ1, γ2) = Ā4γ

1/2
2 ,

and where W = Wm with m ∈ N and m > 2 if H 2 is satisfied and W = Wα with α <
min(κη/4, η/8) if H3 is satisfied, see (19).
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Proof. First, note that we only show that for any θ1, θ2 ∈ Θ, κ ∈ [κ̄, κ], γ1, γ2 ∈ (0, γ̄] with γ2 < γ1,
a ∈ [1/4, 1/2] and x ∈ Rd, we have ‖δxRγ1,θ1−δxRγ2,θ2‖Wa 6 (Λ̄(γ1, γ2)+Λ̄(γ1, γ2) ‖θ1 − θ2‖)W 2a(x)
since the proof for R̄γ1,θ1 and R̄γ2,θ2 is similar. Let a ∈ [1/4, 1/2], θ1, θ2 ∈ Θ, κ ∈ [κ, κ̄],
γ1, γ2 ∈ (0, γ̄] with γ2 < γ1. Using a generalized Pinsker inequality [22, Lemma 24] we have

‖δxRγ1,θ1 − δxRγ2,θ2‖Wa

6
√

2(δxRγ1,θ1W
2a(x) + δxRγ2,θ2W

2a(x))1/2KL (δxRγ1,θ1 |δxRγ2,θ2)
1/2

.

Combining this result, Jensen’s inequality and Lemma 22 if H2 holds and Lemma 23 if H3 holds,
we obtain that

‖δxRγ1,θ1 − δxRγ2,θ2‖Wa 6 2(1 + bγ̄)1/2KL (δxRγ1,θ1 |δxRγ2,θ2)
1/2

W a(x) .

Using Lemma 17 and the fact that γ1 > γ2 we have

KL (δxRγ1,θ1 |δxRγ2,θ2)

6 d(γ1/γ2 − 1)2/2 + ‖γ2∇xVθ2(x)− γ1∇xVθ1(x) + γ2∇xUγ2κ
θ2

(x)− γ1∇xUγ1κ
θ1

(x)‖2/(4γ2) , (40)

We have

‖γ2∇xVθ2(x)− γ1∇xVθ1(x) + γ2∇xUγ2κ
θ2

(x)− γ1∇xUγ1κ
θ1

(x)‖2 (41)

6 4 ‖γ2∇xVθ2(x)− γ2∇xVθ1(x)‖2 + 4 ‖γ2∇xVθ1(x)− γ1∇xVθ1(x)‖2

+ 4
∥∥γ1∇xUγ1κ

θ1
(x)− γ2∇xUγ2κ

θ1
(x)
∥∥2

+ 4
∥∥γ2∇xUγ2κ

θ1
(x)− γ2∇xUγ2κ

θ2
(x)
∥∥2

.

First using H4 we have

‖γ2∇xVθ2(x)− γ2∇xVθ1(x)‖ 6 γ2MΘ ‖θ1 − θ2‖ (1 + ‖x‖) . (42)

Second using H1 we have

‖γ2∇xVθ1(x)− γ1∇xVθ1(x)‖ 6 (γ1 − γ2) ‖∇xVθ1(x)‖ (43)

6 (γ1 − γ2)L
∥∥x− x?θ1

∥∥ 6 (γ1 − γ2)L(RV,1 + ‖x‖) .

Third using H1, H4, Lemma 9 and Lemma 11 we have

∥∥γ1∇xUγ1κ
θ1

(x)− γ2∇xUγ2κ
θ1

(x)
∥∥ 6

∥∥∥(x− proxγ1κ
Uθ1

(x))/κ− (x− proxγ2κ
Uθ1

(x))/κ
∥∥∥ (44)

6
∥∥∥proxγ2κ

Uθ1
(x)− proxγ1κ

Uθ1
(x)
∥∥∥
/
κ

6 2M(γ1 − γ2)

Finally using H4 we have

∥∥γ2∇xUγ2κ
θ1

(x)− γ2∇xUγ2κ
θ2

(x)
∥∥ 6 γ2

{
sup

[0,γ̄κ]

fθ(t)

}
‖θ1 − θ2‖ . (45)

Combining (42), (43), (44) and (45) in (41) we get that there exists Ā4,1 > 0 such that

‖γ2∇xVθ2(x)− γ1∇xVθ1(x) + γ2∇xUκθ2(x)− γ1∇xUκθ1(x)‖2

6 Ā4,1

[
(γ1 − γ2)2 + γ2

2 ‖θ1 − θ2‖
]
W 2a(x) .

Using this result in (40) we obtain that there exists Ā4,2 > 0 such that

KL (δxRγ1,θ1 |δxRγ2,θ2) 6 Ā4,2

[
(γ1/γ2 − 1)2 + γ2 ‖θ1 − θ2‖2

]
W 2a(x) ,

which implies the announced result upon setting Ā4 = 2
√
Ā4,2(1 + bγ̄)1/2 and using that for any

u, v > 0,
√
u+ v 6 √u+

√
v.
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5.6 Proof of Theorem 6
We divide the proof in two parts.

(a) First assume that (Xn
k )n∈N,k∈{0,...,mn} and (X̄n

k )n∈N,k∈{0,...,mn} are given by (5) and we have
{(Kγ,θ, K̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ} = {(Sγ,θ, S̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ}. Then Lemma 26 implies
that [17, H1a] is satisfied with A1 ← A1, Theorem 25 implies that [17, H1b] holds with A2 ← A2

and ρ ← ρ. Finally, using Corollary 31 we get that [17, H1c] holds with Ψ ← Ψ. Therefore, we
can apply [17, Theorem 1] and we obtain that the sequence (θn)n∈N converges a.s. if

+∞∑

n=0

δn = +∞ ,

+∞∑

n=0

δn+1Ψ(γn) < +∞ ,

+∞∑

n=0

δn+1/(mnγn) < +∞ .

Since Ψ(γn) = O(γ
1/2
n ) by Corollary 31, these summability conditions are satisfied under the

summability assumptions of Theorem 6-(1). Proposition 32 implies that [17, H2] holds with Λ1 ←
Λ1 and Λ2 ← Λ2. Therefore if mn = m0 for all n ∈ N, we can apply [17, Theorem 3] and we
obtain that the sequence (θn)n∈N converges a.s. if

+∞∑

n=0

δn = +∞ ,
+∞∑

n=0

δn+1Ψ(γn) < +∞ ,
+∞∑

n=0

δn+1γ
−2
n < +∞

+∞∑

n=0

δn+1/γ
2
n(Λ1(γn, γn+1) + δn+1Λ2(γn, γn+1)) < +∞ .

These summability conditions are satisfied under the summability assumptions of Theorem 6 -(2).

(b) Second assume that (Xn
k )n∈N,k∈{0,...,mn} and (X̄n

k )n∈N,k∈{0,...,mn} are given by (5) with {(Kγ,θ, K̄γ,θ) :
γ ∈ (0, γ̄] , θ ∈ Θ} = {(Rγ,θ, R̄γ,θ) : γ ∈ (0, γ̄] , θ ∈ Θ}. Then Lemma 33 implies that [17, H1a]
is satisfied with A1 ← Ā1, Theorem 21 implies that [17, H1b] holds with A2 ← Ā2 and ρ ← ρ̄.
Finally, using Proposition 36 we get that [17, H1c] holds with Ψ ← Ψ̄. Therefore, we can apply
[17, Theorem 1] and we obtain that the sequence (θn)n∈N converges a.s. if

+∞∑

n=0

δn = +∞ ,

+∞∑

n=0

δn+1Ψ̄(γn) < +∞ ,

+∞∑

n=0

δn+1/(mnγn) < +∞ .

Since Ψ(γn) = O(γ
1/2
n ) by Proposition 36, these summability conditions are satisfied under the

summability assumptions of Theorem 6-(1). Proposition 37 implies that [17, H2] holds with Λ1 ←
Λ̄1 and Λ2 ← Λ̄2. Therefore if mn = m0 for all n ∈ N, we can apply [17, Theorem 3] and we
obtain that the sequence (θn)n∈N converges a.s. if

+∞∑

n=0

δn = +∞ ,
+∞∑

n=0

δn+1Ψ̄(γn) < +∞ ,
+∞∑

n=0

δ2
n+1γ

−2
n ,

+∞∑

n=0

δn+1/γ
2
n(Λ̄1(γn, γn+1) + δn+1Λ̄2(γn, γn+1)) < +∞ .

These summability conditions are satisfied under the summability assumptions of Theorem 6-(2).

5.7 Proof of Theorem 7
The proof is similar to the one of Theorem 6 using [16, Theorem 2, Theorem 4] instead of [16,
Theorem 1, Theorem 3].
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[63] J. E. Gentle, W. K. Härdle, and Y. Mori, Handbook of computational

statistics: concepts and methods, Springer Science & Business Media, 2012.

[64] R. Giryes, M. Elad, and Y. C. Eldar, The projected GSURE for auto-

matic parameter tuning in iterative shrinkage methods, Applied and Compu-

tational Harmonic Analysis, 30 (2011), pp. 407–422.

149

https://doi.org/DOI: 10.1111/j.1467-9574.2011.00515.x
https://doi.org/DOI: 10.1111/j.1467-9574.2011.00515.x


BIBLIOGRAPHY

[65] G. H. Golub, M. Heath, and G. Wahba, Generalized cross-validation

as a method for choosing a good ridge parameter, Technometrics, 21 (1979),

pp. 215–223.
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